xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 62e59c4e)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_encoder.h>
39 #include <drm/drm_displayid.h>
40 #include <drm/drm_scdc_helper.h>
41 
42 #include "drm_crtc_internal.h"
43 
44 #define version_greater(edid, maj, min) \
45 	(((edid)->version > (maj)) || \
46 	 ((edid)->version == (maj) && (edid)->revision > (min)))
47 
48 #define EDID_EST_TIMINGS 16
49 #define EDID_STD_TIMINGS 8
50 #define EDID_DETAILED_TIMINGS 4
51 
52 /*
53  * EDID blocks out in the wild have a variety of bugs, try to collect
54  * them here (note that userspace may work around broken monitors first,
55  * but fixes should make their way here so that the kernel "just works"
56  * on as many displays as possible).
57  */
58 
59 /* First detailed mode wrong, use largest 60Hz mode */
60 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
61 /* Reported 135MHz pixel clock is too high, needs adjustment */
62 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
63 /* Prefer the largest mode at 75 Hz */
64 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
65 /* Detail timing is in cm not mm */
66 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
67 /* Detailed timing descriptors have bogus size values, so just take the
68  * maximum size and use that.
69  */
70 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
71 /* Monitor forgot to set the first detailed is preferred bit. */
72 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
73 /* use +hsync +vsync for detailed mode */
74 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
75 /* Force reduced-blanking timings for detailed modes */
76 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
77 /* Force 8bpc */
78 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
79 /* Force 12bpc */
80 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
81 /* Force 6bpc */
82 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
83 /* Force 10bpc */
84 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
85 /* Non desktop display (i.e. HMD) */
86 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
87 
88 struct detailed_mode_closure {
89 	struct drm_connector *connector;
90 	struct edid *edid;
91 	bool preferred;
92 	u32 quirks;
93 	int modes;
94 };
95 
96 #define LEVEL_DMT	0
97 #define LEVEL_GTF	1
98 #define LEVEL_GTF2	2
99 #define LEVEL_CVT	3
100 
101 static const struct edid_quirk {
102 	char vendor[4];
103 	int product_id;
104 	u32 quirks;
105 } edid_quirk_list[] = {
106 	/* Acer AL1706 */
107 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
108 	/* Acer F51 */
109 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
110 	/* Unknown Acer */
111 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
112 
113 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
114 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
115 
116 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
117 	{ "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC },
118 
119 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
120 	{ "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
121 
122 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
123 	{ "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC },
124 
125 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
126 	{ "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC },
127 
128 	/* Belinea 10 15 55 */
129 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
130 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
131 
132 	/* Envision Peripherals, Inc. EN-7100e */
133 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
134 	/* Envision EN2028 */
135 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
136 
137 	/* Funai Electronics PM36B */
138 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
139 	  EDID_QUIRK_DETAILED_IN_CM },
140 
141 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
142 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
143 
144 	/* LG Philips LCD LP154W01-A5 */
145 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
146 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
147 
148 	/* Philips 107p5 CRT */
149 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
150 
151 	/* Proview AY765C */
152 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
153 
154 	/* Samsung SyncMaster 205BW.  Note: irony */
155 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
156 	/* Samsung SyncMaster 22[5-6]BW */
157 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
158 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
159 
160 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
161 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
162 
163 	/* ViewSonic VA2026w */
164 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
165 
166 	/* Medion MD 30217 PG */
167 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
168 
169 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
170 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
171 
172 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
173 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
174 
175 	/* HTC Vive and Vive Pro VR Headsets */
176 	{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
177 	{ "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
178 
179 	/* Oculus Rift DK1, DK2, and CV1 VR Headsets */
180 	{ "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
181 	{ "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
182 	{ "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
183 
184 	/* Windows Mixed Reality Headsets */
185 	{ "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
186 	{ "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
187 	{ "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
188 	{ "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
189 	{ "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
190 	{ "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
191 	{ "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
192 	{ "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
193 
194 	/* Sony PlayStation VR Headset */
195 	{ "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
196 };
197 
198 /*
199  * Autogenerated from the DMT spec.
200  * This table is copied from xfree86/modes/xf86EdidModes.c.
201  */
202 static const struct drm_display_mode drm_dmt_modes[] = {
203 	/* 0x01 - 640x350@85Hz */
204 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
205 		   736, 832, 0, 350, 382, 385, 445, 0,
206 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
207 	/* 0x02 - 640x400@85Hz */
208 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
209 		   736, 832, 0, 400, 401, 404, 445, 0,
210 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
211 	/* 0x03 - 720x400@85Hz */
212 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
213 		   828, 936, 0, 400, 401, 404, 446, 0,
214 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
215 	/* 0x04 - 640x480@60Hz */
216 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
217 		   752, 800, 0, 480, 490, 492, 525, 0,
218 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
219 	/* 0x05 - 640x480@72Hz */
220 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
221 		   704, 832, 0, 480, 489, 492, 520, 0,
222 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
223 	/* 0x06 - 640x480@75Hz */
224 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
225 		   720, 840, 0, 480, 481, 484, 500, 0,
226 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
227 	/* 0x07 - 640x480@85Hz */
228 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
229 		   752, 832, 0, 480, 481, 484, 509, 0,
230 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
231 	/* 0x08 - 800x600@56Hz */
232 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
233 		   896, 1024, 0, 600, 601, 603, 625, 0,
234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
235 	/* 0x09 - 800x600@60Hz */
236 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
237 		   968, 1056, 0, 600, 601, 605, 628, 0,
238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
239 	/* 0x0a - 800x600@72Hz */
240 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
241 		   976, 1040, 0, 600, 637, 643, 666, 0,
242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
243 	/* 0x0b - 800x600@75Hz */
244 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
245 		   896, 1056, 0, 600, 601, 604, 625, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
247 	/* 0x0c - 800x600@85Hz */
248 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
249 		   896, 1048, 0, 600, 601, 604, 631, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
251 	/* 0x0d - 800x600@120Hz RB */
252 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
253 		   880, 960, 0, 600, 603, 607, 636, 0,
254 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
255 	/* 0x0e - 848x480@60Hz */
256 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
257 		   976, 1088, 0, 480, 486, 494, 517, 0,
258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 0x0f - 1024x768@43Hz, interlace */
260 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
261 		   1208, 1264, 0, 768, 768, 776, 817, 0,
262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
263 		   DRM_MODE_FLAG_INTERLACE) },
264 	/* 0x10 - 1024x768@60Hz */
265 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
266 		   1184, 1344, 0, 768, 771, 777, 806, 0,
267 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 	/* 0x11 - 1024x768@70Hz */
269 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
270 		   1184, 1328, 0, 768, 771, 777, 806, 0,
271 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
272 	/* 0x12 - 1024x768@75Hz */
273 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
274 		   1136, 1312, 0, 768, 769, 772, 800, 0,
275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 	/* 0x13 - 1024x768@85Hz */
277 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
278 		   1168, 1376, 0, 768, 769, 772, 808, 0,
279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 	/* 0x14 - 1024x768@120Hz RB */
281 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
282 		   1104, 1184, 0, 768, 771, 775, 813, 0,
283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
284 	/* 0x15 - 1152x864@75Hz */
285 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
286 		   1344, 1600, 0, 864, 865, 868, 900, 0,
287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 	/* 0x55 - 1280x720@60Hz */
289 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
290 		   1430, 1650, 0, 720, 725, 730, 750, 0,
291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 	/* 0x16 - 1280x768@60Hz RB */
293 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
294 		   1360, 1440, 0, 768, 771, 778, 790, 0,
295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 	/* 0x17 - 1280x768@60Hz */
297 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
298 		   1472, 1664, 0, 768, 771, 778, 798, 0,
299 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 	/* 0x18 - 1280x768@75Hz */
301 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
302 		   1488, 1696, 0, 768, 771, 778, 805, 0,
303 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
304 	/* 0x19 - 1280x768@85Hz */
305 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
306 		   1496, 1712, 0, 768, 771, 778, 809, 0,
307 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
308 	/* 0x1a - 1280x768@120Hz RB */
309 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
310 		   1360, 1440, 0, 768, 771, 778, 813, 0,
311 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 	/* 0x1b - 1280x800@60Hz RB */
313 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
314 		   1360, 1440, 0, 800, 803, 809, 823, 0,
315 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 	/* 0x1c - 1280x800@60Hz */
317 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
318 		   1480, 1680, 0, 800, 803, 809, 831, 0,
319 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 	/* 0x1d - 1280x800@75Hz */
321 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
322 		   1488, 1696, 0, 800, 803, 809, 838, 0,
323 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 	/* 0x1e - 1280x800@85Hz */
325 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
326 		   1496, 1712, 0, 800, 803, 809, 843, 0,
327 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
328 	/* 0x1f - 1280x800@120Hz RB */
329 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
330 		   1360, 1440, 0, 800, 803, 809, 847, 0,
331 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
332 	/* 0x20 - 1280x960@60Hz */
333 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
334 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 	/* 0x21 - 1280x960@85Hz */
337 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
338 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 	/* 0x22 - 1280x960@120Hz RB */
341 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
342 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
344 	/* 0x23 - 1280x1024@60Hz */
345 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
346 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
347 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 	/* 0x24 - 1280x1024@75Hz */
349 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
350 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
351 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 0x25 - 1280x1024@85Hz */
353 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
354 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 	/* 0x26 - 1280x1024@120Hz RB */
357 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
358 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 	/* 0x27 - 1360x768@60Hz */
361 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
362 		   1536, 1792, 0, 768, 771, 777, 795, 0,
363 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 	/* 0x28 - 1360x768@120Hz RB */
365 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
366 		   1440, 1520, 0, 768, 771, 776, 813, 0,
367 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
368 	/* 0x51 - 1366x768@60Hz */
369 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
370 		   1579, 1792, 0, 768, 771, 774, 798, 0,
371 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 	/* 0x56 - 1366x768@60Hz */
373 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
374 		   1436, 1500, 0, 768, 769, 772, 800, 0,
375 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 	/* 0x29 - 1400x1050@60Hz RB */
377 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
378 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
380 	/* 0x2a - 1400x1050@60Hz */
381 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
382 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
383 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 0x2b - 1400x1050@75Hz */
385 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
386 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
387 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
388 	/* 0x2c - 1400x1050@85Hz */
389 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
390 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
391 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 	/* 0x2d - 1400x1050@120Hz RB */
393 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
394 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
395 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
396 	/* 0x2e - 1440x900@60Hz RB */
397 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
398 		   1520, 1600, 0, 900, 903, 909, 926, 0,
399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
400 	/* 0x2f - 1440x900@60Hz */
401 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
402 		   1672, 1904, 0, 900, 903, 909, 934, 0,
403 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
404 	/* 0x30 - 1440x900@75Hz */
405 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
406 		   1688, 1936, 0, 900, 903, 909, 942, 0,
407 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 	/* 0x31 - 1440x900@85Hz */
409 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
410 		   1696, 1952, 0, 900, 903, 909, 948, 0,
411 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
412 	/* 0x32 - 1440x900@120Hz RB */
413 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
414 		   1520, 1600, 0, 900, 903, 909, 953, 0,
415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
416 	/* 0x53 - 1600x900@60Hz */
417 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
418 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
419 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 0x33 - 1600x1200@60Hz */
421 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
422 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
424 	/* 0x34 - 1600x1200@65Hz */
425 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
426 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 0x35 - 1600x1200@70Hz */
429 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
430 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 	/* 0x36 - 1600x1200@75Hz */
433 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
434 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
435 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 	/* 0x37 - 1600x1200@85Hz */
437 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
438 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
440 	/* 0x38 - 1600x1200@120Hz RB */
441 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
442 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
443 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 	/* 0x39 - 1680x1050@60Hz RB */
445 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
446 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
447 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
448 	/* 0x3a - 1680x1050@60Hz */
449 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
450 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 0x3b - 1680x1050@75Hz */
453 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
454 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
455 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 	/* 0x3c - 1680x1050@85Hz */
457 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
458 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
459 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
460 	/* 0x3d - 1680x1050@120Hz RB */
461 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
462 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
464 	/* 0x3e - 1792x1344@60Hz */
465 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
466 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
467 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 	/* 0x3f - 1792x1344@75Hz */
469 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
470 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
471 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 	/* 0x40 - 1792x1344@120Hz RB */
473 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
474 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
475 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
476 	/* 0x41 - 1856x1392@60Hz */
477 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
478 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 	/* 0x42 - 1856x1392@75Hz */
481 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
482 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
483 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 	/* 0x43 - 1856x1392@120Hz RB */
485 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
486 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 	/* 0x52 - 1920x1080@60Hz */
489 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
490 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
491 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 	/* 0x44 - 1920x1200@60Hz RB */
493 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
494 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
495 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
496 	/* 0x45 - 1920x1200@60Hz */
497 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
498 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
499 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 	/* 0x46 - 1920x1200@75Hz */
501 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
502 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 	/* 0x47 - 1920x1200@85Hz */
505 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
506 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
507 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
508 	/* 0x48 - 1920x1200@120Hz RB */
509 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
510 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
512 	/* 0x49 - 1920x1440@60Hz */
513 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
514 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
515 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 	/* 0x4a - 1920x1440@75Hz */
517 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
518 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
519 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
520 	/* 0x4b - 1920x1440@120Hz RB */
521 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
522 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
523 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
524 	/* 0x54 - 2048x1152@60Hz */
525 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
526 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 	/* 0x4c - 2560x1600@60Hz RB */
529 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
530 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
531 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 	/* 0x4d - 2560x1600@60Hz */
533 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
534 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
535 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
536 	/* 0x4e - 2560x1600@75Hz */
537 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
538 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
539 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
540 	/* 0x4f - 2560x1600@85Hz */
541 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
542 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
543 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 	/* 0x50 - 2560x1600@120Hz RB */
545 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
546 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
547 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
548 	/* 0x57 - 4096x2160@60Hz RB */
549 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
550 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
551 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
552 	/* 0x58 - 4096x2160@59.94Hz RB */
553 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
554 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
555 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 };
557 
558 /*
559  * These more or less come from the DMT spec.  The 720x400 modes are
560  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
561  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
562  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
563  * mode.
564  *
565  * The DMT modes have been fact-checked; the rest are mild guesses.
566  */
567 static const struct drm_display_mode edid_est_modes[] = {
568 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
569 		   968, 1056, 0, 600, 601, 605, 628, 0,
570 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
571 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
572 		   896, 1024, 0, 600, 601, 603,  625, 0,
573 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
574 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
575 		   720, 840, 0, 480, 481, 484, 500, 0,
576 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
577 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
578 		   704,  832, 0, 480, 489, 492, 520, 0,
579 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
580 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
581 		   768,  864, 0, 480, 483, 486, 525, 0,
582 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
583 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
584 		   752, 800, 0, 480, 490, 492, 525, 0,
585 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
586 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
587 		   846, 900, 0, 400, 421, 423,  449, 0,
588 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
589 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
590 		   846,  900, 0, 400, 412, 414, 449, 0,
591 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
592 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
593 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
594 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
595 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
596 		   1136, 1312, 0,  768, 769, 772, 800, 0,
597 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
598 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
599 		   1184, 1328, 0,  768, 771, 777, 806, 0,
600 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
601 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
602 		   1184, 1344, 0,  768, 771, 777, 806, 0,
603 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
604 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
605 		   1208, 1264, 0, 768, 768, 776, 817, 0,
606 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
607 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
608 		   928, 1152, 0, 624, 625, 628, 667, 0,
609 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
610 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
611 		   896, 1056, 0, 600, 601, 604,  625, 0,
612 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
613 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
614 		   976, 1040, 0, 600, 637, 643, 666, 0,
615 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
616 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
617 		   1344, 1600, 0,  864, 865, 868, 900, 0,
618 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
619 };
620 
621 struct minimode {
622 	short w;
623 	short h;
624 	short r;
625 	short rb;
626 };
627 
628 static const struct minimode est3_modes[] = {
629 	/* byte 6 */
630 	{ 640, 350, 85, 0 },
631 	{ 640, 400, 85, 0 },
632 	{ 720, 400, 85, 0 },
633 	{ 640, 480, 85, 0 },
634 	{ 848, 480, 60, 0 },
635 	{ 800, 600, 85, 0 },
636 	{ 1024, 768, 85, 0 },
637 	{ 1152, 864, 75, 0 },
638 	/* byte 7 */
639 	{ 1280, 768, 60, 1 },
640 	{ 1280, 768, 60, 0 },
641 	{ 1280, 768, 75, 0 },
642 	{ 1280, 768, 85, 0 },
643 	{ 1280, 960, 60, 0 },
644 	{ 1280, 960, 85, 0 },
645 	{ 1280, 1024, 60, 0 },
646 	{ 1280, 1024, 85, 0 },
647 	/* byte 8 */
648 	{ 1360, 768, 60, 0 },
649 	{ 1440, 900, 60, 1 },
650 	{ 1440, 900, 60, 0 },
651 	{ 1440, 900, 75, 0 },
652 	{ 1440, 900, 85, 0 },
653 	{ 1400, 1050, 60, 1 },
654 	{ 1400, 1050, 60, 0 },
655 	{ 1400, 1050, 75, 0 },
656 	/* byte 9 */
657 	{ 1400, 1050, 85, 0 },
658 	{ 1680, 1050, 60, 1 },
659 	{ 1680, 1050, 60, 0 },
660 	{ 1680, 1050, 75, 0 },
661 	{ 1680, 1050, 85, 0 },
662 	{ 1600, 1200, 60, 0 },
663 	{ 1600, 1200, 65, 0 },
664 	{ 1600, 1200, 70, 0 },
665 	/* byte 10 */
666 	{ 1600, 1200, 75, 0 },
667 	{ 1600, 1200, 85, 0 },
668 	{ 1792, 1344, 60, 0 },
669 	{ 1792, 1344, 75, 0 },
670 	{ 1856, 1392, 60, 0 },
671 	{ 1856, 1392, 75, 0 },
672 	{ 1920, 1200, 60, 1 },
673 	{ 1920, 1200, 60, 0 },
674 	/* byte 11 */
675 	{ 1920, 1200, 75, 0 },
676 	{ 1920, 1200, 85, 0 },
677 	{ 1920, 1440, 60, 0 },
678 	{ 1920, 1440, 75, 0 },
679 };
680 
681 static const struct minimode extra_modes[] = {
682 	{ 1024, 576,  60, 0 },
683 	{ 1366, 768,  60, 0 },
684 	{ 1600, 900,  60, 0 },
685 	{ 1680, 945,  60, 0 },
686 	{ 1920, 1080, 60, 0 },
687 	{ 2048, 1152, 60, 0 },
688 	{ 2048, 1536, 60, 0 },
689 };
690 
691 /*
692  * Probably taken from CEA-861 spec.
