xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 4e1a33b1)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_encoder.h>
39 #include <drm/drm_displayid.h>
40 
41 #include "drm_crtc_internal.h"
42 
43 #define version_greater(edid, maj, min) \
44 	(((edid)->version > (maj)) || \
45 	 ((edid)->version == (maj) && (edid)->revision > (min)))
46 
47 #define EDID_EST_TIMINGS 16
48 #define EDID_STD_TIMINGS 8
49 #define EDID_DETAILED_TIMINGS 4
50 
51 /*
52  * EDID blocks out in the wild have a variety of bugs, try to collect
53  * them here (note that userspace may work around broken monitors first,
54  * but fixes should make their way here so that the kernel "just works"
55  * on as many displays as possible).
56  */
57 
58 /* First detailed mode wrong, use largest 60Hz mode */
59 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
60 /* Reported 135MHz pixel clock is too high, needs adjustment */
61 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
62 /* Prefer the largest mode at 75 Hz */
63 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
64 /* Detail timing is in cm not mm */
65 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
66 /* Detailed timing descriptors have bogus size values, so just take the
67  * maximum size and use that.
68  */
69 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
70 /* Monitor forgot to set the first detailed is preferred bit. */
71 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
72 /* use +hsync +vsync for detailed mode */
73 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
74 /* Force reduced-blanking timings for detailed modes */
75 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
76 /* Force 8bpc */
77 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
78 /* Force 12bpc */
79 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
80 /* Force 6bpc */
81 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
82 
83 struct detailed_mode_closure {
84 	struct drm_connector *connector;
85 	struct edid *edid;
86 	bool preferred;
87 	u32 quirks;
88 	int modes;
89 };
90 
91 #define LEVEL_DMT	0
92 #define LEVEL_GTF	1
93 #define LEVEL_GTF2	2
94 #define LEVEL_CVT	3
95 
96 static const struct edid_quirk {
97 	char vendor[4];
98 	int product_id;
99 	u32 quirks;
100 } edid_quirk_list[] = {
101 	/* Acer AL1706 */
102 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
103 	/* Acer F51 */
104 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
105 	/* Unknown Acer */
106 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
107 
108 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
109 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
110 
111 	/* Belinea 10 15 55 */
112 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
113 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
114 
115 	/* Envision Peripherals, Inc. EN-7100e */
116 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
117 	/* Envision EN2028 */
118 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
119 
120 	/* Funai Electronics PM36B */
121 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
122 	  EDID_QUIRK_DETAILED_IN_CM },
123 
124 	/* LG Philips LCD LP154W01-A5 */
125 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
126 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
127 
128 	/* Philips 107p5 CRT */
129 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
130 
131 	/* Proview AY765C */
132 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
133 
134 	/* Samsung SyncMaster 205BW.  Note: irony */
135 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
136 	/* Samsung SyncMaster 22[5-6]BW */
137 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
138 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
139 
140 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
141 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
142 
143 	/* ViewSonic VA2026w */
144 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
145 
146 	/* Medion MD 30217 PG */
147 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
148 
149 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
150 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
151 };
152 
153 /*
154  * Autogenerated from the DMT spec.
155  * This table is copied from xfree86/modes/xf86EdidModes.c.
156  */
157 static const struct drm_display_mode drm_dmt_modes[] = {
158 	/* 0x01 - 640x350@85Hz */
159 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
160 		   736, 832, 0, 350, 382, 385, 445, 0,
161 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
162 	/* 0x02 - 640x400@85Hz */
163 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
164 		   736, 832, 0, 400, 401, 404, 445, 0,
165 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
166 	/* 0x03 - 720x400@85Hz */
167 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
168 		   828, 936, 0, 400, 401, 404, 446, 0,
169 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
170 	/* 0x04 - 640x480@60Hz */
171 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
172 		   752, 800, 0, 480, 490, 492, 525, 0,
173 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
174 	/* 0x05 - 640x480@72Hz */
175 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
176 		   704, 832, 0, 480, 489, 492, 520, 0,
177 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
178 	/* 0x06 - 640x480@75Hz */
179 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
180 		   720, 840, 0, 480, 481, 484, 500, 0,
181 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
182 	/* 0x07 - 640x480@85Hz */
183 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
184 		   752, 832, 0, 480, 481, 484, 509, 0,
185 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
186 	/* 0x08 - 800x600@56Hz */
187 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
188 		   896, 1024, 0, 600, 601, 603, 625, 0,
189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
190 	/* 0x09 - 800x600@60Hz */
191 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
192 		   968, 1056, 0, 600, 601, 605, 628, 0,
193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194 	/* 0x0a - 800x600@72Hz */
195 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
196 		   976, 1040, 0, 600, 637, 643, 666, 0,
197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
198 	/* 0x0b - 800x600@75Hz */
199 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
200 		   896, 1056, 0, 600, 601, 604, 625, 0,
201 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
202 	/* 0x0c - 800x600@85Hz */
203 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
204 		   896, 1048, 0, 600, 601, 604, 631, 0,
205 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
206 	/* 0x0d - 800x600@120Hz RB */
207 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
208 		   880, 960, 0, 600, 603, 607, 636, 0,
209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
210 	/* 0x0e - 848x480@60Hz */
211 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
212 		   976, 1088, 0, 480, 486, 494, 517, 0,
213 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
214 	/* 0x0f - 1024x768@43Hz, interlace */
215 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
216 		   1208, 1264, 0, 768, 768, 776, 817, 0,
217 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
218 		   DRM_MODE_FLAG_INTERLACE) },
219 	/* 0x10 - 1024x768@60Hz */
220 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
221 		   1184, 1344, 0, 768, 771, 777, 806, 0,
222 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
223 	/* 0x11 - 1024x768@70Hz */
224 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
225 		   1184, 1328, 0, 768, 771, 777, 806, 0,
226 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
227 	/* 0x12 - 1024x768@75Hz */
228 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
229 		   1136, 1312, 0, 768, 769, 772, 800, 0,
230 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
231 	/* 0x13 - 1024x768@85Hz */
232 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
233 		   1168, 1376, 0, 768, 769, 772, 808, 0,
234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
235 	/* 0x14 - 1024x768@120Hz RB */
236 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
237 		   1104, 1184, 0, 768, 771, 775, 813, 0,
238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
239 	/* 0x15 - 1152x864@75Hz */
240 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
241 		   1344, 1600, 0, 864, 865, 868, 900, 0,
242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
243 	/* 0x55 - 1280x720@60Hz */
244 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
245 		   1430, 1650, 0, 720, 725, 730, 750, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
247 	/* 0x16 - 1280x768@60Hz RB */
248 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
249 		   1360, 1440, 0, 768, 771, 778, 790, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 	/* 0x17 - 1280x768@60Hz */
252 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
253 		   1472, 1664, 0, 768, 771, 778, 798, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 	/* 0x18 - 1280x768@75Hz */
256 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
257 		   1488, 1696, 0, 768, 771, 778, 805, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 0x19 - 1280x768@85Hz */
260 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
261 		   1496, 1712, 0, 768, 771, 778, 809, 0,
262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
263 	/* 0x1a - 1280x768@120Hz RB */
264 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
265 		   1360, 1440, 0, 768, 771, 778, 813, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 	/* 0x1b - 1280x800@60Hz RB */
268 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
269 		   1360, 1440, 0, 800, 803, 809, 823, 0,
270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 	/* 0x1c - 1280x800@60Hz */
272 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
273 		   1480, 1680, 0, 800, 803, 809, 831, 0,
274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
275 	/* 0x1d - 1280x800@75Hz */
276 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
277 		   1488, 1696, 0, 800, 803, 809, 838, 0,
278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 0x1e - 1280x800@85Hz */
280 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
281 		   1496, 1712, 0, 800, 803, 809, 843, 0,
282 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 0x1f - 1280x800@120Hz RB */
284 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
285 		   1360, 1440, 0, 800, 803, 809, 847, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
287 	/* 0x20 - 1280x960@60Hz */
288 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
289 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 	/* 0x21 - 1280x960@85Hz */
292 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
293 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 0x22 - 1280x960@120Hz RB */
296 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
297 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 	/* 0x23 - 1280x1024@60Hz */
300 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
301 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 	/* 0x24 - 1280x1024@75Hz */
304 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
305 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 	/* 0x25 - 1280x1024@85Hz */
308 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
309 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
310 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 	/* 0x26 - 1280x1024@120Hz RB */
312 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
313 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
314 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
315 	/* 0x27 - 1360x768@60Hz */
316 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
317 		   1536, 1792, 0, 768, 771, 777, 795, 0,
318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
319 	/* 0x28 - 1360x768@120Hz RB */
320 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
321 		   1440, 1520, 0, 768, 771, 776, 813, 0,
322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323 	/* 0x51 - 1366x768@60Hz */
324 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
325 		   1579, 1792, 0, 768, 771, 774, 798, 0,
326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 	/* 0x56 - 1366x768@60Hz */
328 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
329 		   1436, 1500, 0, 768, 769, 772, 800, 0,
330 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
331 	/* 0x29 - 1400x1050@60Hz RB */
332 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
333 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
334 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
335 	/* 0x2a - 1400x1050@60Hz */
336 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
337 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
338 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
339 	/* 0x2b - 1400x1050@75Hz */
340 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
341 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
342 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 	/* 0x2c - 1400x1050@85Hz */
344 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
345 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
346 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 	/* 0x2d - 1400x1050@120Hz RB */
348 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
349 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
351 	/* 0x2e - 1440x900@60Hz RB */
352 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
353 		   1520, 1600, 0, 900, 903, 909, 926, 0,
354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
355 	/* 0x2f - 1440x900@60Hz */
356 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
357 		   1672, 1904, 0, 900, 903, 909, 934, 0,
358 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
359 	/* 0x30 - 1440x900@75Hz */
360 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
361 		   1688, 1936, 0, 900, 903, 909, 942, 0,
362 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
363 	/* 0x31 - 1440x900@85Hz */
364 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
365 		   1696, 1952, 0, 900, 903, 909, 948, 0,
366 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
367 	/* 0x32 - 1440x900@120Hz RB */
368 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
369 		   1520, 1600, 0, 900, 903, 909, 953, 0,
370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
371 	/* 0x53 - 1600x900@60Hz */
372 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
373 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
375 	/* 0x33 - 1600x1200@60Hz */
376 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
377 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
378 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
379 	/* 0x34 - 1600x1200@65Hz */
380 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
381 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
382 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
383 	/* 0x35 - 1600x1200@70Hz */
384 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
385 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
386 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
387 	/* 0x36 - 1600x1200@75Hz */
388 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
389 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
390 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
391 	/* 0x37 - 1600x1200@85Hz */
392 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
393 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
395 	/* 0x38 - 1600x1200@120Hz RB */
396 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
397 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
398 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
399 	/* 0x39 - 1680x1050@60Hz RB */
400 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
401 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
402 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
403 	/* 0x3a - 1680x1050@60Hz */
404 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
405 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
406 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
407 	/* 0x3b - 1680x1050@75Hz */
408 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
409 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
410 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
411 	/* 0x3c - 1680x1050@85Hz */
412 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
413 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
414 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 	/* 0x3d - 1680x1050@120Hz RB */
416 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
417 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
418 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
419 	/* 0x3e - 1792x1344@60Hz */
420 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
421 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
422 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
423 	/* 0x3f - 1792x1344@75Hz */
424 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
425 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
426 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
427 	/* 0x40 - 1792x1344@120Hz RB */
428 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
429 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
430 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
431 	/* 0x41 - 1856x1392@60Hz */
432 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
433 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435 	/* 0x42 - 1856x1392@75Hz */
436 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
437 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
438 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
439 	/* 0x43 - 1856x1392@120Hz RB */
440 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
441 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
443 	/* 0x52 - 1920x1080@60Hz */
444 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
445 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
446 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
447 	/* 0x44 - 1920x1200@60Hz RB */
448 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
449 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
450 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
451 	/* 0x45 - 1920x1200@60Hz */
452 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
453 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
454 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
455 	/* 0x46 - 1920x1200@75Hz */
456 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
457 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
458 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
459 	/* 0x47 - 1920x1200@85Hz */
460 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
461 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
462 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
463 	/* 0x48 - 1920x1200@120Hz RB */
464 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
465 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
466 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
467 	/* 0x49 - 1920x1440@60Hz */
468 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
469 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
470 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
471 	/* 0x4a - 1920x1440@75Hz */
472 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
473 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
474 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
475 	/* 0x4b - 1920x1440@120Hz RB */
476 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
477 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
478 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
479 	/* 0x54 - 2048x1152@60Hz */
480 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
481 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
482 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
483 	/* 0x4c - 2560x1600@60Hz RB */
484 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
485 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
486 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
487 	/* 0x4d - 2560x1600@60Hz */
488 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
489 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
490 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
491 	/* 0x4e - 2560x1600@75Hz */
492 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
493 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
495 	/* 0x4f - 2560x1600@85Hz */
496 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
497 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
498 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
499 	/* 0x50 - 2560x1600@120Hz RB */
500 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
501 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
503 	/* 0x57 - 4096x2160@60Hz RB */
504 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
505 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
507 	/* 0x58 - 4096x2160@59.94Hz RB */
508 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
509 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
510 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
511 };
512 
513 /*
514  * These more or less come from the DMT spec.  The 720x400 modes are
515  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
516  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
517  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
518  * mode.
519  *
520  * The DMT modes have been fact-checked; the rest are mild guesses.
521  */
522 static const struct drm_display_mode edid_est_modes[] = {
523 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
524 		   968, 1056, 0, 600, 601, 605, 628, 0,
525 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
526 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
527 		   896, 1024, 0, 600, 601, 603,  625, 0,
528 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
529 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
530 		   720, 840, 0, 480, 481, 484, 500, 0,
531 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
532 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
533 		   704,  832, 0, 480, 489, 492, 520, 0,
534 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
535 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
536 		   768,  864, 0, 480, 483, 486, 525, 0,
537 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
538 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
539 		   752, 800, 0, 480, 490, 492, 525, 0,
540 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
541 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
542 		   846, 900, 0, 400, 421, 423,  449, 0,
543 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
544 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
545 		   846,  900, 0, 400, 412, 414, 449, 0,
546 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
547 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
548 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
549 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
550 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
551 		   1136, 1312, 0,  768, 769, 772, 800, 0,
552 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
553 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
554 		   1184, 1328, 0,  768, 771, 777, 806, 0,
555 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
556 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
557 		   1184, 1344, 0,  768, 771, 777, 806, 0,
558 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
559 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
560 		   1208, 1264, 0, 768, 768, 776, 817, 0,
561 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
562 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
563 		   928, 1152, 0, 624, 625, 628, 667, 0,
564 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
565 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
566 		   896, 1056, 0, 600, 601, 604,  625, 0,
567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
568 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
569 		   976, 1040, 0, 600, 637, 643, 666, 0,
570 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
571 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
572 		   1344, 1600, 0,  864, 865, 868, 900, 0,
573 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
574 };
575 
576 struct minimode {
577 	short w;
578 	short h;
579 	short r;
580 	short rb;
581 };
582 
583 static const struct minimode est3_modes[] = {
584 	/* byte 6 */
585 	{ 640, 350, 85, 0 },
586 	{ 640, 400, 85, 0 },
587 	{ 720, 400, 85, 0 },
588 	{ 640, 480, 85, 0 },
589 	{ 848, 480, 60, 0 },
590 	{ 800, 600, 85, 0 },
591 	{ 1024, 768, 85, 0 },
592 	{ 1152, 864, 75, 0 },
593 	/* byte 7 */
594 	{ 1280, 768, 60, 1 },
595 	{ 1280, 768, 60, 0 },
596 	{ 1280, 768, 75, 0 },
597 	{ 1280, 768, 85, 0 },
598 	{ 1280, 960, 60, 0 },
599 	{ 1280, 960, 85, 0 },
600 	{ 1280, 1024, 60, 0 },
601 	{ 1280, 1024, 85, 0 },
602 	/* byte 8 */
603 	{ 1360, 768, 60, 0 },
604 	{ 1440, 900, 60, 1 },
605 	{ 1440, 900, 60, 0 },
606 	{ 1440, 900, 75, 0 },
607 	{ 1440, 900, 85, 0 },
608 	{ 1400, 1050, 60, 1 },
609 	{ 1400, 1050, 60, 0 },
610 	{ 1400, 1050, 75, 0 },
611 	/* byte 9 */
612 	{ 1400, 1050, 85, 0 },
613 	{ 1680, 1050, 60, 1 },
614 	{ 1680, 1050, 60, 0 },
615 	{ 1680, 1050, 75, 0 },
616 	{ 1680, 1050, 85, 0 },
617 	{ 1600, 1200, 60, 0 },
618 	{ 1600, 1200, 65, 0 },
619 	{ 1600, 1200, 70, 0 },
620 	/* byte 10 */
621 	{ 1600, 1200, 75, 0 },
622 	{ 1600, 1200, 85, 0 },
623 	{ 1792, 1344, 60, 0 },
624 	{ 1792, 1344, 75, 0 },
625 	{ 1856, 1392, 60, 0 },
626 	{ 1856, 1392, 75, 0 },
627 	{ 1920, 1200, 60, 1 },
628 	{ 1920, 1200, 60, 0 },
629 	/* byte 11 */
630 	{ 1920, 1200, 75, 0 },
631 	{ 1920, 1200, 85, 0 },
632 	{ 1920, 1440, 60, 0 },
633 	{ 1920, 1440, 75, 0 },
634 };
635 
636 static const struct minimode extra_modes[] = {
637 	{ 1024, 576,  60, 0 },
638 	{ 1366, 768,  60, 0 },
639 	{ 1600, 900,  60, 0 },
640 	{ 1680, 945,  60, 0 },
641 	{ 1920, 1080, 60, 0 },
642 	{ 2048, 1152, 60, 0 },
643 	{ 2048, 1536, 60, 0 },
644 };
645 
646 /*
647  * Probably taken from CEA-861 spec.
