xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 11930010)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/slab.h>
38 #include <linux/vga_switcheroo.h>
39 
40 #include <drm/drm_displayid.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_edid.h>
43 #include <drm/drm_encoder.h>
44 #include <drm/drm_print.h>
45 
46 #include "drm_crtc_internal.h"
47 
48 static int oui(u8 first, u8 second, u8 third)
49 {
50 	return (first << 16) | (second << 8) | third;
51 }
52 
53 #define EDID_EST_TIMINGS 16
54 #define EDID_STD_TIMINGS 8
55 #define EDID_DETAILED_TIMINGS 4
56 
57 /*
58  * EDID blocks out in the wild have a variety of bugs, try to collect
59  * them here (note that userspace may work around broken monitors first,
60  * but fixes should make their way here so that the kernel "just works"
61  * on as many displays as possible).
62  */
63 
64 /* First detailed mode wrong, use largest 60Hz mode */
65 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
66 /* Reported 135MHz pixel clock is too high, needs adjustment */
67 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
68 /* Prefer the largest mode at 75 Hz */
69 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
70 /* Detail timing is in cm not mm */
71 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
72 /* Detailed timing descriptors have bogus size values, so just take the
73  * maximum size and use that.
74  */
75 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
76 /* use +hsync +vsync for detailed mode */
77 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
78 /* Force reduced-blanking timings for detailed modes */
79 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
80 /* Force 8bpc */
81 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
82 /* Force 12bpc */
83 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
84 /* Force 6bpc */
85 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
86 /* Force 10bpc */
87 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
88 /* Non desktop display (i.e. HMD) */
89 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
90 /* Cap the DSC target bitrate to 15bpp */
91 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
92 
93 #define MICROSOFT_IEEE_OUI	0xca125c
94 
95 struct detailed_mode_closure {
96 	struct drm_connector *connector;
97 	const struct drm_edid *drm_edid;
98 	bool preferred;
99 	int modes;
100 };
101 
102 #define LEVEL_DMT	0
103 #define LEVEL_GTF	1
104 #define LEVEL_GTF2	2
105 #define LEVEL_CVT	3
106 
107 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
108 { \
109 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
110 					     product_id), \
111 	.quirks = _quirks \
112 }
113 
114 static const struct edid_quirk {
115 	u32 panel_id;
116 	u32 quirks;
117 } edid_quirk_list[] = {
118 	/* Acer AL1706 */
119 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
120 	/* Acer F51 */
121 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
122 
123 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
124 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
125 
126 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
127 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
128 
129 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
130 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
131 
132 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
133 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
134 
135 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
136 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
137 
138 	/* Belinea 10 15 55 */
139 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
140 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
141 
142 	/* Envision Peripherals, Inc. EN-7100e */
143 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
144 	/* Envision EN2028 */
145 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
146 
147 	/* Funai Electronics PM36B */
148 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
149 				       EDID_QUIRK_DETAILED_IN_CM),
150 
151 	/* LG 27GP950 */
152 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
153 
154 	/* LG 27GN950 */
155 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
156 
157 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
158 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
159 
160 	/* LG Philips LCD LP154W01-A5 */
161 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
162 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
163 
164 	/* Samsung SyncMaster 205BW.  Note: irony */
165 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
166 	/* Samsung SyncMaster 22[5-6]BW */
167 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
168 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
169 
170 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
171 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
172 
173 	/* ViewSonic VA2026w */
174 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
175 
176 	/* Medion MD 30217 PG */
177 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
178 
179 	/* Lenovo G50 */
180 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
181 
182 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
183 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
184 
185 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
186 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
187 
188 	/* Valve Index Headset */
189 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
190 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
191 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
192 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
193 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
194 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
195 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
199 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
200 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
201 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
203 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
204 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
206 
207 	/* HTC Vive and Vive Pro VR Headsets */
208 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
209 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
210 
211 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
212 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
213 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
214 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
215 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
216 
217 	/* Windows Mixed Reality Headsets */
218 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
219 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
220 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
221 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
222 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
223 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
224 
225 	/* Sony PlayStation VR Headset */
226 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
227 
228 	/* Sensics VR Headsets */
229 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
230 
231 	/* OSVR HDK and HDK2 VR Headsets */
232 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
233 };
234 
235 /*
236  * Autogenerated from the DMT spec.
237  * This table is copied from xfree86/modes/xf86EdidModes.c.