693  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
694  *
695  * Index using the VIC.
696  */
697 static const struct drm_display_mode edid_cea_modes[] = {
698 	/* 0 - dummy, VICs start at 1 */
699 	{ },
700 	/* 1 - 640x480@60Hz 4:3 */
701 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
702 		   752, 800, 0, 480, 490, 492, 525, 0,
703 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
704 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
705 	/* 2 - 720x480@60Hz 4:3 */
706 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
707 		   798, 858, 0, 480, 489, 495, 525, 0,
708 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
709 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
710 	/* 3 - 720x480@60Hz 16:9 */
711 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
712 		   798, 858, 0, 480, 489, 495, 525, 0,
713 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
714 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
715 	/* 4 - 1280x720@60Hz 16:9 */
716 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
717 		   1430, 1650, 0, 720, 725, 730, 750, 0,
718 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
719 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
720 	/* 5 - 1920x1080i@60Hz 16:9 */
721 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
722 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
723 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
724 		   DRM_MODE_FLAG_INTERLACE),
725 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
726 	/* 6 - 720(1440)x480i@60Hz 4:3 */
727 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
728 		   801, 858, 0, 480, 488, 494, 525, 0,
729 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
730 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
731 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
732 	/* 7 - 720(1440)x480i@60Hz 16:9 */
733 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
734 		   801, 858, 0, 480, 488, 494, 525, 0,
735 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
736 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
737 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
738 	/* 8 - 720(1440)x240@60Hz 4:3 */
739 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
740 		   801, 858, 0, 240, 244, 247, 262, 0,
741 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
742 		   DRM_MODE_FLAG_DBLCLK),
743 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
744 	/* 9 - 720(1440)x240@60Hz 16:9 */
745 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
746 		   801, 858, 0, 240, 244, 247, 262, 0,
747 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
748 		   DRM_MODE_FLAG_DBLCLK),
749 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
750 	/* 10 - 2880x480i@60Hz 4:3 */
751 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
752 		   3204, 3432, 0, 480, 488, 494, 525, 0,
753 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
754 		   DRM_MODE_FLAG_INTERLACE),
755 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
756 	/* 11 - 2880x480i@60Hz 16:9 */
757 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
758 		   3204, 3432, 0, 480, 488, 494, 525, 0,
759 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
760 		   DRM_MODE_FLAG_INTERLACE),
761 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
762 	/* 12 - 2880x240@60Hz 4:3 */
763 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
764 		   3204, 3432, 0, 240, 244, 247, 262, 0,
765 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
766 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
767 	/* 13 - 2880x240@60Hz 16:9 */
768 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
769 		   3204, 3432, 0, 240, 244, 247, 262, 0,
770 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
771 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 	/* 14 - 1440x480@60Hz 4:3 */
773 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
774 		   1596, 1716, 0, 480, 489, 495, 525, 0,
775 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
776 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
777 	/* 15 - 1440x480@60Hz 16:9 */
778 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
779 		   1596, 1716, 0, 480, 489, 495, 525, 0,
780 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
781 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
782 	/* 16 - 1920x1080@60Hz 16:9 */
783 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
784 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
785 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
786 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
787 	/* 17 - 720x576@50Hz 4:3 */
788 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
789 		   796, 864, 0, 576, 581, 586, 625, 0,
790 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
791 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
792 	/* 18 - 720x576@50Hz 16:9 */
793 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
794 		   796, 864, 0, 576, 581, 586, 625, 0,
795 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
796 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
797 	/* 19 - 1280x720@50Hz 16:9 */
798 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
799 		   1760, 1980, 0, 720, 725, 730, 750, 0,
800 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
801 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
802 	/* 20 - 1920x1080i@50Hz 16:9 */
803 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
804 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
805 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
806 		   DRM_MODE_FLAG_INTERLACE),
807 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
808 	/* 21 - 720(1440)x576i@50Hz 4:3 */
809 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
810 		   795, 864, 0, 576, 580, 586, 625, 0,
811 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
812 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
813 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
814 	/* 22 - 720(1440)x576i@50Hz 16:9 */
815 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
816 		   795, 864, 0, 576, 580, 586, 625, 0,
817 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
818 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
819 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
820 	/* 23 - 720(1440)x288@50Hz 4:3 */
821 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
822 		   795, 864, 0, 288, 290, 293, 312, 0,
823 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
824 		   DRM_MODE_FLAG_DBLCLK),
825 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
826 	/* 24 - 720(1440)x288@50Hz 16:9 */
827 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
828 		   795, 864, 0, 288, 290, 293, 312, 0,
829 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
830 		   DRM_MODE_FLAG_DBLCLK),
831 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
832 	/* 25 - 2880x576i@50Hz 4:3 */
833 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
834 		   3180, 3456, 0, 576, 580, 586, 625, 0,
835 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
836 		   DRM_MODE_FLAG_INTERLACE),
837 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
838 	/* 26 - 2880x576i@50Hz 16:9 */
839 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
840 		   3180, 3456, 0, 576, 580, 586, 625, 0,
841 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
842 		   DRM_MODE_FLAG_INTERLACE),
843 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 	/* 27 - 2880x288@50Hz 4:3 */
845 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
846 		   3180, 3456, 0, 288, 290, 293, 312, 0,
847 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
849 	/* 28 - 2880x288@50Hz 16:9 */
850 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
851 		   3180, 3456, 0, 288, 290, 293, 312, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
853 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 	/* 29 - 1440x576@50Hz 4:3 */
855 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
856 		   1592, 1728, 0, 576, 581, 586, 625, 0,
857 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
858 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
859 	/* 30 - 1440x576@50Hz 16:9 */
860 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
861 		   1592, 1728, 0, 576, 581, 586, 625, 0,
862 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
863 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 	/* 31 - 1920x1080@50Hz 16:9 */
865 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
866 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
867 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
868 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 	/* 32 - 1920x1080@24Hz 16:9 */
870 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
871 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
872 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
873 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
874 	/* 33 - 1920x1080@25Hz 16:9 */
875 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
876 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
877 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
878 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
879 	/* 34 - 1920x1080@30Hz 16:9 */
880 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
881 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
882 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
883 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
884 	/* 35 - 2880x480@60Hz 4:3 */
885 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
886 		   3192, 3432, 0, 480, 489, 495, 525, 0,
887 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
888 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
889 	/* 36 - 2880x480@60Hz 16:9 */
890 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
891 		   3192, 3432, 0, 480, 489, 495, 525, 0,
892 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
893 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
894 	/* 37 - 2880x576@50Hz 4:3 */
895 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
896 		   3184, 3456, 0, 576, 581, 586, 625, 0,
897 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
898 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
899 	/* 38 - 2880x576@50Hz 16:9 */
900 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
901 		   3184, 3456, 0, 576, 581, 586, 625, 0,
902 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
903 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 	/* 39 - 1920x1080i@50Hz 16:9 */
905 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
906 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
907 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
908 		   DRM_MODE_FLAG_INTERLACE),
909 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 	/* 40 - 1920x1080i@100Hz 16:9 */
911 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
912 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
913 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
914 		   DRM_MODE_FLAG_INTERLACE),
915 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
916 	/* 41 - 1280x720@100Hz 16:9 */
917 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
918 		   1760, 1980, 0, 720, 725, 730, 750, 0,
919 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
920 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
921 	/* 42 - 720x576@100Hz 4:3 */
922 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
923 		   796, 864, 0, 576, 581, 586, 625, 0,
924 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
925 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
926 	/* 43 - 720x576@100Hz 16:9 */
927 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
928 		   796, 864, 0, 576, 581, 586, 625, 0,
929 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
930 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
931 	/* 44 - 720(1440)x576i@100Hz 4:3 */
932 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
933 		   795, 864, 0, 576, 580, 586, 625, 0,
934 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
935 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
936 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
937 	/* 45 - 720(1440)x576i@100Hz 16:9 */
938 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
939 		   795, 864, 0, 576, 580, 586, 625, 0,
940 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
941 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
942 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
943 	/* 46 - 1920x1080i@120Hz 16:9 */
944 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
945 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
946 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
947 		   DRM_MODE_FLAG_INTERLACE),
948 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
949 	/* 47 - 1280x720@120Hz 16:9 */
950 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
951 		   1430, 1650, 0, 720, 725, 730, 750, 0,
952 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
953 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
954 	/* 48 - 720x480@120Hz 4:3 */
955 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
956 		   798, 858, 0, 480, 489, 495, 525, 0,
957 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
958 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
959 	/* 49 - 720x480@120Hz 16:9 */
960 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
961 		   798, 858, 0, 480, 489, 495, 525, 0,
962 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
963 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
964 	/* 50 - 720(1440)x480i@120Hz 4:3 */
965 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
966 		   801, 858, 0, 480, 488, 494, 525, 0,
967 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
968 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
969 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
970 	/* 51 - 720(1440)x480i@120Hz 16:9 */
971 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
972 		   801, 858, 0, 480, 488, 494, 525, 0,
973 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
974 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
975 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
976 	/* 52 - 720x576@200Hz 4:3 */
977 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
978 		   796, 864, 0, 576, 581, 586, 625, 0,
979 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
980 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
981 	/* 53 - 720x576@200Hz 16:9 */
982 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
983 		   796, 864, 0, 576, 581, 586, 625, 0,
984 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
985 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
986 	/* 54 - 720(1440)x576i@200Hz 4:3 */
987 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
988 		   795, 864, 0, 576, 580, 586, 625, 0,
989 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
990 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
991 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
992 	/* 55 - 720(1440)x576i@200Hz 16:9 */
993 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
994 		   795, 864, 0, 576, 580, 586, 625, 0,
995 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
996 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
997 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
998 	/* 56 - 720x480@240Hz 4:3 */
999 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1000 		   798, 858, 0, 480, 489, 495, 525, 0,
1001 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1002 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1003 	/* 57 - 720x480@240Hz 16:9 */
1004 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1005 		   798, 858, 0, 480, 489, 495, 525, 0,
1006 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1007 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1008 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1009 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1010 		   801, 858, 0, 480, 488, 494, 525, 0,
1011 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1012 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1013 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1014 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1015 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1016 		   801, 858, 0, 480, 488, 494, 525, 0,
1017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1018 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1019 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1020 	/* 60 - 1280x720@24Hz 16:9 */
1021 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1022 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1023 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1024 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1025 	/* 61 - 1280x720@25Hz 16:9 */
1026 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1027 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1028 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1029 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1030 	/* 62 - 1280x720@30Hz 16:9 */
1031 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1032 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1033 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1034 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1035 	/* 63 - 1920x1080@120Hz 16:9 */
1036 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1037 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1038 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1039 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1040 	/* 64 - 1920x1080@100Hz 16:9 */
1041 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1042 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1043 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1044 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1045 	/* 65 - 1280x720@24Hz 64:27 */
1046 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1047 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1048 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1049 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1050 	/* 66 - 1280x720@25Hz 64:27 */
1051 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1052 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1053 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1054 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1055 	/* 67 - 1280x720@30Hz 64:27 */
1056 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1057 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1058 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1060 	/* 68 - 1280x720@50Hz 64:27 */
1061 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1062 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1063 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1065 	/* 69 - 1280x720@60Hz 64:27 */
1066 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1067 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1068 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1070 	/* 70 - 1280x720@100Hz 64:27 */
1071 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1072 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1073 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1075 	/* 71 - 1280x720@120Hz 64:27 */
1076 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1077 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1080 	/* 72 - 1920x1080@24Hz 64:27 */
1081 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1082 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1083 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085 	/* 73 - 1920x1080@25Hz 64:27 */
1086 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1087 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1088 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090 	/* 74 - 1920x1080@30Hz 64:27 */
1091 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1092 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1093 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095 	/* 75 - 1920x1080@50Hz 64:27 */
1096 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1097 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1098 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 	/* 76 - 1920x1080@60Hz 64:27 */
1101 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1102 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1103 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 	/* 77 - 1920x1080@100Hz 64:27 */
1106 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1107 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1108 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 	/* 78 - 1920x1080@120Hz 64:27 */
1111 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1112 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1113 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 	/* 79 - 1680x720@24Hz 64:27 */
1116 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1117 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1118 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 	/* 80 - 1680x720@25Hz 64:27 */
1121 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1122 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1123 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 	/* 81 - 1680x720@30Hz 64:27 */
1126 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1127 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1128 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 	/* 82 - 1680x720@50Hz 64:27 */
1131 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1132 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1133 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 	/* 83 - 1680x720@60Hz 64:27 */
1136 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1137 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 	/* 84 - 1680x720@100Hz 64:27 */
1141 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1142 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1143 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 	/* 85 - 1680x720@120Hz 64:27 */
1146 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1147 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1148 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 	/* 86 - 2560x1080@24Hz 64:27 */
1151 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1152 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1153 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 	/* 87 - 2560x1080@25Hz 64:27 */
1156 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1157 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 	/* 88 - 2560x1080@30Hz 64:27 */
1161 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1162 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1163 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 	/* 89 - 2560x1080@50Hz 64:27 */
1166 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1167 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1168 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 	/* 90 - 2560x1080@60Hz 64:27 */
1171 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1172 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 	/* 91 - 2560x1080@100Hz 64:27 */
1176 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1177 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1178 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180 	/* 92 - 2560x1080@120Hz 64:27 */
1181 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1182 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1183 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185 	/* 93 - 3840x2160@24Hz 16:9 */
1186 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1187 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1188 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1190 	/* 94 - 3840x2160@25Hz 16:9 */
1191 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1192 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1195 	/* 95 - 3840x2160@30Hz 16:9 */
1196 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1197 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1198 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1200 	/* 96 - 3840x2160@50Hz 16:9 */
1201 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1202 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1203 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1205 	/* 97 - 3840x2160@60Hz 16:9 */
1206 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1207 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1208 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1210 	/* 98 - 4096x2160@24Hz 256:135 */
1211 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1212 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1213 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1215 	/* 99 - 4096x2160@25Hz 256:135 */
1216 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1217 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1220 	/* 100 - 4096x2160@30Hz 256:135 */
1221 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1222 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1225 	/* 101 - 4096x2160@50Hz 256:135 */
1226 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1227 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1228 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1230 	/* 102 - 4096x2160@60Hz 256:135 */
1231 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1232 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1233 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1235 	/* 103 - 3840x2160@24Hz 64:27 */
1236 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1237 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1240 	/* 104 - 3840x2160@25Hz 64:27 */
1241 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1242 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1243 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1245 	/* 105 - 3840x2160@30Hz 64:27 */
1246 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1247 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1250 	/* 106 - 3840x2160@50Hz 64:27 */
1251 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1252 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1255 	/* 107 - 3840x2160@60Hz 64:27 */
1256 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1257 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1260 };
1261 
1262 /*
1263  * HDMI 1.4 4k modes. Index using the VIC.
1264  */
1265 static const struct drm_display_mode edid_4k_modes[] = {
1266 	/* 0 - dummy, VICs start at 1 */
1267 	{ },
1268 	/* 1 - 3840x2160@30Hz */
1269 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1270 		   3840, 4016, 4104, 4400, 0,
1271 		   2160, 2168, 2178, 2250, 0,
1272 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1273 	  .vrefresh = 30, },
1274 	/* 2 - 3840x2160@25Hz */
1275 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1276 		   3840, 4896, 4984, 5280, 0,
1277 		   2160, 2168, 2178, 2250, 0,
1278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279 	  .vrefresh = 25, },
1280 	/* 3 - 3840x2160@24Hz */
1281 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1282 		   3840, 5116, 5204, 5500, 0,
1283 		   2160, 2168, 2178, 2250, 0,
1284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 	  .vrefresh = 24, },
1286 	/* 4 - 4096x2160@24Hz (SMPTE) */
1287 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1288 		   4096, 5116, 5204, 5500, 0,
1289 		   2160, 2168, 2178, 2250, 0,
1290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1291 	  .vrefresh = 24, },
1292 };
1293 
1294 /*** DDC fetch and block validation ***/
1295 
1296 static const u8 edid_header[] = {
1297 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1298 };
1299 
1300 /**
1301  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1302  * @raw_edid: pointer to raw base EDID block
1303  *
1304  * Sanity check the header of the base EDID block.
1305  *
1306  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1307  */
1308 int drm_edid_header_is_valid(const u8 *raw_edid)
1309 {
1310 	int i, score = 0;
1311 
1312 	for (i = 0; i < sizeof(edid_header); i++)
1313 		if (raw_edid[i] == edid_header[i])
1314 			score++;
1315 
1316 	return score;
1317 }
1318 EXPORT_SYMBOL(drm_edid_header_is_valid);
1319 
1320 static int edid_fixup __read_mostly = 6;
1321 module_param_named(edid_fixup, edid_fixup, int, 0400);
1322 MODULE_PARM_DESC(edid_fixup,
1323 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1324 
1325 static void drm_get_displayid(struct drm_connector *connector,
1326 			      struct edid *edid);
1327 
1328 static int drm_edid_block_checksum(const u8 *raw_edid)
1329 {
1330 	int i;
1331 	u8 csum = 0;
1332 	for (i = 0; i < EDID_LENGTH; i++)
1333 		csum += raw_edid[i];
1334 
1335 	return csum;
1336 }
1337 
1338 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1339 {
1340 	if (memchr_inv(in_edid, 0, length))
1341 		return false;
1342 
1343 	return true;
1344 }
1345 
1346 /**
1347  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1348  * @raw_edid: pointer to raw EDID block
1349  * @block: type of block to validate (0 for base, extension otherwise)
1350  * @print_bad_edid: if true, dump bad EDID blocks to the console
1351  * @edid_corrupt: if true, the header or checksum is invalid
1352  *
1353  * Validate a base or extension EDID block and optionally dump bad blocks to
1354  * the console.
1355  *
1356  * Return: True if the block is valid, false otherwise.
