xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 161f4089)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37 
38 #define version_greater(edid, maj, min) \
39 	(((edid)->version > (maj)) || \
40 	 ((edid)->version == (maj) && (edid)->revision > (min)))
41 
42 #define EDID_EST_TIMINGS 16
43 #define EDID_STD_TIMINGS 8
44 #define EDID_DETAILED_TIMINGS 4
45 
46 /*
47  * EDID blocks out in the wild have a variety of bugs, try to collect
48  * them here (note that userspace may work around broken monitors first,
49  * but fixes should make their way here so that the kernel "just works"
50  * on as many displays as possible).
51  */
52 
53 /* First detailed mode wrong, use largest 60Hz mode */
54 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
55 /* Reported 135MHz pixel clock is too high, needs adjustment */
56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
57 /* Prefer the largest mode at 75 Hz */
58 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
59 /* Detail timing is in cm not mm */
60 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
61 /* Detailed timing descriptors have bogus size values, so just take the
62  * maximum size and use that.
63  */
64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
65 /* Monitor forgot to set the first detailed is preferred bit. */
66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
67 /* use +hsync +vsync for detailed mode */
68 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
69 /* Force reduced-blanking timings for detailed modes */
70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
71 
72 struct detailed_mode_closure {
73 	struct drm_connector *connector;
74 	struct edid *edid;
75 	bool preferred;
76 	u32 quirks;
77 	int modes;
78 };
79 
80 #define LEVEL_DMT	0
81 #define LEVEL_GTF	1
82 #define LEVEL_GTF2	2
83 #define LEVEL_CVT	3
84 
85 static struct edid_quirk {
86 	char vendor[4];
87 	int product_id;
88 	u32 quirks;
89 } edid_quirk_list[] = {
90 	/* Acer AL1706 */
91 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
92 	/* Acer F51 */
93 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Unknown Acer */
95 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
96 
97 	/* Belinea 10 15 55 */
98 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
99 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
100 
101 	/* Envision Peripherals, Inc. EN-7100e */
102 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
103 	/* Envision EN2028 */
104 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Funai Electronics PM36B */
107 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
108 	  EDID_QUIRK_DETAILED_IN_CM },
109 
110 	/* LG Philips LCD LP154W01-A5 */
111 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
112 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
113 
114 	/* Philips 107p5 CRT */
115 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116 
117 	/* Proview AY765C */
118 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119 
120 	/* Samsung SyncMaster 205BW.  Note: irony */
121 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
122 	/* Samsung SyncMaster 22[5-6]BW */
123 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
124 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
125 
126 	/* ViewSonic VA2026w */
127 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
128 
129 	/* Medion MD 30217 PG */
130 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
131 };
132 
133 /*
134  * Autogenerated from the DMT spec.
135  * This table is copied from xfree86/modes/xf86EdidModes.c.
136  */
137 static const struct drm_display_mode drm_dmt_modes[] = {
138 	/* 640x350@85Hz */
139 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
140 		   736, 832, 0, 350, 382, 385, 445, 0,
141 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
142 	/* 640x400@85Hz */
143 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
144 		   736, 832, 0, 400, 401, 404, 445, 0,
145 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
146 	/* 720x400@85Hz */
147 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
148 		   828, 936, 0, 400, 401, 404, 446, 0,
149 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
150 	/* 640x480@60Hz */
151 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
152 		   752, 800, 0, 480, 489, 492, 525, 0,
153 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
154 	/* 640x480@72Hz */
155 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
156 		   704, 832, 0, 480, 489, 492, 520, 0,
157 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
158 	/* 640x480@75Hz */
159 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
160 		   720, 840, 0, 480, 481, 484, 500, 0,
161 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
162 	/* 640x480@85Hz */
163 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
164 		   752, 832, 0, 480, 481, 484, 509, 0,
165 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
166 	/* 800x600@56Hz */
167 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
168 		   896, 1024, 0, 600, 601, 603, 625, 0,
169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
170 	/* 800x600@60Hz */
171 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
172 		   968, 1056, 0, 600, 601, 605, 628, 0,
173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
174 	/* 800x600@72Hz */
175 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
176 		   976, 1040, 0, 600, 637, 643, 666, 0,
177 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
178 	/* 800x600@75Hz */
179 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
180 		   896, 1056, 0, 600, 601, 604, 625, 0,
181 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
182 	/* 800x600@85Hz */
183 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
184 		   896, 1048, 0, 600, 601, 604, 631, 0,
185 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
186 	/* 800x600@120Hz RB */
187 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
188 		   880, 960, 0, 600, 603, 607, 636, 0,
189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
190 	/* 848x480@60Hz */
191 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
192 		   976, 1088, 0, 480, 486, 494, 517, 0,
193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194 	/* 1024x768@43Hz, interlace */
195 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
196 		   1208, 1264, 0, 768, 768, 772, 817, 0,
197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
198 			DRM_MODE_FLAG_INTERLACE) },
199 	/* 1024x768@60Hz */
200 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
201 		   1184, 1344, 0, 768, 771, 777, 806, 0,
202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
203 	/* 1024x768@70Hz */
204 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
205 		   1184, 1328, 0, 768, 771, 777, 806, 0,
206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
207 	/* 1024x768@75Hz */
208 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
209 		   1136, 1312, 0, 768, 769, 772, 800, 0,
210 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
211 	/* 1024x768@85Hz */
212 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
213 		   1168, 1376, 0, 768, 769, 772, 808, 0,
214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
215 	/* 1024x768@120Hz RB */
216 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
217 		   1104, 1184, 0, 768, 771, 775, 813, 0,
218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
219 	/* 1152x864@75Hz */
220 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
221 		   1344, 1600, 0, 864, 865, 868, 900, 0,
222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
223 	/* 1280x768@60Hz RB */
224 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
225 		   1360, 1440, 0, 768, 771, 778, 790, 0,
226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
227 	/* 1280x768@60Hz */
228 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
229 		   1472, 1664, 0, 768, 771, 778, 798, 0,
230 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
231 	/* 1280x768@75Hz */
232 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
233 		   1488, 1696, 0, 768, 771, 778, 805, 0,
234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
235 	/* 1280x768@85Hz */
236 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
237 		   1496, 1712, 0, 768, 771, 778, 809, 0,
238 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
239 	/* 1280x768@120Hz RB */
240 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
241 		   1360, 1440, 0, 768, 771, 778, 813, 0,
242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
243 	/* 1280x800@60Hz RB */
244 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
245 		   1360, 1440, 0, 800, 803, 809, 823, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
247 	/* 1280x800@60Hz */
248 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
249 		   1480, 1680, 0, 800, 803, 809, 831, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 	/* 1280x800@75Hz */
252 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
253 		   1488, 1696, 0, 800, 803, 809, 838, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 	/* 1280x800@85Hz */
256 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
257 		   1496, 1712, 0, 800, 803, 809, 843, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 1280x800@120Hz RB */
260 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
261 		   1360, 1440, 0, 800, 803, 809, 847, 0,
262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 1280x960@60Hz */
264 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
265 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
267 	/* 1280x960@85Hz */
268 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
269 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
271 	/* 1280x960@120Hz RB */
272 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
273 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 1280x1024@60Hz */
276 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
277 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 1280x1024@75Hz */
280 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
281 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 1280x1024@85Hz */
284 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
285 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 	/* 1280x1024@120Hz RB */
288 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
289 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
291 	/* 1360x768@60Hz */
292 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
293 		   1536, 1792, 0, 768, 771, 777, 795, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 1360x768@120Hz RB */
296 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
297 		   1440, 1520, 0, 768, 771, 776, 813, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 	/* 1400x1050@60Hz RB */
300 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
301 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
303 	/* 1400x1050@60Hz */
304 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
305 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
306 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 	/* 1400x1050@75Hz */
308 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
309 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 	/* 1400x1050@85Hz */
312 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
313 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
314 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
315 	/* 1400x1050@120Hz RB */
316 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
317 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
319 	/* 1440x900@60Hz RB */
320 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
321 		   1520, 1600, 0, 900, 903, 909, 926, 0,
322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323 	/* 1440x900@60Hz */
324 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
325 		   1672, 1904, 0, 900, 903, 909, 934, 0,
326 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 	/* 1440x900@75Hz */
328 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
329 		   1688, 1936, 0, 900, 903, 909, 942, 0,
330 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
331 	/* 1440x900@85Hz */
332 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
333 		   1696, 1952, 0, 900, 903, 909, 948, 0,
334 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
335 	/* 1440x900@120Hz RB */
336 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
337 		   1520, 1600, 0, 900, 903, 909, 953, 0,
338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
339 	/* 1600x1200@60Hz */
340 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
341 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 	/* 1600x1200@65Hz */
344 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
345 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 	/* 1600x1200@70Hz */
348 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
349 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
351 	/* 1600x1200@75Hz */
352 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
353 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
355 	/* 1600x1200@85Hz */
356 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
357 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
358 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
359 	/* 1600x1200@120Hz RB */
360 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
361 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
362 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
363 	/* 1680x1050@60Hz RB */
364 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
365 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
367 	/* 1680x1050@60Hz */
368 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
369 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
370 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
371 	/* 1680x1050@75Hz */
372 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
373 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
374 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
375 	/* 1680x1050@85Hz */
376 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
377 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
378 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
379 	/* 1680x1050@120Hz RB */
380 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
381 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
382 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
383 	/* 1792x1344@60Hz */
384 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
385 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
386 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
387 	/* 1792x1344@75Hz */
388 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
389 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
391 	/* 1792x1344@120Hz RB */
392 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
393 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
395 	/* 1856x1392@60Hz */
396 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
397 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
398 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
399 	/* 1856x1392@75Hz */
400 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
401 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
402 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
403 	/* 1856x1392@120Hz RB */
404 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
405 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
406 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
407 	/* 1920x1200@60Hz RB */
408 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
409 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
410 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
411 	/* 1920x1200@60Hz */
412 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
413 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
414 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 	/* 1920x1200@75Hz */
416 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
417 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
418 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
419 	/* 1920x1200@85Hz */
420 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
421 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
422 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
423 	/* 1920x1200@120Hz RB */
424 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
425 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
426 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
427 	/* 1920x1440@60Hz */
428 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
429 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
430 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
431 	/* 1920x1440@75Hz */
432 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
433 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435 	/* 1920x1440@120Hz RB */
436 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
437 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
438 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
439 	/* 2560x1600@60Hz RB */
440 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
441 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
443 	/* 2560x1600@60Hz */
444 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
445 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
446 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
447 	/* 2560x1600@75HZ */
448 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
449 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
450 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
451 	/* 2560x1600@85HZ */
452 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
453 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
454 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
455 	/* 2560x1600@120Hz RB */
456 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
457 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
458 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
459 };
460 
461 static const struct drm_display_mode edid_est_modes[] = {
462 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
463 		   968, 1056, 0, 600, 601, 605, 628, 0,
464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
465 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
466 		   896, 1024, 0, 600, 601, 603,  625, 0,
467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
468 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
469 		   720, 840, 0, 480, 481, 484, 500, 0,
470 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
471 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
472 		   704,  832, 0, 480, 489, 491, 520, 0,
473 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
474 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
475 		   768,  864, 0, 480, 483, 486, 525, 0,
476 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
477 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
478 		   752, 800, 0, 480, 490, 492, 525, 0,
479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
480 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
481 		   846, 900, 0, 400, 421, 423,  449, 0,
482 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
483 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
484 		   846,  900, 0, 400, 412, 414, 449, 0,
485 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
486 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
487 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
489 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
490 		   1136, 1312, 0,  768, 769, 772, 800, 0,
491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
492 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
493 		   1184, 1328, 0,  768, 771, 777, 806, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
495 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
496 		   1184, 1344, 0,  768, 771, 777, 806, 0,
497 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
498 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
499 		   1208, 1264, 0, 768, 768, 776, 817, 0,
500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
501 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
502 		   928, 1152, 0, 624, 625, 628, 667, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
504 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
505 		   896, 1056, 0, 600, 601, 604,  625, 0,
506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
507 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
508 		   976, 1040, 0, 600, 637, 643, 666, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
510 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
511 		   1344, 1600, 0,  864, 865, 868, 900, 0,
512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
513 };
514 
515 struct minimode {
516 	short w;
517 	short h;
518 	short r;
519 	short rb;
520 };
521 
522 static const struct minimode est3_modes[] = {
523 	/* byte 6 */
524 	{ 640, 350, 85, 0 },
525 	{ 640, 400, 85, 0 },
526 	{ 720, 400, 85, 0 },
527 	{ 640, 480, 85, 0 },
528 	{ 848, 480, 60, 0 },
529 	{ 800, 600, 85, 0 },
530 	{ 1024, 768, 85, 0 },
531 	{ 1152, 864, 75, 0 },
532 	/* byte 7 */
533 	{ 1280, 768, 60, 1 },
534 	{ 1280, 768, 60, 0 },
535 	{ 1280, 768, 75, 0 },
536 	{ 1280, 768, 85, 0 },
537 	{ 1280, 960, 60, 0 },
538 	{ 1280, 960, 85, 0 },
539 	{ 1280, 1024, 60, 0 },
540 	{ 1280, 1024, 85, 0 },
541 	/* byte 8 */
542 	{ 1360, 768, 60, 0 },
543 	{ 1440, 900, 60, 1 },
544 	{ 1440, 900, 60, 0 },
545 	{ 1440, 900, 75, 0 },
546 	{ 1440, 900, 85, 0 },
547 	{ 1400, 1050, 60, 1 },
548 	{ 1400, 1050, 60, 0 },
549 	{ 1400, 1050, 75, 0 },
550 	/* byte 9 */
551 	{ 1400, 1050, 85, 0 },
552 	{ 1680, 1050, 60, 1 },
553 	{ 1680, 1050, 60, 0 },
554 	{ 1680, 1050, 75, 0 },
555 	{ 1680, 1050, 85, 0 },
556 	{ 1600, 1200, 60, 0 },
557 	{ 1600, 1200, 65, 0 },
558 	{ 1600, 1200, 70, 0 },
559 	/* byte 10 */
560 	{ 1600, 1200, 75, 0 },
561 	{ 1600, 1200, 85, 0 },
562 	{ 1792, 1344, 60, 0 },
563 	{ 1792, 1344, 85, 0 },
564 	{ 1856, 1392, 60, 0 },
565 	{ 1856, 1392, 75, 0 },
566 	{ 1920, 1200, 60, 1 },
567 	{ 1920, 1200, 60, 0 },
568 	/* byte 11 */
569 	{ 1920, 1200, 75, 0 },
570 	{ 1920, 1200, 85, 0 },
571 	{ 1920, 1440, 60, 0 },
572 	{ 1920, 1440, 75, 0 },
573 };
574 
575 static const struct minimode extra_modes[] = {
576 	{ 1024, 576,  60, 0 },
577 	{ 1366, 768,  60, 0 },
578 	{ 1600, 900,  60, 0 },
579 	{ 1680, 945,  60, 0 },
580 	{ 1920, 1080, 60, 0 },
581 	{ 2048, 1152, 60, 0 },
582 	{ 2048, 1536, 60, 0 },
583 };
584 
585 /*
586  * Probably taken from CEA-861 spec.