238  */
239 static const struct drm_display_mode drm_dmt_modes[] = {
240 	/* 0x01 - 640x350@85Hz */
241 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
242 		   736, 832, 0, 350, 382, 385, 445, 0,
243 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
244 	/* 0x02 - 640x400@85Hz */
245 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
246 		   736, 832, 0, 400, 401, 404, 445, 0,
247 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
248 	/* 0x03 - 720x400@85Hz */
249 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
250 		   828, 936, 0, 400, 401, 404, 446, 0,
251 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 	/* 0x04 - 640x480@60Hz */
253 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
254 		   752, 800, 0, 480, 490, 492, 525, 0,
255 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
256 	/* 0x05 - 640x480@72Hz */
257 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
258 		   704, 832, 0, 480, 489, 492, 520, 0,
259 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 	/* 0x06 - 640x480@75Hz */
261 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
262 		   720, 840, 0, 480, 481, 484, 500, 0,
263 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
264 	/* 0x07 - 640x480@85Hz */
265 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
266 		   752, 832, 0, 480, 481, 484, 509, 0,
267 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 	/* 0x08 - 800x600@56Hz */
269 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
270 		   896, 1024, 0, 600, 601, 603, 625, 0,
271 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 	/* 0x09 - 800x600@60Hz */
273 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
274 		   968, 1056, 0, 600, 601, 605, 628, 0,
275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 	/* 0x0a - 800x600@72Hz */
277 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
278 		   976, 1040, 0, 600, 637, 643, 666, 0,
279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 	/* 0x0b - 800x600@75Hz */
281 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
282 		   896, 1056, 0, 600, 601, 604, 625, 0,
283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 	/* 0x0c - 800x600@85Hz */
285 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
286 		   896, 1048, 0, 600, 601, 604, 631, 0,
287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 	/* 0x0d - 800x600@120Hz RB */
289 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
290 		   880, 960, 0, 600, 603, 607, 636, 0,
291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
292 	/* 0x0e - 848x480@60Hz */
293 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
294 		   976, 1088, 0, 480, 486, 494, 517, 0,
295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
296 	/* 0x0f - 1024x768@43Hz, interlace */
297 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
298 		   1208, 1264, 0, 768, 768, 776, 817, 0,
299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
300 		   DRM_MODE_FLAG_INTERLACE) },
301 	/* 0x10 - 1024x768@60Hz */
302 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
303 		   1184, 1344, 0, 768, 771, 777, 806, 0,
304 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
305 	/* 0x11 - 1024x768@70Hz */
306 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
307 		   1184, 1328, 0, 768, 771, 777, 806, 0,
308 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
309 	/* 0x12 - 1024x768@75Hz */
310 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
311 		   1136, 1312, 0, 768, 769, 772, 800, 0,
312 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
313 	/* 0x13 - 1024x768@85Hz */
314 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
315 		   1168, 1376, 0, 768, 769, 772, 808, 0,
316 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
317 	/* 0x14 - 1024x768@120Hz RB */
318 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
319 		   1104, 1184, 0, 768, 771, 775, 813, 0,
320 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
321 	/* 0x15 - 1152x864@75Hz */
322 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
323 		   1344, 1600, 0, 864, 865, 868, 900, 0,
324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
325 	/* 0x55 - 1280x720@60Hz */
326 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
327 		   1430, 1650, 0, 720, 725, 730, 750, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
329 	/* 0x16 - 1280x768@60Hz RB */
330 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
331 		   1360, 1440, 0, 768, 771, 778, 790, 0,
332 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
333 	/* 0x17 - 1280x768@60Hz */
334 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
335 		   1472, 1664, 0, 768, 771, 778, 798, 0,
336 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
337 	/* 0x18 - 1280x768@75Hz */
338 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
339 		   1488, 1696, 0, 768, 771, 778, 805, 0,
340 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 	/* 0x19 - 1280x768@85Hz */
342 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
343 		   1496, 1712, 0, 768, 771, 778, 809, 0,
344 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
345 	/* 0x1a - 1280x768@120Hz RB */
346 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
347 		   1360, 1440, 0, 768, 771, 778, 813, 0,
348 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
349 	/* 0x1b - 1280x800@60Hz RB */
350 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
351 		   1360, 1440, 0, 800, 803, 809, 823, 0,
352 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
353 	/* 0x1c - 1280x800@60Hz */
354 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
355 		   1480, 1680, 0, 800, 803, 809, 831, 0,
356 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
357 	/* 0x1d - 1280x800@75Hz */
358 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
359 		   1488, 1696, 0, 800, 803, 809, 838, 0,
360 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 	/* 0x1e - 1280x800@85Hz */
362 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
363 		   1496, 1712, 0, 800, 803, 809, 843, 0,
364 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
365 	/* 0x1f - 1280x800@120Hz RB */
366 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
367 		   1360, 1440, 0, 800, 803, 809, 847, 0,
368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
369 	/* 0x20 - 1280x960@60Hz */
370 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
371 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
372 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
373 	/* 0x21 - 1280x960@85Hz */
374 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
375 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
376 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 	/* 0x22 - 1280x960@120Hz RB */
378 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
379 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
380 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
381 	/* 0x23 - 1280x1024@60Hz */
382 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
383 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
385 	/* 0x24 - 1280x1024@75Hz */
386 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
387 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
388 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
389 	/* 0x25 - 1280x1024@85Hz */
390 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
391 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
392 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
393 	/* 0x26 - 1280x1024@120Hz RB */
394 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
395 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
396 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
397 	/* 0x27 - 1360x768@60Hz */
398 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
399 		   1536, 1792, 0, 768, 771, 777, 795, 0,
400 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
401 	/* 0x28 - 1360x768@120Hz RB */
402 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
403 		   1440, 1520, 0, 768, 771, 776, 813, 0,
404 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
405 	/* 0x51 - 1366x768@60Hz */
406 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
407 		   1579, 1792, 0, 768, 771, 774, 798, 0,
408 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
409 	/* 0x56 - 1366x768@60Hz */
410 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
411 		   1436, 1500, 0, 768, 769, 772, 800, 0,
412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
413 	/* 0x29 - 1400x1050@60Hz RB */
414 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
415 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
416 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
417 	/* 0x2a - 1400x1050@60Hz */
418 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
419 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
420 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
421 	/* 0x2b - 1400x1050@75Hz */
422 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
423 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
424 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
425 	/* 0x2c - 1400x1050@85Hz */
426 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
427 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
428 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 	/* 0x2d - 1400x1050@120Hz RB */
430 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
431 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
432 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
433 	/* 0x2e - 1440x900@60Hz RB */
434 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
435 		   1520, 1600, 0, 900, 903, 909, 926, 0,
436 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
437 	/* 0x2f - 1440x900@60Hz */
438 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
439 		   1672, 1904, 0, 900, 903, 909, 934, 0,
440 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
441 	/* 0x30 - 1440x900@75Hz */
442 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
443 		   1688, 1936, 0, 900, 903, 909, 942, 0,
444 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
445 	/* 0x31 - 1440x900@85Hz */
446 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
447 		   1696, 1952, 0, 900, 903, 909, 948, 0,
448 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
449 	/* 0x32 - 1440x900@120Hz RB */
450 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
451 		   1520, 1600, 0, 900, 903, 909, 953, 0,
452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
453 	/* 0x53 - 1600x900@60Hz */
454 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
455 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
456 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