1357  */
1358 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1359 			  bool *edid_corrupt)
1360 {
1361 	u8 csum;
1362 	struct edid *edid = (struct edid *)raw_edid;
1363 
1364 	if (WARN_ON(!raw_edid))
1365 		return false;
1366 
1367 	if (edid_fixup > 8 || edid_fixup < 0)
1368 		edid_fixup = 6;
1369 
1370 	if (block == 0) {
1371 		int score = drm_edid_header_is_valid(raw_edid);
1372 		if (score == 8) {
1373 			if (edid_corrupt)
1374 				*edid_corrupt = false;
1375 		} else if (score >= edid_fixup) {
1376 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1377 			 * The corrupt flag needs to be set here otherwise, the
1378 			 * fix-up code here will correct the problem, the
1379 			 * checksum is correct and the test fails
1380 			 */
1381 			if (edid_corrupt)
1382 				*edid_corrupt = true;
1383 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1384 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1385 		} else {
1386 			if (edid_corrupt)
1387 				*edid_corrupt = true;
1388 			goto bad;
1389 		}
1390 	}
1391 
1392 	csum = drm_edid_block_checksum(raw_edid);
1393 	if (csum) {
1394 		if (edid_corrupt)
1395 			*edid_corrupt = true;
1396 
1397 		/* allow CEA to slide through, switches mangle this */
1398 		if (raw_edid[0] == CEA_EXT) {
1399 			DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1400 			DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1401 		} else {
1402 			if (print_bad_edid)
1403 				DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1404 
1405 			goto bad;
1406 		}
1407 	}
1408 
1409 	/* per-block-type checks */
1410 	switch (raw_edid[0]) {
1411 	case 0: /* base */
1412 		if (edid->version != 1) {
1413 			DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1414 			goto bad;
1415 		}
1416 
1417 		if (edid->revision > 4)
1418 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1419 		break;
1420 
1421 	default:
1422 		break;
1423 	}
1424 
1425 	return true;
1426 
1427 bad:
1428 	if (print_bad_edid) {
1429 		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1430 			pr_notice("EDID block is all zeroes\n");
1431 		} else {
1432 			pr_notice("Raw EDID:\n");
1433 			print_hex_dump(KERN_NOTICE,
1434 				       " \t", DUMP_PREFIX_NONE, 16, 1,
1435 				       raw_edid, EDID_LENGTH, false);
1436 		}
1437 	}
1438 	return false;
1439 }
1440 EXPORT_SYMBOL(drm_edid_block_valid);
1441 
1442 /**
1443  * drm_edid_is_valid - sanity check EDID data
1444  * @edid: EDID data
1445  *
1446  * Sanity-check an entire EDID record (including extensions)
1447  *
1448  * Return: True if the EDID data is valid, false otherwise.
1449  */
1450 bool drm_edid_is_valid(struct edid *edid)
1451 {
1452 	int i;
1453 	u8 *raw = (u8 *)edid;
1454 
1455 	if (!edid)
1456 		return false;
1457 
1458 	for (i = 0; i <= edid->extensions; i++)
1459 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1460 			return false;
1461 
1462 	return true;
1463 }
1464 EXPORT_SYMBOL(drm_edid_is_valid);
1465 
1466 #define DDC_SEGMENT_ADDR 0x30
1467 /**
1468  * drm_do_probe_ddc_edid() - get EDID information via I2C
1469  * @data: I2C device adapter
1470  * @buf: EDID data buffer to be filled
1471  * @block: 128 byte EDID block to start fetching from
1472  * @len: EDID data buffer length to fetch
1473  *
1474  * Try to fetch EDID information by calling I2C driver functions.
1475  *
1476  * Return: 0 on success or -1 on failure.
1477  */
1478 static int
1479 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1480 {
1481 	struct i2c_adapter *adapter = data;
1482 	unsigned char start = block * EDID_LENGTH;
1483 	unsigned char segment = block >> 1;
1484 	unsigned char xfers = segment ? 3 : 2;
1485 	int ret, retries = 5;
1486 
1487 	/*
1488 	 * The core I2C driver will automatically retry the transfer if the
1489 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1490 	 * are susceptible to errors under a heavily loaded machine and
1491 	 * generate spurious NAKs and timeouts. Retrying the transfer
1492 	 * of the individual block a few times seems to overcome this.
1493 	 */
1494 	do {
1495 		struct i2c_msg msgs[] = {
1496 			{
1497 				.addr	= DDC_SEGMENT_ADDR,
1498 				.flags	= 0,
1499 				.len	= 1,
1500 				.buf	= &segment,
1501 			}, {
1502 				.addr	= DDC_ADDR,
1503 				.flags	= 0,
1504 				.len	= 1,
1505 				.buf	= &start,
1506 			}, {
1507 				.addr	= DDC_ADDR,
1508 				.flags	= I2C_M_RD,
1509 				.len	= len,
1510 				.buf	= buf,
1511 			}
1512 		};
1513 
1514 		/*
1515 		 * Avoid sending the segment addr to not upset non-compliant
1516 		 * DDC monitors.
1517 		 */
1518 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1519 
1520 		if (ret == -ENXIO) {
1521 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1522 					adapter->name);
1523 			break;
1524 		}
1525 	} while (ret != xfers && --retries);
1526 
1527 	return ret == xfers ? 0 : -1;
1528 }
1529 
1530 static void connector_bad_edid(struct drm_connector *connector,
1531 			       u8 *edid, int num_blocks)
1532 {
1533 	int i;
1534 
1535 	if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1536 		return;
1537 
1538 	dev_warn(connector->dev->dev,
1539 		 "%s: EDID is invalid:\n",
1540 		 connector->name);
1541 	for (i = 0; i < num_blocks; i++) {
1542 		u8 *block = edid + i * EDID_LENGTH;
1543 		char prefix[20];
1544 
1545 		if (drm_edid_is_zero(block, EDID_LENGTH))
1546 			sprintf(prefix, "\t[%02x] ZERO ", i);
1547 		else if (!drm_edid_block_valid(block, i, false, NULL))
1548 			sprintf(prefix, "\t[%02x] BAD  ", i);
1549 		else
1550 			sprintf(prefix, "\t[%02x] GOOD ", i);
1551 
1552 		print_hex_dump(KERN_WARNING,
1553 			       prefix, DUMP_PREFIX_NONE, 16, 1,
1554 			       block, EDID_LENGTH, false);
1555 	}
1556 }
1557 
1558 /**
1559  * drm_do_get_edid - get EDID data using a custom EDID block read function
1560  * @connector: connector we're probing
1561  * @get_edid_block: EDID block read function
1562  * @data: private data passed to the block read function
1563  *
1564  * When the I2C adapter connected to the DDC bus is hidden behind a device that
1565  * exposes a different interface to read EDID blocks this function can be used
1566  * to get EDID data using a custom block read function.
1567  *
1568  * As in the general case the DDC bus is accessible by the kernel at the I2C
1569  * level, drivers must make all reasonable efforts to expose it as an I2C
1570  * adapter and use drm_get_edid() instead of abusing this function.
1571  *
1572  * The EDID may be overridden using debugfs override_edid or firmare EDID
1573  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1574  * order. Having either of them bypasses actual EDID reads.
1575  *
1576  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1577  */
1578 struct edid *drm_do_get_edid(struct drm_connector *connector,
1579 	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1580 			      size_t len),
1581 	void *data)
1582 {
1583 	int i, j = 0, valid_extensions = 0;
1584 	u8 *edid, *new;
1585 	struct edid *override = NULL;
1586 
1587 	if (connector->override_edid)
1588 		override = drm_edid_duplicate(connector->edid_blob_ptr->data);
1589 
1590 	if (!override)
1591 		override = drm_load_edid_firmware(connector);
1592 
1593 	if (!IS_ERR_OR_NULL(override))
1594 		return override;
1595 
1596 	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1597 		return NULL;
1598 
1599 	/* base block fetch */
1600 	for (i = 0; i < 4; i++) {
1601 		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1602 			goto out;
1603 		if (drm_edid_block_valid(edid, 0, false,
1604 					 &connector->edid_corrupt))
1605 			break;
1606 		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1607 			connector->null_edid_counter++;
1608 			goto carp;
1609 		}
1610 	}
1611 	if (i == 4)
1612 		goto carp;
1613 
1614 	/* if there's no extensions, we're done */
1615 	valid_extensions = edid[0x7e];
1616 	if (valid_extensions == 0)
1617 		return (struct edid *)edid;
1618 
1619 	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1620 	if (!new)
1621 		goto out;
1622 	edid = new;
1623 
1624 	for (j = 1; j <= edid[0x7e]; j++) {
1625 		u8 *block = edid + j * EDID_LENGTH;
1626 
1627 		for (i = 0; i < 4; i++) {
1628 			if (get_edid_block(data, block, j, EDID_LENGTH))
1629 				goto out;
1630 			if (drm_edid_block_valid(block, j, false, NULL))
1631 				break;
1632 		}
1633 
1634 		if (i == 4)
1635 			valid_extensions--;
1636 	}
1637 
1638 	if (valid_extensions != edid[0x7e]) {
1639 		u8 *base;
1640 
1641 		connector_bad_edid(connector, edid, edid[0x7e] + 1);
1642 
1643 		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1644 		edid[0x7e] = valid_extensions;
1645 
1646 		new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
1647 				    GFP_KERNEL);
1648 		if (!new)
1649 			goto out;
1650 
1651 		base = new;
1652 		for (i = 0; i <= edid[0x7e]; i++) {
1653 			u8 *block = edid + i * EDID_LENGTH;
1654 
1655 			if (!drm_edid_block_valid(block, i, false, NULL))
1656 				continue;
1657 
1658 			memcpy(base, block, EDID_LENGTH);
1659 			base += EDID_LENGTH;
1660 		}
1661 
1662 		kfree(edid);
1663 		edid = new;
1664 	}
1665 
1666 	return (struct edid *)edid;
1667 
1668 carp:
1669 	connector_bad_edid(connector, edid, 1);
1670 out:
1671 	kfree(edid);
1672 	return NULL;
1673 }
1674 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1675 
1676 /**
1677  * drm_probe_ddc() - probe DDC presence
1678  * @adapter: I2C adapter to probe
1679  *
1680  * Return: True on success, false on failure.
1681  */
1682 bool
1683 drm_probe_ddc(struct i2c_adapter *adapter)
1684 {
1685 	unsigned char out;
1686 
1687 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1688 }
1689 EXPORT_SYMBOL(drm_probe_ddc);
1690 
1691 /**
1692  * drm_get_edid - get EDID data, if available
1693  * @connector: connector we're probing
1694  * @adapter: I2C adapter to use for DDC
1695  *
1696  * Poke the given I2C channel to grab EDID data if possible.  If found,
1697  * attach it to the connector.
1698  *
1699  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1700  */
1701 struct edid *drm_get_edid(struct drm_connector *connector,
1702 			  struct i2c_adapter *adapter)
1703 {
1704 	struct edid *edid;
1705 
1706 	if (connector->force == DRM_FORCE_OFF)
1707 		return NULL;
1708 
1709 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1710 		return NULL;
1711 
1712 	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1713 	if (edid)
1714 		drm_get_displayid(connector, edid);
1715 	return edid;
1716 }
1717 EXPORT_SYMBOL(drm_get_edid);
1718 
1719 /**
1720  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1721  * @connector: connector we're probing
1722  * @adapter: I2C adapter to use for DDC
1723  *
1724  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1725  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1726  * switch DDC to the GPU which is retrieving EDID.
1727  *
1728  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1729  */
1730 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1731 				     struct i2c_adapter *adapter)
1732 {
1733 	struct pci_dev *pdev = connector->dev->pdev;
1734 	struct edid *edid;
1735 
1736 	vga_switcheroo_lock_ddc(pdev);
1737 	edid = drm_get_edid(connector, adapter);
1738 	vga_switcheroo_unlock_ddc(pdev);
1739 
1740 	return edid;
1741 }
1742 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1743 
1744 /**
1745  * drm_edid_duplicate - duplicate an EDID and the extensions
1746  * @edid: EDID to duplicate
1747  *
1748  * Return: Pointer to duplicated EDID or NULL on allocation failure.
1749  */
1750 struct edid *drm_edid_duplicate(const struct edid *edid)
1751 {
1752 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1753 }
1754 EXPORT_SYMBOL(drm_edid_duplicate);
1755 
1756 /*** EDID parsing ***/
1757 
1758 /**
1759  * edid_vendor - match a string against EDID's obfuscated vendor field
1760  * @edid: EDID to match
1761  * @vendor: vendor string
1762  *
1763  * Returns true if @vendor is in @edid, false otherwise
1764  */
1765 static bool edid_vendor(const struct edid *edid, const char *vendor)
1766 {
1767 	char edid_vendor[3];
1768 
1769 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1770 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1771 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1772 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1773 
1774 	return !strncmp(edid_vendor, vendor, 3);
1775 }
1776 
1777 /**
1778  * edid_get_quirks - return quirk flags for a given EDID
1779  * @edid: EDID to process
1780  *
1781  * This tells subsequent routines what fixes they need to apply.
1782  */
1783 static u32 edid_get_quirks(const struct edid *edid)
1784 {
1785 	const struct edid_quirk *quirk;
1786 	int i;
1787 
1788 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1789 		quirk = &edid_quirk_list[i];
1790 
1791 		if (edid_vendor(edid, quirk->vendor) &&
1792 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1793 			return quirk->quirks;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1800 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1801 
1802 /**
1803  * edid_fixup_preferred - set preferred modes based on quirk list
1804  * @connector: has mode list to fix up
1805  * @quirks: quirks list
1806  *
1807  * Walk the mode list for @connector, clearing the preferred status
1808  * on existing modes and setting it anew for the right mode ala @quirks.
1809  */
1810 static void edid_fixup_preferred(struct drm_connector *connector,
1811 				 u32 quirks)
1812 {
1813 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1814 	int target_refresh = 0;
1815 	int cur_vrefresh, preferred_vrefresh;
1816 
1817 	if (list_empty(&connector->probed_modes))
1818 		return;
1819 
1820 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1821 		target_refresh = 60;
1822 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1823 		target_refresh = 75;
1824 
1825 	preferred_mode = list_first_entry(&connector->probed_modes,
1826 					  struct drm_display_mode, head);
1827 
1828 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1829 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1830 
1831 		if (cur_mode == preferred_mode)
1832 			continue;
1833 
1834 		/* Largest mode is preferred */
1835 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1836 			preferred_mode = cur_mode;
1837 
1838 		cur_vrefresh = cur_mode->vrefresh ?
1839 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1840 		preferred_vrefresh = preferred_mode->vrefresh ?
1841 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1842 		/* At a given size, try to get closest to target refresh */
1843 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1844 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1845 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1846 			preferred_mode = cur_mode;
1847 		}
1848 	}
1849 
1850 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1851 }
1852 
1853 static bool
1854 mode_is_rb(const struct drm_display_mode *mode)
1855 {
1856 	return (mode->htotal - mode->hdisplay == 160) &&
1857 	       (mode->hsync_end - mode->hdisplay == 80) &&
1858 	       (mode->hsync_end - mode->hsync_start == 32) &&
1859 	       (mode->vsync_start - mode->vdisplay == 3);
1860 }
1861 
1862 /*
1863  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1864  * @dev: Device to duplicate against
1865  * @hsize: Mode width
1866  * @vsize: Mode height
1867  * @fresh: Mode refresh rate
1868  * @rb: Mode reduced-blanking-ness
1869  *
1870  * Walk the DMT mode list looking for a match for the given parameters.
1871  *
1872  * Return: A newly allocated copy of the mode, or NULL if not found.
1873  */
1874 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1875 					   int hsize, int vsize, int fresh,
1876 					   bool rb)
1877 {
1878 	int i;
1879 
1880 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1881 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1882 		if (hsize != ptr->hdisplay)
1883 			continue;
1884 		if (vsize != ptr->vdisplay)
1885 			continue;
1886 		if (fresh != drm_mode_vrefresh(ptr))
1887 			continue;
1888 		if (rb != mode_is_rb(ptr))
1889 			continue;
1890 
1891 		return drm_mode_duplicate(dev, ptr);
1892 	}
1893 
1894 	return NULL;
1895 }
1896 EXPORT_SYMBOL(drm_mode_find_dmt);
1897 
1898 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1899 
1900 static void
1901 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1902 {
1903 	int i, n = 0;
1904 	u8 d = ext[0x02];
1905 	u8 *det_base = ext + d;
1906 
1907 	n = (127 - d) / 18;
1908 	for (i = 0; i < n; i++)
1909 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1910 }
1911 
1912 static void
1913 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1914 {
1915 	unsigned int i, n = min((int)ext[0x02], 6);
1916 	u8 *det_base = ext + 5;
1917 
1918 	if (ext[0x01] != 1)
1919 		return; /* unknown version */
1920 
1921 	for (i = 0; i < n; i++)
1922 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1923 }
1924 
1925 static void
1926 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1927 {
1928 	int i;
1929 	struct edid *edid = (struct edid *)raw_edid;
1930 
1931 	if (edid == NULL)
1932 		return;
1933 
1934 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1935 		cb(&(edid->detailed_timings[i]), closure);
1936 
1937 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1938 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1939 		switch (*ext) {
1940 		case CEA_EXT:
1941 			cea_for_each_detailed_block(ext, cb, closure);
1942 			break;
1943 		case VTB_EXT:
1944 			vtb_for_each_detailed_block(ext, cb, closure);
1945 			break;
1946 		default:
1947 			break;
1948 		}
1949 	}
1950 }
1951 
1952 static void
1953 is_rb(struct detailed_timing *t, void *data)
1954 {
1955 	u8 *r = (u8 *)t;
1956 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1957 		if (r[15] & 0x10)
1958 			*(bool *)data = true;
1959 }
1960 
1961 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1962 static bool
1963 drm_monitor_supports_rb(struct edid *edid)
1964 {
1965 	if (edid->revision >= 4) {
1966 		bool ret = false;
1967 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1968 		return ret;
1969 	}
1970 
1971 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1972 }
1973 
1974 static void
1975 find_gtf2(struct detailed_timing *t, void *data)
1976 {
1977 	u8 *r = (u8 *)t;
1978 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1979 		*(u8 **)data = r;
1980 }
1981 
1982 /* Secondary GTF curve kicks in above some break frequency */
1983 static int
1984 drm_gtf2_hbreak(struct edid *edid)
1985 {
1986 	u8 *r = NULL;
1987 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1988 	return r ? (r[12] * 2) : 0;
1989 }
1990 
1991 static int
1992 drm_gtf2_2c(struct edid *edid)
1993 {
1994 	u8 *r = NULL;
1995 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1996 	return r ? r[13] : 0;
1997 }
1998 
1999 static int
2000 drm_gtf2_m(struct edid *edid)
2001 {
2002 	u8 *r = NULL;
2003 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2004 	return r ? (r[15] << 8) + r[14] : 0;
2005 }
2006 
2007 static int
2008 drm_gtf2_k(struct edid *edid)
2009 {
2010 	u8 *r = NULL;
2011 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2012 	return r ? r[16] : 0;
2013 }
2014 
2015 static int
2016 drm_gtf2_2j(struct edid *edid)
2017 {
2018 	u8 *r = NULL;
2019 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2020 	return r ? r[17] : 0;
2021 }
2022 
2023 /**
2024  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2025  * @edid: EDID block to scan
2026  */
2027 static int standard_timing_level(struct edid *edid)
2028 {
2029 	if (edid->revision >= 2) {
2030 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2031 			return LEVEL_CVT;
2032 		if (drm_gtf2_hbreak(edid))
2033 			return LEVEL_GTF2;
2034 		return LEVEL_GTF;
2035 	}
2036 	return LEVEL_DMT;
2037 }
2038 
2039 /*
2040  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2041  * monitors fill with ascii space (0x20) instead.