648  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
649  *
650  * Index using the VIC.
651  */
652 static const struct drm_display_mode edid_cea_modes[] = {
653 	/* 0 - dummy, VICs start at 1 */
654 	{ },
655 	/* 1 - 640x480@60Hz */
656 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
657 		   752, 800, 0, 480, 490, 492, 525, 0,
658 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
659 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
660 	/* 2 - 720x480@60Hz */
661 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
662 		   798, 858, 0, 480, 489, 495, 525, 0,
663 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
664 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
665 	/* 3 - 720x480@60Hz */
666 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
667 		   798, 858, 0, 480, 489, 495, 525, 0,
668 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
669 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
670 	/* 4 - 1280x720@60Hz */
671 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
672 		   1430, 1650, 0, 720, 725, 730, 750, 0,
673 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
674 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
675 	/* 5 - 1920x1080i@60Hz */
676 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
677 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
678 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
679 			DRM_MODE_FLAG_INTERLACE),
680 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
681 	/* 6 - 720(1440)x480i@60Hz */
682 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
683 		   801, 858, 0, 480, 488, 494, 525, 0,
684 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
685 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
686 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
687 	/* 7 - 720(1440)x480i@60Hz */
688 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
689 		   801, 858, 0, 480, 488, 494, 525, 0,
690 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
691 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
692 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
693 	/* 8 - 720(1440)x240@60Hz */
694 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
695 		   801, 858, 0, 240, 244, 247, 262, 0,
696 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
697 			DRM_MODE_FLAG_DBLCLK),
698 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
699 	/* 9 - 720(1440)x240@60Hz */
700 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
701 		   801, 858, 0, 240, 244, 247, 262, 0,
702 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
703 			DRM_MODE_FLAG_DBLCLK),
704 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
705 	/* 10 - 2880x480i@60Hz */
706 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
707 		   3204, 3432, 0, 480, 488, 494, 525, 0,
708 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
709 			DRM_MODE_FLAG_INTERLACE),
710 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
711 	/* 11 - 2880x480i@60Hz */
712 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
713 		   3204, 3432, 0, 480, 488, 494, 525, 0,
714 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
715 			DRM_MODE_FLAG_INTERLACE),
716 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
717 	/* 12 - 2880x240@60Hz */
718 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
719 		   3204, 3432, 0, 240, 244, 247, 262, 0,
720 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
721 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
722 	/* 13 - 2880x240@60Hz */
723 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
724 		   3204, 3432, 0, 240, 244, 247, 262, 0,
725 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
726 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
727 	/* 14 - 1440x480@60Hz */
728 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
729 		   1596, 1716, 0, 480, 489, 495, 525, 0,
730 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
731 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
732 	/* 15 - 1440x480@60Hz */
733 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
734 		   1596, 1716, 0, 480, 489, 495, 525, 0,
735 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
736 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
737 	/* 16 - 1920x1080@60Hz */
738 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
739 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
740 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
741 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
742 	/* 17 - 720x576@50Hz */
743 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
744 		   796, 864, 0, 576, 581, 586, 625, 0,
745 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
746 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
747 	/* 18 - 720x576@50Hz */
748 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
749 		   796, 864, 0, 576, 581, 586, 625, 0,
750 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
751 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
752 	/* 19 - 1280x720@50Hz */
753 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
754 		   1760, 1980, 0, 720, 725, 730, 750, 0,
755 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
756 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
757 	/* 20 - 1920x1080i@50Hz */
758 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
759 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
760 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
761 			DRM_MODE_FLAG_INTERLACE),
762 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
763 	/* 21 - 720(1440)x576i@50Hz */
764 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
765 		   795, 864, 0, 576, 580, 586, 625, 0,
766 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
767 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
768 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
769 	/* 22 - 720(1440)x576i@50Hz */
770 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
771 		   795, 864, 0, 576, 580, 586, 625, 0,
772 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
773 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
774 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
775 	/* 23 - 720(1440)x288@50Hz */
776 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
777 		   795, 864, 0, 288, 290, 293, 312, 0,
778 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
779 			DRM_MODE_FLAG_DBLCLK),
780 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
781 	/* 24 - 720(1440)x288@50Hz */
782 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
783 		   795, 864, 0, 288, 290, 293, 312, 0,
784 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
785 			DRM_MODE_FLAG_DBLCLK),
786 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
787 	/* 25 - 2880x576i@50Hz */
788 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
789 		   3180, 3456, 0, 576, 580, 586, 625, 0,
790 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
791 			DRM_MODE_FLAG_INTERLACE),
792 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
793 	/* 26 - 2880x576i@50Hz */
794 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
795 		   3180, 3456, 0, 576, 580, 586, 625, 0,
796 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
797 			DRM_MODE_FLAG_INTERLACE),
798 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
799 	/* 27 - 2880x288@50Hz */
800 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
801 		   3180, 3456, 0, 288, 290, 293, 312, 0,
802 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
803 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
804 	/* 28 - 2880x288@50Hz */
805 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
806 		   3180, 3456, 0, 288, 290, 293, 312, 0,
807 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
808 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
809 	/* 29 - 1440x576@50Hz */
810 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
811 		   1592, 1728, 0, 576, 581, 586, 625, 0,
812 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
813 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
814 	/* 30 - 1440x576@50Hz */
815 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
816 		   1592, 1728, 0, 576, 581, 586, 625, 0,
817 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
818 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
819 	/* 31 - 1920x1080@50Hz */
820 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
821 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
822 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
823 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
824 	/* 32 - 1920x1080@24Hz */
825 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
826 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
827 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
829 	/* 33 - 1920x1080@25Hz */
830 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
831 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
832 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
833 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 	/* 34 - 1920x1080@30Hz */
835 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
836 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
837 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
838 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 	/* 35 - 2880x480@60Hz */
840 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
841 		   3192, 3432, 0, 480, 489, 495, 525, 0,
842 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
843 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
844 	/* 36 - 2880x480@60Hz */
845 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
846 		   3192, 3432, 0, 480, 489, 495, 525, 0,
847 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 37 - 2880x576@50Hz */
850 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
851 		   3184, 3456, 0, 576, 581, 586, 625, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
853 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
854 	/* 38 - 2880x576@50Hz */
855 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
856 		   3184, 3456, 0, 576, 581, 586, 625, 0,
857 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
858 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 	/* 39 - 1920x1080i@50Hz */
860 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
861 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
862 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
863 			DRM_MODE_FLAG_INTERLACE),
864 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
865 	/* 40 - 1920x1080i@100Hz */
866 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
867 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
868 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
869 			DRM_MODE_FLAG_INTERLACE),
870 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
871 	/* 41 - 1280x720@100Hz */
872 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
873 		   1760, 1980, 0, 720, 725, 730, 750, 0,
874 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
875 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
876 	/* 42 - 720x576@100Hz */
877 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
878 		   796, 864, 0, 576, 581, 586, 625, 0,
879 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
880 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
881 	/* 43 - 720x576@100Hz */
882 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
883 		   796, 864, 0, 576, 581, 586, 625, 0,
884 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
885 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
886 	/* 44 - 720(1440)x576i@100Hz */
887 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
888 		   795, 864, 0, 576, 580, 586, 625, 0,
889 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
890 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
891 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
892 	/* 45 - 720(1440)x576i@100Hz */
893 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
894 		   795, 864, 0, 576, 580, 586, 625, 0,
895 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
896 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
897 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
898 	/* 46 - 1920x1080i@120Hz */
899 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
900 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
901 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
902 			DRM_MODE_FLAG_INTERLACE),
903 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 	/* 47 - 1280x720@120Hz */
905 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
906 		   1430, 1650, 0, 720, 725, 730, 750, 0,
907 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 	/* 48 - 720x480@120Hz */
910 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
911 		   798, 858, 0, 480, 489, 495, 525, 0,
912 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
913 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
914 	/* 49 - 720x480@120Hz */
915 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
916 		   798, 858, 0, 480, 489, 495, 525, 0,
917 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
918 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 	/* 50 - 720(1440)x480i@120Hz */
920 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
921 		   801, 858, 0, 480, 488, 494, 525, 0,
922 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
923 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
924 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
925 	/* 51 - 720(1440)x480i@120Hz */
926 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
927 		   801, 858, 0, 480, 488, 494, 525, 0,
928 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
929 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
930 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
931 	/* 52 - 720x576@200Hz */
932 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
933 		   796, 864, 0, 576, 581, 586, 625, 0,
934 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
935 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
936 	/* 53 - 720x576@200Hz */
937 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
938 		   796, 864, 0, 576, 581, 586, 625, 0,
939 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
940 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
941 	/* 54 - 720(1440)x576i@200Hz */
942 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
943 		   795, 864, 0, 576, 580, 586, 625, 0,
944 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
945 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
946 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
947 	/* 55 - 720(1440)x576i@200Hz */
948 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
949 		   795, 864, 0, 576, 580, 586, 625, 0,
950 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
951 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
952 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
953 	/* 56 - 720x480@240Hz */
954 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
955 		   798, 858, 0, 480, 489, 495, 525, 0,
956 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
957 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
958 	/* 57 - 720x480@240Hz */
959 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
960 		   798, 858, 0, 480, 489, 495, 525, 0,
961 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
962 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
963 	/* 58 - 720(1440)x480i@240Hz */
964 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
965 		   801, 858, 0, 480, 488, 494, 525, 0,
966 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
967 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
968 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
969 	/* 59 - 720(1440)x480i@240Hz */
970 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
971 		   801, 858, 0, 480, 488, 494, 525, 0,
972 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
973 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
974 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
975 	/* 60 - 1280x720@24Hz */
976 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
977 		   3080, 3300, 0, 720, 725, 730, 750, 0,
978 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
979 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
980 	/* 61 - 1280x720@25Hz */
981 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
982 		   3740, 3960, 0, 720, 725, 730, 750, 0,
983 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
984 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
985 	/* 62 - 1280x720@30Hz */
986 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
987 		   3080, 3300, 0, 720, 725, 730, 750, 0,
988 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
989 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 	/* 63 - 1920x1080@120Hz */
991 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
992 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
993 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 	/* 64 - 1920x1080@100Hz */
996 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
997 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
998 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
999 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1000 };
1001 
1002 /*
1003  * HDMI 1.4 4k modes. Index using the VIC.
1004  */
1005 static const struct drm_display_mode edid_4k_modes[] = {
1006 	/* 0 - dummy, VICs start at 1 */
1007 	{ },
1008 	/* 1 - 3840x2160@30Hz */
1009 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1010 		   3840, 4016, 4104, 4400, 0,
1011 		   2160, 2168, 2178, 2250, 0,
1012 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1013 	  .vrefresh = 30, },
1014 	/* 2 - 3840x2160@25Hz */
1015 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1016 		   3840, 4896, 4984, 5280, 0,
1017 		   2160, 2168, 2178, 2250, 0,
1018 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1019 	  .vrefresh = 25, },
1020 	/* 3 - 3840x2160@24Hz */
1021 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1022 		   3840, 5116, 5204, 5500, 0,
1023 		   2160, 2168, 2178, 2250, 0,
1024 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1025 	  .vrefresh = 24, },
1026 	/* 4 - 4096x2160@24Hz (SMPTE) */
1027 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1028 		   4096, 5116, 5204, 5500, 0,
1029 		   2160, 2168, 2178, 2250, 0,
1030 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1031 	  .vrefresh = 24, },
1032 };
1033 
1034 /*** DDC fetch and block validation ***/
1035 
1036 static const u8 edid_header[] = {
1037 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1038 };
1039 
1040 /**
1041  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1042  * @raw_edid: pointer to raw base EDID block
1043  *
1044  * Sanity check the header of the base EDID block.
1045  *
1046  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1047  */
1048 int drm_edid_header_is_valid(const u8 *raw_edid)
1049 {
1050 	int i, score = 0;
1051 
1052 	for (i = 0; i < sizeof(edid_header); i++)
1053 		if (raw_edid[i] == edid_header[i])
1054 			score++;
1055 
1056 	return score;
1057 }
1058 EXPORT_SYMBOL(drm_edid_header_is_valid);
1059 
1060 static int edid_fixup __read_mostly = 6;
1061 module_param_named(edid_fixup, edid_fixup, int, 0400);
1062 MODULE_PARM_DESC(edid_fixup,
1063 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1064 
1065 static void drm_get_displayid(struct drm_connector *connector,
1066 			      struct edid *edid);
1067 
1068 static int drm_edid_block_checksum(const u8 *raw_edid)
1069 {
1070 	int i;
1071 	u8 csum = 0;
1072 	for (i = 0; i < EDID_LENGTH; i++)
1073 		csum += raw_edid[i];
1074 
1075 	return csum;
1076 }
1077 
1078 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1079 {
1080 	if (memchr_inv(in_edid, 0, length))
1081 		return false;
1082 
1083 	return true;
1084 }
1085 
1086 /**
1087  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1088  * @raw_edid: pointer to raw EDID block
1089  * @block: type of block to validate (0 for base, extension otherwise)
1090  * @print_bad_edid: if true, dump bad EDID blocks to the console
1091  * @edid_corrupt: if true, the header or checksum is invalid
1092  *
1093  * Validate a base or extension EDID block and optionally dump bad blocks to
1094  * the console.
1095  *
1096  * Return: True if the block is valid, false otherwise.
1097  */
1098 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1099 			  bool *edid_corrupt)
1100 {
1101 	u8 csum;
1102 	struct edid *edid = (struct edid *)raw_edid;
1103 
1104 	if (WARN_ON(!raw_edid))
1105 		return false;
1106 
1107 	if (edid_fixup > 8 || edid_fixup < 0)
1108 		edid_fixup = 6;
1109 
1110 	if (block == 0) {
1111 		int score = drm_edid_header_is_valid(raw_edid);
1112 		if (score == 8) {
1113 			if (edid_corrupt)
1114 				*edid_corrupt = false;
1115 		} else if (score >= edid_fixup) {
1116 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1117 			 * The corrupt flag needs to be set here otherwise, the
1118 			 * fix-up code here will correct the problem, the
1119 			 * checksum is correct and the test fails
1120 			 */
1121 			if (edid_corrupt)
1122 				*edid_corrupt = true;
1123 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1124 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1125 		} else {
1126 			if (edid_corrupt)
1127 				*edid_corrupt = true;
1128 			goto bad;
1129 		}
1130 	}
1131 
1132 	csum = drm_edid_block_checksum(raw_edid);
1133 	if (csum) {
1134 		if (print_bad_edid) {
1135 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1136 		}
1137 
1138 		if (edid_corrupt)
1139 			*edid_corrupt = true;
1140 
1141 		/* allow CEA to slide through, switches mangle this */
1142 		if (raw_edid[0] != 0x02)
1143 			goto bad;
1144 	}
1145 
1146 	/* per-block-type checks */
1147 	switch (raw_edid[0]) {
1148 	case 0: /* base */
1149 		if (edid->version != 1) {
1150 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1151 			goto bad;
1152 		}
1153 
1154 		if (edid->revision > 4)
1155 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1156 		break;
1157 
1158 	default:
1159 		break;
1160 	}
1161 
1162 	return true;
1163 
1164 bad:
1165 	if (print_bad_edid) {
1166 		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1167 			printk(KERN_ERR "EDID block is all zeroes\n");
1168 		} else {
1169 			printk(KERN_ERR "Raw EDID:\n");
1170 			print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1171 			       raw_edid, EDID_LENGTH, false);
1172 		}
1173 	}
1174 	return false;
1175 }
1176 EXPORT_SYMBOL(drm_edid_block_valid);
1177 
1178 /**
1179  * drm_edid_is_valid - sanity check EDID data
1180  * @edid: EDID data
1181  *
1182  * Sanity-check an entire EDID record (including extensions)
1183  *
1184  * Return: True if the EDID data is valid, false otherwise.