587  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
588  */
589 static const struct drm_display_mode edid_cea_modes[] = {
590 	/* 1 - 640x480@60Hz */
591 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
592 		   752, 800, 0, 480, 490, 492, 525, 0,
593 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
594 	  .vrefresh = 60, },
595 	/* 2 - 720x480@60Hz */
596 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
597 		   798, 858, 0, 480, 489, 495, 525, 0,
598 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
599 	  .vrefresh = 60, },
600 	/* 3 - 720x480@60Hz */
601 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
602 		   798, 858, 0, 480, 489, 495, 525, 0,
603 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
604 	  .vrefresh = 60, },
605 	/* 4 - 1280x720@60Hz */
606 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
607 		   1430, 1650, 0, 720, 725, 730, 750, 0,
608 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
609 	  .vrefresh = 60, },
610 	/* 5 - 1920x1080i@60Hz */
611 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
612 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
613 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
614 			DRM_MODE_FLAG_INTERLACE),
615 	  .vrefresh = 60, },
616 	/* 6 - 1440x480i@60Hz */
617 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
618 		   1602, 1716, 0, 480, 488, 494, 525, 0,
619 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
620 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
621 	  .vrefresh = 60, },
622 	/* 7 - 1440x480i@60Hz */
623 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
624 		   1602, 1716, 0, 480, 488, 494, 525, 0,
625 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
626 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
627 	  .vrefresh = 60, },
628 	/* 8 - 1440x240@60Hz */
629 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
630 		   1602, 1716, 0, 240, 244, 247, 262, 0,
631 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
632 			DRM_MODE_FLAG_DBLCLK),
633 	  .vrefresh = 60, },
634 	/* 9 - 1440x240@60Hz */
635 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
636 		   1602, 1716, 0, 240, 244, 247, 262, 0,
637 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
638 			DRM_MODE_FLAG_DBLCLK),
639 	  .vrefresh = 60, },
640 	/* 10 - 2880x480i@60Hz */
641 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
642 		   3204, 3432, 0, 480, 488, 494, 525, 0,
643 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
644 			DRM_MODE_FLAG_INTERLACE),
645 	  .vrefresh = 60, },
646 	/* 11 - 2880x480i@60Hz */
647 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
648 		   3204, 3432, 0, 480, 488, 494, 525, 0,
649 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
650 			DRM_MODE_FLAG_INTERLACE),
651 	  .vrefresh = 60, },
652 	/* 12 - 2880x240@60Hz */
653 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
654 		   3204, 3432, 0, 240, 244, 247, 262, 0,
655 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
656 	  .vrefresh = 60, },
657 	/* 13 - 2880x240@60Hz */
658 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
659 		   3204, 3432, 0, 240, 244, 247, 262, 0,
660 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
661 	  .vrefresh = 60, },
662 	/* 14 - 1440x480@60Hz */
663 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
664 		   1596, 1716, 0, 480, 489, 495, 525, 0,
665 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
666 	  .vrefresh = 60, },
667 	/* 15 - 1440x480@60Hz */
668 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
669 		   1596, 1716, 0, 480, 489, 495, 525, 0,
670 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
671 	  .vrefresh = 60, },
672 	/* 16 - 1920x1080@60Hz */
673 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
674 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
675 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
676 	  .vrefresh = 60, },
677 	/* 17 - 720x576@50Hz */
678 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
679 		   796, 864, 0, 576, 581, 586, 625, 0,
680 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
681 	  .vrefresh = 50, },
682 	/* 18 - 720x576@50Hz */
683 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
684 		   796, 864, 0, 576, 581, 586, 625, 0,
685 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
686 	  .vrefresh = 50, },
687 	/* 19 - 1280x720@50Hz */
688 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
689 		   1760, 1980, 0, 720, 725, 730, 750, 0,
690 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
691 	  .vrefresh = 50, },
692 	/* 20 - 1920x1080i@50Hz */
693 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
694 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
695 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
696 			DRM_MODE_FLAG_INTERLACE),
697 	  .vrefresh = 50, },
698 	/* 21 - 1440x576i@50Hz */
699 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
700 		   1590, 1728, 0, 576, 580, 586, 625, 0,
701 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
702 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
703 	  .vrefresh = 50, },
704 	/* 22 - 1440x576i@50Hz */
705 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
706 		   1590, 1728, 0, 576, 580, 586, 625, 0,
707 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
708 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
709 	  .vrefresh = 50, },
710 	/* 23 - 1440x288@50Hz */
711 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
712 		   1590, 1728, 0, 288, 290, 293, 312, 0,
713 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
714 			DRM_MODE_FLAG_DBLCLK),
715 	  .vrefresh = 50, },
716 	/* 24 - 1440x288@50Hz */
717 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
718 		   1590, 1728, 0, 288, 290, 293, 312, 0,
719 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
720 			DRM_MODE_FLAG_DBLCLK),
721 	  .vrefresh = 50, },
722 	/* 25 - 2880x576i@50Hz */
723 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
724 		   3180, 3456, 0, 576, 580, 586, 625, 0,
725 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
726 			DRM_MODE_FLAG_INTERLACE),
727 	  .vrefresh = 50, },
728 	/* 26 - 2880x576i@50Hz */
729 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
730 		   3180, 3456, 0, 576, 580, 586, 625, 0,
731 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
732 			DRM_MODE_FLAG_INTERLACE),
733 	  .vrefresh = 50, },
734 	/* 27 - 2880x288@50Hz */
735 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
736 		   3180, 3456, 0, 288, 290, 293, 312, 0,
737 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
738 	  .vrefresh = 50, },
739 	/* 28 - 2880x288@50Hz */
740 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
741 		   3180, 3456, 0, 288, 290, 293, 312, 0,
742 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
743 	  .vrefresh = 50, },
744 	/* 29 - 1440x576@50Hz */
745 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
746 		   1592, 1728, 0, 576, 581, 586, 625, 0,
747 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
748 	  .vrefresh = 50, },
749 	/* 30 - 1440x576@50Hz */
750 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
751 		   1592, 1728, 0, 576, 581, 586, 625, 0,
752 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
753 	  .vrefresh = 50, },
754 	/* 31 - 1920x1080@50Hz */
755 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
756 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
757 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
758 	  .vrefresh = 50, },
759 	/* 32 - 1920x1080@24Hz */
760 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
761 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
762 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
763 	  .vrefresh = 24, },
764 	/* 33 - 1920x1080@25Hz */
765 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
766 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
767 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
768 	  .vrefresh = 25, },
769 	/* 34 - 1920x1080@30Hz */
770 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
771 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
772 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
773 	  .vrefresh = 30, },
774 	/* 35 - 2880x480@60Hz */
775 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
776 		   3192, 3432, 0, 480, 489, 495, 525, 0,
777 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
778 	  .vrefresh = 60, },
779 	/* 36 - 2880x480@60Hz */
780 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
781 		   3192, 3432, 0, 480, 489, 495, 525, 0,
782 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
783 	  .vrefresh = 60, },
784 	/* 37 - 2880x576@50Hz */
785 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
786 		   3184, 3456, 0, 576, 581, 586, 625, 0,
787 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
788 	  .vrefresh = 50, },
789 	/* 38 - 2880x576@50Hz */
790 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
791 		   3184, 3456, 0, 576, 581, 586, 625, 0,
792 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
793 	  .vrefresh = 50, },
794 	/* 39 - 1920x1080i@50Hz */
795 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
796 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
797 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
798 			DRM_MODE_FLAG_INTERLACE),
799 	  .vrefresh = 50, },
800 	/* 40 - 1920x1080i@100Hz */
801 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
802 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
803 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
804 			DRM_MODE_FLAG_INTERLACE),
805 	  .vrefresh = 100, },
806 	/* 41 - 1280x720@100Hz */
807 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
808 		   1760, 1980, 0, 720, 725, 730, 750, 0,
809 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810 	  .vrefresh = 100, },
811 	/* 42 - 720x576@100Hz */
812 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
813 		   796, 864, 0, 576, 581, 586, 625, 0,
814 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
815 	  .vrefresh = 100, },
816 	/* 43 - 720x576@100Hz */
817 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
818 		   796, 864, 0, 576, 581, 586, 625, 0,
819 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
820 	  .vrefresh = 100, },
821 	/* 44 - 1440x576i@100Hz */
822 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
823 		   1590, 1728, 0, 576, 580, 586, 625, 0,
824 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
825 			DRM_MODE_FLAG_DBLCLK),
826 	  .vrefresh = 100, },
827 	/* 45 - 1440x576i@100Hz */
828 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
829 		   1590, 1728, 0, 576, 580, 586, 625, 0,
830 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
831 			DRM_MODE_FLAG_DBLCLK),
832 	  .vrefresh = 100, },
833 	/* 46 - 1920x1080i@120Hz */
834 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
835 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
836 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
837 			DRM_MODE_FLAG_INTERLACE),
838 	  .vrefresh = 120, },
839 	/* 47 - 1280x720@120Hz */
840 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
841 		   1430, 1650, 0, 720, 725, 730, 750, 0,
842 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
843 	  .vrefresh = 120, },
844 	/* 48 - 720x480@120Hz */
845 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
846 		   798, 858, 0, 480, 489, 495, 525, 0,
847 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 	  .vrefresh = 120, },
849 	/* 49 - 720x480@120Hz */
850 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
851 		   798, 858, 0, 480, 489, 495, 525, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
853 	  .vrefresh = 120, },
854 	/* 50 - 1440x480i@120Hz */
855 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
856 		   1602, 1716, 0, 480, 488, 494, 525, 0,
857 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
858 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
859 	  .vrefresh = 120, },
860 	/* 51 - 1440x480i@120Hz */
861 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
862 		   1602, 1716, 0, 480, 488, 494, 525, 0,
863 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
864 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
865 	  .vrefresh = 120, },
866 	/* 52 - 720x576@200Hz */
867 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
868 		   796, 864, 0, 576, 581, 586, 625, 0,
869 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
870 	  .vrefresh = 200, },
871 	/* 53 - 720x576@200Hz */
872 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
873 		   796, 864, 0, 576, 581, 586, 625, 0,
874 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
875 	  .vrefresh = 200, },
876 	/* 54 - 1440x576i@200Hz */
877 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
878 		   1590, 1728, 0, 576, 580, 586, 625, 0,
879 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
880 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
881 	  .vrefresh = 200, },
882 	/* 55 - 1440x576i@200Hz */
883 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
884 		   1590, 1728, 0, 576, 580, 586, 625, 0,
885 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
886 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
887 	  .vrefresh = 200, },
888 	/* 56 - 720x480@240Hz */
889 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
890 		   798, 858, 0, 480, 489, 495, 525, 0,
891 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
892 	  .vrefresh = 240, },
893 	/* 57 - 720x480@240Hz */
894 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
895 		   798, 858, 0, 480, 489, 495, 525, 0,
896 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
897 	  .vrefresh = 240, },
898 	/* 58 - 1440x480i@240 */
899 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
900 		   1602, 1716, 0, 480, 488, 494, 525, 0,
901 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
902 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
903 	  .vrefresh = 240, },
904 	/* 59 - 1440x480i@240 */
905 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
906 		   1602, 1716, 0, 480, 488, 494, 525, 0,
907 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
908 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
909 	  .vrefresh = 240, },
910 	/* 60 - 1280x720@24Hz */
911 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
912 		   3080, 3300, 0, 720, 725, 730, 750, 0,
913 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 	  .vrefresh = 24, },
915 	/* 61 - 1280x720@25Hz */
916 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
917 		   3740, 3960, 0, 720, 725, 730, 750, 0,
918 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 	  .vrefresh = 25, },
920 	/* 62 - 1280x720@30Hz */
921 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
922 		   3080, 3300, 0, 720, 725, 730, 750, 0,
923 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 	  .vrefresh = 30, },
925 	/* 63 - 1920x1080@120Hz */
926 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
927 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
928 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
929 	 .vrefresh = 120, },
930 	/* 64 - 1920x1080@100Hz */
931 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
932 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
933 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
934 	 .vrefresh = 100, },
935 };
936 
937 /*
938  * HDMI 1.4 4k modes.