2042  */
2043 static int
2044 bad_std_timing(u8 a, u8 b)
2045 {
2046 	return (a == 0x00 && b == 0x00) ||
2047 	       (a == 0x01 && b == 0x01) ||
2048 	       (a == 0x20 && b == 0x20);
2049 }
2050 
2051 /**
2052  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2053  * @connector: connector of for the EDID block
2054  * @edid: EDID block to scan
2055  * @t: standard timing params
2056  *
2057  * Take the standard timing params (in this case width, aspect, and refresh)
2058  * and convert them into a real mode using CVT/GTF/DMT.
2059  */
2060 static struct drm_display_mode *
2061 drm_mode_std(struct drm_connector *connector, struct edid *edid,
2062 	     struct std_timing *t)
2063 {
2064 	struct drm_device *dev = connector->dev;
2065 	struct drm_display_mode *m, *mode = NULL;
2066 	int hsize, vsize;
2067 	int vrefresh_rate;
2068 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2069 		>> EDID_TIMING_ASPECT_SHIFT;
2070 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2071 		>> EDID_TIMING_VFREQ_SHIFT;
2072 	int timing_level = standard_timing_level(edid);
2073 
2074 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
2075 		return NULL;
2076 
2077 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2078 	hsize = t->hsize * 8 + 248;
2079 	/* vrefresh_rate = vfreq + 60 */
2080 	vrefresh_rate = vfreq + 60;
2081 	/* the vdisplay is calculated based on the aspect ratio */
2082 	if (aspect_ratio == 0) {
2083 		if (edid->revision < 3)
2084 			vsize = hsize;
2085 		else
2086 			vsize = (hsize * 10) / 16;
2087 	} else if (aspect_ratio == 1)
2088 		vsize = (hsize * 3) / 4;
2089 	else if (aspect_ratio == 2)
2090 		vsize = (hsize * 4) / 5;
2091 	else
2092 		vsize = (hsize * 9) / 16;
2093 
2094 	/* HDTV hack, part 1 */
2095 	if (vrefresh_rate == 60 &&
2096 	    ((hsize == 1360 && vsize == 765) ||
2097 	     (hsize == 1368 && vsize == 769))) {
2098 		hsize = 1366;
2099 		vsize = 768;
2100 	}
2101 
2102 	/*
2103 	 * If this connector already has a mode for this size and refresh
2104 	 * rate (because it came from detailed or CVT info), use that
2105 	 * instead.  This way we don't have to guess at interlace or
2106 	 * reduced blanking.
2107 	 */
2108 	list_for_each_entry(m, &connector->probed_modes, head)
2109 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
2110 		    drm_mode_vrefresh(m) == vrefresh_rate)
2111 			return NULL;
2112 
2113 	/* HDTV hack, part 2 */
2114 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2115 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2116 				    false);
2117 		if (!mode)
2118 			return NULL;
2119 		mode->hdisplay = 1366;
2120 		mode->hsync_start = mode->hsync_start - 1;
2121 		mode->hsync_end = mode->hsync_end - 1;
2122 		return mode;
2123 	}
2124 
2125 	/* check whether it can be found in default mode table */
2126 	if (drm_monitor_supports_rb(edid)) {
2127 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2128 					 true);
2129 		if (mode)
2130 			return mode;
2131 	}
2132 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2133 	if (mode)
2134 		return mode;
2135 
2136 	/* okay, generate it */
2137 	switch (timing_level) {
2138 	case LEVEL_DMT:
2139 		break;
2140 	case LEVEL_GTF:
2141 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2142 		break;
2143 	case LEVEL_GTF2:
2144 		/*
2145 		 * This is potentially wrong if there's ever a monitor with
2146 		 * more than one ranges section, each claiming a different
2147 		 * secondary GTF curve.  Please don't do that.
2148 		 */
2149 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2150 		if (!mode)
2151 			return NULL;
2152 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2153 			drm_mode_destroy(dev, mode);
2154 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
2155 						    vrefresh_rate, 0, 0,
2156 						    drm_gtf2_m(edid),
2157 						    drm_gtf2_2c(edid),
2158 						    drm_gtf2_k(edid),
2159 						    drm_gtf2_2j(edid));
2160 		}
2161 		break;
2162 	case LEVEL_CVT:
2163 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2164 				    false);
2165 		break;
2166 	}
2167 	return mode;
2168 }
2169 
2170 /*
2171  * EDID is delightfully ambiguous about how interlaced modes are to be
2172  * encoded.  Our internal representation is of frame height, but some
2173  * HDTV detailed timings are encoded as field height.
2174  *
2175  * The format list here is from CEA, in frame size.  Technically we
2176  * should be checking refresh rate too.  Whatever.
2177  */
2178 static void
2179 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2180 			    struct detailed_pixel_timing *pt)
2181 {
2182 	int i;
2183 	static const struct {
2184 		int w, h;
2185 	} cea_interlaced[] = {
2186 		{ 1920, 1080 },
2187 		{  720,  480 },
2188 		{ 1440,  480 },
2189 		{ 2880,  480 },
2190 		{  720,  576 },
2191 		{ 1440,  576 },
2192 		{ 2880,  576 },
2193 	};
2194 
2195 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2196 		return;
2197 
2198 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2199 		if ((mode->hdisplay == cea_interlaced[i].w) &&
2200 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
2201 			mode->vdisplay *= 2;
2202 			mode->vsync_start *= 2;
2203 			mode->vsync_end *= 2;
2204 			mode->vtotal *= 2;
2205 			mode->vtotal |= 1;
2206 		}
2207 	}
2208 
2209 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
2210 }
2211 
2212 /**
2213  * drm_mode_detailed - create a new mode from an EDID detailed timing section
2214  * @dev: DRM device (needed to create new mode)
2215  * @edid: EDID block
2216  * @timing: EDID detailed timing info
2217  * @quirks: quirks to apply
2218  *
2219  * An EDID detailed timing block contains enough info for us to create and
2220  * return a new struct drm_display_mode.
2221  */
2222 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2223 						  struct edid *edid,
2224 						  struct detailed_timing *timing,
2225 						  u32 quirks)
2226 {
2227 	struct drm_display_mode *mode;
2228 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2229 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2230 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2231 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2232 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2233 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2234 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2235 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2236 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2237 
2238 	/* ignore tiny modes */
2239 	if (hactive < 64 || vactive < 64)
2240 		return NULL;
2241 
2242 	if (pt->misc & DRM_EDID_PT_STEREO) {
2243 		DRM_DEBUG_KMS("stereo mode not supported\n");
2244 		return NULL;
2245 	}
2246 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2247 		DRM_DEBUG_KMS("composite sync not supported\n");
2248 	}
2249 
2250 	/* it is incorrect if hsync/vsync width is zero */
2251 	if (!hsync_pulse_width || !vsync_pulse_width) {
2252 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
2253 				"Wrong Hsync/Vsync pulse width\n");
2254 		return NULL;
2255 	}
2256 
2257 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2258 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2259 		if (!mode)
2260 			return NULL;
2261 
2262 		goto set_size;
2263 	}
2264 
2265 	mode = drm_mode_create(dev);
2266 	if (!mode)
2267 		return NULL;
2268 
2269 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2270 		timing->pixel_clock = cpu_to_le16(1088);
2271 
2272 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2273 
2274 	mode->hdisplay = hactive;
2275 	mode->hsync_start = mode->hdisplay + hsync_offset;
2276 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2277 	mode->htotal = mode->hdisplay + hblank;
2278 
2279 	mode->vdisplay = vactive;
2280 	mode->vsync_start = mode->vdisplay + vsync_offset;
2281 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2282 	mode->vtotal = mode->vdisplay + vblank;
2283 
2284 	/* Some EDIDs have bogus h/vtotal values */
2285 	if (mode->hsync_end > mode->htotal)
2286 		mode->htotal = mode->hsync_end + 1;
2287 	if (mode->vsync_end > mode->vtotal)
2288 		mode->vtotal = mode->vsync_end + 1;
2289 
2290 	drm_mode_do_interlace_quirk(mode, pt);
2291 
2292 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2293 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2294 	}
2295 
2296 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2297 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2298 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2299 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2300 
2301 set_size:
2302 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2303 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2304 
2305 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2306 		mode->width_mm *= 10;
2307 		mode->height_mm *= 10;
2308 	}
2309 
2310 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2311 		mode->width_mm = edid->width_cm * 10;
2312 		mode->height_mm = edid->height_cm * 10;
2313 	}
2314 
2315 	mode->type = DRM_MODE_TYPE_DRIVER;
2316 	mode->vrefresh = drm_mode_vrefresh(mode);
2317 	drm_mode_set_name(mode);
2318 
2319 	return mode;
2320 }
2321 
2322 static bool
2323 mode_in_hsync_range(const struct drm_display_mode *mode,
2324 		    struct edid *edid, u8 *t)
2325 {
2326 	int hsync, hmin, hmax;
2327 
2328 	hmin = t[7];
2329 	if (edid->revision >= 4)
2330 	    hmin += ((t[4] & 0x04) ? 255 : 0);
2331 	hmax = t[8];
2332 	if (edid->revision >= 4)
2333 	    hmax += ((t[4] & 0x08) ? 255 : 0);
2334 	hsync = drm_mode_hsync(mode);
2335 
2336 	return (hsync <= hmax && hsync >= hmin);
2337 }
2338 
2339 static bool
2340 mode_in_vsync_range(const struct drm_display_mode *mode,
2341 		    struct edid *edid, u8 *t)
2342 {
2343 	int vsync, vmin, vmax;
2344 
2345 	vmin = t[5];
2346 	if (edid->revision >= 4)
2347 	    vmin += ((t[4] & 0x01) ? 255 : 0);
2348 	vmax = t[6];
2349 	if (edid->revision >= 4)
2350 	    vmax += ((t[4] & 0x02) ? 255 : 0);
2351 	vsync = drm_mode_vrefresh(mode);
2352 
2353 	return (vsync <= vmax && vsync >= vmin);
2354 }
2355 
2356 static u32
2357 range_pixel_clock(struct edid *edid, u8 *t)
2358 {
2359 	/* unspecified */
2360 	if (t[9] == 0 || t[9] == 255)
2361 		return 0;
2362 
2363 	/* 1.4 with CVT support gives us real precision, yay */
2364 	if (edid->revision >= 4 && t[10] == 0x04)
2365 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2366 
2367 	/* 1.3 is pathetic, so fuzz up a bit */
2368 	return t[9] * 10000 + 5001;
2369 }
2370 
2371 static bool
2372 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2373 	      struct detailed_timing *timing)
2374 {
2375 	u32 max_clock;
2376 	u8 *t = (u8 *)timing;
2377 
2378 	if (!mode_in_hsync_range(mode, edid, t))
2379 		return false;
2380 
2381 	if (!mode_in_vsync_range(mode, edid, t))
2382 		return false;
2383 
2384 	if ((max_clock = range_pixel_clock(edid, t)))
2385 		if (mode->clock > max_clock)
2386 			return false;
2387 
2388 	/* 1.4 max horizontal check */
2389 	if (edid->revision >= 4 && t[10] == 0x04)
2390 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2391 			return false;
2392 
2393 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2394 		return false;
2395 
2396 	return true;
2397 }
2398 
2399 static bool valid_inferred_mode(const struct drm_connector *connector,
2400 				const struct drm_display_mode *mode)
2401 {
2402 	const struct drm_display_mode *m;
2403 	bool ok = false;
2404 
2405 	list_for_each_entry(m, &connector->probed_modes, head) {
2406 		if (mode->hdisplay == m->hdisplay &&
2407 		    mode->vdisplay == m->vdisplay &&
2408 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2409 			return false; /* duplicated */
2410 		if (mode->hdisplay <= m->hdisplay &&
2411 		    mode->vdisplay <= m->vdisplay)
2412 			ok = true;
2413 	}
2414 	return ok;
2415 }
2416 
2417 static int
2418 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2419 			struct detailed_timing *timing)
2420 {
2421 	int i, modes = 0;
2422 	struct drm_display_mode *newmode;
2423 	struct drm_device *dev = connector->dev;
2424 
2425 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2426 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2427 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2428 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2429 			if (newmode) {
2430 				drm_mode_probed_add(connector, newmode);
2431 				modes++;
2432 			}
2433 		}
2434 	}
2435 
2436 	return modes;
2437 }
2438 
2439 /* fix up 1366x768 mode from 1368x768;
2440  * GFT/CVT can't express 1366 width which isn't dividable by 8
2441  */
2442 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2443 {
2444 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2445 		mode->hdisplay = 1366;
2446 		mode->hsync_start--;
2447 		mode->hsync_end--;
2448 		drm_mode_set_name(mode);
2449 	}
2450 }
2451 
2452 static int
2453 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2454 			struct detailed_timing *timing)
2455 {
2456 	int i, modes = 0;
2457 	struct drm_display_mode *newmode;
2458 	struct drm_device *dev = connector->dev;
2459 
2460 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2461 		const struct minimode *m = &extra_modes[i];
2462 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2463 		if (!newmode)
2464 			return modes;
2465 
2466 		drm_mode_fixup_1366x768(newmode);
2467 		if (!mode_in_range(newmode, edid, timing) ||
2468 		    !valid_inferred_mode(connector, newmode)) {
2469 			drm_mode_destroy(dev, newmode);
2470 			continue;
2471 		}
2472 
2473 		drm_mode_probed_add(connector, newmode);
2474 		modes++;
2475 	}
2476 
2477 	return modes;
2478 }
2479 
2480 static int
2481 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2482 			struct detailed_timing *timing)
2483 {
2484 	int i, modes = 0;
2485 	struct drm_display_mode *newmode;
2486 	struct drm_device *dev = connector->dev;
2487 	bool rb = drm_monitor_supports_rb(edid);
2488 
2489 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2490 		const struct minimode *m = &extra_modes[i];
2491 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2492 		if (!newmode)
2493 			return modes;
2494 
2495 		drm_mode_fixup_1366x768(newmode);
2496 		if (!mode_in_range(newmode, edid, timing) ||
2497 		    !valid_inferred_mode(connector, newmode)) {
2498 			drm_mode_destroy(dev, newmode);
2499 			continue;
2500 		}
2501 
2502 		drm_mode_probed_add(connector, newmode);
2503 		modes++;
2504 	}
2505 
2506 	return modes;
2507 }
2508 
2509 static void
2510 do_inferred_modes(struct detailed_timing *timing, void *c)
2511 {
2512 	struct detailed_mode_closure *closure = c;
2513 	struct detailed_non_pixel *data = &timing->data.other_data;
2514 	struct detailed_data_monitor_range *range = &data->data.range;
2515 
2516 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2517 		return;
2518 
2519 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2520 						  closure->edid,
2521 						  timing);
2522 
2523 	if (!version_greater(closure->edid, 1, 1))
2524 		return; /* GTF not defined yet */
2525 
2526 	switch (range->flags) {
2527 	case 0x02: /* secondary gtf, XXX could do more */
2528 	case 0x00: /* default gtf */
2529 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2530 							  closure->edid,
2531 							  timing);
2532 		break;
2533 	case 0x04: /* cvt, only in 1.4+ */
2534 		if (!version_greater(closure->edid, 1, 3))
2535 			break;
2536 
2537 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2538 							  closure->edid,
2539 							  timing);
2540 		break;
2541 	case 0x01: /* just the ranges, no formula */
2542 	default:
2543 		break;
2544 	}
2545 }
2546 
2547 static int
2548 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2549 {
2550 	struct detailed_mode_closure closure = {
2551 		.connector = connector,
2552 		.edid = edid,
2553 	};
2554 
2555 	if (version_greater(edid, 1, 0))
2556 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2557 					    &closure);
2558 
2559 	return closure.modes;
2560 }
2561 
2562 static int
2563 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2564 {
2565 	int i, j, m, modes = 0;
2566 	struct drm_display_mode *mode;
2567 	u8 *est = ((u8 *)timing) + 6;
2568 
2569 	for (i = 0; i < 6; i++) {
2570 		for (j = 7; j >= 0; j--) {
2571 			m = (i * 8) + (7 - j);
2572 			if (m >= ARRAY_SIZE(est3_modes))
2573 				break;
2574 			if (est[i] & (1 << j)) {
2575 				mode = drm_mode_find_dmt(connector->dev,
2576 							 est3_modes[m].w,
2577 							 est3_modes[m].h,
2578 							 est3_modes[m].r,
2579 							 est3_modes[m].rb);
2580 				if (mode) {
2581 					drm_mode_probed_add(connector, mode);
2582 					modes++;
2583 				}
2584 			}
2585 		}
2586 	}
2587 
2588 	return modes;
2589 }
2590 
2591 static void
2592 do_established_modes(struct detailed_timing *timing, void *c)
2593 {
2594 	struct detailed_mode_closure *closure = c;
2595 	struct detailed_non_pixel *data = &timing->data.other_data;
2596 
2597 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2598 		closure->modes += drm_est3_modes(closure->connector, timing);
2599 }
2600 
2601 /**
2602  * add_established_modes - get est. modes from EDID and add them
2603  * @connector: connector to add mode(s) to
2604  * @edid: EDID block to scan
2605  *
2606  * Each EDID block contains a bitmap of the supported "established modes" list
2607  * (defined above).  Tease them out and add them to the global modes list.