457 	/* 0x33 - 1600x1200@60Hz */
458 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
459 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
460 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
461 	/* 0x34 - 1600x1200@65Hz */
462 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
463 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
465 	/* 0x35 - 1600x1200@70Hz */
466 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
467 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
468 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
469 	/* 0x36 - 1600x1200@75Hz */
470 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
471 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
473 	/* 0x37 - 1600x1200@85Hz */
474 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
475 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
476 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 	/* 0x38 - 1600x1200@120Hz RB */
478 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
479 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
480 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
481 	/* 0x39 - 1680x1050@60Hz RB */
482 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
483 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
485 	/* 0x3a - 1680x1050@60Hz */
486 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
487 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
488 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
489 	/* 0x3b - 1680x1050@75Hz */
490 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
491 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
492 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
493 	/* 0x3c - 1680x1050@85Hz */
494 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
495 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
496 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
497 	/* 0x3d - 1680x1050@120Hz RB */
498 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
499 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
501 	/* 0x3e - 1792x1344@60Hz */
502 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
503 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
504 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
505 	/* 0x3f - 1792x1344@75Hz */
506 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
507 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
508 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
509 	/* 0x40 - 1792x1344@120Hz RB */
510 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
511 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
513 	/* 0x41 - 1856x1392@60Hz */
514 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
515 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
516 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
517 	/* 0x42 - 1856x1392@75Hz */
518 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
519 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
520 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
521 	/* 0x43 - 1856x1392@120Hz RB */
522 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
523 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
524 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
525 	/* 0x52 - 1920x1080@60Hz */
526 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
527 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
528 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
529 	/* 0x44 - 1920x1200@60Hz RB */
530 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
531 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
533 	/* 0x45 - 1920x1200@60Hz */
534 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
535 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
536 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
537 	/* 0x46 - 1920x1200@75Hz */
538 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
539 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
540 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
541 	/* 0x47 - 1920x1200@85Hz */
542 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
543 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
544 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
545 	/* 0x48 - 1920x1200@120Hz RB */
546 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
547 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
548 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
549 	/* 0x49 - 1920x1440@60Hz */
550 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
551 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
552 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
553 	/* 0x4a - 1920x1440@75Hz */
554 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
555 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
556 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
557 	/* 0x4b - 1920x1440@120Hz RB */
558 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
559 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
560 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
561 	/* 0x54 - 2048x1152@60Hz */
562 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
563 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
565 	/* 0x4c - 2560x1600@60Hz RB */
566 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
567 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
568 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
569 	/* 0x4d - 2560x1600@60Hz */
570 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
571 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
572 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
573 	/* 0x4e - 2560x1600@75Hz */
574 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
575 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
576 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
577 	/* 0x4f - 2560x1600@85Hz */
578 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
579 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
580 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
581 	/* 0x50 - 2560x1600@120Hz RB */
582 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
583 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
584 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
585 	/* 0x57 - 4096x2160@60Hz RB */
586 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
587 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
588 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
589 	/* 0x58 - 4096x2160@59.94Hz RB */
590 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
591 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
592 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
593 };
594 
595 /*
596  * These more or less come from the DMT spec.  The 720x400 modes are
597  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
598  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
599  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
600  * mode.
601  *
602  * The DMT modes have been fact-checked; the rest are mild guesses.
603  */
604 static const struct drm_display_mode edid_est_modes[] = {
605 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
606 		   968, 1056, 0, 600, 601, 605, 628, 0,
607 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
608 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
609 		   896, 1024, 0, 600, 601, 603,  625, 0,
610 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
611 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
612 		   720, 840, 0, 480, 481, 484, 500, 0,
613 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
614 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
615 		   704,  832, 0, 480, 489, 492, 520, 0,
616 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
617 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
618 		   768,  864, 0, 480, 483, 486, 525, 0,
619 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
620 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
621 		   752, 800, 0, 480, 490, 492, 525, 0,
622 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
623 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
624 		   846, 900, 0, 400, 421, 423,  449, 0,
625 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
626 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
627 		   846,  900, 0, 400, 412, 414, 449, 0,
628 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
629 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
630 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
631 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
632 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
633 		   1136, 1312, 0,  768, 769, 772, 800, 0,
634 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
635 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
636 		   1184, 1328, 0,  768, 771, 777, 806, 0,
637 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
638 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
639 		   1184, 1344, 0,  768, 771, 777, 806, 0,
640 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
641 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
642 		   1208, 1264, 0, 768, 768, 776, 817, 0,
643 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
644 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
645 		   928, 1152, 0, 624, 625, 628, 667, 0,
646 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
647 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
648 		   896, 1056, 0, 600, 601, 604,  625, 0,
649 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
650 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
651 		   976, 1040, 0, 600, 637, 643, 666, 0,
652 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
653 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
654 		   1344, 1600, 0,  864, 865, 868, 900, 0,
655 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
656 };
657 
658 struct minimode {
659 	short w;
660 	short h;
661 	short r;
662 	short rb;
663 };
664 
665 static const struct minimode est3_modes[] = {
666 	/* byte 6 */
667 	{ 640, 350, 85, 0 },
668 	{ 640, 400, 85, 0 },
669 	{ 720, 400, 85, 0 },
670 	{ 640, 480, 85, 0 },
671 	{ 848, 480, 60, 0 },
672 	{ 800, 600, 85, 0 },
673 	{ 1024, 768, 85, 0 },
674 	{ 1152, 864, 75, 0 },
675 	/* byte 7 */
676 	{ 1280, 768, 60, 1 },
677 	{ 1280, 768, 60, 0 },
678 	{ 1280, 768, 75, 0 },
679 	{ 1280, 768, 85, 0 },
680 	{ 1280, 960, 60, 0 },
681 	{ 1280, 960, 85, 0 },
682 	{ 1280, 1024, 60, 0 },
683 	{ 1280, 1024, 85, 0 },
684 	/* byte 8 */
685 	{ 1360, 768, 60, 0 },
686 	{ 1440, 900, 60, 1 },
687 	{ 1440, 900, 60, 0 },
688 	{ 1440, 900, 75, 0 },
689 	{ 1440, 900, 85, 0 },