1185  */
1186 bool drm_edid_is_valid(struct edid *edid)
1187 {
1188 	int i;
1189 	u8 *raw = (u8 *)edid;
1190 
1191 	if (!edid)
1192 		return false;
1193 
1194 	for (i = 0; i <= edid->extensions; i++)
1195 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1196 			return false;
1197 
1198 	return true;
1199 }
1200 EXPORT_SYMBOL(drm_edid_is_valid);
1201 
1202 #define DDC_SEGMENT_ADDR 0x30
1203 /**
1204  * drm_do_probe_ddc_edid() - get EDID information via I2C
1205  * @data: I2C device adapter
1206  * @buf: EDID data buffer to be filled
1207  * @block: 128 byte EDID block to start fetching from
1208  * @len: EDID data buffer length to fetch
1209  *
1210  * Try to fetch EDID information by calling I2C driver functions.
1211  *
1212  * Return: 0 on success or -1 on failure.
1213  */
1214 static int
1215 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1216 {
1217 	struct i2c_adapter *adapter = data;
1218 	unsigned char start = block * EDID_LENGTH;
1219 	unsigned char segment = block >> 1;
1220 	unsigned char xfers = segment ? 3 : 2;
1221 	int ret, retries = 5;
1222 
1223 	/*
1224 	 * The core I2C driver will automatically retry the transfer if the
1225 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1226 	 * are susceptible to errors under a heavily loaded machine and
1227 	 * generate spurious NAKs and timeouts. Retrying the transfer
1228 	 * of the individual block a few times seems to overcome this.
1229 	 */
1230 	do {
1231 		struct i2c_msg msgs[] = {
1232 			{
1233 				.addr	= DDC_SEGMENT_ADDR,
1234 				.flags	= 0,
1235 				.len	= 1,
1236 				.buf	= &segment,
1237 			}, {
1238 				.addr	= DDC_ADDR,
1239 				.flags	= 0,
1240 				.len	= 1,
1241 				.buf	= &start,
1242 			}, {
1243 				.addr	= DDC_ADDR,
1244 				.flags	= I2C_M_RD,
1245 				.len	= len,
1246 				.buf	= buf,
1247 			}
1248 		};
1249 
1250 		/*
1251 		 * Avoid sending the segment addr to not upset non-compliant
1252 		 * DDC monitors.
1253 		 */
1254 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1255 
1256 		if (ret == -ENXIO) {
1257 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1258 					adapter->name);
1259 			break;
1260 		}
1261 	} while (ret != xfers && --retries);
1262 
1263 	return ret == xfers ? 0 : -1;
1264 }
1265 
1266 static void connector_bad_edid(struct drm_connector *connector,
1267 			       u8 *edid, int num_blocks)
1268 {
1269 	int i;
1270 
1271 	if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1272 		return;
1273 
1274 	dev_warn(connector->dev->dev,
1275 		 "%s: EDID is invalid:\n",
1276 		 connector->name);
1277 	for (i = 0; i < num_blocks; i++) {
1278 		u8 *block = edid + i * EDID_LENGTH;
1279 		char prefix[20];
1280 
1281 		if (drm_edid_is_zero(block, EDID_LENGTH))
1282 			sprintf(prefix, "\t[%02x] ZERO ", i);
1283 		else if (!drm_edid_block_valid(block, i, false, NULL))
1284 			sprintf(prefix, "\t[%02x] BAD  ", i);
1285 		else
1286 			sprintf(prefix, "\t[%02x] GOOD ", i);
1287 
1288 		print_hex_dump(KERN_WARNING,
1289 			       prefix, DUMP_PREFIX_NONE, 16, 1,
1290 			       block, EDID_LENGTH, false);
1291 	}
1292 }
1293 
1294 /**
1295  * drm_do_get_edid - get EDID data using a custom EDID block read function
1296  * @connector: connector we're probing
1297  * @get_edid_block: EDID block read function
1298  * @data: private data passed to the block read function
1299  *
1300  * When the I2C adapter connected to the DDC bus is hidden behind a device that
1301  * exposes a different interface to read EDID blocks this function can be used
1302  * to get EDID data using a custom block read function.
1303  *
1304  * As in the general case the DDC bus is accessible by the kernel at the I2C
1305  * level, drivers must make all reasonable efforts to expose it as an I2C
1306  * adapter and use drm_get_edid() instead of abusing this function.
1307  *
1308  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1309  */
1310 struct edid *drm_do_get_edid(struct drm_connector *connector,
1311 	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1312 			      size_t len),
1313 	void *data)
1314 {
1315 	int i, j = 0, valid_extensions = 0;
1316 	u8 *edid, *new;
1317 
1318 	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1319 		return NULL;
1320 
1321 	/* base block fetch */
1322 	for (i = 0; i < 4; i++) {
1323 		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1324 			goto out;
1325 		if (drm_edid_block_valid(edid, 0, false,
1326 					 &connector->edid_corrupt))
1327 			break;
1328 		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1329 			connector->null_edid_counter++;
1330 			goto carp;
1331 		}
1332 	}
1333 	if (i == 4)
1334 		goto carp;
1335 
1336 	/* if there's no extensions, we're done */
1337 	valid_extensions = edid[0x7e];
1338 	if (valid_extensions == 0)
1339 		return (struct edid *)edid;
1340 
1341 	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1342 	if (!new)
1343 		goto out;
1344 	edid = new;
1345 
1346 	for (j = 1; j <= edid[0x7e]; j++) {
1347 		u8 *block = edid + j * EDID_LENGTH;
1348 
1349 		for (i = 0; i < 4; i++) {
1350 			if (get_edid_block(data, block, j, EDID_LENGTH))
1351 				goto out;
1352 			if (drm_edid_block_valid(block, j, false, NULL))
1353 				break;
1354 		}
1355 
1356 		if (i == 4)
1357 			valid_extensions--;
1358 	}
1359 
1360 	if (valid_extensions != edid[0x7e]) {
1361 		u8 *base;
1362 
1363 		connector_bad_edid(connector, edid, edid[0x7e] + 1);
1364 
1365 		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1366 		edid[0x7e] = valid_extensions;
1367 
1368 		new = kmalloc((valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1369 		if (!new)
1370 			goto out;
1371 
1372 		base = new;
1373 		for (i = 0; i <= edid[0x7e]; i++) {
1374 			u8 *block = edid + i * EDID_LENGTH;
1375 
1376 			if (!drm_edid_block_valid(block, i, false, NULL))
1377 				continue;
1378 
1379 			memcpy(base, block, EDID_LENGTH);
1380 			base += EDID_LENGTH;
1381 		}
1382 
1383 		kfree(edid);
1384 		edid = new;
1385 	}
1386 
1387 	return (struct edid *)edid;
1388 
1389 carp:
1390 	connector_bad_edid(connector, edid, 1);
1391 out:
1392 	kfree(edid);
1393 	return NULL;
1394 }
1395 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1396 
1397 /**
1398  * drm_probe_ddc() - probe DDC presence
1399  * @adapter: I2C adapter to probe
1400  *
1401  * Return: True on success, false on failure.
1402  */
1403 bool
1404 drm_probe_ddc(struct i2c_adapter *adapter)
1405 {
1406 	unsigned char out;
1407 
1408 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1409 }
1410 EXPORT_SYMBOL(drm_probe_ddc);
1411 
1412 /**
1413  * drm_get_edid - get EDID data, if available
1414  * @connector: connector we're probing
1415  * @adapter: I2C adapter to use for DDC
1416  *
1417  * Poke the given I2C channel to grab EDID data if possible.  If found,
1418  * attach it to the connector.
1419  *
1420  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1421  */
1422 struct edid *drm_get_edid(struct drm_connector *connector,
1423 			  struct i2c_adapter *adapter)
1424 {
1425 	struct edid *edid;
1426 
1427 	if (!drm_probe_ddc(adapter))
1428 		return NULL;
1429 
1430 	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1431 	if (edid)
1432 		drm_get_displayid(connector, edid);
1433 	return edid;
1434 }
1435 EXPORT_SYMBOL(drm_get_edid);
1436 
1437 /**
1438  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1439  * @connector: connector we're probing
1440  * @adapter: I2C adapter to use for DDC
1441  *
1442  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1443  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1444  * switch DDC to the GPU which is retrieving EDID.
1445  *
1446  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1447  */
1448 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1449 				     struct i2c_adapter *adapter)
1450 {
1451 	struct pci_dev *pdev = connector->dev->pdev;
1452 	struct edid *edid;
1453 
1454 	vga_switcheroo_lock_ddc(pdev);
1455 	edid = drm_get_edid(connector, adapter);
1456 	vga_switcheroo_unlock_ddc(pdev);
1457 
1458 	return edid;
1459 }
1460 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1461 
1462 /**
1463  * drm_edid_duplicate - duplicate an EDID and the extensions
1464  * @edid: EDID to duplicate
1465  *
1466  * Return: Pointer to duplicated EDID or NULL on allocation failure.
1467  */
1468 struct edid *drm_edid_duplicate(const struct edid *edid)
1469 {
1470 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1471 }
1472 EXPORT_SYMBOL(drm_edid_duplicate);
1473 
1474 /*** EDID parsing ***/
1475 
1476 /**
1477  * edid_vendor - match a string against EDID's obfuscated vendor field
1478  * @edid: EDID to match
1479  * @vendor: vendor string
1480  *
1481  * Returns true if @vendor is in @edid, false otherwise
1482  */
1483 static bool edid_vendor(struct edid *edid, const char *vendor)
1484 {
1485 	char edid_vendor[3];
1486 
1487 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1488 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1489 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1490 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1491 
1492 	return !strncmp(edid_vendor, vendor, 3);
1493 }
1494 
1495 /**
1496  * edid_get_quirks - return quirk flags for a given EDID
1497  * @edid: EDID to process
1498  *
1499  * This tells subsequent routines what fixes they need to apply.
1500  */
1501 static u32 edid_get_quirks(struct edid *edid)
1502 {
1503 	const struct edid_quirk *quirk;
1504 	int i;
1505 
1506 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1507 		quirk = &edid_quirk_list[i];
1508 
1509 		if (edid_vendor(edid, quirk->vendor) &&
1510 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1511 			return quirk->quirks;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1518 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1519 
1520 /**
1521  * edid_fixup_preferred - set preferred modes based on quirk list
1522  * @connector: has mode list to fix up
1523  * @quirks: quirks list
1524  *
1525  * Walk the mode list for @connector, clearing the preferred status
1526  * on existing modes and setting it anew for the right mode ala @quirks.
1527  */
1528 static void edid_fixup_preferred(struct drm_connector *connector,
1529 				 u32 quirks)
1530 {
1531 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1532 	int target_refresh = 0;
1533 	int cur_vrefresh, preferred_vrefresh;
1534 
1535 	if (list_empty(&connector->probed_modes))
1536 		return;
1537 
1538 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1539 		target_refresh = 60;
1540 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1541 		target_refresh = 75;
1542 
1543 	preferred_mode = list_first_entry(&connector->probed_modes,
1544 					  struct drm_display_mode, head);
1545 
1546 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1547 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1548 
1549 		if (cur_mode == preferred_mode)
1550 			continue;
1551 
1552 		/* Largest mode is preferred */
1553 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1554 			preferred_mode = cur_mode;
1555 
1556 		cur_vrefresh = cur_mode->vrefresh ?
1557 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1558 		preferred_vrefresh = preferred_mode->vrefresh ?
1559 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1560 		/* At a given size, try to get closest to target refresh */
1561 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1562 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1563 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1564 			preferred_mode = cur_mode;
1565 		}
1566 	}
1567 
1568 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1569 }
1570 
1571 static bool
1572 mode_is_rb(const struct drm_display_mode *mode)
1573 {
1574 	return (mode->htotal - mode->hdisplay == 160) &&
1575 	       (mode->hsync_end - mode->hdisplay == 80) &&
1576 	       (mode->hsync_end - mode->hsync_start == 32) &&
1577 	       (mode->vsync_start - mode->vdisplay == 3);
1578 }
1579 
1580 /*
1581  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1582  * @dev: Device to duplicate against
1583  * @hsize: Mode width
1584  * @vsize: Mode height
1585  * @fresh: Mode refresh rate
1586  * @rb: Mode reduced-blanking-ness
1587  *
1588  * Walk the DMT mode list looking for a match for the given parameters.
1589  *
1590  * Return: A newly allocated copy of the mode, or NULL if not found.
1591  */
1592 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1593 					   int hsize, int vsize, int fresh,
1594 					   bool rb)
1595 {
1596 	int i;
1597 
1598 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1599 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1600 		if (hsize != ptr->hdisplay)
1601 			continue;
1602 		if (vsize != ptr->vdisplay)
1603 			continue;
1604 		if (fresh != drm_mode_vrefresh(ptr))
1605 			continue;
1606 		if (rb != mode_is_rb(ptr))
1607 			continue;
1608 
1609 		return drm_mode_duplicate(dev, ptr);
1610 	}
1611 
1612 	return NULL;
1613 }
1614 EXPORT_SYMBOL(drm_mode_find_dmt);
1615 
1616 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1617 
1618 static void
1619 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1620 {
1621 	int i, n = 0;
1622 	u8 d = ext[0x02];
1623 	u8 *det_base = ext + d;
1624 
1625 	n = (127 - d) / 18;
1626 	for (i = 0; i < n; i++)
1627 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1628 }
1629 
1630 static void
1631 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1632 {
1633 	unsigned int i, n = min((int)ext[0x02], 6);
1634 	u8 *det_base = ext + 5;
1635 
1636 	if (ext[0x01] != 1)
1637 		return; /* unknown version */
1638 
1639 	for (i = 0; i < n; i++)
1640 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1641 }
1642 
1643 static void
1644 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1645 {
1646 	int i;
1647 	struct edid *edid = (struct edid *)raw_edid;
1648 
1649 	if (edid == NULL)
1650 		return;
1651 
1652 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1653 		cb(&(edid->detailed_timings[i]), closure);
1654 
1655 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1656 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1657 		switch (*ext) {
1658 		case CEA_EXT:
1659 			cea_for_each_detailed_block(ext, cb, closure);
1660 			break;
1661 		case VTB_EXT:
1662 			vtb_for_each_detailed_block(ext, cb, closure);
1663 			break;
1664 		default:
1665 			break;
1666 		}
1667 	}
1668 }
1669 
1670 static void
1671 is_rb(struct detailed_timing *t, void *data)
1672 {
1673 	u8 *r = (u8 *)t;
1674 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1675 		if (r[15] & 0x10)
1676 			*(bool *)data = true;
1677 }
1678 
1679 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1680 static bool
1681 drm_monitor_supports_rb(struct edid *edid)
1682 {
1683 	if (edid->revision >= 4) {
1684 		bool ret = false;
1685 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1686 		return ret;
1687 	}
1688 
1689 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1690 }
1691 
1692 static void
1693 find_gtf2(struct detailed_timing *t, void *data)
1694 {
1695 	u8 *r = (u8 *)t;
1696 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1697 		*(u8 **)data = r;
1698 }
1699 
1700 /* Secondary GTF curve kicks in above some break frequency */
1701 static int
1702 drm_gtf2_hbreak(struct edid *edid)
1703 {
1704 	u8 *r = NULL;
1705 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1706 	return r ? (r[12] * 2) : 0;
1707 }
1708 
1709 static int
1710 drm_gtf2_2c(struct edid *edid)
1711 {
1712 	u8 *r = NULL;
1713 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1714 	return r ? r[13] : 0;
1715 }
1716 
1717 static int
1718 drm_gtf2_m(struct edid *edid)
1719 {
1720 	u8 *r = NULL;
1721 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1722 	return r ? (r[15] << 8) + r[14] : 0;
1723 }
1724 
1725 static int
1726 drm_gtf2_k(struct edid *edid)
1727 {
1728 	u8 *r = NULL;
1729 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1730 	return r ? r[16] : 0;
1731 }
1732 
1733 static int
1734 drm_gtf2_2j(struct edid *edid)
1735 {
1736 	u8 *r = NULL;
1737 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1738 	return r ? r[17] : 0;
1739 }
1740 
1741 /**
1742  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1743  * @edid: EDID block to scan
1744  */
1745 static int standard_timing_level(struct edid *edid)
1746 {
1747 	if (edid->revision >= 2) {
1748 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1749 			return LEVEL_CVT;
1750 		if (drm_gtf2_hbreak(edid))
1751 			return LEVEL_GTF2;
1752 		return LEVEL_GTF;
1753 	}
1754 	return LEVEL_DMT;
1755 }
1756 
1757 /*
1758  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1759  * monitors fill with ascii space (0x20) instead.