2608  */
2609 static int
2610 add_established_modes(struct drm_connector *connector, struct edid *edid)
2611 {
2612 	struct drm_device *dev = connector->dev;
2613 	unsigned long est_bits = edid->established_timings.t1 |
2614 		(edid->established_timings.t2 << 8) |
2615 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2616 	int i, modes = 0;
2617 	struct detailed_mode_closure closure = {
2618 		.connector = connector,
2619 		.edid = edid,
2620 	};
2621 
2622 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2623 		if (est_bits & (1<<i)) {
2624 			struct drm_display_mode *newmode;
2625 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2626 			if (newmode) {
2627 				drm_mode_probed_add(connector, newmode);
2628 				modes++;
2629 			}
2630 		}
2631 	}
2632 
2633 	if (version_greater(edid, 1, 0))
2634 		    drm_for_each_detailed_block((u8 *)edid,
2635 						do_established_modes, &closure);
2636 
2637 	return modes + closure.modes;
2638 }
2639 
2640 static void
2641 do_standard_modes(struct detailed_timing *timing, void *c)
2642 {
2643 	struct detailed_mode_closure *closure = c;
2644 	struct detailed_non_pixel *data = &timing->data.other_data;
2645 	struct drm_connector *connector = closure->connector;
2646 	struct edid *edid = closure->edid;
2647 
2648 	if (data->type == EDID_DETAIL_STD_MODES) {
2649 		int i;
2650 		for (i = 0; i < 6; i++) {
2651 			struct std_timing *std;
2652 			struct drm_display_mode *newmode;
2653 
2654 			std = &data->data.timings[i];
2655 			newmode = drm_mode_std(connector, edid, std);
2656 			if (newmode) {
2657 				drm_mode_probed_add(connector, newmode);
2658 				closure->modes++;
2659 			}
2660 		}
2661 	}
2662 }
2663 
2664 /**
2665  * add_standard_modes - get std. modes from EDID and add them
2666  * @connector: connector to add mode(s) to
2667  * @edid: EDID block to scan
2668  *
2669  * Standard modes can be calculated using the appropriate standard (DMT,
2670  * GTF or CVT. Grab them from @edid and add them to the list.
2671  */
2672 static int
2673 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2674 {
2675 	int i, modes = 0;
2676 	struct detailed_mode_closure closure = {
2677 		.connector = connector,
2678 		.edid = edid,
2679 	};
2680 
2681 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2682 		struct drm_display_mode *newmode;
2683 
2684 		newmode = drm_mode_std(connector, edid,
2685 				       &edid->standard_timings[i]);
2686 		if (newmode) {
2687 			drm_mode_probed_add(connector, newmode);
2688 			modes++;
2689 		}
2690 	}
2691 
2692 	if (version_greater(edid, 1, 0))
2693 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2694 					    &closure);
2695 
2696 	/* XXX should also look for standard codes in VTB blocks */
2697 
2698 	return modes + closure.modes;
2699 }
2700 
2701 static int drm_cvt_modes(struct drm_connector *connector,
2702 			 struct detailed_timing *timing)
2703 {
2704 	int i, j, modes = 0;
2705 	struct drm_display_mode *newmode;
2706 	struct drm_device *dev = connector->dev;
2707 	struct cvt_timing *cvt;
2708 	const int rates[] = { 60, 85, 75, 60, 50 };
2709 	const u8 empty[3] = { 0, 0, 0 };
2710 
2711 	for (i = 0; i < 4; i++) {
2712 		int uninitialized_var(width), height;
2713 		cvt = &(timing->data.other_data.data.cvt[i]);
2714 
2715 		if (!memcmp(cvt->code, empty, 3))
2716 			continue;
2717 
2718 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2719 		switch (cvt->code[1] & 0x0c) {
2720 		case 0x00:
2721 			width = height * 4 / 3;
2722 			break;
2723 		case 0x04:
2724 			width = height * 16 / 9;
2725 			break;
2726 		case 0x08:
2727 			width = height * 16 / 10;
2728 			break;
2729 		case 0x0c:
2730 			width = height * 15 / 9;
2731 			break;
2732 		}
2733 
2734 		for (j = 1; j < 5; j++) {
2735 			if (cvt->code[2] & (1 << j)) {
2736 				newmode = drm_cvt_mode(dev, width, height,
2737 						       rates[j], j == 0,
2738 						       false, false);
2739 				if (newmode) {
2740 					drm_mode_probed_add(connector, newmode);
2741 					modes++;
2742 				}
2743 			}
2744 		}
2745 	}
2746 
2747 	return modes;
2748 }
2749 
2750 static void
2751 do_cvt_mode(struct detailed_timing *timing, void *c)
2752 {
2753 	struct detailed_mode_closure *closure = c;
2754 	struct detailed_non_pixel *data = &timing->data.other_data;
2755 
2756 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2757 		closure->modes += drm_cvt_modes(closure->connector, timing);
2758 }
2759 
2760 static int
2761 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2762 {
2763 	struct detailed_mode_closure closure = {
2764 		.connector = connector,
2765 		.edid = edid,
2766 	};
2767 
2768 	if (version_greater(edid, 1, 2))
2769 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2770 
2771 	/* XXX should also look for CVT codes in VTB blocks */
2772 
2773 	return closure.modes;
2774 }
2775 
2776 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2777 
2778 static void
2779 do_detailed_mode(struct detailed_timing *timing, void *c)
2780 {
2781 	struct detailed_mode_closure *closure = c;
2782 	struct drm_display_mode *newmode;
2783 
2784 	if (timing->pixel_clock) {
2785 		newmode = drm_mode_detailed(closure->connector->dev,
2786 					    closure->edid, timing,
2787 					    closure->quirks);
2788 		if (!newmode)
2789 			return;
2790 
2791 		if (closure->preferred)
2792 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2793 
2794 		/*
2795 		 * Detailed modes are limited to 10kHz pixel clock resolution,
2796 		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2797 		 * is just slightly off.
2798 		 */
2799 		fixup_detailed_cea_mode_clock(newmode);
2800 
2801 		drm_mode_probed_add(closure->connector, newmode);
2802 		closure->modes++;
2803 		closure->preferred = false;
2804 	}
2805 }
2806 
2807 /*
2808  * add_detailed_modes - Add modes from detailed timings
2809  * @connector: attached connector
2810  * @edid: EDID block to scan
2811  * @quirks: quirks to apply
2812  */
2813 static int
2814 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2815 		   u32 quirks)
2816 {
2817 	struct detailed_mode_closure closure = {
2818 		.connector = connector,
2819 		.edid = edid,
2820 		.preferred = true,
2821 		.quirks = quirks,
2822 	};
2823 
2824 	if (closure.preferred && !version_greater(edid, 1, 3))
2825 		closure.preferred =
2826 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2827 
2828 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2829 
2830 	return closure.modes;
2831 }
2832 
2833 #define AUDIO_BLOCK	0x01
2834 #define VIDEO_BLOCK     0x02
2835 #define VENDOR_BLOCK    0x03
2836 #define SPEAKER_BLOCK	0x04
2837 #define USE_EXTENDED_TAG 0x07
2838 #define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2839 #define EXT_VIDEO_DATA_BLOCK_420	0x0E
2840 #define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
2841 #define EDID_BASIC_AUDIO	(1 << 6)
2842 #define EDID_CEA_YCRCB444	(1 << 5)
2843 #define EDID_CEA_YCRCB422	(1 << 4)
2844 #define EDID_CEA_VCDB_QS	(1 << 6)
2845 
2846 /*
2847  * Search EDID for CEA extension block.
2848  */
2849 static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
2850 {
2851 	u8 *edid_ext = NULL;
2852 	int i;
2853 
2854 	/* No EDID or EDID extensions */
2855 	if (edid == NULL || edid->extensions == 0)
2856 		return NULL;
2857 
2858 	/* Find CEA extension */
2859 	for (i = 0; i < edid->extensions; i++) {
2860 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2861 		if (edid_ext[0] == ext_id)
2862 			break;
2863 	}
2864 
2865 	if (i == edid->extensions)
2866 		return NULL;
2867 
2868 	return edid_ext;
2869 }
2870 
2871 static u8 *drm_find_cea_extension(const struct edid *edid)
2872 {
2873 	return drm_find_edid_extension(edid, CEA_EXT);
2874 }
2875 
2876 static u8 *drm_find_displayid_extension(const struct edid *edid)
2877 {
2878 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2879 }
2880 
2881 /*
2882  * Calculate the alternate clock for the CEA mode
2883  * (60Hz vs. 59.94Hz etc.)
2884  */
2885 static unsigned int
2886 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2887 {
2888 	unsigned int clock = cea_mode->clock;
2889 
2890 	if (cea_mode->vrefresh % 6 != 0)
2891 		return clock;
2892 
2893 	/*
2894 	 * edid_cea_modes contains the 59.94Hz
2895 	 * variant for 240 and 480 line modes,
2896 	 * and the 60Hz variant otherwise.
2897 	 */
2898 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2899 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2900 	else
2901 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2902 
2903 	return clock;
2904 }
2905 
2906 static bool
2907 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2908 {
2909 	/*
2910 	 * For certain VICs the spec allows the vertical
2911 	 * front porch to vary by one or two lines.
2912 	 *
2913 	 * cea_modes[] stores the variant with the shortest
2914 	 * vertical front porch. We can adjust the mode to
2915 	 * get the other variants by simply increasing the
2916 	 * vertical front porch length.
2917 	 */
2918 	BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2919 		     edid_cea_modes[9].vtotal != 262 ||
2920 		     edid_cea_modes[12].vtotal != 262 ||
2921 		     edid_cea_modes[13].vtotal != 262 ||
2922 		     edid_cea_modes[23].vtotal != 312 ||
2923 		     edid_cea_modes[24].vtotal != 312 ||
2924 		     edid_cea_modes[27].vtotal != 312 ||
2925 		     edid_cea_modes[28].vtotal != 312);
2926 
2927 	if (((vic == 8 || vic == 9 ||
2928 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
2929 	    ((vic == 23 || vic == 24 ||
2930 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
2931 		mode->vsync_start++;
2932 		mode->vsync_end++;
2933 		mode->vtotal++;
2934 
2935 		return true;
2936 	}
2937 
2938 	return false;
2939 }
2940 
2941 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2942 					     unsigned int clock_tolerance)
2943 {
2944 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
2945 	u8 vic;
2946 
2947 	if (!to_match->clock)
2948 		return 0;
2949 
2950 	if (to_match->picture_aspect_ratio)
2951 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
2952 
2953 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2954 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2955 		unsigned int clock1, clock2;
2956 
2957 		/* Check both 60Hz and 59.94Hz */
2958 		clock1 = cea_mode.clock;
2959 		clock2 = cea_mode_alternate_clock(&cea_mode);
2960 
2961 		if (abs(to_match->clock - clock1) > clock_tolerance &&
2962 		    abs(to_match->clock - clock2) > clock_tolerance)
2963 			continue;
2964 
2965 		do {
2966 			if (drm_mode_match(to_match, &cea_mode, match_flags))
2967 				return vic;
2968 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 /**
2975  * drm_match_cea_mode - look for a CEA mode matching given mode
2976  * @to_match: display mode
2977  *
2978  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2979  * mode.
2980  */
2981 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2982 {
2983 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
2984 	u8 vic;
2985 
2986 	if (!to_match->clock)
2987 		return 0;
2988 
2989 	if (to_match->picture_aspect_ratio)
2990 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
2991 
2992 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2993 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2994 		unsigned int clock1, clock2;
2995 
2996 		/* Check both 60Hz and 59.94Hz */
2997 		clock1 = cea_mode.clock;
2998 		clock2 = cea_mode_alternate_clock(&cea_mode);
2999 
3000 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
3001 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
3002 			continue;
3003 
3004 		do {
3005 			if (drm_mode_match(to_match, &cea_mode, match_flags))
3006 				return vic;
3007 		} while (cea_mode_alternate_timings(vic, &cea_mode));
3008 	}
3009 
3010 	return 0;
3011 }
3012 EXPORT_SYMBOL(drm_match_cea_mode);
3013 
3014 static bool drm_valid_cea_vic(u8 vic)
3015 {
3016 	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
3017 }
3018 
3019 /**
3020  * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
3021  * the input VIC from the CEA mode list
3022  * @video_code: ID given to each of the CEA modes
3023  *
3024  * Returns picture aspect ratio
3025  */
3026 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3027 {
3028 	return edid_cea_modes[video_code].picture_aspect_ratio;
3029 }
3030 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
3031 
3032 /*
3033  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3034  * specific block).
3035  *
3036  * It's almost like cea_mode_alternate_clock(), we just need to add an
3037  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
3038  * one.
3039  */
3040 static unsigned int
3041 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3042 {
3043 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3044 		return hdmi_mode->clock;
3045 
3046 	return cea_mode_alternate_clock(hdmi_mode);
3047 }
3048 
3049 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3050 					      unsigned int clock_tolerance)
3051 {
3052 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3053 	u8 vic;
3054 
3055 	if (!to_match->clock)
3056 		return 0;
3057 
3058 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3059 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3060 		unsigned int clock1, clock2;
3061 
3062 		/* Make sure to also match alternate clocks */
3063 		clock1 = hdmi_mode->clock;
3064 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3065 
3066 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3067 		    abs(to_match->clock - clock2) > clock_tolerance)
3068 			continue;
3069 
3070 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
3071 			return vic;
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 /*
3078  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3079  * @to_match: display mode
3080  *
3081  * An HDMI mode is one defined in the HDMI vendor specific block.
3082  *
3083  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3084  */
3085 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3086 {
3087 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3088 	u8 vic;
3089 
3090 	if (!to_match->clock)
3091 		return 0;
3092 
3093 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3094 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3095 		unsigned int clock1, clock2;
3096 
3097 		/* Make sure to also match alternate clocks */
3098 		clock1 = hdmi_mode->clock;
3099 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3100 
3101 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3102 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3103 		    drm_mode_match(to_match, hdmi_mode, match_flags))
3104 			return vic;
3105 	}
3106 	return 0;
3107 }
3108 
3109 static bool drm_valid_hdmi_vic(u8 vic)
3110 {
3111 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3112 }
3113 
3114 static int
3115 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3116 {
3117 	struct drm_device *dev = connector->dev;
3118 	struct drm_display_mode *mode, *tmp;
3119 	LIST_HEAD(list);
3120 	int modes = 0;
3121 
3122 	/* Don't add CEA modes if the CEA extension block is missing */
3123 	if (!drm_find_cea_extension(edid))
3124 		return 0;
3125 
3126 	/*
3127 	 * Go through all probed modes and create a new mode
3128 	 * with the alternate clock for certain CEA modes.
3129 	 */
3130 	list_for_each_entry(mode, &connector->probed_modes, head) {
3131 		const struct drm_display_mode *cea_mode = NULL;
3132 		struct drm_display_mode *newmode;
3133 		u8 vic = drm_match_cea_mode(mode);
3134 		unsigned int clock1, clock2;
3135 
3136 		if (drm_valid_cea_vic(vic)) {
3137 			cea_mode = &edid_cea_modes[vic];
3138 			clock2 = cea_mode_alternate_clock(cea_mode);
3139 		} else {
3140 			vic = drm_match_hdmi_mode(mode);
3141 			if (drm_valid_hdmi_vic(vic)) {
3142 				cea_mode = &edid_4k_modes[vic];
3143 				clock2 = hdmi_mode_alternate_clock(cea_mode);
3144 			}
3145 		}
3146 
3147 		if (!cea_mode)
3148 			continue;
3149 
3150 		clock1 = cea_mode->clock;
3151 
3152 		if (clock1 == clock2)
3153 			continue;
3154 
3155 		if (mode->clock != clock1 && mode->clock != clock2)
3156 			continue;
3157 
3158 		newmode = drm_mode_duplicate(dev, cea_mode);
3159 		if (!newmode)
3160 			continue;
3161 
3162 		/* Carry over the stereo flags */
3163 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3164 
3165 		/*
3166 		 * The current mode could be either variant. Make
3167 		 * sure to pick the "other" clock for the new mode.
3168 		 */
3169 		if (mode->clock != clock1)
3170 			newmode->clock = clock1;
3171 		else
3172 			newmode->clock = clock2;
3173 
3174 		list_add_tail(&newmode->head, &list);
3175 	}
3176 
3177 	list_for_each_entry_safe(mode, tmp, &list, head) {
3178 		list_del(&mode->head);
3179 		drm_mode_probed_add(connector, mode);
3180 		modes++;
3181 	}
3182 
3183 	return modes;
3184 }
3185 
3186 static u8 svd_to_vic(u8 svd)
3187 {
3188 	/* 0-6 bit vic, 7th bit native mode indicator */
3189 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
3190 		return svd & 127;
3191 
3192 	return svd;
3193 }
3194 
3195 static struct drm_display_mode *
3196 drm_display_mode_from_vic_index(struct drm_connector *connector,
3197 				const u8 *video_db, u8 video_len,
3198 				u8 video_index)
3199 {
3200 	struct drm_device *dev = connector->dev;
3201 	struct drm_display_mode *newmode;
3202 	u8 vic;
3203 
3204 	if (video_db == NULL || video_index >= video_len)
3205 		return NULL;
3206 
3207 	/* CEA modes are numbered 1..127 */
3208 	vic = svd_to_vic(video_db[video_index]);
3209 	if (!drm_valid_cea_vic(vic))
3210 		return NULL;
3211 
3212 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3213 	if (!newmode)
3214 		return NULL;
3215 
3216 	newmode->vrefresh = 0;
3217 
3218 	return newmode;
3219 }
3220 
3221 /*
3222  * do_y420vdb_modes - Parse YCBCR 420 only modes
3223  * @connector: connector corresponding to the HDMI sink
3224  * @svds: start of the data block of CEA YCBCR 420 VDB
3225  * @len: length of the CEA YCBCR 420 VDB
3226  *
3227  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3228  * which contains modes which can be supported in YCBCR 420
3229  * output format only.
3230  */
3231 static int do_y420vdb_modes(struct drm_connector *connector,
3232 			    const u8 *svds, u8 svds_len)
3233 {
3234 	int modes = 0, i;
3235 	struct drm_device *dev = connector->dev;
3236 	struct drm_display_info *info = &connector->display_info;
3237 	struct drm_hdmi_info *hdmi = &info->hdmi;
3238 
3239 	for (i = 0; i < svds_len; i++) {
3240 		u8 vic = svd_to_vic(svds[i]);
3241 		struct drm_display_mode *newmode;
3242 
3243 		if (!drm_valid_cea_vic(vic))
3244 			continue;
3245 
3246 		newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3247 		if (!newmode)
3248 			break;
3249 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3250 		drm_mode_probed_add(connector, newmode);
3251 		modes++;
3252 	}
3253 
3254 	if (modes > 0)
3255 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3256 	return modes;
3257 }
3258 
3259 /*
3260  * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3261  * @connector: connector corresponding to the HDMI sink
3262  * @vic: CEA vic for the video mode to be added in the map
3263  *
3264  * Makes an entry for a videomode in the YCBCR 420 bitmap
3265  */
3266 static void
3267 drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
3268 {
3269 	u8 vic = svd_to_vic(svd);
3270 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3271 
3272 	if (!drm_valid_cea_vic(vic))
3273 		return;
3274 
3275 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3276 }
3277 
3278 static int
3279 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3280 {
3281 	int i, modes = 0;
3282 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3283 
3284 	for (i = 0; i < len; i++) {
3285 		struct drm_display_mode *mode;
3286 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
3287 		if (mode) {
3288 			/*
3289 			 * YCBCR420 capability block contains a bitmap which
3290 			 * gives the index of CEA modes from CEA VDB, which
3291 			 * can support YCBCR 420 sampling output also (apart
3292 			 * from RGB/YCBCR444 etc).