690 	{ 1400, 1050, 60, 1 },
691 	{ 1400, 1050, 60, 0 },
692 	{ 1400, 1050, 75, 0 },
693 	/* byte 9 */
694 	{ 1400, 1050, 85, 0 },
695 	{ 1680, 1050, 60, 1 },
696 	{ 1680, 1050, 60, 0 },
697 	{ 1680, 1050, 75, 0 },
698 	{ 1680, 1050, 85, 0 },
699 	{ 1600, 1200, 60, 0 },
700 	{ 1600, 1200, 65, 0 },
701 	{ 1600, 1200, 70, 0 },
702 	/* byte 10 */
703 	{ 1600, 1200, 75, 0 },
704 	{ 1600, 1200, 85, 0 },
705 	{ 1792, 1344, 60, 0 },
706 	{ 1792, 1344, 75, 0 },
707 	{ 1856, 1392, 60, 0 },
708 	{ 1856, 1392, 75, 0 },
709 	{ 1920, 1200, 60, 1 },
710 	{ 1920, 1200, 60, 0 },
711 	/* byte 11 */
712 	{ 1920, 1200, 75, 0 },
713 	{ 1920, 1200, 85, 0 },
714 	{ 1920, 1440, 60, 0 },
715 	{ 1920, 1440, 75, 0 },
716 };
717 
718 static const struct minimode extra_modes[] = {
719 	{ 1024, 576,  60, 0 },
720 	{ 1366, 768,  60, 0 },
721 	{ 1600, 900,  60, 0 },
722 	{ 1680, 945,  60, 0 },
723 	{ 1920, 1080, 60, 0 },
724 	{ 2048, 1152, 60, 0 },
725 	{ 2048, 1536, 60, 0 },
726 };
727 
728 /*
729  * From CEA/CTA-861 spec.
730  *
731  * Do not access directly, instead always use cea_mode_for_vic().
732  */
733 static const struct drm_display_mode edid_cea_modes_1[] = {
734 	/* 1 - 640x480@60Hz 4:3 */
735 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
736 		   752, 800, 0, 480, 490, 492, 525, 0,
737 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
738 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
739 	/* 2 - 720x480@60Hz 4:3 */
740 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
741 		   798, 858, 0, 480, 489, 495, 525, 0,
742 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
743 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
744 	/* 3 - 720x480@60Hz 16:9 */
745 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
746 		   798, 858, 0, 480, 489, 495, 525, 0,
747 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
748 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
749 	/* 4 - 1280x720@60Hz 16:9 */
750 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
751 		   1430, 1650, 0, 720, 725, 730, 750, 0,
752 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
753 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
754 	/* 5 - 1920x1080i@60Hz 16:9 */
755 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
756 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
757 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
758 		   DRM_MODE_FLAG_INTERLACE),
759 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
760 	/* 6 - 720(1440)x480i@60Hz 4:3 */
761 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
762 		   801, 858, 0, 480, 488, 494, 525, 0,
763 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
764 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
765 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
766 	/* 7 - 720(1440)x480i@60Hz 16:9 */
767 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
768 		   801, 858, 0, 480, 488, 494, 525, 0,
769 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
770 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
771 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 	/* 8 - 720(1440)x240@60Hz 4:3 */
773 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
774 		   801, 858, 0, 240, 244, 247, 262, 0,
775 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
776 		   DRM_MODE_FLAG_DBLCLK),
777 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
778 	/* 9 - 720(1440)x240@60Hz 16:9 */
779 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
780 		   801, 858, 0, 240, 244, 247, 262, 0,
781 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
782 		   DRM_MODE_FLAG_DBLCLK),
783 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
784 	/* 10 - 2880x480i@60Hz 4:3 */
785 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
786 		   3204, 3432, 0, 480, 488, 494, 525, 0,
787 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
788 		   DRM_MODE_FLAG_INTERLACE),
789 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
790 	/* 11 - 2880x480i@60Hz 16:9 */
791 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
792 		   3204, 3432, 0, 480, 488, 494, 525, 0,
793 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
794 		   DRM_MODE_FLAG_INTERLACE),
795 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
796 	/* 12 - 2880x240@60Hz 4:3 */
797 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
798 		   3204, 3432, 0, 240, 244, 247, 262, 0,
799 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
800 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
801 	/* 13 - 2880x240@60Hz 16:9 */
802 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
803 		   3204, 3432, 0, 240, 244, 247, 262, 0,
804 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
805 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
806 	/* 14 - 1440x480@60Hz 4:3 */
807 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
808 		   1596, 1716, 0, 480, 489, 495, 525, 0,
809 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
810 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
811 	/* 15 - 1440x480@60Hz 16:9 */
812 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
813 		   1596, 1716, 0, 480, 489, 495, 525, 0,
814 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
815 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
816 	/* 16 - 1920x1080@60Hz 16:9 */
817 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
818 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
819 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821 	/* 17 - 720x576@50Hz 4:3 */
822 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
823 		   796, 864, 0, 576, 581, 586, 625, 0,
824 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
825 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
826 	/* 18 - 720x576@50Hz 16:9 */
827 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
828 		   796, 864, 0, 576, 581, 586, 625, 0,
829 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
830 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
831 	/* 19 - 1280x720@50Hz 16:9 */
832 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
833 		   1760, 1980, 0, 720, 725, 730, 750, 0,
834 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
835 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
836 	/* 20 - 1920x1080i@50Hz 16:9 */
837 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
838 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
839 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
840 		   DRM_MODE_FLAG_INTERLACE),
841 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
842 	/* 21 - 720(1440)x576i@50Hz 4:3 */
843 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
844 		   795, 864, 0, 576, 580, 586, 625, 0,
845 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
846 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
847 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
848 	/* 22 - 720(1440)x576i@50Hz 16:9 */
849 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
850 		   795, 864, 0, 576, 580, 586, 625, 0,
851 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
852 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
853 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 	/* 23 - 720(1440)x288@50Hz 4:3 */
855 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
856 		   795, 864, 0, 288, 290, 293, 312, 0,
857 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
858 		   DRM_MODE_FLAG_DBLCLK),
859 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
860 	/* 24 - 720(1440)x288@50Hz 16:9 */
861 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
862 		   795, 864, 0, 288, 290, 293, 312, 0,
863 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
864 		   DRM_MODE_FLAG_DBLCLK),
865 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
866 	/* 25 - 2880x576i@50Hz 4:3 */
867 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
868 		   3180, 3456, 0, 576, 580, 586, 625, 0,
869 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
870 		   DRM_MODE_FLAG_INTERLACE),
871 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
872 	/* 26 - 2880x576i@50Hz 16:9 */
873 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
874 		   3180, 3456, 0, 576, 580, 586, 625, 0,
875 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
876 		   DRM_MODE_FLAG_INTERLACE),
877 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
878 	/* 27 - 2880x288@50Hz 4:3 */
879 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
880 		   3180, 3456, 0, 288, 290, 293, 312, 0,
881 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
882 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
883 	/* 28 - 2880x288@50Hz 16:9 */
884 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
885 		   3180, 3456, 0, 288, 290, 293, 312, 0,
886 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
887 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
888 	/* 29 - 1440x576@50Hz 4:3 */
889 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
890 		   1592, 1728, 0, 576, 581, 586, 625, 0,
891 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
892 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
893 	/* 30 - 1440x576@50Hz 16:9 */
894 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
895 		   1592, 1728, 0, 576, 581, 586, 625, 0,
896 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
897 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
898 	/* 31 - 1920x1080@50Hz 16:9 */
899 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
900 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
901 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
902 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
903 	/* 32 - 1920x1080@24Hz 16:9 */
904 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
905 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
906 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
907 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
908 	/* 33 - 1920x1080@25Hz 16:9 */
909 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
910 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
911 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
912 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
913 	/* 34 - 1920x1080@30Hz 16:9 */
914 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
915 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
916 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
917 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
918 	/* 35 - 2880x480@60Hz 4:3 */
919 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
920 		   3192, 3432, 0, 480, 489, 495, 525, 0,
921 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
922 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