1760  */
1761 static int
1762 bad_std_timing(u8 a, u8 b)
1763 {
1764 	return (a == 0x00 && b == 0x00) ||
1765 	       (a == 0x01 && b == 0x01) ||
1766 	       (a == 0x20 && b == 0x20);
1767 }
1768 
1769 /**
1770  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1771  * @connector: connector of for the EDID block
1772  * @edid: EDID block to scan
1773  * @t: standard timing params
1774  *
1775  * Take the standard timing params (in this case width, aspect, and refresh)
1776  * and convert them into a real mode using CVT/GTF/DMT.
1777  */
1778 static struct drm_display_mode *
1779 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1780 	     struct std_timing *t)
1781 {
1782 	struct drm_device *dev = connector->dev;
1783 	struct drm_display_mode *m, *mode = NULL;
1784 	int hsize, vsize;
1785 	int vrefresh_rate;
1786 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1787 		>> EDID_TIMING_ASPECT_SHIFT;
1788 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1789 		>> EDID_TIMING_VFREQ_SHIFT;
1790 	int timing_level = standard_timing_level(edid);
1791 
1792 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1793 		return NULL;
1794 
1795 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1796 	hsize = t->hsize * 8 + 248;
1797 	/* vrefresh_rate = vfreq + 60 */
1798 	vrefresh_rate = vfreq + 60;
1799 	/* the vdisplay is calculated based on the aspect ratio */
1800 	if (aspect_ratio == 0) {
1801 		if (edid->revision < 3)
1802 			vsize = hsize;
1803 		else
1804 			vsize = (hsize * 10) / 16;
1805 	} else if (aspect_ratio == 1)
1806 		vsize = (hsize * 3) / 4;
1807 	else if (aspect_ratio == 2)
1808 		vsize = (hsize * 4) / 5;
1809 	else
1810 		vsize = (hsize * 9) / 16;
1811 
1812 	/* HDTV hack, part 1 */
1813 	if (vrefresh_rate == 60 &&
1814 	    ((hsize == 1360 && vsize == 765) ||
1815 	     (hsize == 1368 && vsize == 769))) {
1816 		hsize = 1366;
1817 		vsize = 768;
1818 	}
1819 
1820 	/*
1821 	 * If this connector already has a mode for this size and refresh
1822 	 * rate (because it came from detailed or CVT info), use that
1823 	 * instead.  This way we don't have to guess at interlace or
1824 	 * reduced blanking.
1825 	 */
1826 	list_for_each_entry(m, &connector->probed_modes, head)
1827 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1828 		    drm_mode_vrefresh(m) == vrefresh_rate)
1829 			return NULL;
1830 
1831 	/* HDTV hack, part 2 */
1832 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1833 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1834 				    false);
1835 		mode->hdisplay = 1366;
1836 		mode->hsync_start = mode->hsync_start - 1;
1837 		mode->hsync_end = mode->hsync_end - 1;
1838 		return mode;
1839 	}
1840 
1841 	/* check whether it can be found in default mode table */
1842 	if (drm_monitor_supports_rb(edid)) {
1843 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1844 					 true);
1845 		if (mode)
1846 			return mode;
1847 	}
1848 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1849 	if (mode)
1850 		return mode;
1851 
1852 	/* okay, generate it */
1853 	switch (timing_level) {
1854 	case LEVEL_DMT:
1855 		break;
1856 	case LEVEL_GTF:
1857 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1858 		break;
1859 	case LEVEL_GTF2:
1860 		/*
1861 		 * This is potentially wrong if there's ever a monitor with
1862 		 * more than one ranges section, each claiming a different
1863 		 * secondary GTF curve.  Please don't do that.
1864 		 */
1865 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1866 		if (!mode)
1867 			return NULL;
1868 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1869 			drm_mode_destroy(dev, mode);
1870 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1871 						    vrefresh_rate, 0, 0,
1872 						    drm_gtf2_m(edid),
1873 						    drm_gtf2_2c(edid),
1874 						    drm_gtf2_k(edid),
1875 						    drm_gtf2_2j(edid));
1876 		}
1877 		break;
1878 	case LEVEL_CVT:
1879 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1880 				    false);
1881 		break;
1882 	}
1883 	return mode;
1884 }
1885 
1886 /*
1887  * EDID is delightfully ambiguous about how interlaced modes are to be
1888  * encoded.  Our internal representation is of frame height, but some
1889  * HDTV detailed timings are encoded as field height.
1890  *
1891  * The format list here is from CEA, in frame size.  Technically we
1892  * should be checking refresh rate too.  Whatever.
1893  */
1894 static void
1895 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1896 			    struct detailed_pixel_timing *pt)
1897 {
1898 	int i;
1899 	static const struct {
1900 		int w, h;
1901 	} cea_interlaced[] = {
1902 		{ 1920, 1080 },
1903 		{  720,  480 },
1904 		{ 1440,  480 },
1905 		{ 2880,  480 },
1906 		{  720,  576 },
1907 		{ 1440,  576 },
1908 		{ 2880,  576 },
1909 	};
1910 
1911 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1912 		return;
1913 
1914 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1915 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1916 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1917 			mode->vdisplay *= 2;
1918 			mode->vsync_start *= 2;
1919 			mode->vsync_end *= 2;
1920 			mode->vtotal *= 2;
1921 			mode->vtotal |= 1;
1922 		}
1923 	}
1924 
1925 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1926 }
1927 
1928 /**
1929  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1930  * @dev: DRM device (needed to create new mode)
1931  * @edid: EDID block
1932  * @timing: EDID detailed timing info
1933  * @quirks: quirks to apply
1934  *
1935  * An EDID detailed timing block contains enough info for us to create and
1936  * return a new struct drm_display_mode.
1937  */
1938 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1939 						  struct edid *edid,
1940 						  struct detailed_timing *timing,
1941 						  u32 quirks)
1942 {
1943 	struct drm_display_mode *mode;
1944 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1945 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1946 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1947 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1948 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1949 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1950 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1951 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1952 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1953 
1954 	/* ignore tiny modes */
1955 	if (hactive < 64 || vactive < 64)
1956 		return NULL;
1957 
1958 	if (pt->misc & DRM_EDID_PT_STEREO) {
1959 		DRM_DEBUG_KMS("stereo mode not supported\n");
1960 		return NULL;
1961 	}
1962 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1963 		DRM_DEBUG_KMS("composite sync not supported\n");
1964 	}
1965 
1966 	/* it is incorrect if hsync/vsync width is zero */
1967 	if (!hsync_pulse_width || !vsync_pulse_width) {
1968 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1969 				"Wrong Hsync/Vsync pulse width\n");
1970 		return NULL;
1971 	}
1972 
1973 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1974 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1975 		if (!mode)
1976 			return NULL;
1977 
1978 		goto set_size;
1979 	}
1980 
1981 	mode = drm_mode_create(dev);
1982 	if (!mode)
1983 		return NULL;
1984 
1985 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1986 		timing->pixel_clock = cpu_to_le16(1088);
1987 
1988 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1989 
1990 	mode->hdisplay = hactive;
1991 	mode->hsync_start = mode->hdisplay + hsync_offset;
1992 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1993 	mode->htotal = mode->hdisplay + hblank;
1994 
1995 	mode->vdisplay = vactive;
1996 	mode->vsync_start = mode->vdisplay + vsync_offset;
1997 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1998 	mode->vtotal = mode->vdisplay + vblank;
1999 
2000 	/* Some EDIDs have bogus h/vtotal values */
2001 	if (mode->hsync_end > mode->htotal)
2002 		mode->htotal = mode->hsync_end + 1;
2003 	if (mode->vsync_end > mode->vtotal)
2004 		mode->vtotal = mode->vsync_end + 1;
2005 
2006 	drm_mode_do_interlace_quirk(mode, pt);
2007 
2008 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2009 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2010 	}
2011 
2012 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2013 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2014 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2015 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2016 
2017 set_size:
2018 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2019 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2020 
2021 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2022 		mode->width_mm *= 10;
2023 		mode->height_mm *= 10;
2024 	}
2025 
2026 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2027 		mode->width_mm = edid->width_cm * 10;
2028 		mode->height_mm = edid->height_cm * 10;
2029 	}
2030 
2031 	mode->type = DRM_MODE_TYPE_DRIVER;
2032 	mode->vrefresh = drm_mode_vrefresh(mode);
2033 	drm_mode_set_name(mode);
2034 
2035 	return mode;
2036 }
2037 
2038 static bool
2039 mode_in_hsync_range(const struct drm_display_mode *mode,
2040 		    struct edid *edid, u8 *t)
2041 {
2042 	int hsync, hmin, hmax;
2043 
2044 	hmin = t[7];
2045 	if (edid->revision >= 4)
2046 	    hmin += ((t[4] & 0x04) ? 255 : 0);
2047 	hmax = t[8];
2048 	if (edid->revision >= 4)
2049 	    hmax += ((t[4] & 0x08) ? 255 : 0);
2050 	hsync = drm_mode_hsync(mode);
2051 
2052 	return (hsync <= hmax && hsync >= hmin);
2053 }
2054 
2055 static bool
2056 mode_in_vsync_range(const struct drm_display_mode *mode,
2057 		    struct edid *edid, u8 *t)
2058 {
2059 	int vsync, vmin, vmax;
2060 
2061 	vmin = t[5];
2062 	if (edid->revision >= 4)
2063 	    vmin += ((t[4] & 0x01) ? 255 : 0);
2064 	vmax = t[6];
2065 	if (edid->revision >= 4)
2066 	    vmax += ((t[4] & 0x02) ? 255 : 0);
2067 	vsync = drm_mode_vrefresh(mode);
2068 
2069 	return (vsync <= vmax && vsync >= vmin);
2070 }
2071 
2072 static u32
2073 range_pixel_clock(struct edid *edid, u8 *t)
2074 {
2075 	/* unspecified */
2076 	if (t[9] == 0 || t[9] == 255)
2077 		return 0;
2078 
2079 	/* 1.4 with CVT support gives us real precision, yay */
2080 	if (edid->revision >= 4 && t[10] == 0x04)
2081 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2082 
2083 	/* 1.3 is pathetic, so fuzz up a bit */
2084 	return t[9] * 10000 + 5001;
2085 }
2086 
2087 static bool
2088 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2089 	      struct detailed_timing *timing)
2090 {
2091 	u32 max_clock;
2092 	u8 *t = (u8 *)timing;
2093 
2094 	if (!mode_in_hsync_range(mode, edid, t))
2095 		return false;
2096 
2097 	if (!mode_in_vsync_range(mode, edid, t))
2098 		return false;
2099 
2100 	if ((max_clock = range_pixel_clock(edid, t)))
2101 		if (mode->clock > max_clock)
2102 			return false;
2103 
2104 	/* 1.4 max horizontal check */
2105 	if (edid->revision >= 4 && t[10] == 0x04)
2106 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2107 			return false;
2108 
2109 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2110 		return false;
2111 
2112 	return true;
2113 }
2114 
2115 static bool valid_inferred_mode(const struct drm_connector *connector,
2116 				const struct drm_display_mode *mode)
2117 {
2118 	const struct drm_display_mode *m;
2119 	bool ok = false;
2120 
2121 	list_for_each_entry(m, &connector->probed_modes, head) {
2122 		if (mode->hdisplay == m->hdisplay &&
2123 		    mode->vdisplay == m->vdisplay &&
2124 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2125 			return false; /* duplicated */
2126 		if (mode->hdisplay <= m->hdisplay &&
2127 		    mode->vdisplay <= m->vdisplay)
2128 			ok = true;
2129 	}
2130 	return ok;
2131 }
2132 
2133 static int
2134 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2135 			struct detailed_timing *timing)
2136 {
2137 	int i, modes = 0;
2138 	struct drm_display_mode *newmode;
2139 	struct drm_device *dev = connector->dev;
2140 
2141 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2142 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2143 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2144 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2145 			if (newmode) {
2146 				drm_mode_probed_add(connector, newmode);
2147 				modes++;
2148 			}
2149 		}
2150 	}
2151 
2152 	return modes;
2153 }
2154 
2155 /* fix up 1366x768 mode from 1368x768;
2156  * GFT/CVT can't express 1366 width which isn't dividable by 8
2157  */
2158 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2159 {
2160 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2161 		mode->hdisplay = 1366;
2162 		mode->hsync_start--;
2163 		mode->hsync_end--;
2164 		drm_mode_set_name(mode);
2165 	}
2166 }
2167 
2168 static int
2169 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2170 			struct detailed_timing *timing)
2171 {
2172 	int i, modes = 0;
2173 	struct drm_display_mode *newmode;
2174 	struct drm_device *dev = connector->dev;
2175 
2176 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2177 		const struct minimode *m = &extra_modes[i];
2178 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2179 		if (!newmode)
2180 			return modes;
2181 
2182 		drm_mode_fixup_1366x768(newmode);
2183 		if (!mode_in_range(newmode, edid, timing) ||
2184 		    !valid_inferred_mode(connector, newmode)) {
2185 			drm_mode_destroy(dev, newmode);
2186 			continue;
2187 		}
2188 
2189 		drm_mode_probed_add(connector, newmode);
2190 		modes++;
2191 	}
2192 
2193 	return modes;
2194 }
2195 
2196 static int
2197 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2198 			struct detailed_timing *timing)
2199 {
2200 	int i, modes = 0;
2201 	struct drm_display_mode *newmode;
2202 	struct drm_device *dev = connector->dev;
2203 	bool rb = drm_monitor_supports_rb(edid);
2204 
2205 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2206 		const struct minimode *m = &extra_modes[i];
2207 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2208 		if (!newmode)
2209 			return modes;
2210 
2211 		drm_mode_fixup_1366x768(newmode);
2212 		if (!mode_in_range(newmode, edid, timing) ||
2213 		    !valid_inferred_mode(connector, newmode)) {
2214 			drm_mode_destroy(dev, newmode);
2215 			continue;
2216 		}
2217 
2218 		drm_mode_probed_add(connector, newmode);
2219 		modes++;
2220 	}
2221 
2222 	return modes;
2223 }
2224 
2225 static void
2226 do_inferred_modes(struct detailed_timing *timing, void *c)
2227 {
2228 	struct detailed_mode_closure *closure = c;
2229 	struct detailed_non_pixel *data = &timing->data.other_data;
2230 	struct detailed_data_monitor_range *range = &data->data.range;
2231 
2232 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2233 		return;
2234 
2235 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2236 						  closure->edid,
2237 						  timing);
2238 
2239 	if (!version_greater(closure->edid, 1, 1))
2240 		return; /* GTF not defined yet */
2241 
2242 	switch (range->flags) {
2243 	case 0x02: /* secondary gtf, XXX could do more */
2244 	case 0x00: /* default gtf */
2245 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2246 							  closure->edid,
2247 							  timing);
2248 		break;
2249 	case 0x04: /* cvt, only in 1.4+ */
2250 		if (!version_greater(closure->edid, 1, 3))
2251 			break;
2252 
2253 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2254 							  closure->edid,
2255 							  timing);
2256 		break;
2257 	case 0x01: /* just the ranges, no formula */
2258 	default:
2259 		break;
2260 	}
2261 }
2262 
2263 static int
2264 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2265 {
2266 	struct detailed_mode_closure closure = {
2267 		.connector = connector,
2268 		.edid = edid,
2269 	};
2270 
2271 	if (version_greater(edid, 1, 0))
2272 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2273 					    &closure);
2274 
2275 	return closure.modes;
2276 }
2277 
2278 static int
2279 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2280 {
2281 	int i, j, m, modes = 0;
2282 	struct drm_display_mode *mode;
2283 	u8 *est = ((u8 *)timing) + 6;
2284 
2285 	for (i = 0; i < 6; i++) {
2286 		for (j = 7; j >= 0; j--) {
2287 			m = (i * 8) + (7 - j);
2288 			if (m >= ARRAY_SIZE(est3_modes))
2289 				break;
2290 			if (est[i] & (1 << j)) {
2291 				mode = drm_mode_find_dmt(connector->dev,
2292 							 est3_modes[m].w,
2293 							 est3_modes[m].h,
2294 							 est3_modes[m].r,
2295 							 est3_modes[m].rb);
2296 				if (mode) {
2297 					drm_mode_probed_add(connector, mode);
2298 					modes++;
2299 				}
2300 			}
2301 		}
2302 	}
2303 
2304 	return modes;
2305 }
2306 
2307 static void
2308 do_established_modes(struct detailed_timing *timing, void *c)
2309 {
2310 	struct detailed_mode_closure *closure = c;
2311 	struct detailed_non_pixel *data = &timing->data.other_data;
2312 
2313 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2314 		closure->modes += drm_est3_modes(closure->connector, timing);
2315 }
2316 
2317 /**
2318  * add_established_modes - get est. modes from EDID and add them
2319  * @connector: connector to add mode(s) to
2320  * @edid: EDID block to scan
2321  *
2322  * Each EDID block contains a bitmap of the supported "established modes" list
2323  * (defined above).  Tease them out and add them to the global modes list.