939  */
940 static const struct drm_display_mode edid_4k_modes[] = {
941 	/* 1 - 3840x2160@30Hz */
942 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
943 		   3840, 4016, 4104, 4400, 0,
944 		   2160, 2168, 2178, 2250, 0,
945 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
946 	  .vrefresh = 30, },
947 	/* 2 - 3840x2160@25Hz */
948 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
949 		   3840, 4896, 4984, 5280, 0,
950 		   2160, 2168, 2178, 2250, 0,
951 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
952 	  .vrefresh = 25, },
953 	/* 3 - 3840x2160@24Hz */
954 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
955 		   3840, 5116, 5204, 5500, 0,
956 		   2160, 2168, 2178, 2250, 0,
957 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 	  .vrefresh = 24, },
959 	/* 4 - 4096x2160@24Hz (SMPTE) */
960 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
961 		   4096, 5116, 5204, 5500, 0,
962 		   2160, 2168, 2178, 2250, 0,
963 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
964 	  .vrefresh = 24, },
965 };
966 
967 /*** DDC fetch and block validation ***/
968 
969 static const u8 edid_header[] = {
970 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
971 };
972 
973  /*
974  * Sanity check the header of the base EDID block.  Return 8 if the header
975  * is perfect, down to 0 if it's totally wrong.
976  */
977 int drm_edid_header_is_valid(const u8 *raw_edid)
978 {
979 	int i, score = 0;
980 
981 	for (i = 0; i < sizeof(edid_header); i++)
982 		if (raw_edid[i] == edid_header[i])
983 			score++;
984 
985 	return score;
986 }
987 EXPORT_SYMBOL(drm_edid_header_is_valid);
988 
989 static int edid_fixup __read_mostly = 6;
990 module_param_named(edid_fixup, edid_fixup, int, 0400);
991 MODULE_PARM_DESC(edid_fixup,
992 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
993 
994 /*
995  * Sanity check the EDID block (base or extension).  Return 0 if the block
996  * doesn't check out, or 1 if it's valid.
997  */
998 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
999 {
1000 	int i;
1001 	u8 csum = 0;
1002 	struct edid *edid = (struct edid *)raw_edid;
1003 
1004 	if (WARN_ON(!raw_edid))
1005 		return false;
1006 
1007 	if (edid_fixup > 8 || edid_fixup < 0)
1008 		edid_fixup = 6;
1009 
1010 	if (block == 0) {
1011 		int score = drm_edid_header_is_valid(raw_edid);
1012 		if (score == 8) ;
1013 		else if (score >= edid_fixup) {
1014 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1015 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1016 		} else {
1017 			goto bad;
1018 		}
1019 	}
1020 
1021 	for (i = 0; i < EDID_LENGTH; i++)
1022 		csum += raw_edid[i];
1023 	if (csum) {
1024 		if (print_bad_edid) {
1025 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1026 		}
1027 
1028 		/* allow CEA to slide through, switches mangle this */
1029 		if (raw_edid[0] != 0x02)
1030 			goto bad;
1031 	}
1032 
1033 	/* per-block-type checks */
1034 	switch (raw_edid[0]) {
1035 	case 0: /* base */
1036 		if (edid->version != 1) {
1037 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1038 			goto bad;
1039 		}
1040 
1041 		if (edid->revision > 4)
1042 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1043 		break;
1044 
1045 	default:
1046 		break;
1047 	}
1048 
1049 	return true;
1050 
1051 bad:
1052 	if (print_bad_edid) {
1053 		printk(KERN_ERR "Raw EDID:\n");
1054 		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1055 			       raw_edid, EDID_LENGTH, false);
1056 	}
1057 	return false;
1058 }
1059 EXPORT_SYMBOL(drm_edid_block_valid);
1060 
1061 /**
1062  * drm_edid_is_valid - sanity check EDID data
1063  * @edid: EDID data
1064  *
1065  * Sanity-check an entire EDID record (including extensions)
1066  */
1067 bool drm_edid_is_valid(struct edid *edid)
1068 {
1069 	int i;
1070 	u8 *raw = (u8 *)edid;
1071 
1072 	if (!edid)
1073 		return false;
1074 
1075 	for (i = 0; i <= edid->extensions; i++)
1076 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1077 			return false;
1078 
1079 	return true;
1080 }
1081 EXPORT_SYMBOL(drm_edid_is_valid);
1082 
1083 #define DDC_SEGMENT_ADDR 0x30
1084 /**
1085  * Get EDID information via I2C.
1086  *
1087  * \param adapter : i2c device adaptor
1088  * \param buf     : EDID data buffer to be filled
1089  * \param len     : EDID data buffer length
1090  * \return 0 on success or -1 on failure.
1091  *
1092  * Try to fetch EDID information by calling i2c driver function.
1093  */
1094 static int
1095 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1096 		      int block, int len)
1097 {
1098 	unsigned char start = block * EDID_LENGTH;
1099 	unsigned char segment = block >> 1;
1100 	unsigned char xfers = segment ? 3 : 2;
1101 	int ret, retries = 5;
1102 
1103 	/* The core i2c driver will automatically retry the transfer if the
1104 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1105 	 * are susceptible to errors under a heavily loaded machine and
1106 	 * generate spurious NAKs and timeouts. Retrying the transfer
1107 	 * of the individual block a few times seems to overcome this.
1108 	 */
1109 	do {
1110 		struct i2c_msg msgs[] = {
1111 			{
1112 				.addr	= DDC_SEGMENT_ADDR,
1113 				.flags	= 0,
1114 				.len	= 1,
1115 				.buf	= &segment,
1116 			}, {
1117 				.addr	= DDC_ADDR,
1118 				.flags	= 0,
1119 				.len	= 1,
1120 				.buf	= &start,
1121 			}, {
1122 				.addr	= DDC_ADDR,
1123 				.flags	= I2C_M_RD,
1124 				.len	= len,
1125 				.buf	= buf,
1126 			}
1127 		};
1128 
1129 	/*
1130 	 * Avoid sending the segment addr to not upset non-compliant ddc
1131 	 * monitors.
1132 	 */
1133 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1134 
1135 		if (ret == -ENXIO) {
1136 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1137 					adapter->name);
1138 			break;
1139 		}
1140 	} while (ret != xfers && --retries);
1141 
1142 	return ret == xfers ? 0 : -1;
1143 }
1144 
1145 static bool drm_edid_is_zero(u8 *in_edid, int length)
1146 {
1147 	if (memchr_inv(in_edid, 0, length))
1148 		return false;
1149 
1150 	return true;
1151 }
1152 
1153 static u8 *
1154 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1155 {
1156 	int i, j = 0, valid_extensions = 0;
1157 	u8 *block, *new;
1158 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1159 
1160 	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1161 		return NULL;
1162 
1163 	/* base block fetch */
1164 	for (i = 0; i < 4; i++) {
1165 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1166 			goto out;
1167 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1168 			break;
1169 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1170 			connector->null_edid_counter++;
1171 			goto carp;
1172 		}
1173 	}
1174 	if (i == 4)
1175 		goto carp;
1176 
1177 	/* if there's no extensions, we're done */
1178 	if (block[0x7e] == 0)
1179 		return block;
1180 
1181 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1182 	if (!new)
1183 		goto out;
1184 	block = new;
1185 
1186 	for (j = 1; j <= block[0x7e]; j++) {
1187 		for (i = 0; i < 4; i++) {
1188 			if (drm_do_probe_ddc_edid(adapter,
1189 				  block + (valid_extensions + 1) * EDID_LENGTH,
1190 				  j, EDID_LENGTH))
1191 				goto out;
1192 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1193 				valid_extensions++;
1194 				break;
1195 			}
1196 		}
1197 
1198 		if (i == 4 && print_bad_edid) {
1199 			dev_warn(connector->dev->dev,
1200 			 "%s: Ignoring invalid EDID block %d.\n",
1201 			 drm_get_connector_name(connector), j);
1202 
1203 			connector->bad_edid_counter++;
1204 		}
1205 	}
1206 
1207 	if (valid_extensions != block[0x7e]) {
1208 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1209 		block[0x7e] = valid_extensions;
1210 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1211 		if (!new)
1212 			goto out;
1213 		block = new;
1214 	}
1215 
1216 	return block;
1217 
1218 carp:
1219 	if (print_bad_edid) {
1220 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1221 			 drm_get_connector_name(connector), j);
1222 	}
1223 	connector->bad_edid_counter++;
1224 
1225 out:
1226 	kfree(block);
1227 	return NULL;
1228 }
1229 
1230 /**
1231  * Probe DDC presence.
1232  *
1233  * \param adapter : i2c device adaptor
1234  * \return 1 on success
1235  */
1236 bool
1237 drm_probe_ddc(struct i2c_adapter *adapter)
1238 {
1239 	unsigned char out;
1240 
1241 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1242 }
1243 EXPORT_SYMBOL(drm_probe_ddc);
1244 
1245 /**
1246  * drm_get_edid - get EDID data, if available
1247  * @connector: connector we're probing
1248  * @adapter: i2c adapter to use for DDC
1249  *
1250  * Poke the given i2c channel to grab EDID data if possible.  If found,
1251  * attach it to the connector.
1252  *
1253  * Return edid data or NULL if we couldn't find any.