923 	/* 36 - 2880x480@60Hz 16:9 */
924 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
925 		   3192, 3432, 0, 480, 489, 495, 525, 0,
926 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
927 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
928 	/* 37 - 2880x576@50Hz 4:3 */
929 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
930 		   3184, 3456, 0, 576, 581, 586, 625, 0,
931 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
932 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
933 	/* 38 - 2880x576@50Hz 16:9 */
934 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
935 		   3184, 3456, 0, 576, 581, 586, 625, 0,
936 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
937 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
938 	/* 39 - 1920x1080i@50Hz 16:9 */
939 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
940 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
941 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
942 		   DRM_MODE_FLAG_INTERLACE),
943 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 	/* 40 - 1920x1080i@100Hz 16:9 */
945 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
946 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
947 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
948 		   DRM_MODE_FLAG_INTERLACE),
949 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
950 	/* 41 - 1280x720@100Hz 16:9 */
951 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
952 		   1760, 1980, 0, 720, 725, 730, 750, 0,
953 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
954 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
955 	/* 42 - 720x576@100Hz 4:3 */
956 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
957 		   796, 864, 0, 576, 581, 586, 625, 0,
958 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
959 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
960 	/* 43 - 720x576@100Hz 16:9 */
961 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
962 		   796, 864, 0, 576, 581, 586, 625, 0,
963 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
964 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
965 	/* 44 - 720(1440)x576i@100Hz 4:3 */
966 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
967 		   795, 864, 0, 576, 580, 586, 625, 0,
968 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
969 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
970 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
971 	/* 45 - 720(1440)x576i@100Hz 16:9 */
972 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
973 		   795, 864, 0, 576, 580, 586, 625, 0,
974 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
975 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
976 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977 	/* 46 - 1920x1080i@120Hz 16:9 */
978 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
979 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
980 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
981 		   DRM_MODE_FLAG_INTERLACE),
982 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
983 	/* 47 - 1280x720@120Hz 16:9 */
984 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
985 		   1430, 1650, 0, 720, 725, 730, 750, 0,
986 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
987 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
988 	/* 48 - 720x480@120Hz 4:3 */
989 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
990 		   798, 858, 0, 480, 489, 495, 525, 0,
991 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
992 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
993 	/* 49 - 720x480@120Hz 16:9 */
994 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
995 		   798, 858, 0, 480, 489, 495, 525, 0,
996 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
997 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
998 	/* 50 - 720(1440)x480i@120Hz 4:3 */
999 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1000 		   801, 858, 0, 480, 488, 494, 525, 0,
1001 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1002 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1003 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1004 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1005 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1006 		   801, 858, 0, 480, 488, 494, 525, 0,
1007 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1008 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1009 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1010 	/* 52 - 720x576@200Hz 4:3 */
1011 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1012 		   796, 864, 0, 576, 581, 586, 625, 0,
1013 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1014 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1015 	/* 53 - 720x576@200Hz 16:9 */
1016 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1017 		   796, 864, 0, 576, 581, 586, 625, 0,
1018 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1019 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1020 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1021 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1022 		   795, 864, 0, 576, 580, 586, 625, 0,
1023 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1024 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1025 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1026 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1027 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1028 		   795, 864, 0, 576, 580, 586, 625, 0,
1029 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1030 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1031 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1032 	/* 56 - 720x480@240Hz 4:3 */
1033 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1034 		   798, 858, 0, 480, 489, 495, 525, 0,
1035 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1036 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1037 	/* 57 - 720x480@240Hz 16:9 */
1038 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1039 		   798, 858, 0, 480, 489, 495, 525, 0,
1040 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1041 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1042 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1043 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1044 		   801, 858, 0, 480, 488, 494, 525, 0,
1045 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1046 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1047 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1048 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1049 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1050 		   801, 858, 0, 480, 488, 494, 525, 0,
1051 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1052 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1053 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1054 	/* 60 - 1280x720@24Hz 16:9 */
1055 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1056 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1057 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1058 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1059 	/* 61 - 1280x720@25Hz 16:9 */
1060 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1061 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1062 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1063 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1064 	/* 62 - 1280x720@30Hz 16:9 */
1065 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1066 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1067 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1068 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1069 	/* 63 - 1920x1080@120Hz 16:9 */
1070 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1071 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1072 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1073 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1074 	/* 64 - 1920x1080@100Hz 16:9 */
1075 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1076 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1077 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1078 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1079 	/* 65 - 1280x720@24Hz 64:27 */
1080 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1081 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1083 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1084 	/* 66 - 1280x720@25Hz 64:27 */
1085 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1086 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1087 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1088 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1089 	/* 67 - 1280x720@30Hz 64:27 */
1090 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1091 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1092 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1093 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1094 	/* 68 - 1280x720@50Hz 64:27 */
1095 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1096 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1097 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1098 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1099 	/* 69 - 1280x720@60Hz 64:27 */
1100 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1101 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1102 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1103 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1104 	/* 70 - 1280x720@100Hz 64:27 */
1105 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1106 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1107 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1108 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1109 	/* 71 - 1280x720@120Hz 64:27 */
1110 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1111 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1112 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1113 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1114 	/* 72 - 1920x1080@24Hz 64:27 */
1115 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1116 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1117 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1118 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1119 	/* 73 - 1920x1080@25Hz 64:27 */
1120 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1121 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1122 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1123 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1124 	/* 74 - 1920x1080@30Hz 64:27 */