2324  */
2325 static int
2326 add_established_modes(struct drm_connector *connector, struct edid *edid)
2327 {
2328 	struct drm_device *dev = connector->dev;
2329 	unsigned long est_bits = edid->established_timings.t1 |
2330 		(edid->established_timings.t2 << 8) |
2331 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2332 	int i, modes = 0;
2333 	struct detailed_mode_closure closure = {
2334 		.connector = connector,
2335 		.edid = edid,
2336 	};
2337 
2338 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2339 		if (est_bits & (1<<i)) {
2340 			struct drm_display_mode *newmode;
2341 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2342 			if (newmode) {
2343 				drm_mode_probed_add(connector, newmode);
2344 				modes++;
2345 			}
2346 		}
2347 	}
2348 
2349 	if (version_greater(edid, 1, 0))
2350 		    drm_for_each_detailed_block((u8 *)edid,
2351 						do_established_modes, &closure);
2352 
2353 	return modes + closure.modes;
2354 }
2355 
2356 static void
2357 do_standard_modes(struct detailed_timing *timing, void *c)
2358 {
2359 	struct detailed_mode_closure *closure = c;
2360 	struct detailed_non_pixel *data = &timing->data.other_data;
2361 	struct drm_connector *connector = closure->connector;
2362 	struct edid *edid = closure->edid;
2363 
2364 	if (data->type == EDID_DETAIL_STD_MODES) {
2365 		int i;
2366 		for (i = 0; i < 6; i++) {
2367 			struct std_timing *std;
2368 			struct drm_display_mode *newmode;
2369 
2370 			std = &data->data.timings[i];
2371 			newmode = drm_mode_std(connector, edid, std);
2372 			if (newmode) {
2373 				drm_mode_probed_add(connector, newmode);
2374 				closure->modes++;
2375 			}
2376 		}
2377 	}
2378 }
2379 
2380 /**
2381  * add_standard_modes - get std. modes from EDID and add them
2382  * @connector: connector to add mode(s) to
2383  * @edid: EDID block to scan
2384  *
2385  * Standard modes can be calculated using the appropriate standard (DMT,
2386  * GTF or CVT. Grab them from @edid and add them to the list.
2387  */
2388 static int
2389 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2390 {
2391 	int i, modes = 0;
2392 	struct detailed_mode_closure closure = {
2393 		.connector = connector,
2394 		.edid = edid,
2395 	};
2396 
2397 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2398 		struct drm_display_mode *newmode;
2399 
2400 		newmode = drm_mode_std(connector, edid,
2401 				       &edid->standard_timings[i]);
2402 		if (newmode) {
2403 			drm_mode_probed_add(connector, newmode);
2404 			modes++;
2405 		}
2406 	}
2407 
2408 	if (version_greater(edid, 1, 0))
2409 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2410 					    &closure);
2411 
2412 	/* XXX should also look for standard codes in VTB blocks */
2413 
2414 	return modes + closure.modes;
2415 }
2416 
2417 static int drm_cvt_modes(struct drm_connector *connector,
2418 			 struct detailed_timing *timing)
2419 {
2420 	int i, j, modes = 0;
2421 	struct drm_display_mode *newmode;
2422 	struct drm_device *dev = connector->dev;
2423 	struct cvt_timing *cvt;
2424 	const int rates[] = { 60, 85, 75, 60, 50 };
2425 	const u8 empty[3] = { 0, 0, 0 };
2426 
2427 	for (i = 0; i < 4; i++) {
2428 		int uninitialized_var(width), height;
2429 		cvt = &(timing->data.other_data.data.cvt[i]);
2430 
2431 		if (!memcmp(cvt->code, empty, 3))
2432 			continue;
2433 
2434 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2435 		switch (cvt->code[1] & 0x0c) {
2436 		case 0x00:
2437 			width = height * 4 / 3;
2438 			break;
2439 		case 0x04:
2440 			width = height * 16 / 9;
2441 			break;
2442 		case 0x08:
2443 			width = height * 16 / 10;
2444 			break;
2445 		case 0x0c:
2446 			width = height * 15 / 9;
2447 			break;
2448 		}
2449 
2450 		for (j = 1; j < 5; j++) {
2451 			if (cvt->code[2] & (1 << j)) {
2452 				newmode = drm_cvt_mode(dev, width, height,
2453 						       rates[j], j == 0,
2454 						       false, false);
2455 				if (newmode) {
2456 					drm_mode_probed_add(connector, newmode);
2457 					modes++;
2458 				}
2459 			}
2460 		}
2461 	}
2462 
2463 	return modes;
2464 }
2465 
2466 static void
2467 do_cvt_mode(struct detailed_timing *timing, void *c)
2468 {
2469 	struct detailed_mode_closure *closure = c;
2470 	struct detailed_non_pixel *data = &timing->data.other_data;
2471 
2472 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2473 		closure->modes += drm_cvt_modes(closure->connector, timing);
2474 }
2475 
2476 static int
2477 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2478 {
2479 	struct detailed_mode_closure closure = {
2480 		.connector = connector,
2481 		.edid = edid,
2482 	};
2483 
2484 	if (version_greater(edid, 1, 2))
2485 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2486 
2487 	/* XXX should also look for CVT codes in VTB blocks */
2488 
2489 	return closure.modes;
2490 }
2491 
2492 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2493 
2494 static void
2495 do_detailed_mode(struct detailed_timing *timing, void *c)
2496 {
2497 	struct detailed_mode_closure *closure = c;
2498 	struct drm_display_mode *newmode;
2499 
2500 	if (timing->pixel_clock) {
2501 		newmode = drm_mode_detailed(closure->connector->dev,
2502 					    closure->edid, timing,
2503 					    closure->quirks);
2504 		if (!newmode)
2505 			return;
2506 
2507 		if (closure->preferred)
2508 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2509 
2510 		/*
2511 		 * Detailed modes are limited to 10kHz pixel clock resolution,
2512 		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2513 		 * is just slightly off.
2514 		 */
2515 		fixup_detailed_cea_mode_clock(newmode);
2516 
2517 		drm_mode_probed_add(closure->connector, newmode);
2518 		closure->modes++;
2519 		closure->preferred = 0;
2520 	}
2521 }
2522 
2523 /*
2524  * add_detailed_modes - Add modes from detailed timings
2525  * @connector: attached connector
2526  * @edid: EDID block to scan
2527  * @quirks: quirks to apply
2528  */
2529 static int
2530 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2531 		   u32 quirks)
2532 {
2533 	struct detailed_mode_closure closure = {
2534 		.connector = connector,
2535 		.edid = edid,
2536 		.preferred = 1,
2537 		.quirks = quirks,
2538 	};
2539 
2540 	if (closure.preferred && !version_greater(edid, 1, 3))
2541 		closure.preferred =
2542 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2543 
2544 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2545 
2546 	return closure.modes;
2547 }
2548 
2549 #define AUDIO_BLOCK	0x01
2550 #define VIDEO_BLOCK     0x02
2551 #define VENDOR_BLOCK    0x03
2552 #define SPEAKER_BLOCK	0x04
2553 #define VIDEO_CAPABILITY_BLOCK	0x07
2554 #define EDID_BASIC_AUDIO	(1 << 6)
2555 #define EDID_CEA_YCRCB444	(1 << 5)
2556 #define EDID_CEA_YCRCB422	(1 << 4)
2557 #define EDID_CEA_VCDB_QS	(1 << 6)
2558 
2559 /*
2560  * Search EDID for CEA extension block.
2561  */
2562 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2563 {
2564 	u8 *edid_ext = NULL;
2565 	int i;
2566 
2567 	/* No EDID or EDID extensions */
2568 	if (edid == NULL || edid->extensions == 0)
2569 		return NULL;
2570 
2571 	/* Find CEA extension */
2572 	for (i = 0; i < edid->extensions; i++) {
2573 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2574 		if (edid_ext[0] == ext_id)
2575 			break;
2576 	}
2577 
2578 	if (i == edid->extensions)
2579 		return NULL;
2580 
2581 	return edid_ext;
2582 }
2583 
2584 static u8 *drm_find_cea_extension(struct edid *edid)
2585 {
2586 	return drm_find_edid_extension(edid, CEA_EXT);
2587 }
2588 
2589 static u8 *drm_find_displayid_extension(struct edid *edid)
2590 {
2591 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2592 }
2593 
2594 /*
2595  * Calculate the alternate clock for the CEA mode
2596  * (60Hz vs. 59.94Hz etc.)
2597  */
2598 static unsigned int
2599 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2600 {
2601 	unsigned int clock = cea_mode->clock;
2602 
2603 	if (cea_mode->vrefresh % 6 != 0)
2604 		return clock;
2605 
2606 	/*
2607 	 * edid_cea_modes contains the 59.94Hz
2608 	 * variant for 240 and 480 line modes,
2609 	 * and the 60Hz variant otherwise.
2610 	 */
2611 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2612 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2613 	else
2614 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2615 
2616 	return clock;
2617 }
2618 
2619 static bool
2620 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2621 {
2622 	/*
2623 	 * For certain VICs the spec allows the vertical
2624 	 * front porch to vary by one or two lines.
2625 	 *
2626 	 * cea_modes[] stores the variant with the shortest
2627 	 * vertical front porch. We can adjust the mode to
2628 	 * get the other variants by simply increasing the
2629 	 * vertical front porch length.
2630 	 */
2631 	BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2632 		     edid_cea_modes[9].vtotal != 262 ||
2633 		     edid_cea_modes[12].vtotal != 262 ||
2634 		     edid_cea_modes[13].vtotal != 262 ||
2635 		     edid_cea_modes[23].vtotal != 312 ||
2636 		     edid_cea_modes[24].vtotal != 312 ||
2637 		     edid_cea_modes[27].vtotal != 312 ||
2638 		     edid_cea_modes[28].vtotal != 312);
2639 
2640 	if (((vic == 8 || vic == 9 ||
2641 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
2642 	    ((vic == 23 || vic == 24 ||
2643 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
2644 		mode->vsync_start++;
2645 		mode->vsync_end++;
2646 		mode->vtotal++;
2647 
2648 		return true;
2649 	}
2650 
2651 	return false;
2652 }
2653 
2654 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2655 					     unsigned int clock_tolerance)
2656 {
2657 	u8 vic;
2658 
2659 	if (!to_match->clock)
2660 		return 0;
2661 
2662 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2663 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2664 		unsigned int clock1, clock2;
2665 
2666 		/* Check both 60Hz and 59.94Hz */
2667 		clock1 = cea_mode.clock;
2668 		clock2 = cea_mode_alternate_clock(&cea_mode);
2669 
2670 		if (abs(to_match->clock - clock1) > clock_tolerance &&
2671 		    abs(to_match->clock - clock2) > clock_tolerance)
2672 			continue;
2673 
2674 		do {
2675 			if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2676 				return vic;
2677 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2678 	}
2679 
2680 	return 0;
2681 }
2682 
2683 /**
2684  * drm_match_cea_mode - look for a CEA mode matching given mode
2685  * @to_match: display mode
2686  *
2687  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2688  * mode.
2689  */
2690 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2691 {
2692 	u8 vic;
2693 
2694 	if (!to_match->clock)
2695 		return 0;
2696 
2697 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2698 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2699 		unsigned int clock1, clock2;
2700 
2701 		/* Check both 60Hz and 59.94Hz */
2702 		clock1 = cea_mode.clock;
2703 		clock2 = cea_mode_alternate_clock(&cea_mode);
2704 
2705 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
2706 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
2707 			continue;
2708 
2709 		do {
2710 			if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2711 				return vic;
2712 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2713 	}
2714 
2715 	return 0;
2716 }
2717 EXPORT_SYMBOL(drm_match_cea_mode);
2718 
2719 static bool drm_valid_cea_vic(u8 vic)
2720 {
2721 	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2722 }
2723 
2724 /**
2725  * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2726  * the input VIC from the CEA mode list
2727  * @video_code: ID given to each of the CEA modes
2728  *
2729  * Returns picture aspect ratio
2730  */
2731 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2732 {
2733 	return edid_cea_modes[video_code].picture_aspect_ratio;
2734 }
2735 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2736 
2737 /*
2738  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2739  * specific block).
2740  *
2741  * It's almost like cea_mode_alternate_clock(), we just need to add an
2742  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2743  * one.
2744  */
2745 static unsigned int
2746 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2747 {
2748 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2749 		return hdmi_mode->clock;
2750 
2751 	return cea_mode_alternate_clock(hdmi_mode);
2752 }
2753 
2754 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
2755 					      unsigned int clock_tolerance)
2756 {
2757 	u8 vic;
2758 
2759 	if (!to_match->clock)
2760 		return 0;
2761 
2762 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2763 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2764 		unsigned int clock1, clock2;
2765 
2766 		/* Make sure to also match alternate clocks */
2767 		clock1 = hdmi_mode->clock;
2768 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2769 
2770 		if (abs(to_match->clock - clock1) > clock_tolerance &&
2771 		    abs(to_match->clock - clock2) > clock_tolerance)
2772 			continue;
2773 
2774 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
2775 			return vic;
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 /*
2782  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2783  * @to_match: display mode
2784  *
2785  * An HDMI mode is one defined in the HDMI vendor specific block.
2786  *
2787  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2788  */
2789 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2790 {
2791 	u8 vic;
2792 
2793 	if (!to_match->clock)
2794 		return 0;
2795 
2796 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2797 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2798 		unsigned int clock1, clock2;
2799 
2800 		/* Make sure to also match alternate clocks */
2801 		clock1 = hdmi_mode->clock;
2802 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2803 
2804 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2805 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2806 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2807 			return vic;
2808 	}
2809 	return 0;
2810 }
2811 
2812 static bool drm_valid_hdmi_vic(u8 vic)
2813 {
2814 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2815 }
2816 
2817 static int
2818 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2819 {
2820 	struct drm_device *dev = connector->dev;
2821 	struct drm_display_mode *mode, *tmp;
2822 	LIST_HEAD(list);
2823 	int modes = 0;
2824 
2825 	/* Don't add CEA modes if the CEA extension block is missing */
2826 	if (!drm_find_cea_extension(edid))
2827 		return 0;
2828 
2829 	/*
2830 	 * Go through all probed modes and create a new mode
2831 	 * with the alternate clock for certain CEA modes.
2832 	 */
2833 	list_for_each_entry(mode, &connector->probed_modes, head) {
2834 		const struct drm_display_mode *cea_mode = NULL;
2835 		struct drm_display_mode *newmode;
2836 		u8 vic = drm_match_cea_mode(mode);
2837 		unsigned int clock1, clock2;
2838 
2839 		if (drm_valid_cea_vic(vic)) {
2840 			cea_mode = &edid_cea_modes[vic];
2841 			clock2 = cea_mode_alternate_clock(cea_mode);
2842 		} else {
2843 			vic = drm_match_hdmi_mode(mode);
2844 			if (drm_valid_hdmi_vic(vic)) {
2845 				cea_mode = &edid_4k_modes[vic];
2846 				clock2 = hdmi_mode_alternate_clock(cea_mode);
2847 			}
2848 		}
2849 
2850 		if (!cea_mode)
2851 			continue;
2852 
2853 		clock1 = cea_mode->clock;
2854 
2855 		if (clock1 == clock2)
2856 			continue;
2857 
2858 		if (mode->clock != clock1 && mode->clock != clock2)
2859 			continue;
2860 
2861 		newmode = drm_mode_duplicate(dev, cea_mode);
2862 		if (!newmode)
2863 			continue;
2864 
2865 		/* Carry over the stereo flags */
2866 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2867 
2868 		/*
2869 		 * The current mode could be either variant. Make
2870 		 * sure to pick the "other" clock for the new mode.