1254  */
1255 struct edid *drm_get_edid(struct drm_connector *connector,
1256 			  struct i2c_adapter *adapter)
1257 {
1258 	struct edid *edid = NULL;
1259 
1260 	if (drm_probe_ddc(adapter))
1261 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1262 
1263 	return edid;
1264 }
1265 EXPORT_SYMBOL(drm_get_edid);
1266 
1267 /*** EDID parsing ***/
1268 
1269 /**
1270  * edid_vendor - match a string against EDID's obfuscated vendor field
1271  * @edid: EDID to match
1272  * @vendor: vendor string
1273  *
1274  * Returns true if @vendor is in @edid, false otherwise
1275  */
1276 static bool edid_vendor(struct edid *edid, char *vendor)
1277 {
1278 	char edid_vendor[3];
1279 
1280 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1281 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1282 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1283 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1284 
1285 	return !strncmp(edid_vendor, vendor, 3);
1286 }
1287 
1288 /**
1289  * edid_get_quirks - return quirk flags for a given EDID
1290  * @edid: EDID to process
1291  *
1292  * This tells subsequent routines what fixes they need to apply.
1293  */
1294 static u32 edid_get_quirks(struct edid *edid)
1295 {
1296 	struct edid_quirk *quirk;
1297 	int i;
1298 
1299 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1300 		quirk = &edid_quirk_list[i];
1301 
1302 		if (edid_vendor(edid, quirk->vendor) &&
1303 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1304 			return quirk->quirks;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1311 #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1312 
1313 /**
1314  * edid_fixup_preferred - set preferred modes based on quirk list
1315  * @connector: has mode list to fix up
1316  * @quirks: quirks list
1317  *
1318  * Walk the mode list for @connector, clearing the preferred status
1319  * on existing modes and setting it anew for the right mode ala @quirks.
1320  */
1321 static void edid_fixup_preferred(struct drm_connector *connector,
1322 				 u32 quirks)
1323 {
1324 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1325 	int target_refresh = 0;
1326 
1327 	if (list_empty(&connector->probed_modes))
1328 		return;
1329 
1330 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1331 		target_refresh = 60;
1332 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1333 		target_refresh = 75;
1334 
1335 	preferred_mode = list_first_entry(&connector->probed_modes,
1336 					  struct drm_display_mode, head);
1337 
1338 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1339 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1340 
1341 		if (cur_mode == preferred_mode)
1342 			continue;
1343 
1344 		/* Largest mode is preferred */
1345 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1346 			preferred_mode = cur_mode;
1347 
1348 		/* At a given size, try to get closest to target refresh */
1349 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1350 		    MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1351 		    MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1352 			preferred_mode = cur_mode;
1353 		}
1354 	}
1355 
1356 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1357 }
1358 
1359 static bool
1360 mode_is_rb(const struct drm_display_mode *mode)
1361 {
1362 	return (mode->htotal - mode->hdisplay == 160) &&
1363 	       (mode->hsync_end - mode->hdisplay == 80) &&
1364 	       (mode->hsync_end - mode->hsync_start == 32) &&
1365 	       (mode->vsync_start - mode->vdisplay == 3);
1366 }
1367 
1368 /*
1369  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1370  * @dev: Device to duplicate against
1371  * @hsize: Mode width
1372  * @vsize: Mode height
1373  * @fresh: Mode refresh rate
1374  * @rb: Mode reduced-blanking-ness
1375  *
1376  * Walk the DMT mode list looking for a match for the given parameters.
1377  * Return a newly allocated copy of the mode, or NULL if not found.
1378  */
1379 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1380 					   int hsize, int vsize, int fresh,
1381 					   bool rb)
1382 {
1383 	int i;
1384 
1385 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1386 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1387 		if (hsize != ptr->hdisplay)
1388 			continue;
1389 		if (vsize != ptr->vdisplay)
1390 			continue;
1391 		if (fresh != drm_mode_vrefresh(ptr))
1392 			continue;
1393 		if (rb != mode_is_rb(ptr))
1394 			continue;
1395 
1396 		return drm_mode_duplicate(dev, ptr);
1397 	}
1398 
1399 	return NULL;
1400 }
1401 EXPORT_SYMBOL(drm_mode_find_dmt);
1402 
1403 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1404 
1405 static void
1406 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1407 {
1408 	int i, n = 0;
1409 	u8 d = ext[0x02];
1410 	u8 *det_base = ext + d;
1411 
1412 	n = (127 - d) / 18;
1413 	for (i = 0; i < n; i++)
1414 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1415 }
1416 
1417 static void
1418 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1419 {
1420 	unsigned int i, n = min((int)ext[0x02], 6);
1421 	u8 *det_base = ext + 5;
1422 
1423 	if (ext[0x01] != 1)
1424 		return; /* unknown version */
1425 
1426 	for (i = 0; i < n; i++)
1427 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1428 }
1429 
1430 static void
1431 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1432 {
1433 	int i;
1434 	struct edid *edid = (struct edid *)raw_edid;
1435 
1436 	if (edid == NULL)
1437 		return;
1438 
1439 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1440 		cb(&(edid->detailed_timings[i]), closure);
1441 
1442 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1443 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1444 		switch (*ext) {
1445 		case CEA_EXT:
1446 			cea_for_each_detailed_block(ext, cb, closure);
1447 			break;
1448 		case VTB_EXT:
1449 			vtb_for_each_detailed_block(ext, cb, closure);
1450 			break;
1451 		default:
1452 			break;
1453 		}
1454 	}
1455 }
1456 
1457 static void
1458 is_rb(struct detailed_timing *t, void *data)
1459 {
1460 	u8 *r = (u8 *)t;
1461 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1462 		if (r[15] & 0x10)
1463 			*(bool *)data = true;
1464 }
1465 
1466 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1467 static bool
1468 drm_monitor_supports_rb(struct edid *edid)
1469 {
1470 	if (edid->revision >= 4) {
1471 		bool ret = false;
1472 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1473 		return ret;
1474 	}
1475 
1476 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1477 }
1478 
1479 static void
1480 find_gtf2(struct detailed_timing *t, void *data)
1481 {
1482 	u8 *r = (u8 *)t;
1483 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1484 		*(u8 **)data = r;
1485 }
1486 
1487 /* Secondary GTF curve kicks in above some break frequency */
1488 static int
1489 drm_gtf2_hbreak(struct edid *edid)
1490 {
1491 	u8 *r = NULL;
1492 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1493 	return r ? (r[12] * 2) : 0;
1494 }
1495 
1496 static int
1497 drm_gtf2_2c(struct edid *edid)
1498 {
1499 	u8 *r = NULL;
1500 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1501 	return r ? r[13] : 0;
1502 }
1503 
1504 static int
1505 drm_gtf2_m(struct edid *edid)
1506 {
1507 	u8 *r = NULL;
1508 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1509 	return r ? (r[15] << 8) + r[14] : 0;
1510 }
1511 
1512 static int
1513 drm_gtf2_k(struct edid *edid)
1514 {
1515 	u8 *r = NULL;
1516 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1517 	return r ? r[16] : 0;
1518 }
1519 
1520 static int
1521 drm_gtf2_2j(struct edid *edid)
1522 {
1523 	u8 *r = NULL;
1524 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1525 	return r ? r[17] : 0;
1526 }
1527 
1528 /**
1529  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1530  * @edid: EDID block to scan
1531  */
1532 static int standard_timing_level(struct edid *edid)
1533 {
1534 	if (edid->revision >= 2) {
1535 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1536 			return LEVEL_CVT;
1537 		if (drm_gtf2_hbreak(edid))
1538 			return LEVEL_GTF2;
1539 		return LEVEL_GTF;
1540 	}
1541 	return LEVEL_DMT;
1542 }
1543 
1544 /*
1545  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1546  * monitors fill with ascii space (0x20) instead.
1547  */
1548 static int
1549 bad_std_timing(u8 a, u8 b)
1550 {
1551 	return (a == 0x00 && b == 0x00) ||
1552 	       (a == 0x01 && b == 0x01) ||
1553 	       (a == 0x20 && b == 0x20);
1554 }
1555 
1556 /**
1557  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1558  * @t: standard timing params
1559  * @timing_level: standard timing level
1560  *
1561  * Take the standard timing params (in this case width, aspect, and refresh)
1562  * and convert them into a real mode using CVT/GTF/DMT.
1563  */
1564 static struct drm_display_mode *
1565 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1566 	     struct std_timing *t, int revision)
1567 {
1568 	struct drm_device *dev = connector->dev;
1569 	struct drm_display_mode *m, *mode = NULL;
1570 	int hsize, vsize;
1571 	int vrefresh_rate;
1572 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1573 		>> EDID_TIMING_ASPECT_SHIFT;
1574 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1575 		>> EDID_TIMING_VFREQ_SHIFT;
1576 	int timing_level = standard_timing_level(edid);
1577 
1578 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1579 		return NULL;
1580 
1581 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1582 	hsize = t->hsize * 8 + 248;
1583 	/* vrefresh_rate = vfreq + 60 */
1584 	vrefresh_rate = vfreq + 60;
1585 	/* the vdisplay is calculated based on the aspect ratio */
1586 	if (aspect_ratio == 0) {
1587 		if (revision < 3)
1588 			vsize = hsize;
1589 		else
1590 			vsize = (hsize * 10) / 16;
1591 	} else if (aspect_ratio == 1)
1592 		vsize = (hsize * 3) / 4;
1593 	else if (aspect_ratio == 2)
1594 		vsize = (hsize * 4) / 5;
1595 	else
1596 		vsize = (hsize * 9) / 16;
1597 
1598 	/* HDTV hack, part 1 */
1599 	if (vrefresh_rate == 60 &&
1600 	    ((hsize == 1360 && vsize == 765) ||
1601 	     (hsize == 1368 && vsize == 769))) {
1602 		hsize = 1366;
1603 		vsize = 768;
1604 	}
1605 
1606 	/*
1607 	 * If this connector already has a mode for this size and refresh
1608 	 * rate (because it came from detailed or CVT info), use that
1609 	 * instead.  This way we don't have to guess at interlace or
1610 	 * reduced blanking.
1611 	 */
1612 	list_for_each_entry(m, &connector->probed_modes, head)
1613 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1614 		    drm_mode_vrefresh(m) == vrefresh_rate)
1615 			return NULL;
1616 
1617 	/* HDTV hack, part 2 */
1618 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1619 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1620 				    false);
1621 		mode->hdisplay = 1366;
1622 		mode->hsync_start = mode->hsync_start - 1;
1623 		mode->hsync_end = mode->hsync_end - 1;
1624 		return mode;
1625 	}
1626 
1627 	/* check whether it can be found in default mode table */
1628 	if (drm_monitor_supports_rb(edid)) {
1629 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1630 					 true);
1631 		if (mode)
1632 			return mode;
1633 	}
1634 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1635 	if (mode)
1636 		return mode;
1637 
1638 	/* okay, generate it */
1639 	switch (timing_level) {
1640 	case LEVEL_DMT:
1641 		break;
1642 	case LEVEL_GTF:
1643 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1644 		break;
1645 	case LEVEL_GTF2:
1646 		/*
1647 		 * This is potentially wrong if there's ever a monitor with
1648 		 * more than one ranges section, each claiming a different
1649 		 * secondary GTF curve.  Please don't do that.
1650 		 */
1651 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1652 		if (!mode)
1653 			return NULL;
1654 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1655 			drm_mode_destroy(dev, mode);
1656 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1657 						    vrefresh_rate, 0, 0,
1658 						    drm_gtf2_m(edid),
1659 						    drm_gtf2_2c(edid),
1660 						    drm_gtf2_k(edid),
1661 						    drm_gtf2_2j(edid));
1662 		}
1663 		break;
1664 	case LEVEL_CVT:
1665 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1666 				    false);
1667 		break;
1668 	}
1669 	return mode;
1670 }
1671 
1672 /*
1673  * EDID is delightfully ambiguous about how interlaced modes are to be
1674  * encoded.  Our internal representation is of frame height, but some
1675  * HDTV detailed timings are encoded as field height.
1676  *
1677  * The format list here is from CEA, in frame size.  Technically we
1678  * should be checking refresh rate too.  Whatever.