1125 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1126 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1127 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1128 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1129 	/* 75 - 1920x1080@50Hz 64:27 */
1130 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1131 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1132 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1133 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1134 	/* 76 - 1920x1080@60Hz 64:27 */
1135 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1136 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1137 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1138 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1139 	/* 77 - 1920x1080@100Hz 64:27 */
1140 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1141 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1142 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1143 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1144 	/* 78 - 1920x1080@120Hz 64:27 */
1145 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1146 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1147 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1148 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1149 	/* 79 - 1680x720@24Hz 64:27 */
1150 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1151 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1152 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1153 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1154 	/* 80 - 1680x720@25Hz 64:27 */
1155 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1156 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1157 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1158 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1159 	/* 81 - 1680x720@30Hz 64:27 */
1160 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1161 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1163 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1164 	/* 82 - 1680x720@50Hz 64:27 */
1165 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1166 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1167 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1168 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1169 	/* 83 - 1680x720@60Hz 64:27 */
1170 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1171 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1172 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1173 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1174 	/* 84 - 1680x720@100Hz 64:27 */
1175 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1176 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1177 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1178 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1179 	/* 85 - 1680x720@120Hz 64:27 */
1180 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1181 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1183 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1184 	/* 86 - 2560x1080@24Hz 64:27 */
1185 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1186 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1187 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1188 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1189 	/* 87 - 2560x1080@25Hz 64:27 */
1190 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1191 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1192 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1193 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1194 	/* 88 - 2560x1080@30Hz 64:27 */
1195 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1196 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1198 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1199 	/* 89 - 2560x1080@50Hz 64:27 */
1200 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1201 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1202 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1203 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1204 	/* 90 - 2560x1080@60Hz 64:27 */
1205 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1206 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1207 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1208 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1209 	/* 91 - 2560x1080@100Hz 64:27 */
1210 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1211 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1212 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1213 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1214 	/* 92 - 2560x1080@120Hz 64:27 */
1215 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1216 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1217 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1218 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1219 	/* 93 - 3840x2160@24Hz 16:9 */
1220 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1221 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1223 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1224 	/* 94 - 3840x2160@25Hz 16:9 */
1225 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1226 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1227 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1228 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1229 	/* 95 - 3840x2160@30Hz 16:9 */
1230 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1231 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1232 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1233 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1234 	/* 96 - 3840x2160@50Hz 16:9 */
1235 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1236 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1237 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1238 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1239 	/* 97 - 3840x2160@60Hz 16:9 */
1240 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1241 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1243 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1244 	/* 98 - 4096x2160@24Hz 256:135 */
1245 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1246 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1247 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1248 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1249 	/* 99 - 4096x2160@25Hz 256:135 */
1250 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1251 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1252 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1253 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1254 	/* 100 - 4096x2160@30Hz 256:135 */
1255 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1256 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1257 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1258 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1259 	/* 101 - 4096x2160@50Hz 256:135 */
1260 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1261 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1263 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1264 	/* 102 - 4096x2160@60Hz 256:135 */
1265 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1266 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1267 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1268 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1269 	/* 103 - 3840x2160@24Hz 64:27 */
1270 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1271 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1272 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1273 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1274 	/* 104 - 3840x2160@25Hz 64:27 */
1275 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1276 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1277 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1278 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1279 	/* 105 - 3840x2160@30Hz 64:27 */
1280 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1281 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1283 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1284 	/* 106 - 3840x2160@50Hz 64:27 */
1285 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1286 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1288 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1289 	/* 107 - 3840x2160@60Hz 64:27 */
1290 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1291 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1292 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1293 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1294 	/* 108 - 1280x720@48Hz 16:9 */
1295 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1296 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1297 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1298 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1299 	/* 109 - 1280x720@48Hz 64:27 */
1300 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1301 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1303 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1304 	/* 110 - 1680x720@48Hz 64:27 */
1305 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1306 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1307 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1308 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1309 	/* 111 - 1920x1080@48Hz 16:9 */
1310 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1311 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1312 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1313 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1314 	/* 112 - 1920x1080@48Hz 64:27 */
1315 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1316 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1317 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1318 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1319 	/* 113 - 2560x1080@48Hz 64:27 */
1320 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1321 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1323 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1324 	/* 114 - 3840x2160@48Hz 16:9 */
1325 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1326 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1327 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1328 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1329 	/* 115 - 4096x2160@48Hz 256:135 */
1330 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1331 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1332 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1333 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1334 	/* 116 - 3840x2160@48Hz 64:27 */