2871 		 */
2872 		if (mode->clock != clock1)
2873 			newmode->clock = clock1;
2874 		else
2875 			newmode->clock = clock2;
2876 
2877 		list_add_tail(&newmode->head, &list);
2878 	}
2879 
2880 	list_for_each_entry_safe(mode, tmp, &list, head) {
2881 		list_del(&mode->head);
2882 		drm_mode_probed_add(connector, mode);
2883 		modes++;
2884 	}
2885 
2886 	return modes;
2887 }
2888 
2889 static struct drm_display_mode *
2890 drm_display_mode_from_vic_index(struct drm_connector *connector,
2891 				const u8 *video_db, u8 video_len,
2892 				u8 video_index)
2893 {
2894 	struct drm_device *dev = connector->dev;
2895 	struct drm_display_mode *newmode;
2896 	u8 vic;
2897 
2898 	if (video_db == NULL || video_index >= video_len)
2899 		return NULL;
2900 
2901 	/* CEA modes are numbered 1..127 */
2902 	vic = (video_db[video_index] & 127);
2903 	if (!drm_valid_cea_vic(vic))
2904 		return NULL;
2905 
2906 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
2907 	if (!newmode)
2908 		return NULL;
2909 
2910 	newmode->vrefresh = 0;
2911 
2912 	return newmode;
2913 }
2914 
2915 static int
2916 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2917 {
2918 	int i, modes = 0;
2919 
2920 	for (i = 0; i < len; i++) {
2921 		struct drm_display_mode *mode;
2922 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
2923 		if (mode) {
2924 			drm_mode_probed_add(connector, mode);
2925 			modes++;
2926 		}
2927 	}
2928 
2929 	return modes;
2930 }
2931 
2932 struct stereo_mandatory_mode {
2933 	int width, height, vrefresh;
2934 	unsigned int flags;
2935 };
2936 
2937 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2938 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2939 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2940 	{ 1920, 1080, 50,
2941 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2942 	{ 1920, 1080, 60,
2943 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2944 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2945 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2946 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2947 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2948 };
2949 
2950 static bool
2951 stereo_match_mandatory(const struct drm_display_mode *mode,
2952 		       const struct stereo_mandatory_mode *stereo_mode)
2953 {
2954 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2955 
2956 	return mode->hdisplay == stereo_mode->width &&
2957 	       mode->vdisplay == stereo_mode->height &&
2958 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2959 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2960 }
2961 
2962 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2963 {
2964 	struct drm_device *dev = connector->dev;
2965 	const struct drm_display_mode *mode;
2966 	struct list_head stereo_modes;
2967 	int modes = 0, i;
2968 
2969 	INIT_LIST_HEAD(&stereo_modes);
2970 
2971 	list_for_each_entry(mode, &connector->probed_modes, head) {
2972 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2973 			const struct stereo_mandatory_mode *mandatory;
2974 			struct drm_display_mode *new_mode;
2975 
2976 			if (!stereo_match_mandatory(mode,
2977 						    &stereo_mandatory_modes[i]))
2978 				continue;
2979 
2980 			mandatory = &stereo_mandatory_modes[i];
2981 			new_mode = drm_mode_duplicate(dev, mode);
2982 			if (!new_mode)
2983 				continue;
2984 
2985 			new_mode->flags |= mandatory->flags;
2986 			list_add_tail(&new_mode->head, &stereo_modes);
2987 			modes++;
2988 		}
2989 	}
2990 
2991 	list_splice_tail(&stereo_modes, &connector->probed_modes);
2992 
2993 	return modes;
2994 }
2995 
2996 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2997 {
2998 	struct drm_device *dev = connector->dev;
2999 	struct drm_display_mode *newmode;
3000 
3001 	if (!drm_valid_hdmi_vic(vic)) {
3002 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3003 		return 0;
3004 	}
3005 
3006 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3007 	if (!newmode)
3008 		return 0;
3009 
3010 	drm_mode_probed_add(connector, newmode);
3011 
3012 	return 1;
3013 }
3014 
3015 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3016 			       const u8 *video_db, u8 video_len, u8 video_index)
3017 {
3018 	struct drm_display_mode *newmode;
3019 	int modes = 0;
3020 
3021 	if (structure & (1 << 0)) {
3022 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3023 							  video_len,
3024 							  video_index);
3025 		if (newmode) {
3026 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3027 			drm_mode_probed_add(connector, newmode);
3028 			modes++;
3029 		}
3030 	}
3031 	if (structure & (1 << 6)) {
3032 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3033 							  video_len,
3034 							  video_index);
3035 		if (newmode) {
3036 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3037 			drm_mode_probed_add(connector, newmode);
3038 			modes++;
3039 		}
3040 	}
3041 	if (structure & (1 << 8)) {
3042 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3043 							  video_len,
3044 							  video_index);
3045 		if (newmode) {
3046 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3047 			drm_mode_probed_add(connector, newmode);
3048 			modes++;
3049 		}
3050 	}
3051 
3052 	return modes;
3053 }
3054 
3055 /*
3056  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3057  * @connector: connector corresponding to the HDMI sink
3058  * @db: start of the CEA vendor specific block
3059  * @len: length of the CEA block payload, ie. one can access up to db[len]
3060  *
3061  * Parses the HDMI VSDB looking for modes to add to @connector. This function
3062  * also adds the stereo 3d modes when applicable.
3063  */
3064 static int
3065 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3066 		   const u8 *video_db, u8 video_len)
3067 {
3068 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3069 	u8 vic_len, hdmi_3d_len = 0;
3070 	u16 mask;
3071 	u16 structure_all;
3072 
3073 	if (len < 8)
3074 		goto out;
3075 
3076 	/* no HDMI_Video_Present */
3077 	if (!(db[8] & (1 << 5)))
3078 		goto out;
3079 
3080 	/* Latency_Fields_Present */
3081 	if (db[8] & (1 << 7))
3082 		offset += 2;
3083 
3084 	/* I_Latency_Fields_Present */
3085 	if (db[8] & (1 << 6))
3086 		offset += 2;
3087 
3088 	/* the declared length is not long enough for the 2 first bytes
3089 	 * of additional video format capabilities */
3090 	if (len < (8 + offset + 2))
3091 		goto out;
3092 
3093 	/* 3D_Present */
3094 	offset++;
3095 	if (db[8 + offset] & (1 << 7)) {
3096 		modes += add_hdmi_mandatory_stereo_modes(connector);
3097 
3098 		/* 3D_Multi_present */
3099 		multi_present = (db[8 + offset] & 0x60) >> 5;
3100 	}
3101 
3102 	offset++;
3103 	vic_len = db[8 + offset] >> 5;
3104 	hdmi_3d_len = db[8 + offset] & 0x1f;
3105 
3106 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3107 		u8 vic;
3108 
3109 		vic = db[9 + offset + i];
3110 		modes += add_hdmi_mode(connector, vic);
3111 	}
3112 	offset += 1 + vic_len;
3113 
3114 	if (multi_present == 1)
3115 		multi_len = 2;
3116 	else if (multi_present == 2)
3117 		multi_len = 4;
3118 	else
3119 		multi_len = 0;
3120 
3121 	if (len < (8 + offset + hdmi_3d_len - 1))
3122 		goto out;
3123 
3124 	if (hdmi_3d_len < multi_len)
3125 		goto out;
3126 
3127 	if (multi_present == 1 || multi_present == 2) {
3128 		/* 3D_Structure_ALL */
3129 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3130 
3131 		/* check if 3D_MASK is present */
3132 		if (multi_present == 2)
3133 			mask = (db[10 + offset] << 8) | db[11 + offset];
3134 		else
3135 			mask = 0xffff;
3136 
3137 		for (i = 0; i < 16; i++) {
3138 			if (mask & (1 << i))
3139 				modes += add_3d_struct_modes(connector,
3140 						structure_all,
3141 						video_db,
3142 						video_len, i);
3143 		}
3144 	}
3145 
3146 	offset += multi_len;
3147 
3148 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3149 		int vic_index;
3150 		struct drm_display_mode *newmode = NULL;
3151 		unsigned int newflag = 0;
3152 		bool detail_present;
3153 
3154 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3155 
3156 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3157 			break;
3158 
3159 		/* 2D_VIC_order_X */
3160 		vic_index = db[8 + offset + i] >> 4;
3161 
3162 		/* 3D_Structure_X */
3163 		switch (db[8 + offset + i] & 0x0f) {
3164 		case 0:
3165 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3166 			break;
3167 		case 6:
3168 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3169 			break;
3170 		case 8:
3171 			/* 3D_Detail_X */
3172 			if ((db[9 + offset + i] >> 4) == 1)
3173 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3174 			break;
3175 		}
3176 
3177 		if (newflag != 0) {
3178 			newmode = drm_display_mode_from_vic_index(connector,
3179 								  video_db,
3180 								  video_len,
3181 								  vic_index);
3182 
3183 			if (newmode) {
3184 				newmode->flags |= newflag;
3185 				drm_mode_probed_add(connector, newmode);
3186 				modes++;
3187 			}
3188 		}
3189 
3190 		if (detail_present)
3191 			i++;
3192 	}
3193 
3194 out:
3195 	return modes;
3196 }
3197 
3198 static int
3199 cea_db_payload_len(const u8 *db)
3200 {
3201 	return db[0] & 0x1f;
3202 }
3203 
3204 static int
3205 cea_db_tag(const u8 *db)
3206 {
3207 	return db[0] >> 5;
3208 }
3209 
3210 static int
3211 cea_revision(const u8 *cea)
3212 {
3213 	return cea[1];
3214 }
3215 
3216 static int
3217 cea_db_offsets(const u8 *cea, int *start, int *end)
3218 {
3219 	/* Data block offset in CEA extension block */
3220 	*start = 4;
3221 	*end = cea[2];
3222 	if (*end == 0)
3223 		*end = 127;
3224 	if (*end < 4 || *end > 127)
3225 		return -ERANGE;
3226 	return 0;
3227 }
3228 
3229 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3230 {
3231 	int hdmi_id;
3232 
3233 	if (cea_db_tag(db) != VENDOR_BLOCK)
3234 		return false;
3235 
3236 	if (cea_db_payload_len(db) < 5)
3237 		return false;
3238 
3239 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3240 
3241 	return hdmi_id == HDMI_IEEE_OUI;
3242 }
3243 
3244 #define for_each_cea_db(cea, i, start, end) \
3245 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3246 
3247 static int
3248 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3249 {
3250 	const u8 *cea = drm_find_cea_extension(edid);
3251 	const u8 *db, *hdmi = NULL, *video = NULL;
3252 	u8 dbl, hdmi_len, video_len = 0;
3253 	int modes = 0;
3254 
3255 	if (cea && cea_revision(cea) >= 3) {
3256 		int i, start, end;
3257 
3258 		if (cea_db_offsets(cea, &start, &end))
3259 			return 0;
3260 
3261 		for_each_cea_db(cea, i, start, end) {
3262 			db = &cea[i];
3263 			dbl = cea_db_payload_len(db);
3264 
3265 			if (cea_db_tag(db) == VIDEO_BLOCK) {
3266 				video = db + 1;
3267 				video_len = dbl;
3268 				modes += do_cea_modes(connector, video, dbl);
3269 			}
3270 			else if (cea_db_is_hdmi_vsdb(db)) {
3271 				hdmi = db;
3272 				hdmi_len = dbl;
3273 			}
3274 		}
3275 	}
3276 
3277 	/*
3278 	 * We parse the HDMI VSDB after having added the cea modes as we will
3279 	 * be patching their flags when the sink supports stereo 3D.
3280 	 */
3281 	if (hdmi)
3282 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3283 					    video_len);
3284 
3285 	return modes;
3286 }
3287 
3288 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3289 {
3290 	const struct drm_display_mode *cea_mode;
3291 	int clock1, clock2, clock;
3292 	u8 vic;
3293 	const char *type;
3294 
3295 	/*
3296 	 * allow 5kHz clock difference either way to account for
3297 	 * the 10kHz clock resolution limit of detailed timings.
3298 	 */
3299 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3300 	if (drm_valid_cea_vic(vic)) {
3301 		type = "CEA";
3302 		cea_mode = &edid_cea_modes[vic];
3303 		clock1 = cea_mode->clock;
3304 		clock2 = cea_mode_alternate_clock(cea_mode);
3305 	} else {
3306 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3307 		if (drm_valid_hdmi_vic(vic)) {
3308 			type = "HDMI";
3309 			cea_mode = &edid_4k_modes[vic];
3310 			clock1 = cea_mode->clock;
3311 			clock2 = hdmi_mode_alternate_clock(cea_mode);
3312 		} else {
3313 			return;
3314 		}
3315 	}
3316 
3317 	/* pick whichever is closest */
3318 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3319 		clock = clock1;
3320 	else
3321 		clock = clock2;
3322 
3323 	if (mode->clock == clock)
3324 		return;
3325 
3326 	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3327 		  type, vic, mode->clock, clock);
3328 	mode->clock = clock;
3329 }
3330 
3331 static void
3332 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3333 {
3334 	u8 len = cea_db_payload_len(db);
3335 
3336 	if (len >= 6)
3337 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
3338 	if (len >= 8) {
3339 		connector->latency_present[0] = db[8] >> 7;
3340 		connector->latency_present[1] = (db[8] >> 6) & 1;
3341 	}
3342 	if (len >= 9)
3343 		connector->video_latency[0] = db[9];
3344 	if (len >= 10)
3345 		connector->audio_latency[0] = db[10];
3346 	if (len >= 11)
3347 		connector->video_latency[1] = db[11];
3348 	if (len >= 12)
3349 		connector->audio_latency[1] = db[12];
3350 
3351 	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3352 		      "video latency %d %d, "
3353 		      "audio latency %d %d\n",
3354 		      connector->latency_present[0],
3355 		      connector->latency_present[1],
3356 		      connector->video_latency[0],
3357 		      connector->video_latency[1],
3358 		      connector->audio_latency[0],
3359 		      connector->audio_latency[1]);
3360 }
3361 
3362 static void
3363 monitor_name(struct detailed_timing *t, void *data)
3364 {
3365 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3366 		*(u8 **)data = t->data.other_data.data.str.str;
3367 }
3368 
3369 static int get_monitor_name(struct edid *edid, char name[13])
3370 {
3371 	char *edid_name = NULL;
3372 	int mnl;
3373 
3374 	if (!edid || !name)
3375 		return 0;
3376 
3377 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3378 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
3379 		if (edid_name[mnl] == 0x0a)
3380 			break;
3381 
3382 		name[mnl] = edid_name[mnl];
3383 	}
3384 
3385 	return mnl;
3386 }
3387 
3388 /**
3389  * drm_edid_get_monitor_name - fetch the monitor name from the edid
3390  * @edid: monitor EDID information
3391  * @name: pointer to a character array to hold the name of the monitor
3392  * @bufsize: The size of the name buffer (should be at least 14 chars.)
3393  *
3394  */
3395 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3396 {
3397 	int name_length;
3398 	char buf[13];
3399 
3400 	if (bufsize <= 0)
3401 		return;
3402 
3403 	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3404 	memcpy(name, buf, name_length);
3405 	name[name_length] = '\0';
3406 }
3407 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3408 
3409 /**
3410  * drm_edid_to_eld - build ELD from EDID
3411  * @connector: connector corresponding to the HDMI/DP sink
3412  * @edid: EDID to parse
3413  *
3414  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3415  * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3416  * fill in.