1679  */
1680 static void
1681 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1682 			    struct detailed_pixel_timing *pt)
1683 {
1684 	int i;
1685 	static const struct {
1686 		int w, h;
1687 	} cea_interlaced[] = {
1688 		{ 1920, 1080 },
1689 		{  720,  480 },
1690 		{ 1440,  480 },
1691 		{ 2880,  480 },
1692 		{  720,  576 },
1693 		{ 1440,  576 },
1694 		{ 2880,  576 },
1695 	};
1696 
1697 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1698 		return;
1699 
1700 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1701 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1702 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1703 			mode->vdisplay *= 2;
1704 			mode->vsync_start *= 2;
1705 			mode->vsync_end *= 2;
1706 			mode->vtotal *= 2;
1707 			mode->vtotal |= 1;
1708 		}
1709 	}
1710 
1711 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1712 }
1713 
1714 /**
1715  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1716  * @dev: DRM device (needed to create new mode)
1717  * @edid: EDID block
1718  * @timing: EDID detailed timing info
1719  * @quirks: quirks to apply
1720  *
1721  * An EDID detailed timing block contains enough info for us to create and
1722  * return a new struct drm_display_mode.
1723  */
1724 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1725 						  struct edid *edid,
1726 						  struct detailed_timing *timing,
1727 						  u32 quirks)
1728 {
1729 	struct drm_display_mode *mode;
1730 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1731 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1732 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1733 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1734 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1735 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1736 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1737 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1738 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1739 
1740 	/* ignore tiny modes */
1741 	if (hactive < 64 || vactive < 64)
1742 		return NULL;
1743 
1744 	if (pt->misc & DRM_EDID_PT_STEREO) {
1745 		DRM_DEBUG_KMS("stereo mode not supported\n");
1746 		return NULL;
1747 	}
1748 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1749 		DRM_DEBUG_KMS("composite sync not supported\n");
1750 	}
1751 
1752 	/* it is incorrect if hsync/vsync width is zero */
1753 	if (!hsync_pulse_width || !vsync_pulse_width) {
1754 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1755 				"Wrong Hsync/Vsync pulse width\n");
1756 		return NULL;
1757 	}
1758 
1759 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1760 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1761 		if (!mode)
1762 			return NULL;
1763 
1764 		goto set_size;
1765 	}
1766 
1767 	mode = drm_mode_create(dev);
1768 	if (!mode)
1769 		return NULL;
1770 
1771 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1772 		timing->pixel_clock = cpu_to_le16(1088);
1773 
1774 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1775 
1776 	mode->hdisplay = hactive;
1777 	mode->hsync_start = mode->hdisplay + hsync_offset;
1778 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1779 	mode->htotal = mode->hdisplay + hblank;
1780 
1781 	mode->vdisplay = vactive;
1782 	mode->vsync_start = mode->vdisplay + vsync_offset;
1783 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1784 	mode->vtotal = mode->vdisplay + vblank;
1785 
1786 	/* Some EDIDs have bogus h/vtotal values */
1787 	if (mode->hsync_end > mode->htotal)
1788 		mode->htotal = mode->hsync_end + 1;
1789 	if (mode->vsync_end > mode->vtotal)
1790 		mode->vtotal = mode->vsync_end + 1;
1791 
1792 	drm_mode_do_interlace_quirk(mode, pt);
1793 
1794 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1795 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1796 	}
1797 
1798 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1799 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1800 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1801 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1802 
1803 set_size:
1804 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1805 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1806 
1807 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1808 		mode->width_mm *= 10;
1809 		mode->height_mm *= 10;
1810 	}
1811 
1812 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1813 		mode->width_mm = edid->width_cm * 10;
1814 		mode->height_mm = edid->height_cm * 10;
1815 	}
1816 
1817 	mode->type = DRM_MODE_TYPE_DRIVER;
1818 	mode->vrefresh = drm_mode_vrefresh(mode);
1819 	drm_mode_set_name(mode);
1820 
1821 	return mode;
1822 }
1823 
1824 static bool
1825 mode_in_hsync_range(const struct drm_display_mode *mode,
1826 		    struct edid *edid, u8 *t)
1827 {
1828 	int hsync, hmin, hmax;
1829 
1830 	hmin = t[7];
1831 	if (edid->revision >= 4)
1832 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1833 	hmax = t[8];
1834 	if (edid->revision >= 4)
1835 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1836 	hsync = drm_mode_hsync(mode);
1837 
1838 	return (hsync <= hmax && hsync >= hmin);
1839 }
1840 
1841 static bool
1842 mode_in_vsync_range(const struct drm_display_mode *mode,
1843 		    struct edid *edid, u8 *t)
1844 {
1845 	int vsync, vmin, vmax;
1846 
1847 	vmin = t[5];
1848 	if (edid->revision >= 4)
1849 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1850 	vmax = t[6];
1851 	if (edid->revision >= 4)
1852 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1853 	vsync = drm_mode_vrefresh(mode);
1854 
1855 	return (vsync <= vmax && vsync >= vmin);
1856 }
1857 
1858 static u32
1859 range_pixel_clock(struct edid *edid, u8 *t)
1860 {
1861 	/* unspecified */
1862 	if (t[9] == 0 || t[9] == 255)
1863 		return 0;
1864 
1865 	/* 1.4 with CVT support gives us real precision, yay */
1866 	if (edid->revision >= 4 && t[10] == 0x04)
1867 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1868 
1869 	/* 1.3 is pathetic, so fuzz up a bit */
1870 	return t[9] * 10000 + 5001;
1871 }
1872 
1873 static bool
1874 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1875 	      struct detailed_timing *timing)
1876 {
1877 	u32 max_clock;
1878 	u8 *t = (u8 *)timing;
1879 
1880 	if (!mode_in_hsync_range(mode, edid, t))
1881 		return false;
1882 
1883 	if (!mode_in_vsync_range(mode, edid, t))
1884 		return false;
1885 
1886 	if ((max_clock = range_pixel_clock(edid, t)))
1887 		if (mode->clock > max_clock)
1888 			return false;
1889 
1890 	/* 1.4 max horizontal check */
1891 	if (edid->revision >= 4 && t[10] == 0x04)
1892 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1893 			return false;
1894 
1895 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1896 		return false;
1897 
1898 	return true;
1899 }
1900 
1901 static bool valid_inferred_mode(const struct drm_connector *connector,
1902 				const struct drm_display_mode *mode)
1903 {
1904 	struct drm_display_mode *m;
1905 	bool ok = false;
1906 
1907 	list_for_each_entry(m, &connector->probed_modes, head) {
1908 		if (mode->hdisplay == m->hdisplay &&
1909 		    mode->vdisplay == m->vdisplay &&
1910 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1911 			return false; /* duplicated */
1912 		if (mode->hdisplay <= m->hdisplay &&
1913 		    mode->vdisplay <= m->vdisplay)
1914 			ok = true;
1915 	}
1916 	return ok;
1917 }
1918 
1919 static int
1920 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1921 			struct detailed_timing *timing)
1922 {
1923 	int i, modes = 0;
1924 	struct drm_display_mode *newmode;
1925 	struct drm_device *dev = connector->dev;
1926 
1927 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1928 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1929 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1930 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1931 			if (newmode) {
1932 				drm_mode_probed_add(connector, newmode);
1933 				modes++;
1934 			}
1935 		}
1936 	}
1937 
1938 	return modes;
1939 }
1940 
1941 /* fix up 1366x768 mode from 1368x768;
1942  * GFT/CVT can't express 1366 width which isn't dividable by 8
1943  */
1944 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1945 {
1946 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1947 		mode->hdisplay = 1366;
1948 		mode->hsync_start--;
1949 		mode->hsync_end--;
1950 		drm_mode_set_name(mode);
1951 	}
1952 }
1953 
1954 static int
1955 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1956 			struct detailed_timing *timing)
1957 {
1958 	int i, modes = 0;
1959 	struct drm_display_mode *newmode;
1960 	struct drm_device *dev = connector->dev;
1961 
1962 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1963 		const struct minimode *m = &extra_modes[i];
1964 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1965 		if (!newmode)
1966 			return modes;
1967 
1968 		fixup_mode_1366x768(newmode);
1969 		if (!mode_in_range(newmode, edid, timing) ||
1970 		    !valid_inferred_mode(connector, newmode)) {
1971 			drm_mode_destroy(dev, newmode);
1972 			continue;
1973 		}
1974 
1975 		drm_mode_probed_add(connector, newmode);
1976 		modes++;
1977 	}
1978 
1979 	return modes;
1980 }
1981 
1982 static int
1983 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1984 			struct detailed_timing *timing)
1985 {
1986 	int i, modes = 0;
1987 	struct drm_display_mode *newmode;
1988 	struct drm_device *dev = connector->dev;
1989 	bool rb = drm_monitor_supports_rb(edid);
1990 
1991 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1992 		const struct minimode *m = &extra_modes[i];
1993 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
1994 		if (!newmode)
1995 			return modes;
1996 
1997 		fixup_mode_1366x768(newmode);
1998 		if (!mode_in_range(newmode, edid, timing) ||
1999 		    !valid_inferred_mode(connector, newmode)) {
2000 			drm_mode_destroy(dev, newmode);
2001 			continue;
2002 		}
2003 
2004 		drm_mode_probed_add(connector, newmode);
2005 		modes++;
2006 	}
2007 
2008 	return modes;
2009 }
2010 
2011 static void
2012 do_inferred_modes(struct detailed_timing *timing, void *c)
2013 {
2014 	struct detailed_mode_closure *closure = c;
2015 	struct detailed_non_pixel *data = &timing->data.other_data;
2016 	struct detailed_data_monitor_range *range = &data->data.range;
2017 
2018 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2019 		return;
2020 
2021 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2022 						  closure->edid,
2023 						  timing);
2024 
2025 	if (!version_greater(closure->edid, 1, 1))
2026 		return; /* GTF not defined yet */
2027 
2028 	switch (range->flags) {
2029 	case 0x02: /* secondary gtf, XXX could do more */
2030 	case 0x00: /* default gtf */
2031 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2032 							  closure->edid,
2033 							  timing);
2034 		break;
2035 	case 0x04: /* cvt, only in 1.4+ */
2036 		if (!version_greater(closure->edid, 1, 3))
2037 			break;
2038 
2039 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2040 							  closure->edid,
2041 							  timing);
2042 		break;
2043 	case 0x01: /* just the ranges, no formula */
2044 	default:
2045 		break;
2046 	}
2047 }
2048 
2049 static int
2050 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2051 {
2052 	struct detailed_mode_closure closure = {
2053 		connector, edid, 0, 0, 0
2054 	};
2055 
2056 	if (version_greater(edid, 1, 0))
2057 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2058 					    &closure);
2059 
2060 	return closure.modes;
2061 }
2062 
2063 static int
2064 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2065 {
2066 	int i, j, m, modes = 0;
2067 	struct drm_display_mode *mode;
2068 	u8 *est = ((u8 *)timing) + 5;
2069 
2070 	for (i = 0; i < 6; i++) {
2071 		for (j = 7; j > 0; j--) {
2072 			m = (i * 8) + (7 - j);
2073 			if (m >= ARRAY_SIZE(est3_modes))
2074 				break;
2075 			if (est[i] & (1 << j)) {
2076 				mode = drm_mode_find_dmt(connector->dev,
2077 							 est3_modes[m].w,
2078 							 est3_modes[m].h,
2079 							 est3_modes[m].r,
2080 							 est3_modes[m].rb);
2081 				if (mode) {
2082 					drm_mode_probed_add(connector, mode);
2083 					modes++;
2084 				}
2085 			}
2086 		}
2087 	}
2088 
2089 	return modes;
2090 }
2091 
2092 static void
2093 do_established_modes(struct detailed_timing *timing, void *c)
2094 {
2095 	struct detailed_mode_closure *closure = c;
2096 	struct detailed_non_pixel *data = &timing->data.other_data;
2097 
2098 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2099 		closure->modes += drm_est3_modes(closure->connector, timing);
2100 }
2101 
2102 /**
2103  * add_established_modes - get est. modes from EDID and add them
2104  * @edid: EDID block to scan
2105  *
2106  * Each EDID block contains a bitmap of the supported "established modes" list
2107  * (defined above).  Tease them out and add them to the global modes list.