3293 			 * For example, if the bit 0 in bitmap is set,
3294 			 * first mode in VDB can support YCBCR420 output too.
3295 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3296 			 */
3297 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3298 				drm_add_cmdb_modes(connector, db[i]);
3299 
3300 			drm_mode_probed_add(connector, mode);
3301 			modes++;
3302 		}
3303 	}
3304 
3305 	return modes;
3306 }
3307 
3308 struct stereo_mandatory_mode {
3309 	int width, height, vrefresh;
3310 	unsigned int flags;
3311 };
3312 
3313 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3314 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3315 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3316 	{ 1920, 1080, 50,
3317 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3318 	{ 1920, 1080, 60,
3319 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3320 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3321 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3322 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3323 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3324 };
3325 
3326 static bool
3327 stereo_match_mandatory(const struct drm_display_mode *mode,
3328 		       const struct stereo_mandatory_mode *stereo_mode)
3329 {
3330 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3331 
3332 	return mode->hdisplay == stereo_mode->width &&
3333 	       mode->vdisplay == stereo_mode->height &&
3334 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3335 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3336 }
3337 
3338 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3339 {
3340 	struct drm_device *dev = connector->dev;
3341 	const struct drm_display_mode *mode;
3342 	struct list_head stereo_modes;
3343 	int modes = 0, i;
3344 
3345 	INIT_LIST_HEAD(&stereo_modes);
3346 
3347 	list_for_each_entry(mode, &connector->probed_modes, head) {
3348 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3349 			const struct stereo_mandatory_mode *mandatory;
3350 			struct drm_display_mode *new_mode;
3351 
3352 			if (!stereo_match_mandatory(mode,
3353 						    &stereo_mandatory_modes[i]))
3354 				continue;
3355 
3356 			mandatory = &stereo_mandatory_modes[i];
3357 			new_mode = drm_mode_duplicate(dev, mode);
3358 			if (!new_mode)
3359 				continue;
3360 
3361 			new_mode->flags |= mandatory->flags;
3362 			list_add_tail(&new_mode->head, &stereo_modes);
3363 			modes++;
3364 		}
3365 	}
3366 
3367 	list_splice_tail(&stereo_modes, &connector->probed_modes);
3368 
3369 	return modes;
3370 }
3371 
3372 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3373 {
3374 	struct drm_device *dev = connector->dev;
3375 	struct drm_display_mode *newmode;
3376 
3377 	if (!drm_valid_hdmi_vic(vic)) {
3378 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3379 		return 0;
3380 	}
3381 
3382 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3383 	if (!newmode)
3384 		return 0;
3385 
3386 	drm_mode_probed_add(connector, newmode);
3387 
3388 	return 1;
3389 }
3390 
3391 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3392 			       const u8 *video_db, u8 video_len, u8 video_index)
3393 {
3394 	struct drm_display_mode *newmode;
3395 	int modes = 0;
3396 
3397 	if (structure & (1 << 0)) {
3398 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3399 							  video_len,
3400 							  video_index);
3401 		if (newmode) {
3402 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3403 			drm_mode_probed_add(connector, newmode);
3404 			modes++;
3405 		}
3406 	}
3407 	if (structure & (1 << 6)) {
3408 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3409 							  video_len,
3410 							  video_index);
3411 		if (newmode) {
3412 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3413 			drm_mode_probed_add(connector, newmode);
3414 			modes++;
3415 		}
3416 	}
3417 	if (structure & (1 << 8)) {
3418 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3419 							  video_len,
3420 							  video_index);
3421 		if (newmode) {
3422 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3423 			drm_mode_probed_add(connector, newmode);
3424 			modes++;
3425 		}
3426 	}
3427 
3428 	return modes;
3429 }
3430 
3431 /*
3432  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3433  * @connector: connector corresponding to the HDMI sink
3434  * @db: start of the CEA vendor specific block
3435  * @len: length of the CEA block payload, ie. one can access up to db[len]
3436  *
3437  * Parses the HDMI VSDB looking for modes to add to @connector. This function
3438  * also adds the stereo 3d modes when applicable.
3439  */
3440 static int
3441 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3442 		   const u8 *video_db, u8 video_len)
3443 {
3444 	struct drm_display_info *info = &connector->display_info;
3445 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3446 	u8 vic_len, hdmi_3d_len = 0;
3447 	u16 mask;
3448 	u16 structure_all;
3449 
3450 	if (len < 8)
3451 		goto out;
3452 
3453 	/* no HDMI_Video_Present */
3454 	if (!(db[8] & (1 << 5)))
3455 		goto out;
3456 
3457 	/* Latency_Fields_Present */
3458 	if (db[8] & (1 << 7))
3459 		offset += 2;
3460 
3461 	/* I_Latency_Fields_Present */
3462 	if (db[8] & (1 << 6))
3463 		offset += 2;
3464 
3465 	/* the declared length is not long enough for the 2 first bytes
3466 	 * of additional video format capabilities */
3467 	if (len < (8 + offset + 2))
3468 		goto out;
3469 
3470 	/* 3D_Present */
3471 	offset++;
3472 	if (db[8 + offset] & (1 << 7)) {
3473 		modes += add_hdmi_mandatory_stereo_modes(connector);
3474 
3475 		/* 3D_Multi_present */
3476 		multi_present = (db[8 + offset] & 0x60) >> 5;
3477 	}
3478 
3479 	offset++;
3480 	vic_len = db[8 + offset] >> 5;
3481 	hdmi_3d_len = db[8 + offset] & 0x1f;
3482 
3483 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3484 		u8 vic;
3485 
3486 		vic = db[9 + offset + i];
3487 		modes += add_hdmi_mode(connector, vic);
3488 	}
3489 	offset += 1 + vic_len;
3490 
3491 	if (multi_present == 1)
3492 		multi_len = 2;
3493 	else if (multi_present == 2)
3494 		multi_len = 4;
3495 	else
3496 		multi_len = 0;
3497 
3498 	if (len < (8 + offset + hdmi_3d_len - 1))
3499 		goto out;
3500 
3501 	if (hdmi_3d_len < multi_len)
3502 		goto out;
3503 
3504 	if (multi_present == 1 || multi_present == 2) {
3505 		/* 3D_Structure_ALL */
3506 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3507 
3508 		/* check if 3D_MASK is present */
3509 		if (multi_present == 2)
3510 			mask = (db[10 + offset] << 8) | db[11 + offset];
3511 		else
3512 			mask = 0xffff;
3513 
3514 		for (i = 0; i < 16; i++) {
3515 			if (mask & (1 << i))
3516 				modes += add_3d_struct_modes(connector,
3517 						structure_all,
3518 						video_db,
3519 						video_len, i);
3520 		}
3521 	}
3522 
3523 	offset += multi_len;
3524 
3525 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3526 		int vic_index;
3527 		struct drm_display_mode *newmode = NULL;
3528 		unsigned int newflag = 0;
3529 		bool detail_present;
3530 
3531 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3532 
3533 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3534 			break;
3535 
3536 		/* 2D_VIC_order_X */
3537 		vic_index = db[8 + offset + i] >> 4;
3538 
3539 		/* 3D_Structure_X */
3540 		switch (db[8 + offset + i] & 0x0f) {
3541 		case 0:
3542 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3543 			break;
3544 		case 6:
3545 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3546 			break;
3547 		case 8:
3548 			/* 3D_Detail_X */
3549 			if ((db[9 + offset + i] >> 4) == 1)
3550 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3551 			break;
3552 		}
3553 
3554 		if (newflag != 0) {
3555 			newmode = drm_display_mode_from_vic_index(connector,
3556 								  video_db,
3557 								  video_len,
3558 								  vic_index);
3559 
3560 			if (newmode) {
3561 				newmode->flags |= newflag;
3562 				drm_mode_probed_add(connector, newmode);
3563 				modes++;
3564 			}
3565 		}
3566 
3567 		if (detail_present)
3568 			i++;
3569 	}
3570 
3571 out:
3572 	if (modes > 0)
3573 		info->has_hdmi_infoframe = true;
3574 	return modes;
3575 }
3576 
3577 static int
3578 cea_db_payload_len(const u8 *db)
3579 {
3580 	return db[0] & 0x1f;
3581 }
3582 
3583 static int
3584 cea_db_extended_tag(const u8 *db)
3585 {
3586 	return db[1];
3587 }
3588 
3589 static int
3590 cea_db_tag(const u8 *db)
3591 {
3592 	return db[0] >> 5;
3593 }
3594 
3595 static int
3596 cea_revision(const u8 *cea)
3597 {
3598 	return cea[1];
3599 }
3600 
3601 static int
3602 cea_db_offsets(const u8 *cea, int *start, int *end)
3603 {
3604 	/* Data block offset in CEA extension block */
3605 	*start = 4;
3606 	*end = cea[2];
3607 	if (*end == 0)
3608 		*end = 127;
3609 	if (*end < 4 || *end > 127)
3610 		return -ERANGE;
3611 	return 0;
3612 }
3613 
3614 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3615 {
3616 	int hdmi_id;
3617 
3618 	if (cea_db_tag(db) != VENDOR_BLOCK)
3619 		return false;
3620 
3621 	if (cea_db_payload_len(db) < 5)
3622 		return false;
3623 
3624 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3625 
3626 	return hdmi_id == HDMI_IEEE_OUI;
3627 }
3628 
3629 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
3630 {
3631 	unsigned int oui;
3632 
3633 	if (cea_db_tag(db) != VENDOR_BLOCK)
3634 		return false;
3635 
3636 	if (cea_db_payload_len(db) < 7)
3637 		return false;
3638 
3639 	oui = db[3] << 16 | db[2] << 8 | db[1];
3640 
3641 	return oui == HDMI_FORUM_IEEE_OUI;
3642 }
3643 
3644 static bool cea_db_is_vcdb(const u8 *db)
3645 {
3646 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3647 		return false;
3648 
3649 	if (cea_db_payload_len(db) != 2)
3650 		return false;
3651 
3652 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAPABILITY_BLOCK)
3653 		return false;
3654 
3655 	return true;
3656 }
3657 
3658 static bool cea_db_is_y420cmdb(const u8 *db)
3659 {
3660 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3661 		return false;
3662 
3663 	if (!cea_db_payload_len(db))
3664 		return false;
3665 
3666 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3667 		return false;
3668 
3669 	return true;
3670 }
3671 
3672 static bool cea_db_is_y420vdb(const u8 *db)
3673 {
3674 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3675 		return false;
3676 
3677 	if (!cea_db_payload_len(db))
3678 		return false;
3679 
3680 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3681 		return false;
3682 
3683 	return true;
3684 }
3685 
3686 #define for_each_cea_db(cea, i, start, end) \
3687 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3688 
3689 static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3690 				      const u8 *db)
3691 {
3692 	struct drm_display_info *info = &connector->display_info;
3693 	struct drm_hdmi_info *hdmi = &info->hdmi;
3694 	u8 map_len = cea_db_payload_len(db) - 1;
3695 	u8 count;
3696 	u64 map = 0;
3697 
3698 	if (map_len == 0) {
3699 		/* All CEA modes support ycbcr420 sampling also.*/
3700 		hdmi->y420_cmdb_map = U64_MAX;
3701 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3702 		return;
3703 	}
3704 
3705 	/*
3706 	 * This map indicates which of the existing CEA block modes
3707 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3708 	 * set, first mode from VDB can support YCBCR420 output too.
3709 	 * We will parse and keep this map, before parsing VDB itself
3710 	 * to avoid going through the same block again and again.
3711 	 *
3712 	 * Spec is not clear about max possible size of this block.
3713 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3714 	 * address 8 CEA modes, in this way this map can address
3715 	 * 8*8 = first 64 SVDs.
3716 	 */
3717 	if (WARN_ON_ONCE(map_len > 8))
3718 		map_len = 8;
3719 
3720 	for (count = 0; count < map_len; count++)
3721 		map |= (u64)db[2 + count] << (8 * count);
3722 
3723 	if (map)
3724 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3725 
3726 	hdmi->y420_cmdb_map = map;
3727 }
3728 
3729 static int
3730 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3731 {
3732 	const u8 *cea = drm_find_cea_extension(edid);
3733 	const u8 *db, *hdmi = NULL, *video = NULL;
3734 	u8 dbl, hdmi_len, video_len = 0;
3735 	int modes = 0;
3736 
3737 	if (cea && cea_revision(cea) >= 3) {
3738 		int i, start, end;
3739 
3740 		if (cea_db_offsets(cea, &start, &end))
3741 			return 0;
3742 
3743 		for_each_cea_db(cea, i, start, end) {
3744 			db = &cea[i];
3745 			dbl = cea_db_payload_len(db);
3746 
3747 			if (cea_db_tag(db) == VIDEO_BLOCK) {
3748 				video = db + 1;
3749 				video_len = dbl;
3750 				modes += do_cea_modes(connector, video, dbl);
3751 			} else if (cea_db_is_hdmi_vsdb(db)) {
3752 				hdmi = db;
3753 				hdmi_len = dbl;
3754 			} else if (cea_db_is_y420vdb(db)) {
3755 				const u8 *vdb420 = &db[2];
3756 
3757 				/* Add 4:2:0(only) modes present in EDID */
3758 				modes += do_y420vdb_modes(connector,
3759 							  vdb420,
3760 							  dbl - 1);
3761 			}
3762 		}
3763 	}
3764 
3765 	/*
3766 	 * We parse the HDMI VSDB after having added the cea modes as we will
3767 	 * be patching their flags when the sink supports stereo 3D.
3768 	 */
3769 	if (hdmi)
3770 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3771 					    video_len);
3772 
3773 	return modes;
3774 }
3775 
3776 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3777 {
3778 	const struct drm_display_mode *cea_mode;
3779 	int clock1, clock2, clock;
3780 	u8 vic;
3781 	const char *type;
3782 
3783 	/*
3784 	 * allow 5kHz clock difference either way to account for
3785 	 * the 10kHz clock resolution limit of detailed timings.
3786 	 */
3787 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3788 	if (drm_valid_cea_vic(vic)) {
3789 		type = "CEA";
3790 		cea_mode = &edid_cea_modes[vic];
3791 		clock1 = cea_mode->clock;
3792 		clock2 = cea_mode_alternate_clock(cea_mode);
3793 	} else {
3794 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3795 		if (drm_valid_hdmi_vic(vic)) {
3796 			type = "HDMI";
3797 			cea_mode = &edid_4k_modes[vic];
3798 			clock1 = cea_mode->clock;
3799 			clock2 = hdmi_mode_alternate_clock(cea_mode);
3800 		} else {
3801 			return;
3802 		}
3803 	}
3804 
3805 	/* pick whichever is closest */
3806 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3807 		clock = clock1;
3808 	else
3809 		clock = clock2;
3810 
3811 	if (mode->clock == clock)
3812 		return;
3813 
3814 	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3815 		  type, vic, mode->clock, clock);
3816 	mode->clock = clock;
3817 }
3818 
3819 static void
3820 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3821 {
3822 	u8 len = cea_db_payload_len(db);
3823 
3824 	if (len >= 6 && (db[6] & (1 << 7)))
3825 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3826 	if (len >= 8) {
3827 		connector->latency_present[0] = db[8] >> 7;
3828 		connector->latency_present[1] = (db[8] >> 6) & 1;
3829 	}
3830 	if (len >= 9)
3831 		connector->video_latency[0] = db[9];
3832 	if (len >= 10)
3833 		connector->audio_latency[0] = db[10];
3834 	if (len >= 11)
3835 		connector->video_latency[1] = db[11];
3836 	if (len >= 12)
3837 		connector->audio_latency[1] = db[12];
3838 
3839 	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3840 		      "video latency %d %d, "
3841 		      "audio latency %d %d\n",
3842 		      connector->latency_present[0],
3843 		      connector->latency_present[1],
3844 		      connector->video_latency[0],
3845 		      connector->video_latency[1],
3846 		      connector->audio_latency[0],
3847 		      connector->audio_latency[1]);
3848 }
3849 
3850 static void
3851 monitor_name(struct detailed_timing *t, void *data)
3852 {
3853 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3854 		*(u8 **)data = t->data.other_data.data.str.str;
3855 }
3856 
3857 static int get_monitor_name(struct edid *edid, char name[13])
3858 {
3859 	char *edid_name = NULL;
3860 	int mnl;
3861 
3862 	if (!edid || !name)
3863 		return 0;
3864 
3865 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3866 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
3867 		if (edid_name[mnl] == 0x0a)
3868 			break;
3869 
3870 		name[mnl] = edid_name[mnl];
3871 	}
3872 
3873 	return mnl;
3874 }
3875 
3876 /**
3877  * drm_edid_get_monitor_name - fetch the monitor name from the edid
3878  * @edid: monitor EDID information
3879  * @name: pointer to a character array to hold the name of the monitor
3880  * @bufsize: The size of the name buffer (should be at least 14 chars.)