1335 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1336 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1337 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1338 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1339 	/* 117 - 3840x2160@100Hz 16:9 */
1340 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1341 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1343 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1344 	/* 118 - 3840x2160@120Hz 16:9 */
1345 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1346 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1347 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1348 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1349 	/* 119 - 3840x2160@100Hz 64:27 */
1350 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1351 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1352 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1353 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1354 	/* 120 - 3840x2160@120Hz 64:27 */
1355 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1356 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1357 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1358 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1359 	/* 121 - 5120x2160@24Hz 64:27 */
1360 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1361 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1362 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1363 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1364 	/* 122 - 5120x2160@25Hz 64:27 */
1365 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1366 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1367 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1368 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1369 	/* 123 - 5120x2160@30Hz 64:27 */
1370 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1371 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1372 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1373 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1374 	/* 124 - 5120x2160@48Hz 64:27 */
1375 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1376 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1377 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1378 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1379 	/* 125 - 5120x2160@50Hz 64:27 */
1380 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1381 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1382 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1383 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1384 	/* 126 - 5120x2160@60Hz 64:27 */
1385 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1386 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1387 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1388 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1389 	/* 127 - 5120x2160@100Hz 64:27 */
1390 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1391 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1392 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1393 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1394 };
1395 
1396 /*
1397  * From CEA/CTA-861 spec.
1398  *
1399  * Do not access directly, instead always use cea_mode_for_vic().
1400  */
1401 static const struct drm_display_mode edid_cea_modes_193[] = {
1402 	/* 193 - 5120x2160@120Hz 64:27 */
1403 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1404 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1405 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1406 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1407 	/* 194 - 7680x4320@24Hz 16:9 */
1408 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1409 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1410 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1411 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1412 	/* 195 - 7680x4320@25Hz 16:9 */
1413 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1414 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1416 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1417 	/* 196 - 7680x4320@30Hz 16:9 */
1418 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1419 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1420 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1421 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1422 	/* 197 - 7680x4320@48Hz 16:9 */
1423 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1424 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1425 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1426 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1427 	/* 198 - 7680x4320@50Hz 16:9 */
1428 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1429 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1430 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1431 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1432 	/* 199 - 7680x4320@60Hz 16:9 */
1433 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1434 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1435 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1436 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1437 	/* 200 - 7680x4320@100Hz 16:9 */
1438 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1439 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1440 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1441 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1442 	/* 201 - 7680x4320@120Hz 16:9 */
1443 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1444 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1445 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1446 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1447 	/* 202 - 7680x4320@24Hz 64:27 */
1448 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1449 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1450 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1451 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1452 	/* 203 - 7680x4320@25Hz 64:27 */
1453 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1454 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1455 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1456 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1457 	/* 204 - 7680x4320@30Hz 64:27 */
1458 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1459 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1460 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1461 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1462 	/* 205 - 7680x4320@48Hz 64:27 */
1463 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1464 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1465 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1466 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1467 	/* 206 - 7680x4320@50Hz 64:27 */
1468 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1469 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1470 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1471 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1472 	/* 207 - 7680x4320@60Hz 64:27 */
1473 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1474 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1475 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1476 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1477 	/* 208 - 7680x4320@100Hz 64:27 */
1478 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1479 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1480 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1481 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1482 	/* 209 - 7680x4320@120Hz 64:27 */
1483 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1484 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1486 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1487 	/* 210 - 10240x4320@24Hz 64:27 */
1488 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1489 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1490 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1491 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1492 	/* 211 - 10240x4320@25Hz 64:27 */
1493 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1494 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1495 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1496 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1497 	/* 212 - 10240x4320@30Hz 64:27 */
1498 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1499 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1501 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1502 	/* 213 - 10240x4320@48Hz 64:27 */
1503 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1504 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1505 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1506 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1507 	/* 214 - 10240x4320@50Hz 64:27 */
1508 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1509 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1510 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1511 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1512 	/* 215 - 10240x4320@60Hz 64:27 */
1513 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1514 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1515 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1516 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1517 	/* 216 - 10240x4320@100Hz 64:27 */
1518 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1519 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1520 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1521 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1522 	/* 217 - 10240x4320@120Hz 64:27 */
1523 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1524 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1525 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1526 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1527 	/* 218 - 4096x2160@100Hz 256:135 */
1528 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1529 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1530 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1531 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1532 	/* 219 - 4096x2160@120Hz 256:135 */
1533 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1534 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1535 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1536 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1537 };
1538 
1539 /*
1540  * HDMI 1.4 4k modes. Index using the VIC.