2108  */
2109 static int
2110 add_established_modes(struct drm_connector *connector, struct edid *edid)
2111 {
2112 	struct drm_device *dev = connector->dev;
2113 	unsigned long est_bits = edid->established_timings.t1 |
2114 		(edid->established_timings.t2 << 8) |
2115 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2116 	int i, modes = 0;
2117 	struct detailed_mode_closure closure = {
2118 		connector, edid, 0, 0, 0
2119 	};
2120 
2121 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2122 		if (est_bits & (1<<i)) {
2123 			struct drm_display_mode *newmode;
2124 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2125 			if (newmode) {
2126 				drm_mode_probed_add(connector, newmode);
2127 				modes++;
2128 			}
2129 		}
2130 	}
2131 
2132 	if (version_greater(edid, 1, 0))
2133 		    drm_for_each_detailed_block((u8 *)edid,
2134 						do_established_modes, &closure);
2135 
2136 	return modes + closure.modes;
2137 }
2138 
2139 static void
2140 do_standard_modes(struct detailed_timing *timing, void *c)
2141 {
2142 	struct detailed_mode_closure *closure = c;
2143 	struct detailed_non_pixel *data = &timing->data.other_data;
2144 	struct drm_connector *connector = closure->connector;
2145 	struct edid *edid = closure->edid;
2146 
2147 	if (data->type == EDID_DETAIL_STD_MODES) {
2148 		int i;
2149 		for (i = 0; i < 6; i++) {
2150 			struct std_timing *std;
2151 			struct drm_display_mode *newmode;
2152 
2153 			std = &data->data.timings[i];
2154 			newmode = drm_mode_std(connector, edid, std,
2155 					       edid->revision);
2156 			if (newmode) {
2157 				drm_mode_probed_add(connector, newmode);
2158 				closure->modes++;
2159 			}
2160 		}
2161 	}
2162 }
2163 
2164 /**
2165  * add_standard_modes - get std. modes from EDID and add them
2166  * @edid: EDID block to scan
2167  *
2168  * Standard modes can be calculated using the appropriate standard (DMT,
2169  * GTF or CVT. Grab them from @edid and add them to the list.
2170  */
2171 static int
2172 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2173 {
2174 	int i, modes = 0;
2175 	struct detailed_mode_closure closure = {
2176 		connector, edid, 0, 0, 0
2177 	};
2178 
2179 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2180 		struct drm_display_mode *newmode;
2181 
2182 		newmode = drm_mode_std(connector, edid,
2183 				       &edid->standard_timings[i],
2184 				       edid->revision);
2185 		if (newmode) {
2186 			drm_mode_probed_add(connector, newmode);
2187 			modes++;
2188 		}
2189 	}
2190 
2191 	if (version_greater(edid, 1, 0))
2192 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2193 					    &closure);
2194 
2195 	/* XXX should also look for standard codes in VTB blocks */
2196 
2197 	return modes + closure.modes;
2198 }
2199 
2200 static int drm_cvt_modes(struct drm_connector *connector,
2201 			 struct detailed_timing *timing)
2202 {
2203 	int i, j, modes = 0;
2204 	struct drm_display_mode *newmode;
2205 	struct drm_device *dev = connector->dev;
2206 	struct cvt_timing *cvt;
2207 	const int rates[] = { 60, 85, 75, 60, 50 };
2208 	const u8 empty[3] = { 0, 0, 0 };
2209 
2210 	for (i = 0; i < 4; i++) {
2211 		int uninitialized_var(width), height;
2212 		cvt = &(timing->data.other_data.data.cvt[i]);
2213 
2214 		if (!memcmp(cvt->code, empty, 3))
2215 			continue;
2216 
2217 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2218 		switch (cvt->code[1] & 0x0c) {
2219 		case 0x00:
2220 			width = height * 4 / 3;
2221 			break;
2222 		case 0x04:
2223 			width = height * 16 / 9;
2224 			break;
2225 		case 0x08:
2226 			width = height * 16 / 10;
2227 			break;
2228 		case 0x0c:
2229 			width = height * 15 / 9;
2230 			break;
2231 		}
2232 
2233 		for (j = 1; j < 5; j++) {
2234 			if (cvt->code[2] & (1 << j)) {
2235 				newmode = drm_cvt_mode(dev, width, height,
2236 						       rates[j], j == 0,
2237 						       false, false);
2238 				if (newmode) {
2239 					drm_mode_probed_add(connector, newmode);
2240 					modes++;
2241 				}
2242 			}
2243 		}
2244 	}
2245 
2246 	return modes;
2247 }
2248 
2249 static void
2250 do_cvt_mode(struct detailed_timing *timing, void *c)
2251 {
2252 	struct detailed_mode_closure *closure = c;
2253 	struct detailed_non_pixel *data = &timing->data.other_data;
2254 
2255 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2256 		closure->modes += drm_cvt_modes(closure->connector, timing);
2257 }
2258 
2259 static int
2260 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2261 {
2262 	struct detailed_mode_closure closure = {
2263 		connector, edid, 0, 0, 0
2264 	};
2265 
2266 	if (version_greater(edid, 1, 2))
2267 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2268 
2269 	/* XXX should also look for CVT codes in VTB blocks */
2270 
2271 	return closure.modes;
2272 }
2273 
2274 static void
2275 do_detailed_mode(struct detailed_timing *timing, void *c)
2276 {
2277 	struct detailed_mode_closure *closure = c;
2278 	struct drm_display_mode *newmode;
2279 
2280 	if (timing->pixel_clock) {
2281 		newmode = drm_mode_detailed(closure->connector->dev,
2282 					    closure->edid, timing,
2283 					    closure->quirks);
2284 		if (!newmode)
2285 			return;
2286 
2287 		if (closure->preferred)
2288 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2289 
2290 		drm_mode_probed_add(closure->connector, newmode);
2291 		closure->modes++;
2292 		closure->preferred = 0;
2293 	}
2294 }
2295 
2296 /*
2297  * add_detailed_modes - Add modes from detailed timings
2298  * @connector: attached connector
2299  * @edid: EDID block to scan
2300  * @quirks: quirks to apply
2301  */
2302 static int
2303 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2304 		   u32 quirks)
2305 {
2306 	struct detailed_mode_closure closure = {
2307 		connector,
2308 		edid,
2309 		1,
2310 		quirks,
2311 		0
2312 	};
2313 
2314 	if (closure.preferred && !version_greater(edid, 1, 3))
2315 		closure.preferred =
2316 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2317 
2318 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2319 
2320 	return closure.modes;
2321 }
2322 
2323 #define AUDIO_BLOCK	0x01
2324 #define VIDEO_BLOCK     0x02
2325 #define VENDOR_BLOCK    0x03
2326 #define SPEAKER_BLOCK	0x04
2327 #define VIDEO_CAPABILITY_BLOCK	0x07
2328 #define EDID_BASIC_AUDIO	(1 << 6)
2329 #define EDID_CEA_YCRCB444	(1 << 5)
2330 #define EDID_CEA_YCRCB422	(1 << 4)
2331 #define EDID_CEA_VCDB_QS	(1 << 6)
2332 
2333 /*
2334  * Search EDID for CEA extension block.
2335  */
2336 static u8 *drm_find_cea_extension(struct edid *edid)
2337 {
2338 	u8 *edid_ext = NULL;
2339 	int i;
2340 
2341 	/* No EDID or EDID extensions */
2342 	if (edid == NULL || edid->extensions == 0)
2343 		return NULL;
2344 
2345 	/* Find CEA extension */
2346 	for (i = 0; i < edid->extensions; i++) {
2347 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2348 		if (edid_ext[0] == CEA_EXT)
2349 			break;
2350 	}
2351 
2352 	if (i == edid->extensions)
2353 		return NULL;
2354 
2355 	return edid_ext;
2356 }
2357 
2358 /*
2359  * Calculate the alternate clock for the CEA mode
2360  * (60Hz vs. 59.94Hz etc.)
2361  */
2362 static unsigned int
2363 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2364 {
2365 	unsigned int clock = cea_mode->clock;
2366 
2367 	if (cea_mode->vrefresh % 6 != 0)
2368 		return clock;
2369 
2370 	/*
2371 	 * edid_cea_modes contains the 59.94Hz
2372 	 * variant for 240 and 480 line modes,
2373 	 * and the 60Hz variant otherwise.
2374 	 */
2375 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2376 		clock = clock * 1001 / 1000;
2377 	else
2378 		clock = DIV_ROUND_UP(clock * 1000, 1001);
2379 
2380 	return clock;
2381 }
2382 
2383 /**
2384  * drm_match_cea_mode - look for a CEA mode matching given mode
2385  * @to_match: display mode
2386  *
2387  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2388  * mode.
2389  */
2390 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2391 {
2392 	u8 mode;
2393 
2394 	if (!to_match->clock)
2395 		return 0;
2396 
2397 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2398 		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2399 		unsigned int clock1, clock2;
2400 
2401 		/* Check both 60Hz and 59.94Hz */
2402 		clock1 = cea_mode->clock;
2403 		clock2 = cea_mode_alternate_clock(cea_mode);
2404 
2405 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2406 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2407 		    drm_mode_equal_no_clocks(to_match, cea_mode))
2408 			return mode + 1;
2409 	}
2410 	return 0;
2411 }
2412 EXPORT_SYMBOL(drm_match_cea_mode);
2413 
2414 /*
2415  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2416  * specific block).
2417  *
2418  * It's almost like cea_mode_alternate_clock(), we just need to add an
2419  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2420  * one.
2421  */
2422 static unsigned int
2423 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2424 {
2425 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2426 		return hdmi_mode->clock;
2427 
2428 	return cea_mode_alternate_clock(hdmi_mode);
2429 }
2430 
2431 /*
2432  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2433  * @to_match: display mode
2434  *
2435  * An HDMI mode is one defined in the HDMI vendor specific block.
2436  *
2437  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2438  */
2439 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2440 {
2441 	u8 mode;
2442 
2443 	if (!to_match->clock)
2444 		return 0;
2445 
2446 	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2447 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2448 		unsigned int clock1, clock2;
2449 
2450 		/* Make sure to also match alternate clocks */
2451 		clock1 = hdmi_mode->clock;
2452 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2453 
2454 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2455 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2456 		    drm_mode_equal_no_clocks(to_match, hdmi_mode))
2457 			return mode + 1;
2458 	}
2459 	return 0;
2460 }
2461 
2462 static int
2463 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2464 {
2465 	struct drm_device *dev = connector->dev;
2466 	struct drm_display_mode *mode, *tmp;
2467 	LIST_HEAD(list);
2468 	int modes = 0;
2469 
2470 	/* Don't add CEA modes if the CEA extension block is missing */
2471 	if (!drm_find_cea_extension(edid))
2472 		return 0;
2473 
2474 	/*
2475 	 * Go through all probed modes and create a new mode
2476 	 * with the alternate clock for certain CEA modes.
2477 	 */
2478 	list_for_each_entry(mode, &connector->probed_modes, head) {
2479 		const struct drm_display_mode *cea_mode = NULL;
2480 		struct drm_display_mode *newmode;
2481 		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2482 		unsigned int clock1, clock2;
2483 
2484 		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2485 			cea_mode = &edid_cea_modes[mode_idx];
2486 			clock2 = cea_mode_alternate_clock(cea_mode);
2487 		} else {
2488 			mode_idx = drm_match_hdmi_mode(mode) - 1;
2489 			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2490 				cea_mode = &edid_4k_modes[mode_idx];
2491 				clock2 = hdmi_mode_alternate_clock(cea_mode);
2492 			}
2493 		}
2494 
2495 		if (!cea_mode)
2496 			continue;
2497 
2498 		clock1 = cea_mode->clock;
2499 
2500 		if (clock1 == clock2)
2501 			continue;
2502 
2503 		if (mode->clock != clock1 && mode->clock != clock2)
2504 			continue;
2505 
2506 		newmode = drm_mode_duplicate(dev, cea_mode);
2507 		if (!newmode)
2508 			continue;
2509 
2510 		/*
2511 		 * The current mode could be either variant. Make
2512 		 * sure to pick the "other" clock for the new mode.