3881  *
3882  */
3883 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3884 {
3885 	int name_length;
3886 	char buf[13];
3887 
3888 	if (bufsize <= 0)
3889 		return;
3890 
3891 	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3892 	memcpy(name, buf, name_length);
3893 	name[name_length] = '\0';
3894 }
3895 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3896 
3897 static void clear_eld(struct drm_connector *connector)
3898 {
3899 	memset(connector->eld, 0, sizeof(connector->eld));
3900 
3901 	connector->latency_present[0] = false;
3902 	connector->latency_present[1] = false;
3903 	connector->video_latency[0] = 0;
3904 	connector->audio_latency[0] = 0;
3905 	connector->video_latency[1] = 0;
3906 	connector->audio_latency[1] = 0;
3907 }
3908 
3909 /*
3910  * drm_edid_to_eld - build ELD from EDID
3911  * @connector: connector corresponding to the HDMI/DP sink
3912  * @edid: EDID to parse
3913  *
3914  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3915  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
3916  */
3917 static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3918 {
3919 	uint8_t *eld = connector->eld;
3920 	u8 *cea;
3921 	u8 *db;
3922 	int total_sad_count = 0;
3923 	int mnl;
3924 	int dbl;
3925 
3926 	clear_eld(connector);
3927 
3928 	if (!edid)
3929 		return;
3930 
3931 	cea = drm_find_cea_extension(edid);
3932 	if (!cea) {
3933 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3934 		return;
3935 	}
3936 
3937 	mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
3938 	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
3939 
3940 	eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
3941 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
3942 
3943 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
3944 
3945 	eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
3946 	eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
3947 	eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
3948 	eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
3949 
3950 	if (cea_revision(cea) >= 3) {
3951 		int i, start, end;
3952 
3953 		if (cea_db_offsets(cea, &start, &end)) {
3954 			start = 0;
3955 			end = 0;
3956 		}
3957 
3958 		for_each_cea_db(cea, i, start, end) {
3959 			db = &cea[i];
3960 			dbl = cea_db_payload_len(db);
3961 
3962 			switch (cea_db_tag(db)) {
3963 				int sad_count;
3964 
3965 			case AUDIO_BLOCK:
3966 				/* Audio Data Block, contains SADs */
3967 				sad_count = min(dbl / 3, 15 - total_sad_count);
3968 				if (sad_count >= 1)
3969 					memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
3970 					       &db[1], sad_count * 3);
3971 				total_sad_count += sad_count;
3972 				break;
3973 			case SPEAKER_BLOCK:
3974 				/* Speaker Allocation Data Block */
3975 				if (dbl >= 1)
3976 					eld[DRM_ELD_SPEAKER] = db[1];
3977 				break;
3978 			case VENDOR_BLOCK:
3979 				/* HDMI Vendor-Specific Data Block */
3980 				if (cea_db_is_hdmi_vsdb(db))
3981 					drm_parse_hdmi_vsdb_audio(connector, db);
3982 				break;
3983 			default:
3984 				break;
3985 			}
3986 		}
3987 	}
3988 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
3989 
3990 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
3991 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3992 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
3993 	else
3994 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
3995 
3996 	eld[DRM_ELD_BASELINE_ELD_LEN] =
3997 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3998 
3999 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
4000 		      drm_eld_size(eld), total_sad_count);
4001 }
4002 
4003 /**
4004  * drm_edid_to_sad - extracts SADs from EDID
4005  * @edid: EDID to parse
4006  * @sads: pointer that will be set to the extracted SADs
4007  *
4008  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
4009  *
4010  * Note: The returned pointer needs to be freed using kfree().
4011  *
4012  * Return: The number of found SADs or negative number on error.
4013  */
4014 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
4015 {
4016 	int count = 0;
4017 	int i, start, end, dbl;
4018 	u8 *cea;
4019 
4020 	cea = drm_find_cea_extension(edid);
4021 	if (!cea) {
4022 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4023 		return -ENOENT;
4024 	}
4025 
4026 	if (cea_revision(cea) < 3) {
4027 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4028 		return -ENOTSUPP;
4029 	}
4030 
4031 	if (cea_db_offsets(cea, &start, &end)) {
4032 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4033 		return -EPROTO;
4034 	}
4035 
4036 	for_each_cea_db(cea, i, start, end) {
4037 		u8 *db = &cea[i];
4038 
4039 		if (cea_db_tag(db) == AUDIO_BLOCK) {
4040 			int j;
4041 			dbl = cea_db_payload_len(db);
4042 
4043 			count = dbl / 3; /* SAD is 3B */
4044 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4045 			if (!*sads)
4046 				return -ENOMEM;
4047 			for (j = 0; j < count; j++) {
4048 				u8 *sad = &db[1 + j * 3];
4049 
4050 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
4051 				(*sads)[j].channels = sad[0] & 0x7;
4052 				(*sads)[j].freq = sad[1] & 0x7F;
4053 				(*sads)[j].byte2 = sad[2];
4054 			}
4055 			break;
4056 		}
4057 	}
4058 
4059 	return count;
4060 }
4061 EXPORT_SYMBOL(drm_edid_to_sad);
4062 
4063 /**
4064  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4065  * @edid: EDID to parse
4066  * @sadb: pointer to the speaker block
4067  *
4068  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4069  *
4070  * Note: The returned pointer needs to be freed using kfree().
4071  *
4072  * Return: The number of found Speaker Allocation Blocks or negative number on
4073  * error.
4074  */
4075 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4076 {
4077 	int count = 0;
4078 	int i, start, end, dbl;
4079 	const u8 *cea;
4080 
4081 	cea = drm_find_cea_extension(edid);
4082 	if (!cea) {
4083 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4084 		return -ENOENT;
4085 	}
4086 
4087 	if (cea_revision(cea) < 3) {
4088 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4089 		return -ENOTSUPP;
4090 	}
4091 
4092 	if (cea_db_offsets(cea, &start, &end)) {
4093 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4094 		return -EPROTO;
4095 	}
4096 
4097 	for_each_cea_db(cea, i, start, end) {
4098 		const u8 *db = &cea[i];
4099 
4100 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
4101 			dbl = cea_db_payload_len(db);
4102 
4103 			/* Speaker Allocation Data Block */
4104 			if (dbl == 3) {
4105 				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4106 				if (!*sadb)
4107 					return -ENOMEM;
4108 				count = dbl;
4109 				break;
4110 			}
4111 		}
4112 	}
4113 
4114 	return count;
4115 }
4116 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4117 
4118 /**
4119  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4120  * @connector: connector associated with the HDMI/DP sink
4121  * @mode: the display mode
4122  *
4123  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4124  * the sink doesn't support audio or video.
4125  */
4126 int drm_av_sync_delay(struct drm_connector *connector,
4127 		      const struct drm_display_mode *mode)
4128 {
4129 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4130 	int a, v;
4131 
4132 	if (!connector->latency_present[0])
4133 		return 0;
4134 	if (!connector->latency_present[1])
4135 		i = 0;
4136 
4137 	a = connector->audio_latency[i];
4138 	v = connector->video_latency[i];
4139 
4140 	/*
4141 	 * HDMI/DP sink doesn't support audio or video?
4142 	 */
4143 	if (a == 255 || v == 255)
4144 		return 0;
4145 
4146 	/*
4147 	 * Convert raw EDID values to millisecond.
4148 	 * Treat unknown latency as 0ms.
4149 	 */
4150 	if (a)
4151 		a = min(2 * (a - 1), 500);
4152 	if (v)
4153 		v = min(2 * (v - 1), 500);
4154 
4155 	return max(v - a, 0);
4156 }
4157 EXPORT_SYMBOL(drm_av_sync_delay);
4158 
4159 /**
4160  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4161  * @edid: monitor EDID information
4162  *
4163  * Parse the CEA extension according to CEA-861-B.
4164  *
4165  * Return: True if the monitor is HDMI, false if not or unknown.
4166  */
4167 bool drm_detect_hdmi_monitor(struct edid *edid)
4168 {
4169 	u8 *edid_ext;
4170 	int i;
4171 	int start_offset, end_offset;
4172 
4173 	edid_ext = drm_find_cea_extension(edid);
4174 	if (!edid_ext)
4175 		return false;
4176 
4177 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4178 		return false;
4179 
4180 	/*
4181 	 * Because HDMI identifier is in Vendor Specific Block,
4182 	 * search it from all data blocks of CEA extension.
4183 	 */
4184 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4185 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4186 			return true;
4187 	}
4188 
4189 	return false;
4190 }
4191 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4192 
4193 /**
4194  * drm_detect_monitor_audio - check monitor audio capability
4195  * @edid: EDID block to scan
4196  *
4197  * Monitor should have CEA extension block.
4198  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4199  * audio' only. If there is any audio extension block and supported
4200  * audio format, assume at least 'basic audio' support, even if 'basic
4201  * audio' is not defined in EDID.
4202  *
4203  * Return: True if the monitor supports audio, false otherwise.
4204  */
4205 bool drm_detect_monitor_audio(struct edid *edid)
4206 {
4207 	u8 *edid_ext;
4208 	int i, j;
4209 	bool has_audio = false;
4210 	int start_offset, end_offset;
4211 
4212 	edid_ext = drm_find_cea_extension(edid);
4213 	if (!edid_ext)
4214 		goto end;
4215 
4216 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4217 
4218 	if (has_audio) {
4219 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
4220 		goto end;
4221 	}
4222 
4223 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4224 		goto end;
4225 
4226 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4227 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4228 			has_audio = true;
4229 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4230 				DRM_DEBUG_KMS("CEA audio format %d\n",
4231 					      (edid_ext[i + j] >> 3) & 0xf);
4232 			goto end;
4233 		}
4234 	}
4235 end:
4236 	return has_audio;
4237 }
4238 EXPORT_SYMBOL(drm_detect_monitor_audio);
4239 
4240 
4241 /**
4242  * drm_default_rgb_quant_range - default RGB quantization range
4243  * @mode: display mode
4244  *
4245  * Determine the default RGB quantization range for the mode,
4246  * as specified in CEA-861.
4247  *
4248  * Return: The default RGB quantization range for the mode
4249  */
4250 enum hdmi_quantization_range
4251 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4252 {
4253 	/* All CEA modes other than VIC 1 use limited quantization range. */
4254 	return drm_match_cea_mode(mode) > 1 ?
4255 		HDMI_QUANTIZATION_RANGE_LIMITED :
4256 		HDMI_QUANTIZATION_RANGE_FULL;
4257 }
4258 EXPORT_SYMBOL(drm_default_rgb_quant_range);
4259 
4260 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
4261 {
4262 	struct drm_display_info *info = &connector->display_info;
4263 
4264 	DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
4265 
4266 	if (db[2] & EDID_CEA_VCDB_QS)
4267 		info->rgb_quant_range_selectable = true;
4268 }
4269 
4270 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4271 					       const u8 *db)
4272 {
4273 	u8 dc_mask;
4274 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4275 
4276 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4277 	hdmi->y420_dc_modes = dc_mask;
4278 }
4279 
4280 static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4281 				 const u8 *hf_vsdb)
4282 {
4283 	struct drm_display_info *display = &connector->display_info;
4284 	struct drm_hdmi_info *hdmi = &display->hdmi;
4285 
4286 	display->has_hdmi_infoframe = true;
4287 
4288 	if (hf_vsdb[6] & 0x80) {
4289 		hdmi->scdc.supported = true;
4290 		if (hf_vsdb[6] & 0x40)
4291 			hdmi->scdc.read_request = true;
4292 	}
4293 
4294 	/*
4295 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4296 	 * And as per the spec, three factors confirm this:
4297 	 * * Availability of a HF-VSDB block in EDID (check)
4298 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4299 	 * * SCDC support available (let's check)
4300 	 * Lets check it out.
4301 	 */
4302 
4303 	if (hf_vsdb[5]) {
4304 		/* max clock is 5000 KHz times block value */
4305 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
4306 		struct drm_scdc *scdc = &hdmi->scdc;
4307 
4308 		if (max_tmds_clock > 340000) {
4309 			display->max_tmds_clock = max_tmds_clock;
4310 			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4311 				display->max_tmds_clock);
4312 		}
4313 
4314 		if (scdc->supported) {
4315 			scdc->scrambling.supported = true;
4316 
4317 			/* Few sinks support scrambling for cloks < 340M */
4318 			if ((hf_vsdb[6] & 0x8))
4319 				scdc->scrambling.low_rates = true;
4320 		}
4321 	}
4322 
4323 	drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
4324 }
4325 
4326 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4327 					   const u8 *hdmi)
4328 {
4329 	struct drm_display_info *info = &connector->display_info;
4330 	unsigned int dc_bpc = 0;
4331 
4332 	/* HDMI supports at least 8 bpc */
4333 	info->bpc = 8;
4334 
4335 	if (cea_db_payload_len(hdmi) < 6)
4336 		return;
4337 
4338 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4339 		dc_bpc = 10;
4340 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4341 		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4342 			  connector->name);
4343 	}
4344 
4345 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4346 		dc_bpc = 12;
4347 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4348 		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4349 			  connector->name);
4350 	}
4351 
4352 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4353 		dc_bpc = 16;
4354 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4355 		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4356 			  connector->name);
4357 	}
4358 
4359 	if (dc_bpc == 0) {
4360 		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4361 			  connector->name);
4362 		return;
4363 	}
4364 
4365 	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4366 		  connector->name, dc_bpc);
4367 	info->bpc = dc_bpc;
4368 
4369 	/*
4370 	 * Deep color support mandates RGB444 support for all video
4371 	 * modes and forbids YCRCB422 support for all video modes per
4372 	 * HDMI 1.3 spec.
4373 	 */
4374 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4375 
4376 	/* YCRCB444 is optional according to spec. */
4377 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4378 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4379 		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4380 			  connector->name);
4381 	}
4382 
4383 	/*
4384 	 * Spec says that if any deep color mode is supported at all,
4385 	 * then deep color 36 bit must be supported.
4386 	 */
4387 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4388 		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4389 			  connector->name);
4390 	}
4391 }
4392 
4393 static void
4394 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4395 {
4396 	struct drm_display_info *info = &connector->display_info;
4397 	u8 len = cea_db_payload_len(db);
4398 
4399 	if (len >= 6)
4400 		info->dvi_dual = db[6] & 1;
4401 	if (len >= 7)
4402 		info->max_tmds_clock = db[7] * 5000;
4403 
4404 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4405 		      "max TMDS clock %d kHz\n",
4406 		      info->dvi_dual,
4407 		      info->max_tmds_clock);
4408 
4409 	drm_parse_hdmi_deep_color_info(connector, db);
4410 }
4411 
4412 static void drm_parse_cea_ext(struct drm_connector *connector,
4413 			      const struct edid *edid)
4414 {
4415 	struct drm_display_info *info = &connector->display_info;
4416 	const u8 *edid_ext;
4417 	int i, start, end;
4418 
4419 	edid_ext = drm_find_cea_extension(edid);
4420 	if (!edid_ext)
4421 		return;
4422 
4423 	info->cea_rev = edid_ext[1];
4424 
4425 	/* The existence of a CEA block should imply RGB support */
4426 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4427 	if (edid_ext[3] & EDID_CEA_YCRCB444)
4428 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4429 	if (edid_ext[3] & EDID_CEA_YCRCB422)
4430 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4431 
4432 	if (cea_db_offsets(edid_ext, &start, &end))
4433 		return;
4434 
4435 	for_each_cea_db(edid_ext, i, start, end) {
4436 		const u8 *db = &edid_ext[i];
4437 
4438 		if (cea_db_is_hdmi_vsdb(db))
4439 			drm_parse_hdmi_vsdb_video(connector, db);
4440 		if (cea_db_is_hdmi_forum_vsdb(db))
4441 			drm_parse_hdmi_forum_vsdb(connector, db);
4442 		if (cea_db_is_y420cmdb(db))
4443 			drm_parse_y420cmdb_bitmap(connector, db);
4444 		if (cea_db_is_vcdb(db))
4445 			drm_parse_vcdb(connector, db);
4446 	}
4447 }
4448 
4449 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4450  * all of the values which would have been set from EDID
4451  */
4452 void
4453 drm_reset_display_info(struct drm_connector *connector)
4454 {
4455 	struct drm_display_info *info = &connector->display_info;
4456 
4457 	info->width_mm = 0;
4458 	info->height_mm = 0;
4459 
4460 	info->bpc = 0;
4461 	info->color_formats = 0;
4462 	info->cea_rev = 0;
4463 	info->max_tmds_clock = 0;
4464 	info->dvi_dual = false;
4465 	info->has_hdmi_infoframe = false;
4466 	info->rgb_quant_range_selectable = false;
4467 	memset(&info->hdmi, 0, sizeof(info->hdmi));
4468 
4469 	info->non_desktop = 0;
4470 }
4471 
4472 u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
4473 {
4474 	struct drm_display_info *info = &connector->display_info;
4475 
4476 	u32 quirks = edid_get_quirks(edid);
4477 
4478 	drm_reset_display_info(connector);
4479 
4480 	info->width_mm = edid->width_cm * 10;
4481 	info->height_mm = edid->height_cm * 10;
4482 
4483 	info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4484 
4485 	DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4486 
4487 	if (edid->revision < 3)
4488 		return quirks;
4489 
4490 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4491 		return quirks;
4492 
4493 	drm_parse_cea_ext(connector, edid);
4494 
4495 	/*
4496 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4497 	 *
4498 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4499 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
4500 	 * extensions which tell otherwise.
4501 	 */
4502 	if ((info->bpc == 0) && (edid->revision < 4) &&
4503 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
4504 		info->bpc = 8;
4505 		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4506 			  connector->name, info->bpc);
4507 	}
4508 
4509 	/* Only defined for 1.4 with digital displays */
4510 	if (edid->revision < 4)
4511 		return quirks;
4512 
4513 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4514 	case DRM_EDID_DIGITAL_DEPTH_6:
4515 		info->bpc = 6;
4516 		break;
4517 	case DRM_EDID_DIGITAL_DEPTH_8:
4518 		info->bpc = 8;
4519 		break;
4520 	case DRM_EDID_DIGITAL_DEPTH_10:
4521 		info->bpc = 10;
4522 		break;
4523 	case DRM_EDID_DIGITAL_DEPTH_12:
4524 		info->bpc = 12;
4525 		break;
4526 	case DRM_EDID_DIGITAL_DEPTH_14:
4527 		info->bpc = 14;
4528 		break;
4529 	case DRM_EDID_DIGITAL_DEPTH_16:
4530 		info->bpc = 16;
4531 		break;
4532 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4533 	default:
4534 		info->bpc = 0;
4535 		break;
4536 	}
4537 
4538 	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4539 			  connector->name, info->bpc);
4540 
4541 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4542 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4543 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4544 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4545 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4546 	return quirks;
4547 }
4548 
4549 static int validate_displayid(u8 *displayid, int length, int idx)
4550 {
4551 	int i;
4552 	u8 csum = 0;
4553 	struct displayid_hdr *base;
4554 
4555 	base = (struct displayid_hdr *)&displayid[idx];
4556 
4557 	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4558 		      base->rev, base->bytes, base->prod_id, base->ext_count);
4559 
4560 	if (base->bytes + 5 > length - idx)
4561 		return -EINVAL;
4562 	for (i = idx; i <= base->bytes + 5; i++) {
4563 		csum += displayid[i];
4564 	}
4565 	if (csum) {
4566 		DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4567 		return -EINVAL;
4568 	}
4569 	return 0;
4570 }
4571 
4572 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4573 							    struct displayid_detailed_timings_1 *timings)
4574 {
4575 	struct drm_display_mode *mode;
4576 	unsigned pixel_clock = (timings->pixel_clock[0] |
4577 				(timings->pixel_clock[1] << 8) |
4578 				(timings->pixel_clock[2] << 16));
4579 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4580 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4581 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4582 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4583 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4584 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4585 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4586 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4587 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4588 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4589 	mode = drm_mode_create(dev);
4590 	if (!mode)
4591 		return NULL;
4592 
4593 	mode->clock = pixel_clock * 10;
4594 	mode->hdisplay = hactive;
4595 	mode->hsync_start = mode->hdisplay + hsync;
4596 	mode->hsync_end = mode->hsync_start + hsync_width;
4597 	mode->htotal = mode->hdisplay + hblank;
4598 
4599 	mode->vdisplay = vactive;
4600 	mode->vsync_start = mode->vdisplay + vsync;
4601 	mode->vsync_end = mode->vsync_start + vsync_width;
4602 	mode->vtotal = mode->vdisplay + vblank;
4603 
4604 	mode->flags = 0;
4605 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4606 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4607 	mode->type = DRM_MODE_TYPE_DRIVER;
4608 
4609 	if (timings->flags & 0x80)
4610 		mode->type |= DRM_MODE_TYPE_PREFERRED;
4611 	mode->vrefresh = drm_mode_vrefresh(mode);
4612 	drm_mode_set_name(mode);
4613 
4614 	return mode;
4615 }
4616 
4617 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4618 					  struct displayid_block *block)
4619 {
4620 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4621 	int i;
4622 	int num_timings;
4623 	struct drm_display_mode *newmode;
4624 	int num_modes = 0;
4625 	/* blocks must be multiple of 20 bytes length */
4626 	if (block->num_bytes % 20)
4627 		return 0;
4628 
4629 	num_timings = block->num_bytes / 20;
4630 	for (i = 0; i < num_timings; i++) {
4631 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
4632 
4633 		newmode = drm_mode_displayid_detailed(connector->dev, timings);
4634 		if (!newmode)
4635 			continue;
4636 
4637 		drm_mode_probed_add(connector, newmode);
4638 		num_modes++;
4639 	}
4640 	return num_modes;
4641 }
4642 
4643 static int add_displayid_detailed_modes(struct drm_connector *connector,
4644 					struct edid *edid)
4645 {
4646 	u8 *displayid;
4647 	int ret;
4648 	int idx = 1;
4649 	int length = EDID_LENGTH;
4650 	struct displayid_block *block;
4651 	int num_modes = 0;
4652 
4653 	displayid = drm_find_displayid_extension(edid);
4654 	if (!displayid)
4655 		return 0;
4656 
4657 	ret = validate_displayid(displayid, length, idx);
4658 	if (ret)
4659 		return 0;
4660 
4661 	idx += sizeof(struct displayid_hdr);
4662 	while (block = (struct displayid_block *)&displayid[idx],
4663 	       idx + sizeof(struct displayid_block) <= length &&
4664 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4665 	       block->num_bytes > 0) {
4666 		idx += block->num_bytes + sizeof(struct displayid_block);
4667 		switch (block->tag) {
4668 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4669 			num_modes += add_displayid_detailed_1_modes(connector, block);
4670 			break;
4671 		}
4672 	}
4673 	return num_modes;
4674 }
4675 
4676 /**
4677  * drm_add_edid_modes - add modes from EDID data, if available
4678  * @connector: connector we're probing
4679  * @edid: EDID data
4680  *
4681  * Add the specified modes to the connector's mode list. Also fills out the
4682  * &drm_display_info structure and ELD in @connector with any information which
4683  * can be derived from the edid.