3417  */
3418 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3419 {
3420 	uint8_t *eld = connector->eld;
3421 	u8 *cea;
3422 	u8 *db;
3423 	int total_sad_count = 0;
3424 	int mnl;
3425 	int dbl;
3426 
3427 	memset(eld, 0, sizeof(connector->eld));
3428 
3429 	connector->latency_present[0] = false;
3430 	connector->latency_present[1] = false;
3431 	connector->video_latency[0] = 0;
3432 	connector->audio_latency[0] = 0;
3433 	connector->video_latency[1] = 0;
3434 	connector->audio_latency[1] = 0;
3435 
3436 	cea = drm_find_cea_extension(edid);
3437 	if (!cea) {
3438 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3439 		return;
3440 	}
3441 
3442 	mnl = get_monitor_name(edid, eld + 20);
3443 
3444 	eld[4] = (cea[1] << 5) | mnl;
3445 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3446 
3447 	eld[0] = 2 << 3;		/* ELD version: 2 */
3448 
3449 	eld[16] = edid->mfg_id[0];
3450 	eld[17] = edid->mfg_id[1];
3451 	eld[18] = edid->prod_code[0];
3452 	eld[19] = edid->prod_code[1];
3453 
3454 	if (cea_revision(cea) >= 3) {
3455 		int i, start, end;
3456 
3457 		if (cea_db_offsets(cea, &start, &end)) {
3458 			start = 0;
3459 			end = 0;
3460 		}
3461 
3462 		for_each_cea_db(cea, i, start, end) {
3463 			db = &cea[i];
3464 			dbl = cea_db_payload_len(db);
3465 
3466 			switch (cea_db_tag(db)) {
3467 				int sad_count;
3468 
3469 			case AUDIO_BLOCK:
3470 				/* Audio Data Block, contains SADs */
3471 				sad_count = min(dbl / 3, 15 - total_sad_count);
3472 				if (sad_count >= 1)
3473 					memcpy(eld + 20 + mnl + total_sad_count * 3,
3474 					       &db[1], sad_count * 3);
3475 				total_sad_count += sad_count;
3476 				break;
3477 			case SPEAKER_BLOCK:
3478 				/* Speaker Allocation Data Block */
3479 				if (dbl >= 1)
3480 					eld[7] = db[1];
3481 				break;
3482 			case VENDOR_BLOCK:
3483 				/* HDMI Vendor-Specific Data Block */
3484 				if (cea_db_is_hdmi_vsdb(db))
3485 					drm_parse_hdmi_vsdb_audio(connector, db);
3486 				break;
3487 			default:
3488 				break;
3489 			}
3490 		}
3491 	}
3492 	eld[5] |= total_sad_count << 4;
3493 
3494 	eld[DRM_ELD_BASELINE_ELD_LEN] =
3495 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3496 
3497 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3498 		      drm_eld_size(eld), total_sad_count);
3499 }
3500 EXPORT_SYMBOL(drm_edid_to_eld);
3501 
3502 /**
3503  * drm_edid_to_sad - extracts SADs from EDID
3504  * @edid: EDID to parse
3505  * @sads: pointer that will be set to the extracted SADs
3506  *
3507  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3508  *
3509  * Note: The returned pointer needs to be freed using kfree().
3510  *
3511  * Return: The number of found SADs or negative number on error.
3512  */
3513 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3514 {
3515 	int count = 0;
3516 	int i, start, end, dbl;
3517 	u8 *cea;
3518 
3519 	cea = drm_find_cea_extension(edid);
3520 	if (!cea) {
3521 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3522 		return -ENOENT;
3523 	}
3524 
3525 	if (cea_revision(cea) < 3) {
3526 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3527 		return -ENOTSUPP;
3528 	}
3529 
3530 	if (cea_db_offsets(cea, &start, &end)) {
3531 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3532 		return -EPROTO;
3533 	}
3534 
3535 	for_each_cea_db(cea, i, start, end) {
3536 		u8 *db = &cea[i];
3537 
3538 		if (cea_db_tag(db) == AUDIO_BLOCK) {
3539 			int j;
3540 			dbl = cea_db_payload_len(db);
3541 
3542 			count = dbl / 3; /* SAD is 3B */
3543 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3544 			if (!*sads)
3545 				return -ENOMEM;
3546 			for (j = 0; j < count; j++) {
3547 				u8 *sad = &db[1 + j * 3];
3548 
3549 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3550 				(*sads)[j].channels = sad[0] & 0x7;
3551 				(*sads)[j].freq = sad[1] & 0x7F;
3552 				(*sads)[j].byte2 = sad[2];
3553 			}
3554 			break;
3555 		}
3556 	}
3557 
3558 	return count;
3559 }
3560 EXPORT_SYMBOL(drm_edid_to_sad);
3561 
3562 /**
3563  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3564  * @edid: EDID to parse
3565  * @sadb: pointer to the speaker block
3566  *
3567  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3568  *
3569  * Note: The returned pointer needs to be freed using kfree().
3570  *
3571  * Return: The number of found Speaker Allocation Blocks or negative number on
3572  * error.
3573  */
3574 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3575 {
3576 	int count = 0;
3577 	int i, start, end, dbl;
3578 	const u8 *cea;
3579 
3580 	cea = drm_find_cea_extension(edid);
3581 	if (!cea) {
3582 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3583 		return -ENOENT;
3584 	}
3585 
3586 	if (cea_revision(cea) < 3) {
3587 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3588 		return -ENOTSUPP;
3589 	}
3590 
3591 	if (cea_db_offsets(cea, &start, &end)) {
3592 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3593 		return -EPROTO;
3594 	}
3595 
3596 	for_each_cea_db(cea, i, start, end) {
3597 		const u8 *db = &cea[i];
3598 
3599 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3600 			dbl = cea_db_payload_len(db);
3601 
3602 			/* Speaker Allocation Data Block */
3603 			if (dbl == 3) {
3604 				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3605 				if (!*sadb)
3606 					return -ENOMEM;
3607 				count = dbl;
3608 				break;
3609 			}
3610 		}
3611 	}
3612 
3613 	return count;
3614 }
3615 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3616 
3617 /**
3618  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3619  * @connector: connector associated with the HDMI/DP sink
3620  * @mode: the display mode
3621  *
3622  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3623  * the sink doesn't support audio or video.
3624  */
3625 int drm_av_sync_delay(struct drm_connector *connector,
3626 		      const struct drm_display_mode *mode)
3627 {
3628 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3629 	int a, v;
3630 
3631 	if (!connector->latency_present[0])
3632 		return 0;
3633 	if (!connector->latency_present[1])
3634 		i = 0;
3635 
3636 	a = connector->audio_latency[i];
3637 	v = connector->video_latency[i];
3638 
3639 	/*
3640 	 * HDMI/DP sink doesn't support audio or video?
3641 	 */
3642 	if (a == 255 || v == 255)
3643 		return 0;
3644 
3645 	/*
3646 	 * Convert raw EDID values to millisecond.
3647 	 * Treat unknown latency as 0ms.
3648 	 */
3649 	if (a)
3650 		a = min(2 * (a - 1), 500);
3651 	if (v)
3652 		v = min(2 * (v - 1), 500);
3653 
3654 	return max(v - a, 0);
3655 }
3656 EXPORT_SYMBOL(drm_av_sync_delay);
3657 
3658 /**
3659  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3660  * @edid: monitor EDID information
3661  *
3662  * Parse the CEA extension according to CEA-861-B.
3663  *
3664  * Return: True if the monitor is HDMI, false if not or unknown.
3665  */
3666 bool drm_detect_hdmi_monitor(struct edid *edid)
3667 {
3668 	u8 *edid_ext;
3669 	int i;
3670 	int start_offset, end_offset;
3671 
3672 	edid_ext = drm_find_cea_extension(edid);
3673 	if (!edid_ext)
3674 		return false;
3675 
3676 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3677 		return false;
3678 
3679 	/*
3680 	 * Because HDMI identifier is in Vendor Specific Block,
3681 	 * search it from all data blocks of CEA extension.
3682 	 */
3683 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3684 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3685 			return true;
3686 	}
3687 
3688 	return false;
3689 }
3690 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3691 
3692 /**
3693  * drm_detect_monitor_audio - check monitor audio capability
3694  * @edid: EDID block to scan
3695  *
3696  * Monitor should have CEA extension block.
3697  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3698  * audio' only. If there is any audio extension block and supported
3699  * audio format, assume at least 'basic audio' support, even if 'basic
3700  * audio' is not defined in EDID.
3701  *
3702  * Return: True if the monitor supports audio, false otherwise.
3703  */
3704 bool drm_detect_monitor_audio(struct edid *edid)
3705 {
3706 	u8 *edid_ext;
3707 	int i, j;
3708 	bool has_audio = false;
3709 	int start_offset, end_offset;
3710 
3711 	edid_ext = drm_find_cea_extension(edid);
3712 	if (!edid_ext)
3713 		goto end;
3714 
3715 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3716 
3717 	if (has_audio) {
3718 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3719 		goto end;
3720 	}
3721 
3722 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3723 		goto end;
3724 
3725 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3726 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3727 			has_audio = true;
3728 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3729 				DRM_DEBUG_KMS("CEA audio format %d\n",
3730 					      (edid_ext[i + j] >> 3) & 0xf);
3731 			goto end;
3732 		}
3733 	}
3734 end:
3735 	return has_audio;
3736 }
3737 EXPORT_SYMBOL(drm_detect_monitor_audio);
3738 
3739 /**
3740  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3741  * @edid: EDID block to scan
3742  *
3743  * Check whether the monitor reports the RGB quantization range selection
3744  * as supported. The AVI infoframe can then be used to inform the monitor
3745  * which quantization range (full or limited) is used.
3746  *
3747  * Return: True if the RGB quantization range is selectable, false otherwise.
3748  */
3749 bool drm_rgb_quant_range_selectable(struct edid *edid)
3750 {
3751 	u8 *edid_ext;
3752 	int i, start, end;
3753 
3754 	edid_ext = drm_find_cea_extension(edid);
3755 	if (!edid_ext)
3756 		return false;
3757 
3758 	if (cea_db_offsets(edid_ext, &start, &end))
3759 		return false;
3760 
3761 	for_each_cea_db(edid_ext, i, start, end) {
3762 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3763 		    cea_db_payload_len(&edid_ext[i]) == 2) {
3764 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3765 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3766 		}
3767 	}
3768 
3769 	return false;
3770 }
3771 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3772 
3773 /**
3774  * drm_default_rgb_quant_range - default RGB quantization range
3775  * @mode: display mode
3776  *
3777  * Determine the default RGB quantization range for the mode,
3778  * as specified in CEA-861.
3779  *
3780  * Return: The default RGB quantization range for the mode
3781  */
3782 enum hdmi_quantization_range
3783 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
3784 {
3785 	/* All CEA modes other than VIC 1 use limited quantization range. */
3786 	return drm_match_cea_mode(mode) > 1 ?
3787 		HDMI_QUANTIZATION_RANGE_LIMITED :
3788 		HDMI_QUANTIZATION_RANGE_FULL;
3789 }
3790 EXPORT_SYMBOL(drm_default_rgb_quant_range);
3791 
3792 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
3793 					   const u8 *hdmi)
3794 {
3795 	struct drm_display_info *info = &connector->display_info;
3796 	unsigned int dc_bpc = 0;
3797 
3798 	/* HDMI supports at least 8 bpc */
3799 	info->bpc = 8;
3800 
3801 	if (cea_db_payload_len(hdmi) < 6)
3802 		return;
3803 
3804 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3805 		dc_bpc = 10;
3806 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3807 		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3808 			  connector->name);
3809 	}
3810 
3811 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3812 		dc_bpc = 12;
3813 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3814 		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3815 			  connector->name);
3816 	}
3817 
3818 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3819 		dc_bpc = 16;
3820 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3821 		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3822 			  connector->name);
3823 	}
3824 
3825 	if (dc_bpc == 0) {
3826 		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3827 			  connector->name);
3828 		return;
3829 	}
3830 
3831 	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3832 		  connector->name, dc_bpc);
3833 	info->bpc = dc_bpc;
3834 
3835 	/*
3836 	 * Deep color support mandates RGB444 support for all video
3837 	 * modes and forbids YCRCB422 support for all video modes per
3838 	 * HDMI 1.3 spec.
3839 	 */
3840 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
3841 
3842 	/* YCRCB444 is optional according to spec. */
3843 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3844 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3845 		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3846 			  connector->name);
3847 	}
3848 
3849 	/*
3850 	 * Spec says that if any deep color mode is supported at all,
3851 	 * then deep color 36 bit must be supported.
3852 	 */
3853 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3854 		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3855 			  connector->name);
3856 	}
3857 }
3858 
3859 static void
3860 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
3861 {
3862 	struct drm_display_info *info = &connector->display_info;
3863 	u8 len = cea_db_payload_len(db);
3864 
3865 	if (len >= 6)
3866 		info->dvi_dual = db[6] & 1;
3867 	if (len >= 7)
3868 		info->max_tmds_clock = db[7] * 5000;
3869 
3870 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3871 		      "max TMDS clock %d kHz\n",
3872 		      info->dvi_dual,
3873 		      info->max_tmds_clock);
3874 
3875 	drm_parse_hdmi_deep_color_info(connector, db);
3876 }
3877 
3878 static void drm_parse_cea_ext(struct drm_connector *connector,
3879 			      struct edid *edid)
3880 {
3881 	struct drm_display_info *info = &connector->display_info;
3882 	const u8 *edid_ext;
3883 	int i, start, end;
3884 
3885 	edid_ext = drm_find_cea_extension(edid);
3886 	if (!edid_ext)
3887 		return;
3888 
3889 	info->cea_rev = edid_ext[1];
3890 
3891 	/* The existence of a CEA block should imply RGB support */
3892 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
3893 	if (edid_ext[3] & EDID_CEA_YCRCB444)
3894 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3895 	if (edid_ext[3] & EDID_CEA_YCRCB422)
3896 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3897 
3898 	if (cea_db_offsets(edid_ext, &start, &end))
3899 		return;
3900 
3901 	for_each_cea_db(edid_ext, i, start, end) {
3902 		const u8 *db = &edid_ext[i];
3903 
3904 		if (cea_db_is_hdmi_vsdb(db))
3905 			drm_parse_hdmi_vsdb_video(connector, db);
3906 	}
3907 }
3908 
3909 static void drm_add_display_info(struct drm_connector *connector,
3910 				 struct edid *edid)
3911 {
3912 	struct drm_display_info *info = &connector->display_info;
3913 
3914 	info->width_mm = edid->width_cm * 10;
3915 	info->height_mm = edid->height_cm * 10;
3916 
3917 	/* driver figures it out in this case */
3918 	info->bpc = 0;
3919 	info->color_formats = 0;
3920 	info->cea_rev = 0;
3921 	info->max_tmds_clock = 0;
3922 	info->dvi_dual = false;
3923 
3924 	if (edid->revision < 3)
3925 		return;
3926 
3927 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3928 		return;
3929 
3930 	drm_parse_cea_ext(connector, edid);
3931 
3932 	/*
3933 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3934 	 *
3935 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3936 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
3937 	 * extensions which tell otherwise.