2513 		 */
2514 		if (mode->clock != clock1)
2515 			newmode->clock = clock1;
2516 		else
2517 			newmode->clock = clock2;
2518 
2519 		list_add_tail(&newmode->head, &list);
2520 	}
2521 
2522 	list_for_each_entry_safe(mode, tmp, &list, head) {
2523 		list_del(&mode->head);
2524 		drm_mode_probed_add(connector, mode);
2525 		modes++;
2526 	}
2527 
2528 	return modes;
2529 }
2530 
2531 static int
2532 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2533 {
2534 	struct drm_device *dev = connector->dev;
2535 	const u8 *mode;
2536 	u8 cea_mode;
2537 	int modes = 0;
2538 
2539 	for (mode = db; mode < db + len; mode++) {
2540 		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2541 		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2542 			struct drm_display_mode *newmode;
2543 			newmode = drm_mode_duplicate(dev,
2544 						     &edid_cea_modes[cea_mode]);
2545 			if (newmode) {
2546 				newmode->vrefresh = 0;
2547 				drm_mode_probed_add(connector, newmode);
2548 				modes++;
2549 			}
2550 		}
2551 	}
2552 
2553 	return modes;
2554 }
2555 
2556 /*
2557  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2558  * @connector: connector corresponding to the HDMI sink
2559  * @db: start of the CEA vendor specific block
2560  * @len: length of the CEA block payload, ie. one can access up to db[len]
2561  *
2562  * Parses the HDMI VSDB looking for modes to add to @connector.
2563  */
2564 static int
2565 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
2566 {
2567 	struct drm_device *dev = connector->dev;
2568 	int modes = 0, offset = 0, i;
2569 	u8 vic_len;
2570 
2571 	if (len < 8)
2572 		goto out;
2573 
2574 	/* no HDMI_Video_Present */
2575 	if (!(db[8] & (1 << 5)))
2576 		goto out;
2577 
2578 	/* Latency_Fields_Present */
2579 	if (db[8] & (1 << 7))
2580 		offset += 2;
2581 
2582 	/* I_Latency_Fields_Present */
2583 	if (db[8] & (1 << 6))
2584 		offset += 2;
2585 
2586 	/* the declared length is not long enough for the 2 first bytes
2587 	 * of additional video format capabilities */
2588 	offset += 2;
2589 	if (len < (8 + offset))
2590 		goto out;
2591 
2592 	vic_len = db[8 + offset] >> 5;
2593 
2594 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2595 		struct drm_display_mode *newmode;
2596 		u8 vic;
2597 
2598 		vic = db[9 + offset + i];
2599 
2600 		vic--; /* VICs start at 1 */
2601 		if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2602 			DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2603 			continue;
2604 		}
2605 
2606 		newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2607 		if (!newmode)
2608 			continue;
2609 
2610 		drm_mode_probed_add(connector, newmode);
2611 		modes++;
2612 	}
2613 
2614 out:
2615 	return modes;
2616 }
2617 
2618 static int
2619 cea_db_payload_len(const u8 *db)
2620 {
2621 	return db[0] & 0x1f;
2622 }
2623 
2624 static int
2625 cea_db_tag(const u8 *db)
2626 {
2627 	return db[0] >> 5;
2628 }
2629 
2630 static int
2631 cea_revision(const u8 *cea)
2632 {
2633 	return cea[1];
2634 }
2635 
2636 static int
2637 cea_db_offsets(const u8 *cea, int *start, int *end)
2638 {
2639 	/* Data block offset in CEA extension block */
2640 	*start = 4;
2641 	*end = cea[2];
2642 	if (*end == 0)
2643 		*end = 127;
2644 	if (*end < 4 || *end > 127)
2645 		return -ERANGE;
2646 	return 0;
2647 }
2648 
2649 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2650 {
2651 	int hdmi_id;
2652 
2653 	if (cea_db_tag(db) != VENDOR_BLOCK)
2654 		return false;
2655 
2656 	if (cea_db_payload_len(db) < 5)
2657 		return false;
2658 
2659 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2660 
2661 	return hdmi_id == HDMI_IEEE_OUI;
2662 }
2663 
2664 #define for_each_cea_db(cea, i, start, end) \
2665 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2666 
2667 static int
2668 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2669 {
2670 	const u8 *cea = drm_find_cea_extension(edid);
2671 	const u8 *db;
2672 	u8 dbl;
2673 	int modes = 0;
2674 
2675 	if (cea && cea_revision(cea) >= 3) {
2676 		int i, start, end;
2677 
2678 		if (cea_db_offsets(cea, &start, &end))
2679 			return 0;
2680 
2681 		for_each_cea_db(cea, i, start, end) {
2682 			db = &cea[i];
2683 			dbl = cea_db_payload_len(db);
2684 
2685 			if (cea_db_tag(db) == VIDEO_BLOCK)
2686 				modes += do_cea_modes(connector, db + 1, dbl);
2687 			else if (cea_db_is_hdmi_vsdb(db))
2688 				modes += do_hdmi_vsdb_modes(connector, db, dbl);
2689 		}
2690 	}
2691 
2692 	return modes;
2693 }
2694 
2695 static void
2696 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2697 {
2698 	u8 len = cea_db_payload_len(db);
2699 
2700 	if (len >= 6) {
2701 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2702 		connector->dvi_dual = db[6] & 1;
2703 	}
2704 	if (len >= 7)
2705 		connector->max_tmds_clock = db[7] * 5;
2706 	if (len >= 8) {
2707 		connector->latency_present[0] = db[8] >> 7;
2708 		connector->latency_present[1] = (db[8] >> 6) & 1;
2709 	}
2710 	if (len >= 9)
2711 		connector->video_latency[0] = db[9];
2712 	if (len >= 10)
2713 		connector->audio_latency[0] = db[10];
2714 	if (len >= 11)
2715 		connector->video_latency[1] = db[11];
2716 	if (len >= 12)
2717 		connector->audio_latency[1] = db[12];
2718 
2719 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2720 		    "max TMDS clock %d, "
2721 		    "latency present %d %d, "
2722 		    "video latency %d %d, "
2723 		    "audio latency %d %d\n",
2724 		    connector->dvi_dual,
2725 		    connector->max_tmds_clock,
2726 	      (int) connector->latency_present[0],
2727 	      (int) connector->latency_present[1],
2728 		    connector->video_latency[0],
2729 		    connector->video_latency[1],
2730 		    connector->audio_latency[0],
2731 		    connector->audio_latency[1]);
2732 }
2733 
2734 static void
2735 monitor_name(struct detailed_timing *t, void *data)
2736 {
2737 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2738 		*(u8 **)data = t->data.other_data.data.str.str;
2739 }
2740 
2741 /**
2742  * drm_edid_to_eld - build ELD from EDID
2743  * @connector: connector corresponding to the HDMI/DP sink
2744  * @edid: EDID to parse
2745  *
2746  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2747  * Some ELD fields are left to the graphics driver caller:
2748  * - Conn_Type
2749  * - HDCP
2750  * - Port_ID
2751  */
2752 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2753 {
2754 	uint8_t *eld = connector->eld;
2755 	u8 *cea;
2756 	u8 *name;
2757 	u8 *db;
2758 	int sad_count = 0;
2759 	int mnl;
2760 	int dbl;
2761 
2762 	memset(eld, 0, sizeof(connector->eld));
2763 
2764 	cea = drm_find_cea_extension(edid);
2765 	if (!cea) {
2766 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2767 		return;
2768 	}
2769 
2770 	name = NULL;
2771 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2772 	for (mnl = 0; name && mnl < 13; mnl++) {
2773 		if (name[mnl] == 0x0a)
2774 			break;
2775 		eld[20 + mnl] = name[mnl];
2776 	}
2777 	eld[4] = (cea[1] << 5) | mnl;
2778 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2779 
2780 	eld[0] = 2 << 3;		/* ELD version: 2 */
2781 
2782 	eld[16] = edid->mfg_id[0];
2783 	eld[17] = edid->mfg_id[1];
2784 	eld[18] = edid->prod_code[0];
2785 	eld[19] = edid->prod_code[1];
2786 
2787 	if (cea_revision(cea) >= 3) {
2788 		int i, start, end;
2789 
2790 		if (cea_db_offsets(cea, &start, &end)) {
2791 			start = 0;
2792 			end = 0;
2793 		}
2794 
2795 		for_each_cea_db(cea, i, start, end) {
2796 			db = &cea[i];
2797 			dbl = cea_db_payload_len(db);
2798 
2799 			switch (cea_db_tag(db)) {
2800 			case AUDIO_BLOCK:
2801 				/* Audio Data Block, contains SADs */
2802 				sad_count = dbl / 3;
2803 				if (dbl >= 1)
2804 					memcpy(eld + 20 + mnl, &db[1], dbl);
2805 				break;
2806 			case SPEAKER_BLOCK:
2807 				/* Speaker Allocation Data Block */
2808 				if (dbl >= 1)
2809 					eld[7] = db[1];
2810 				break;
2811 			case VENDOR_BLOCK:
2812 				/* HDMI Vendor-Specific Data Block */
2813 				if (cea_db_is_hdmi_vsdb(db))
2814 					parse_hdmi_vsdb(connector, db);
2815 				break;
2816 			default:
2817 				break;
2818 			}
2819 		}
2820 	}
2821 	eld[5] |= sad_count << 4;
2822 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
2823 
2824 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
2825 }
2826 EXPORT_SYMBOL(drm_edid_to_eld);
2827 
2828 /**
2829  * drm_edid_to_sad - extracts SADs from EDID
2830  * @edid: EDID to parse
2831  * @sads: pointer that will be set to the extracted SADs
2832  *
2833  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
2834  * Note: returned pointer needs to be kfreed
2835  *
2836  * Return number of found SADs or negative number on error.
2837  */
2838 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
2839 {
2840 	int count = 0;
2841 	int i, start, end, dbl;
2842 	u8 *cea;
2843 
2844 	cea = drm_find_cea_extension(edid);
2845 	if (!cea) {
2846 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
2847 		return -ENOENT;
2848 	}
2849 
2850 	if (cea_revision(cea) < 3) {
2851 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
2852 		return -ENOTSUPP;
2853 	}
2854 
2855 	if (cea_db_offsets(cea, &start, &end)) {
2856 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
2857 		return -EPROTO;
2858 	}
2859 
2860 	for_each_cea_db(cea, i, start, end) {
2861 		u8 *db = &cea[i];
2862 
2863 		if (cea_db_tag(db) == AUDIO_BLOCK) {
2864 			int j;
2865 			dbl = cea_db_payload_len(db);
2866 
2867 			count = dbl / 3; /* SAD is 3B */
2868 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
2869 			if (!*sads)
2870 				return -ENOMEM;
2871 			for (j = 0; j < count; j++) {
2872 				u8 *sad = &db[1 + j * 3];
2873 
2874 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
2875 				(*sads)[j].channels = sad[0] & 0x7;
2876 				(*sads)[j].freq = sad[1] & 0x7F;
2877 				(*sads)[j].byte2 = sad[2];
2878 			}
2879 			break;
2880 		}
2881 	}
2882 
2883 	return count;
2884 }
2885 EXPORT_SYMBOL(drm_edid_to_sad);
2886 
2887 /**
2888  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
2889  * @edid: EDID to parse
2890  * @sadb: pointer to the speaker block
2891  *
2892  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
2893  * Note: returned pointer needs to be kfreed
2894  *
2895  * Return number of found Speaker Allocation Blocks or negative number on error.
2896  */
2897 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
2898 {
2899 	int count = 0;
2900 	int i, start, end, dbl;
2901 	const u8 *cea;
2902 
2903 	cea = drm_find_cea_extension(edid);
2904 	if (!cea) {
2905 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
2906 		return -ENOENT;
2907 	}
2908 
2909 	if (cea_revision(cea) < 3) {
2910 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
2911 		return -ENOTSUPP;
2912 	}
2913 
2914 	if (cea_db_offsets(cea, &start, &end)) {
2915 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
2916 		return -EPROTO;
2917 	}
2918 
2919 	for_each_cea_db(cea, i, start, end) {
2920 		const u8 *db = &cea[i];
2921 
2922 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
2923 			dbl = cea_db_payload_len(db);
2924 
2925 			/* Speaker Allocation Data Block */
2926 			if (dbl == 3) {
2927 				*sadb = kmalloc(dbl, GFP_KERNEL);
2928 				if (!*sadb)
2929 					return -ENOMEM;
2930 				memcpy(*sadb, &db[1], dbl);
2931 				count = dbl;
2932 				break;
2933 			}
2934 		}
2935 	}
2936 
2937 	return count;
2938 }
2939 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
2940 
2941 /**
2942  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
2943  * @connector: connector associated with the HDMI/DP sink
2944  * @mode: the display mode
2945  */
2946 int drm_av_sync_delay(struct drm_connector *connector,
2947 		      struct drm_display_mode *mode)
2948 {
2949 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
2950 	int a, v;
2951 
2952 	if (!connector->latency_present[0])
2953 		return 0;
2954 	if (!connector->latency_present[1])
2955 		i = 0;
2956 
2957 	a = connector->audio_latency[i];
2958 	v = connector->video_latency[i];
2959 
2960 	/*
2961 	 * HDMI/DP sink doesn't support audio or video?