4684  *
4685  * Return: The number of modes added or 0 if we couldn't find any.
4686  */
4687 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4688 {
4689 	int num_modes = 0;
4690 	u32 quirks;
4691 
4692 	if (edid == NULL) {
4693 		clear_eld(connector);
4694 		return 0;
4695 	}
4696 	if (!drm_edid_is_valid(edid)) {
4697 		clear_eld(connector);
4698 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4699 			 connector->name);
4700 		return 0;
4701 	}
4702 
4703 	drm_edid_to_eld(connector, edid);
4704 
4705 	/*
4706 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4707 	 * To avoid multiple parsing of same block, lets parse that map
4708 	 * from sink info, before parsing CEA modes.
4709 	 */
4710 	quirks = drm_add_display_info(connector, edid);
4711 
4712 	/*
4713 	 * EDID spec says modes should be preferred in this order:
4714 	 * - preferred detailed mode
4715 	 * - other detailed modes from base block
4716 	 * - detailed modes from extension blocks
4717 	 * - CVT 3-byte code modes
4718 	 * - standard timing codes
4719 	 * - established timing codes
4720 	 * - modes inferred from GTF or CVT range information
4721 	 *
4722 	 * We get this pretty much right.
4723 	 *
4724 	 * XXX order for additional mode types in extension blocks?
4725 	 */
4726 	num_modes += add_detailed_modes(connector, edid, quirks);
4727 	num_modes += add_cvt_modes(connector, edid);
4728 	num_modes += add_standard_modes(connector, edid);
4729 	num_modes += add_established_modes(connector, edid);
4730 	num_modes += add_cea_modes(connector, edid);
4731 	num_modes += add_alternate_cea_modes(connector, edid);
4732 	num_modes += add_displayid_detailed_modes(connector, edid);
4733 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4734 		num_modes += add_inferred_modes(connector, edid);
4735 
4736 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4737 		edid_fixup_preferred(connector, quirks);
4738 
4739 	if (quirks & EDID_QUIRK_FORCE_6BPC)
4740 		connector->display_info.bpc = 6;
4741 
4742 	if (quirks & EDID_QUIRK_FORCE_8BPC)
4743 		connector->display_info.bpc = 8;
4744 
4745 	if (quirks & EDID_QUIRK_FORCE_10BPC)
4746 		connector->display_info.bpc = 10;
4747 
4748 	if (quirks & EDID_QUIRK_FORCE_12BPC)
4749 		connector->display_info.bpc = 12;
4750 
4751 	return num_modes;
4752 }
4753 EXPORT_SYMBOL(drm_add_edid_modes);
4754 
4755 /**
4756  * drm_add_modes_noedid - add modes for the connectors without EDID
4757  * @connector: connector we're probing
4758  * @hdisplay: the horizontal display limit
4759  * @vdisplay: the vertical display limit
4760  *
4761  * Add the specified modes to the connector's mode list. Only when the
4762  * hdisplay/vdisplay is not beyond the given limit, it will be added.
4763  *
4764  * Return: The number of modes added or 0 if we couldn't find any.
4765  */
4766 int drm_add_modes_noedid(struct drm_connector *connector,
4767 			int hdisplay, int vdisplay)
4768 {
4769 	int i, count, num_modes = 0;
4770 	struct drm_display_mode *mode;
4771 	struct drm_device *dev = connector->dev;
4772 
4773 	count = ARRAY_SIZE(drm_dmt_modes);
4774 	if (hdisplay < 0)
4775 		hdisplay = 0;
4776 	if (vdisplay < 0)
4777 		vdisplay = 0;
4778 
4779 	for (i = 0; i < count; i++) {
4780 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4781 		if (hdisplay && vdisplay) {
4782 			/*
4783 			 * Only when two are valid, they will be used to check
4784 			 * whether the mode should be added to the mode list of
4785 			 * the connector.
4786 			 */
4787 			if (ptr->hdisplay > hdisplay ||
4788 					ptr->vdisplay > vdisplay)
4789 				continue;
4790 		}
4791 		if (drm_mode_vrefresh(ptr) > 61)
4792 			continue;
4793 		mode = drm_mode_duplicate(dev, ptr);
4794 		if (mode) {
4795 			drm_mode_probed_add(connector, mode);
4796 			num_modes++;
4797 		}
4798 	}
4799 	return num_modes;
4800 }
4801 EXPORT_SYMBOL(drm_add_modes_noedid);
4802 
4803 /**
4804  * drm_set_preferred_mode - Sets the preferred mode of a connector
4805  * @connector: connector whose mode list should be processed
4806  * @hpref: horizontal resolution of preferred mode
4807  * @vpref: vertical resolution of preferred mode
4808  *
4809  * Marks a mode as preferred if it matches the resolution specified by @hpref
4810  * and @vpref.
4811  */
4812 void drm_set_preferred_mode(struct drm_connector *connector,
4813 			   int hpref, int vpref)
4814 {
4815 	struct drm_display_mode *mode;
4816 
4817 	list_for_each_entry(mode, &connector->probed_modes, head) {
4818 		if (mode->hdisplay == hpref &&
4819 		    mode->vdisplay == vpref)
4820 			mode->type |= DRM_MODE_TYPE_PREFERRED;
4821 	}
4822 }
4823 EXPORT_SYMBOL(drm_set_preferred_mode);
4824 
4825 static bool is_hdmi2_sink(struct drm_connector *connector)
4826 {
4827 	/*
4828 	 * FIXME: sil-sii8620 doesn't have a connector around when
4829 	 * we need one, so we have to be prepared for a NULL connector.
4830 	 */
4831 	if (!connector)
4832 		return true;
4833 
4834 	return connector->display_info.hdmi.scdc.supported ||
4835 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB420;
4836 }
4837 
4838 /**
4839  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4840  *                                              data from a DRM display mode
4841  * @frame: HDMI AVI infoframe
4842  * @connector: the connector
4843  * @mode: DRM display mode
4844  *
4845  * Return: 0 on success or a negative error code on failure.
4846  */
4847 int
4848 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4849 					 struct drm_connector *connector,
4850 					 const struct drm_display_mode *mode)
4851 {
4852 	enum hdmi_picture_aspect picture_aspect;
4853 	int err;
4854 
4855 	if (!frame || !mode)
4856 		return -EINVAL;
4857 
4858 	err = hdmi_avi_infoframe_init(frame);
4859 	if (err < 0)
4860 		return err;
4861 
4862 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4863 		frame->pixel_repeat = 1;
4864 
4865 	frame->video_code = drm_match_cea_mode(mode);
4866 
4867 	/*
4868 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
4869 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
4870 	 * have to make sure we dont break HDMI 1.4 sinks.
4871 	 */
4872 	if (!is_hdmi2_sink(connector) && frame->video_code > 64)
4873 		frame->video_code = 0;
4874 
4875 	/*
4876 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
4877 	 * we should send its VIC in vendor infoframes, else send the
4878 	 * VIC in AVI infoframes. Lets check if this mode is present in
4879 	 * HDMI 1.4b 4K modes
4880 	 */
4881 	if (frame->video_code) {
4882 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
4883 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
4884 
4885 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
4886 			frame->video_code = 0;
4887 	}
4888 
4889 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4890 
4891 	/*
4892 	 * As some drivers don't support atomic, we can't use connector state.
4893 	 * So just initialize the frame with default values, just the same way
4894 	 * as it's done with other properties here.
4895 	 */
4896 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
4897 	frame->itc = 0;
4898 
4899 	/*
4900 	 * Populate picture aspect ratio from either
4901 	 * user input (if specified) or from the CEA mode list.
4902 	 */
4903 	picture_aspect = mode->picture_aspect_ratio;
4904 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE)
4905 		picture_aspect = drm_get_cea_aspect_ratio(frame->video_code);
4906 
4907 	/*
4908 	 * The infoframe can't convey anything but none, 4:3
4909 	 * and 16:9, so if the user has asked for anything else
4910 	 * we can only satisfy it by specifying the right VIC.
4911 	 */
4912 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
4913 		if (picture_aspect !=
4914 		    drm_get_cea_aspect_ratio(frame->video_code))
4915 			return -EINVAL;
4916 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4917 	}
4918 
4919 	frame->picture_aspect = picture_aspect;
4920 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4921 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4922 
4923 	return 0;
4924 }
4925 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4926 
4927 /**
4928  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
4929  *                                        quantization range information
4930  * @frame: HDMI AVI infoframe
4931  * @connector: the connector
4932  * @mode: DRM display mode
4933  * @rgb_quant_range: RGB quantization range (Q)
4934  */
4935 void
4936 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
4937 				   struct drm_connector *connector,
4938 				   const struct drm_display_mode *mode,
4939 				   enum hdmi_quantization_range rgb_quant_range)
4940 {
4941 	const struct drm_display_info *info = &connector->display_info;
4942 
4943 	/*
4944 	 * CEA-861:
4945 	 * "A Source shall not send a non-zero Q value that does not correspond
4946 	 *  to the default RGB Quantization Range for the transmitted Picture
4947 	 *  unless the Sink indicates support for the Q bit in a Video
4948 	 *  Capabilities Data Block."
4949 	 *
4950 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
4951 	 * default RGB quantization range for the mode, even when QS=0.
4952 	 */
4953 	if (info->rgb_quant_range_selectable ||
4954 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
4955 		frame->quantization_range = rgb_quant_range;
4956 	else
4957 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
4958 
4959 	/*
4960 	 * CEA-861-F:
4961 	 * "When transmitting any RGB colorimetry, the Source should set the
4962 	 *  YQ-field to match the RGB Quantization Range being transmitted
4963 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
4964 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
4965 	 *
4966 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
4967 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
4968 	 * good way to tell which version of CEA-861 the sink supports, so
4969 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
4970 	 * on on CEA-861-F.
4971 	 */
4972 	if (!is_hdmi2_sink(connector) ||
4973 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
4974 		frame->ycc_quantization_range =
4975 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
4976 	else
4977 		frame->ycc_quantization_range =
4978 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
4979 }
4980 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
4981 
4982 static enum hdmi_3d_structure
4983 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4984 {
4985 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4986 
4987 	switch (layout) {
4988 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
4989 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
4990 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4991 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4992 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4993 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4994 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4995 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4996 	case DRM_MODE_FLAG_3D_L_DEPTH:
4997 		return HDMI_3D_STRUCTURE_L_DEPTH;
4998 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4999 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5000 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5001 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5002 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5003 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5004 	default:
5005 		return HDMI_3D_STRUCTURE_INVALID;
5006 	}
5007 }
5008 
5009 /**
5010  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
5011  * data from a DRM display mode
5012  * @frame: HDMI vendor infoframe
5013  * @connector: the connector
5014  * @mode: DRM display mode
5015  *
5016  * Note that there's is a need to send HDMI vendor infoframes only when using a
5017  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
5018  * function will return -EINVAL, error that can be safely ignored.
5019  *
5020  * Return: 0 on success or a negative error code on failure.
5021  */
5022 int
5023 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5024 					    struct drm_connector *connector,
5025 					    const struct drm_display_mode *mode)
5026 {
5027 	/*
5028 	 * FIXME: sil-sii8620 doesn't have a connector around when
5029 	 * we need one, so we have to be prepared for a NULL connector.
5030 	 */
5031 	bool has_hdmi_infoframe = connector ?
5032 		connector->display_info.has_hdmi_infoframe : false;
5033 	int err;
5034 	u32 s3d_flags;
5035 	u8 vic;
5036 
5037 	if (!frame || !mode)
5038 		return -EINVAL;
5039 
5040 	if (!has_hdmi_infoframe)
5041 		return -EINVAL;
5042 
5043 	vic = drm_match_hdmi_mode(mode);
5044 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5045 
5046 	/*
5047 	 * Even if it's not absolutely necessary to send the infoframe
5048 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5049 	 * know that the sink can handle it. This is based on a
5050 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5051 	 * have trouble realizing that they shuld switch from 3D to 2D
5052 	 * mode if the source simply stops sending the infoframe when
5053 	 * it wants to switch from 3D to 2D.
5054 	 */
5055 
5056 	if (vic && s3d_flags)
5057 		return -EINVAL;
5058 
5059 	err = hdmi_vendor_infoframe_init(frame);
5060 	if (err < 0)
5061 		return err;
5062 
5063 	frame->vic = vic;
5064 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
5065 
5066 	return 0;
5067 }
5068 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5069 
5070 static int drm_parse_tiled_block(struct drm_connector *connector,
5071 				 struct displayid_block *block)
5072 {
5073 	struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5074 	u16 w, h;
5075 	u8 tile_v_loc, tile_h_loc;
5076 	u8 num_v_tile, num_h_tile;
5077 	struct drm_tile_group *tg;
5078 
5079 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
5080 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
5081 
5082 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5083 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5084 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5085 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5086 
5087 	connector->has_tile = true;
5088 	if (tile->tile_cap & 0x80)
5089 		connector->tile_is_single_monitor = true;
5090 
5091 	connector->num_h_tile = num_h_tile + 1;
5092 	connector->num_v_tile = num_v_tile + 1;
5093 	connector->tile_h_loc = tile_h_loc;
5094 	connector->tile_v_loc = tile_v_loc;
5095 	connector->tile_h_size = w + 1;
5096 	connector->tile_v_size = h + 1;
5097 
5098 	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5099 	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5100 	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5101 		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5102 	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
5103 
5104 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5105 	if (!tg) {
5106 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5107 	}
5108 	if (!tg)
5109 		return -ENOMEM;
5110 
5111 	if (connector->tile_group != tg) {
5112 		/* if we haven't got a pointer,
5113 		   take the reference, drop ref to old tile group */
5114 		if (connector->tile_group) {
5115 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
5116 		}
5117 		connector->tile_group = tg;
5118 	} else
5119 		/* if same tile group, then release the ref we just took. */
5120 		drm_mode_put_tile_group(connector->dev, tg);
5121 	return 0;
5122 }
5123 
5124 static int drm_parse_display_id(struct drm_connector *connector,
5125 				u8 *displayid, int length,
5126 				bool is_edid_extension)
5127 {
5128 	/* if this is an EDID extension the first byte will be 0x70 */
5129 	int idx = 0;
5130 	struct displayid_block *block;
5131 	int ret;
5132 
5133 	if (is_edid_extension)
5134 		idx = 1;
5135 
5136 	ret = validate_displayid(displayid, length, idx);
5137 	if (ret)
5138 		return ret;
5139 
5140 	idx += sizeof(struct displayid_hdr);
5141 	while (block = (struct displayid_block *)&displayid[idx],
5142 	       idx + sizeof(struct displayid_block) <= length &&
5143 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
5144 	       block->num_bytes > 0) {
5145 		idx += block->num_bytes + sizeof(struct displayid_block);
5146 		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5147 			      block->tag, block->rev, block->num_bytes);
5148 
5149 		switch (block->tag) {
5150 		case DATA_BLOCK_TILED_DISPLAY:
5151 			ret = drm_parse_tiled_block(connector, block);
5152 			if (ret)
5153 				return ret;
5154 			break;
5155 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5156 			/* handled in mode gathering code. */
5157 			break;
5158 		default:
5159 			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5160 			break;
5161 		}
5162 	}
5163 	return 0;
5164 }
5165 
5166 static void drm_get_displayid(struct drm_connector *connector,
5167 			      struct edid *edid)
5168 {
5169 	void *displayid = NULL;
5170 	int ret;
5171 	connector->has_tile = false;
5172 	displayid = drm_find_displayid_extension(edid);
5173 	if (!displayid) {
5174 		/* drop reference to any tile group we had */
5175 		goto out_drop_ref;
5176 	}
5177 
5178 	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5179 	if (ret < 0)
5180 		goto out_drop_ref;
5181 	if (!connector->has_tile)
5182 		goto out_drop_ref;
5183 	return;
5184 out_drop_ref:
5185 	if (connector->tile_group) {
5186 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
5187 		connector->tile_group = NULL;
5188 	}
5189 	return;
5190 }
5191