3938 	 */
3939 	if ((info->bpc == 0) && (edid->revision < 4) &&
3940 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3941 		info->bpc = 8;
3942 		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
3943 			  connector->name, info->bpc);
3944 	}
3945 
3946 	/* Only defined for 1.4 with digital displays */
3947 	if (edid->revision < 4)
3948 		return;
3949 
3950 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3951 	case DRM_EDID_DIGITAL_DEPTH_6:
3952 		info->bpc = 6;
3953 		break;
3954 	case DRM_EDID_DIGITAL_DEPTH_8:
3955 		info->bpc = 8;
3956 		break;
3957 	case DRM_EDID_DIGITAL_DEPTH_10:
3958 		info->bpc = 10;
3959 		break;
3960 	case DRM_EDID_DIGITAL_DEPTH_12:
3961 		info->bpc = 12;
3962 		break;
3963 	case DRM_EDID_DIGITAL_DEPTH_14:
3964 		info->bpc = 14;
3965 		break;
3966 	case DRM_EDID_DIGITAL_DEPTH_16:
3967 		info->bpc = 16;
3968 		break;
3969 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3970 	default:
3971 		info->bpc = 0;
3972 		break;
3973 	}
3974 
3975 	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3976 			  connector->name, info->bpc);
3977 
3978 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3979 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3980 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3981 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3982 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3983 }
3984 
3985 static int validate_displayid(u8 *displayid, int length, int idx)
3986 {
3987 	int i;
3988 	u8 csum = 0;
3989 	struct displayid_hdr *base;
3990 
3991 	base = (struct displayid_hdr *)&displayid[idx];
3992 
3993 	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
3994 		      base->rev, base->bytes, base->prod_id, base->ext_count);
3995 
3996 	if (base->bytes + 5 > length - idx)
3997 		return -EINVAL;
3998 	for (i = idx; i <= base->bytes + 5; i++) {
3999 		csum += displayid[i];
4000 	}
4001 	if (csum) {
4002 		DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
4003 		return -EINVAL;
4004 	}
4005 	return 0;
4006 }
4007 
4008 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4009 							    struct displayid_detailed_timings_1 *timings)
4010 {
4011 	struct drm_display_mode *mode;
4012 	unsigned pixel_clock = (timings->pixel_clock[0] |
4013 				(timings->pixel_clock[1] << 8) |
4014 				(timings->pixel_clock[2] << 16));
4015 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4016 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4017 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4018 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4019 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4020 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4021 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4022 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4023 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4024 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4025 	mode = drm_mode_create(dev);
4026 	if (!mode)
4027 		return NULL;
4028 
4029 	mode->clock = pixel_clock * 10;
4030 	mode->hdisplay = hactive;
4031 	mode->hsync_start = mode->hdisplay + hsync;
4032 	mode->hsync_end = mode->hsync_start + hsync_width;
4033 	mode->htotal = mode->hdisplay + hblank;
4034 
4035 	mode->vdisplay = vactive;
4036 	mode->vsync_start = mode->vdisplay + vsync;
4037 	mode->vsync_end = mode->vsync_start + vsync_width;
4038 	mode->vtotal = mode->vdisplay + vblank;
4039 
4040 	mode->flags = 0;
4041 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4042 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4043 	mode->type = DRM_MODE_TYPE_DRIVER;
4044 
4045 	if (timings->flags & 0x80)
4046 		mode->type |= DRM_MODE_TYPE_PREFERRED;
4047 	mode->vrefresh = drm_mode_vrefresh(mode);
4048 	drm_mode_set_name(mode);
4049 
4050 	return mode;
4051 }
4052 
4053 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4054 					  struct displayid_block *block)
4055 {
4056 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4057 	int i;
4058 	int num_timings;
4059 	struct drm_display_mode *newmode;
4060 	int num_modes = 0;
4061 	/* blocks must be multiple of 20 bytes length */
4062 	if (block->num_bytes % 20)
4063 		return 0;
4064 
4065 	num_timings = block->num_bytes / 20;
4066 	for (i = 0; i < num_timings; i++) {
4067 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
4068 
4069 		newmode = drm_mode_displayid_detailed(connector->dev, timings);
4070 		if (!newmode)
4071 			continue;
4072 
4073 		drm_mode_probed_add(connector, newmode);
4074 		num_modes++;
4075 	}
4076 	return num_modes;
4077 }
4078 
4079 static int add_displayid_detailed_modes(struct drm_connector *connector,
4080 					struct edid *edid)
4081 {
4082 	u8 *displayid;
4083 	int ret;
4084 	int idx = 1;
4085 	int length = EDID_LENGTH;
4086 	struct displayid_block *block;
4087 	int num_modes = 0;
4088 
4089 	displayid = drm_find_displayid_extension(edid);
4090 	if (!displayid)
4091 		return 0;
4092 
4093 	ret = validate_displayid(displayid, length, idx);
4094 	if (ret)
4095 		return 0;
4096 
4097 	idx += sizeof(struct displayid_hdr);
4098 	while (block = (struct displayid_block *)&displayid[idx],
4099 	       idx + sizeof(struct displayid_block) <= length &&
4100 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4101 	       block->num_bytes > 0) {
4102 		idx += block->num_bytes + sizeof(struct displayid_block);
4103 		switch (block->tag) {
4104 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4105 			num_modes += add_displayid_detailed_1_modes(connector, block);
4106 			break;
4107 		}
4108 	}
4109 	return num_modes;
4110 }
4111 
4112 /**
4113  * drm_add_edid_modes - add modes from EDID data, if available
4114  * @connector: connector we're probing
4115  * @edid: EDID data
4116  *
4117  * Add the specified modes to the connector's mode list. Also fills out the
4118  * &drm_display_info structure in @connector with any information which can be
4119  * derived from the edid.
4120  *
4121  * Return: The number of modes added or 0 if we couldn't find any.
4122  */
4123 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4124 {
4125 	int num_modes = 0;
4126 	u32 quirks;
4127 
4128 	if (edid == NULL) {
4129 		return 0;
4130 	}
4131 	if (!drm_edid_is_valid(edid)) {
4132 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4133 			 connector->name);
4134 		return 0;
4135 	}
4136 
4137 	quirks = edid_get_quirks(edid);
4138 
4139 	/*
4140 	 * EDID spec says modes should be preferred in this order:
4141 	 * - preferred detailed mode
4142 	 * - other detailed modes from base block
4143 	 * - detailed modes from extension blocks
4144 	 * - CVT 3-byte code modes
4145 	 * - standard timing codes
4146 	 * - established timing codes
4147 	 * - modes inferred from GTF or CVT range information
4148 	 *
4149 	 * We get this pretty much right.
4150 	 *
4151 	 * XXX order for additional mode types in extension blocks?
4152 	 */
4153 	num_modes += add_detailed_modes(connector, edid, quirks);
4154 	num_modes += add_cvt_modes(connector, edid);
4155 	num_modes += add_standard_modes(connector, edid);
4156 	num_modes += add_established_modes(connector, edid);
4157 	num_modes += add_cea_modes(connector, edid);
4158 	num_modes += add_alternate_cea_modes(connector, edid);
4159 	num_modes += add_displayid_detailed_modes(connector, edid);
4160 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4161 		num_modes += add_inferred_modes(connector, edid);
4162 
4163 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4164 		edid_fixup_preferred(connector, quirks);
4165 
4166 	drm_add_display_info(connector, edid);
4167 
4168 	if (quirks & EDID_QUIRK_FORCE_6BPC)
4169 		connector->display_info.bpc = 6;
4170 
4171 	if (quirks & EDID_QUIRK_FORCE_8BPC)
4172 		connector->display_info.bpc = 8;
4173 
4174 	if (quirks & EDID_QUIRK_FORCE_12BPC)
4175 		connector->display_info.bpc = 12;
4176 
4177 	return num_modes;
4178 }
4179 EXPORT_SYMBOL(drm_add_edid_modes);
4180 
4181 /**
4182  * drm_add_modes_noedid - add modes for the connectors without EDID
4183  * @connector: connector we're probing
4184  * @hdisplay: the horizontal display limit
4185  * @vdisplay: the vertical display limit
4186  *
4187  * Add the specified modes to the connector's mode list. Only when the
4188  * hdisplay/vdisplay is not beyond the given limit, it will be added.
4189  *
4190  * Return: The number of modes added or 0 if we couldn't find any.
4191  */
4192 int drm_add_modes_noedid(struct drm_connector *connector,
4193 			int hdisplay, int vdisplay)
4194 {
4195 	int i, count, num_modes = 0;
4196 	struct drm_display_mode *mode;
4197 	struct drm_device *dev = connector->dev;
4198 
4199 	count = ARRAY_SIZE(drm_dmt_modes);
4200 	if (hdisplay < 0)
4201 		hdisplay = 0;
4202 	if (vdisplay < 0)
4203 		vdisplay = 0;
4204 
4205 	for (i = 0; i < count; i++) {
4206 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4207 		if (hdisplay && vdisplay) {
4208 			/*
4209 			 * Only when two are valid, they will be used to check
4210 			 * whether the mode should be added to the mode list of
4211 			 * the connector.
4212 			 */
4213 			if (ptr->hdisplay > hdisplay ||
4214 					ptr->vdisplay > vdisplay)
4215 				continue;
4216 		}
4217 		if (drm_mode_vrefresh(ptr) > 61)
4218 			continue;
4219 		mode = drm_mode_duplicate(dev, ptr);
4220 		if (mode) {
4221 			drm_mode_probed_add(connector, mode);
4222 			num_modes++;
4223 		}
4224 	}
4225 	return num_modes;
4226 }
4227 EXPORT_SYMBOL(drm_add_modes_noedid);
4228 
4229 /**
4230  * drm_set_preferred_mode - Sets the preferred mode of a connector
4231  * @connector: connector whose mode list should be processed
4232  * @hpref: horizontal resolution of preferred mode
4233  * @vpref: vertical resolution of preferred mode
4234  *
4235  * Marks a mode as preferred if it matches the resolution specified by @hpref
4236  * and @vpref.
4237  */
4238 void drm_set_preferred_mode(struct drm_connector *connector,
4239 			   int hpref, int vpref)
4240 {
4241 	struct drm_display_mode *mode;
4242 
4243 	list_for_each_entry(mode, &connector->probed_modes, head) {
4244 		if (mode->hdisplay == hpref &&
4245 		    mode->vdisplay == vpref)
4246 			mode->type |= DRM_MODE_TYPE_PREFERRED;
4247 	}
4248 }
4249 EXPORT_SYMBOL(drm_set_preferred_mode);
4250 
4251 /**
4252  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4253  *                                              data from a DRM display mode
4254  * @frame: HDMI AVI infoframe
4255  * @mode: DRM display mode
4256  *
4257  * Return: 0 on success or a negative error code on failure.
4258  */
4259 int
4260 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4261 					 const struct drm_display_mode *mode)
4262 {
4263 	int err;
4264 
4265 	if (!frame || !mode)
4266 		return -EINVAL;
4267 
4268 	err = hdmi_avi_infoframe_init(frame);
4269 	if (err < 0)
4270 		return err;
4271 
4272 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4273 		frame->pixel_repeat = 1;
4274 
4275 	frame->video_code = drm_match_cea_mode(mode);
4276 
4277 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4278 
4279 	/*
4280 	 * Populate picture aspect ratio from either
4281 	 * user input (if specified) or from the CEA mode list.
4282 	 */
4283 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4284 		mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4285 		frame->picture_aspect = mode->picture_aspect_ratio;
4286 	else if (frame->video_code > 0)
4287 		frame->picture_aspect = drm_get_cea_aspect_ratio(
4288 						frame->video_code);
4289 
4290 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4291 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4292 
4293 	return 0;
4294 }
4295 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4296 
4297 /**
4298  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
4299  *                                        quantization range information
4300  * @frame: HDMI AVI infoframe
4301  * @mode: DRM display mode
4302  * @rgb_quant_range: RGB quantization range (Q)
4303  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
4304  */
4305 void
4306 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
4307 				   const struct drm_display_mode *mode,
4308 				   enum hdmi_quantization_range rgb_quant_range,
4309 				   bool rgb_quant_range_selectable)
4310 {
4311 	/*
4312 	 * CEA-861:
4313 	 * "A Source shall not send a non-zero Q value that does not correspond
4314 	 *  to the default RGB Quantization Range for the transmitted Picture
4315 	 *  unless the Sink indicates support for the Q bit in a Video
4316 	 *  Capabilities Data Block."
4317 	 *
4318 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
4319 	 * default RGB quantization range for the mode, even when QS=0.
4320 	 */
4321 	if (rgb_quant_range_selectable ||
4322 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
4323 		frame->quantization_range = rgb_quant_range;
4324 	else
4325 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
4326 
4327 	/*
4328 	 * CEA-861-F:
4329 	 * "When transmitting any RGB colorimetry, the Source should set the
4330 	 *  YQ-field to match the RGB Quantization Range being transmitted
4331 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
4332 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
4333 	 */
4334 	if (rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
4335 		frame->ycc_quantization_range =
4336 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
4337 	else
4338 		frame->ycc_quantization_range =
4339 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
4340 }
4341 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
4342 
4343 static enum hdmi_3d_structure
4344 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4345 {
4346 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4347 
4348 	switch (layout) {
4349 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
4350 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
4351 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4352 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4353 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4354 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4355 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4356 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4357 	case DRM_MODE_FLAG_3D_L_DEPTH:
4358 		return HDMI_3D_STRUCTURE_L_DEPTH;
4359 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4360 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4361 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4362 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4363 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4364 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4365 	default:
4366 		return HDMI_3D_STRUCTURE_INVALID;
4367 	}
4368 }
4369 
4370 /**
4371  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4372  * data from a DRM display mode
4373  * @frame: HDMI vendor infoframe
4374  * @mode: DRM display mode
4375  *
4376  * Note that there's is a need to send HDMI vendor infoframes only when using a
4377  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4378  * function will return -EINVAL, error that can be safely ignored.
4379  *
4380  * Return: 0 on success or a negative error code on failure.
4381  */
4382 int
4383 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4384 					    const struct drm_display_mode *mode)
4385 {
4386 	int err;
4387 	u32 s3d_flags;
4388 	u8 vic;
4389 
4390 	if (!frame || !mode)
4391 		return -EINVAL;
4392 
4393 	vic = drm_match_hdmi_mode(mode);
4394 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4395 
4396 	if (!vic && !s3d_flags)
4397 		return -EINVAL;
4398 
4399 	if (vic && s3d_flags)
4400 		return -EINVAL;
4401 
4402 	err = hdmi_vendor_infoframe_init(frame);
4403 	if (err < 0)
4404 		return err;
4405 
4406 	if (vic)
4407 		frame->vic = vic;
4408 	else
4409 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
4410 
4411 	return 0;
4412 }
4413 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4414 
4415 static int drm_parse_tiled_block(struct drm_connector *connector,
4416 				 struct displayid_block *block)
4417 {
4418 	struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4419 	u16 w, h;
4420 	u8 tile_v_loc, tile_h_loc;
4421 	u8 num_v_tile, num_h_tile;
4422 	struct drm_tile_group *tg;
4423 
4424 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
4425 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
4426 
4427 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4428 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4429 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4430 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4431 
4432 	connector->has_tile = true;
4433 	if (tile->tile_cap & 0x80)
4434 		connector->tile_is_single_monitor = true;
4435 
4436 	connector->num_h_tile = num_h_tile + 1;
4437 	connector->num_v_tile = num_v_tile + 1;
4438 	connector->tile_h_loc = tile_h_loc;
4439 	connector->tile_v_loc = tile_v_loc;
4440 	connector->tile_h_size = w + 1;
4441 	connector->tile_v_size = h + 1;
4442 
4443 	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4444 	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4445 	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4446 		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4447 	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4448 
4449 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4450 	if (!tg) {
4451 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4452 	}
4453 	if (!tg)
4454 		return -ENOMEM;
4455 
4456 	if (connector->tile_group != tg) {
4457 		/* if we haven't got a pointer,
4458 		   take the reference, drop ref to old tile group */
4459 		if (connector->tile_group) {
4460 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
4461 		}
4462 		connector->tile_group = tg;
4463 	} else
4464 		/* if same tile group, then release the ref we just took. */
4465 		drm_mode_put_tile_group(connector->dev, tg);
4466 	return 0;
4467 }
4468 
4469 static int drm_parse_display_id(struct drm_connector *connector,
4470 				u8 *displayid, int length,
4471 				bool is_edid_extension)
4472 {
4473 	/* if this is an EDID extension the first byte will be 0x70 */
4474 	int idx = 0;
4475 	struct displayid_block *block;
4476 	int ret;
4477 
4478 	if (is_edid_extension)
4479 		idx = 1;
4480 
4481 	ret = validate_displayid(displayid, length, idx);
4482 	if (ret)
4483 		return ret;
4484 
4485 	idx += sizeof(struct displayid_hdr);
4486 	while (block = (struct displayid_block *)&displayid[idx],
4487 	       idx + sizeof(struct displayid_block) <= length &&
4488 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4489 	       block->num_bytes > 0) {
4490 		idx += block->num_bytes + sizeof(struct displayid_block);
4491 		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
4492 			      block->tag, block->rev, block->num_bytes);
4493 
4494 		switch (block->tag) {
4495 		case DATA_BLOCK_TILED_DISPLAY:
4496 			ret = drm_parse_tiled_block(connector, block);
4497 			if (ret)
4498 				return ret;
4499 			break;
4500 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4501 			/* handled in mode gathering code. */
4502 			break;
4503 		default:
4504 			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
4505 			break;
4506 		}
4507 	}
4508 	return 0;
4509 }
4510 
4511 static void drm_get_displayid(struct drm_connector *connector,
4512 			      struct edid *edid)
4513 {
4514 	void *displayid = NULL;
4515 	int ret;
4516 	connector->has_tile = false;
4517 	displayid = drm_find_displayid_extension(edid);
4518 	if (!displayid) {
4519 		/* drop reference to any tile group we had */
4520 		goto out_drop_ref;
4521 	}
4522 
4523 	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4524 	if (ret < 0)
4525 		goto out_drop_ref;
4526 	if (!connector->has_tile)
4527 		goto out_drop_ref;
4528 	return;
4529 out_drop_ref:
4530 	if (connector->tile_group) {
4531 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
4532 		connector->tile_group = NULL;
4533 	}
4534 	return;
4535 }
4536