2962 	 */
2963 	if (a == 255 || v == 255)
2964 		return 0;
2965 
2966 	/*
2967 	 * Convert raw EDID values to millisecond.
2968 	 * Treat unknown latency as 0ms.
2969 	 */
2970 	if (a)
2971 		a = min(2 * (a - 1), 500);
2972 	if (v)
2973 		v = min(2 * (v - 1), 500);
2974 
2975 	return max(v - a, 0);
2976 }
2977 EXPORT_SYMBOL(drm_av_sync_delay);
2978 
2979 /**
2980  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
2981  * @encoder: the encoder just changed display mode
2982  * @mode: the adjusted display mode
2983  *
2984  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
2985  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
2986  */
2987 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
2988 				     struct drm_display_mode *mode)
2989 {
2990 	struct drm_connector *connector;
2991 	struct drm_device *dev = encoder->dev;
2992 
2993 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
2994 		if (connector->encoder == encoder && connector->eld[0])
2995 			return connector;
2996 
2997 	return NULL;
2998 }
2999 EXPORT_SYMBOL(drm_select_eld);
3000 
3001 /**
3002  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3003  * @edid: monitor EDID information
3004  *
3005  * Parse the CEA extension according to CEA-861-B.
3006  * Return true if HDMI, false if not or unknown.
3007  */
3008 bool drm_detect_hdmi_monitor(struct edid *edid)
3009 {
3010 	u8 *edid_ext;
3011 	int i;
3012 	int start_offset, end_offset;
3013 
3014 	edid_ext = drm_find_cea_extension(edid);
3015 	if (!edid_ext)
3016 		return false;
3017 
3018 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3019 		return false;
3020 
3021 	/*
3022 	 * Because HDMI identifier is in Vendor Specific Block,
3023 	 * search it from all data blocks of CEA extension.
3024 	 */
3025 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3026 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3027 			return true;
3028 	}
3029 
3030 	return false;
3031 }
3032 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3033 
3034 /**
3035  * drm_detect_monitor_audio - check monitor audio capability
3036  *
3037  * Monitor should have CEA extension block.
3038  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3039  * audio' only. If there is any audio extension block and supported
3040  * audio format, assume at least 'basic audio' support, even if 'basic
3041  * audio' is not defined in EDID.
3042  *
3043  */
3044 bool drm_detect_monitor_audio(struct edid *edid)
3045 {
3046 	u8 *edid_ext;
3047 	int i, j;
3048 	bool has_audio = false;
3049 	int start_offset, end_offset;
3050 
3051 	edid_ext = drm_find_cea_extension(edid);
3052 	if (!edid_ext)
3053 		goto end;
3054 
3055 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3056 
3057 	if (has_audio) {
3058 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3059 		goto end;
3060 	}
3061 
3062 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3063 		goto end;
3064 
3065 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3066 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3067 			has_audio = true;
3068 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3069 				DRM_DEBUG_KMS("CEA audio format %d\n",
3070 					      (edid_ext[i + j] >> 3) & 0xf);
3071 			goto end;
3072 		}
3073 	}
3074 end:
3075 	return has_audio;
3076 }
3077 EXPORT_SYMBOL(drm_detect_monitor_audio);
3078 
3079 /**
3080  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3081  *
3082  * Check whether the monitor reports the RGB quantization range selection
3083  * as supported. The AVI infoframe can then be used to inform the monitor
3084  * which quantization range (full or limited) is used.
3085  */
3086 bool drm_rgb_quant_range_selectable(struct edid *edid)
3087 {
3088 	u8 *edid_ext;
3089 	int i, start, end;
3090 
3091 	edid_ext = drm_find_cea_extension(edid);
3092 	if (!edid_ext)
3093 		return false;
3094 
3095 	if (cea_db_offsets(edid_ext, &start, &end))
3096 		return false;
3097 
3098 	for_each_cea_db(edid_ext, i, start, end) {
3099 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3100 		    cea_db_payload_len(&edid_ext[i]) == 2) {
3101 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3102 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3103 		}
3104 	}
3105 
3106 	return false;
3107 }
3108 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3109 
3110 /**
3111  * drm_add_display_info - pull display info out if present
3112  * @edid: EDID data
3113  * @info: display info (attached to connector)
3114  *
3115  * Grab any available display info and stuff it into the drm_display_info
3116  * structure that's part of the connector.  Useful for tracking bpp and
3117  * color spaces.
3118  */
3119 static void drm_add_display_info(struct edid *edid,
3120 				 struct drm_display_info *info)
3121 {
3122 	u8 *edid_ext;
3123 
3124 	info->width_mm = edid->width_cm * 10;
3125 	info->height_mm = edid->height_cm * 10;
3126 
3127 	/* driver figures it out in this case */
3128 	info->bpc = 0;
3129 	info->color_formats = 0;
3130 
3131 	if (edid->revision < 3)
3132 		return;
3133 
3134 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3135 		return;
3136 
3137 	/* Get data from CEA blocks if present */
3138 	edid_ext = drm_find_cea_extension(edid);
3139 	if (edid_ext) {
3140 		info->cea_rev = edid_ext[1];
3141 
3142 		/* The existence of a CEA block should imply RGB support */
3143 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3144 		if (edid_ext[3] & EDID_CEA_YCRCB444)
3145 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3146 		if (edid_ext[3] & EDID_CEA_YCRCB422)
3147 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3148 	}
3149 
3150 	/* Only defined for 1.4 with digital displays */
3151 	if (edid->revision < 4)
3152 		return;
3153 
3154 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3155 	case DRM_EDID_DIGITAL_DEPTH_6:
3156 		info->bpc = 6;
3157 		break;
3158 	case DRM_EDID_DIGITAL_DEPTH_8:
3159 		info->bpc = 8;
3160 		break;
3161 	case DRM_EDID_DIGITAL_DEPTH_10:
3162 		info->bpc = 10;
3163 		break;
3164 	case DRM_EDID_DIGITAL_DEPTH_12:
3165 		info->bpc = 12;
3166 		break;
3167 	case DRM_EDID_DIGITAL_DEPTH_14:
3168 		info->bpc = 14;
3169 		break;
3170 	case DRM_EDID_DIGITAL_DEPTH_16:
3171 		info->bpc = 16;
3172 		break;
3173 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3174 	default:
3175 		info->bpc = 0;
3176 		break;
3177 	}
3178 
3179 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3180 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3181 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3182 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3183 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3184 }
3185 
3186 /**
3187  * drm_add_edid_modes - add modes from EDID data, if available
3188  * @connector: connector we're probing
3189  * @edid: edid data
3190  *
3191  * Add the specified modes to the connector's mode list.
3192  *
3193  * Return number of modes added or 0 if we couldn't find any.
3194  */
3195 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3196 {
3197 	int num_modes = 0;
3198 	u32 quirks;
3199 
3200 	if (edid == NULL) {
3201 		return 0;
3202 	}
3203 	if (!drm_edid_is_valid(edid)) {
3204 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3205 			 drm_get_connector_name(connector));
3206 		return 0;
3207 	}
3208 
3209 	quirks = edid_get_quirks(edid);
3210 
3211 	/*
3212 	 * EDID spec says modes should be preferred in this order:
3213 	 * - preferred detailed mode
3214 	 * - other detailed modes from base block
3215 	 * - detailed modes from extension blocks
3216 	 * - CVT 3-byte code modes
3217 	 * - standard timing codes
3218 	 * - established timing codes
3219 	 * - modes inferred from GTF or CVT range information
3220 	 *
3221 	 * We get this pretty much right.
3222 	 *
3223 	 * XXX order for additional mode types in extension blocks?
3224 	 */
3225 	num_modes += add_detailed_modes(connector, edid, quirks);
3226 	num_modes += add_cvt_modes(connector, edid);
3227 	num_modes += add_standard_modes(connector, edid);
3228 	num_modes += add_established_modes(connector, edid);
3229 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3230 		num_modes += add_inferred_modes(connector, edid);
3231 	num_modes += add_cea_modes(connector, edid);
3232 	num_modes += add_alternate_cea_modes(connector, edid);
3233 
3234 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3235 		edid_fixup_preferred(connector, quirks);
3236 
3237 	drm_add_display_info(edid, &connector->display_info);
3238 
3239 	return num_modes;
3240 }
3241 EXPORT_SYMBOL(drm_add_edid_modes);
3242 
3243 /**
3244  * drm_add_modes_noedid - add modes for the connectors without EDID
3245  * @connector: connector we're probing
3246  * @hdisplay: the horizontal display limit
3247  * @vdisplay: the vertical display limit
3248  *
3249  * Add the specified modes to the connector's mode list. Only when the
3250  * hdisplay/vdisplay is not beyond the given limit, it will be added.
3251  *
3252  * Return number of modes added or 0 if we couldn't find any.
3253  */
3254 int drm_add_modes_noedid(struct drm_connector *connector,
3255 			int hdisplay, int vdisplay)
3256 {
3257 	int i, count, num_modes = 0;
3258 	struct drm_display_mode *mode;
3259 	struct drm_device *dev = connector->dev;
3260 
3261 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3262 	if (hdisplay < 0)
3263 		hdisplay = 0;
3264 	if (vdisplay < 0)
3265 		vdisplay = 0;
3266 
3267 	for (i = 0; i < count; i++) {
3268 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3269 		if (hdisplay && vdisplay) {
3270 			/*
3271 			 * Only when two are valid, they will be used to check
3272 			 * whether the mode should be added to the mode list of
3273 			 * the connector.
3274 			 */
3275 			if (ptr->hdisplay > hdisplay ||
3276 					ptr->vdisplay > vdisplay)
3277 				continue;
3278 		}
3279 		if (drm_mode_vrefresh(ptr) > 61)
3280 			continue;
3281 		mode = drm_mode_duplicate(dev, ptr);
3282 		if (mode) {
3283 			drm_mode_probed_add(connector, mode);
3284 			num_modes++;
3285 		}
3286 	}
3287 	return num_modes;
3288 }
3289 EXPORT_SYMBOL(drm_add_modes_noedid);
3290 
3291 /**
3292  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3293  *                                              data from a DRM display mode
3294  * @frame: HDMI AVI infoframe
3295  * @mode: DRM display mode
3296  *
3297  * Returns 0 on success or a negative error code on failure.
3298  */
3299 int
3300 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3301 					 const struct drm_display_mode *mode)
3302 {
3303 	int err;
3304 
3305 	if (!frame || !mode)
3306 		return -EINVAL;
3307 
3308 	err = hdmi_avi_infoframe_init(frame);
3309 	if (err < 0)
3310 		return err;
3311 
3312 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3313 		frame->pixel_repeat = 1;
3314 
3315 	frame->video_code = drm_match_cea_mode(mode);
3316 
3317 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3318 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3319 
3320 	return 0;
3321 }
3322 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3323 
3324 /**
3325  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3326  * data from a DRM display mode
3327  * @frame: HDMI vendor infoframe
3328  * @mode: DRM display mode
3329  *
3330  * Note that there's is a need to send HDMI vendor infoframes only when using a
3331  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3332  * function will return -EINVAL, error that can be safely ignored.
3333  *
3334  * Returns 0 on success or a negative error code on failure.
3335  */
3336 int
3337 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3338 					    const struct drm_display_mode *mode)
3339 {
3340 	int err;
3341 	u8 vic;
3342 
3343 	if (!frame || !mode)
3344 		return -EINVAL;
3345 
3346 	vic = drm_match_hdmi_mode(mode);
3347 	if (!vic)
3348 		return -EINVAL;
3349 
3350 	err = hdmi_vendor_infoframe_init(frame);
3351 	if (err < 0)
3352 		return err;
3353 
3354 	frame->vic = vic;
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
3359