1541  */
1542 static const struct drm_display_mode edid_4k_modes[] = {
1543 	/* 0 - dummy, VICs start at 1 */
1544 	{ },
1545 	/* 1 - 3840x2160@30Hz */
1546 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1547 		   3840, 4016, 4104, 4400, 0,
1548 		   2160, 2168, 2178, 2250, 0,
1549 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1550 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1551 	/* 2 - 3840x2160@25Hz */
1552 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1553 		   3840, 4896, 4984, 5280, 0,
1554 		   2160, 2168, 2178, 2250, 0,
1555 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1556 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1557 	/* 3 - 3840x2160@24Hz */
1558 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1559 		   3840, 5116, 5204, 5500, 0,
1560 		   2160, 2168, 2178, 2250, 0,
1561 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1562 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1563 	/* 4 - 4096x2160@24Hz (SMPTE) */
1564 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1565 		   4096, 5116, 5204, 5500, 0,
1566 		   2160, 2168, 2178, 2250, 0,
1567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1568 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1569 };
1570 
1571 /*** DDC fetch and block validation ***/
1572 
1573 /*
1574  * The opaque EDID type, internal to drm_edid.c.
1575  */
1576 struct drm_edid {
1577 	/* Size allocated for edid */
1578 	size_t size;
1579 	const struct edid *edid;
1580 };
1581 
1582 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1583 
1584 static int edid_hfeeodb_block_count(const struct edid *edid)
1585 {
1586 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1587 
1588 	return eeodb ? eeodb + 1 : 0;
1589 }
1590 
1591 static int edid_extension_block_count(const struct edid *edid)
1592 {
1593 	return edid->extensions;
1594 }
1595 
1596 static int edid_block_count(const struct edid *edid)
1597 {
1598 	return edid_extension_block_count(edid) + 1;
1599 }
1600 
1601 static int edid_size_by_blocks(int num_blocks)
1602 {
1603 	return num_blocks * EDID_LENGTH;
1604 }
1605 
1606 static int edid_size(const struct edid *edid)
1607 {
1608 	return edid_size_by_blocks(edid_block_count(edid));
1609 }
1610 
1611 static const void *edid_block_data(const struct edid *edid, int index)
1612 {
1613 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1614 
1615 	return edid + index;
1616 }
1617 
1618 static const void *edid_extension_block_data(const struct edid *edid, int index)
1619 {
1620 	return edid_block_data(edid, index + 1);
1621 }
1622 
1623 /* EDID block count indicated in EDID, may exceed allocated size */
1624 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1625 {
1626 	int num_blocks;
1627 
1628 	/* Starting point */
1629 	num_blocks = edid_block_count(drm_edid->edid);
1630 
1631 	/* HF-EEODB override */
1632 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1633 		int eeodb;
1634 
1635 		/*
1636 		 * Note: HF-EEODB may specify a smaller extension count than the
1637 		 * regular one. Unlike in buffer allocation, here we can use it.
1638 		 */
1639 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1640 		if (eeodb)
1641 			num_blocks = eeodb;
1642 	}
1643 
1644 	return num_blocks;
1645 }
1646 
1647 /* EDID block count, limited by allocated size */
1648 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1649 {
1650 	/* Limit by allocated size */
1651 	return min(__drm_edid_block_count(drm_edid),
1652 		   (int)drm_edid->size / EDID_LENGTH);
1653 }
1654 
1655 /* EDID extension block count, limited by allocated size */
1656 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1657 {
1658 	return drm_edid_block_count(drm_edid) - 1;
1659 }
1660 
1661 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1662 {
1663 	return edid_block_data(drm_edid->edid, index);
1664 }
1665 
1666 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1667 						 int index)
1668 {
1669 	return edid_extension_block_data(drm_edid->edid, index);
1670 }
1671 
1672 /*
1673  * Initializer helper for legacy interfaces, where we have no choice but to
1674  * trust edid size. Not for general purpose use.
1675  */
1676 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1677 						   const struct edid *edid)
1678 {
1679 	if (!edid)
1680 		return NULL;
1681 
1682 	memset(drm_edid, 0, sizeof(*drm_edid));
1683 
1684 	drm_edid->edid = edid;
1685 	drm_edid->size = edid_size(edid);
1686 
1687 	return drm_edid;
1688 }
1689 
1690 /*
1691  * EDID base and extension block iterator.
1692  *
1693  * struct drm_edid_iter iter;
1694  * const u8 *block;
1695  *
1696  * drm_edid_iter_begin(drm_edid, &iter);
1697  * drm_edid_iter_for_each(block, &iter) {
1698  *         // do stuff with block
1699  * }
1700  * drm_edid_iter_end(&iter);
1701  */
1702 struct drm_edid_iter {
1703 	const struct drm_edid *drm_edid;
1704 
1705 	/* Current block index. */
1706 	int index;
1707 };
1708 
1709 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1710 				struct drm_edid_iter *iter)
1711 {
1712 	memset(iter, 0, sizeof(*iter));
1713 
1714 	iter->drm_edid = drm_edid;
1715 }
1716 
1717 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1718 {
1719 	const void *block = NULL;
1720 
1721 	if (!iter->drm_edid)
1722 		return NULL;
1723 
1724 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1725 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1726 
1727 	return block;
1728 }
1729 
1730 #define drm_edid_iter_for_each(__block, __iter)			\
1731 	while (((__block) = __drm_edid_iter_next(__iter)))
1732 
1733 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1734 {
1735 	memset(iter, 0, sizeof(*iter));
1736 }
1737 
1738 static const u8 edid_header[] = {
1739 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1740 };
1741 
1742 static void edid_header_fix(void *edid)
1743 {
1744 	memcpy(edid, edid_header, sizeof(edid_header));
1745 }
1746 
1747 /**
1748  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1749  * @_edid: pointer to raw base EDID block
1750  *
1751  * Sanity check the header of the base EDID block.
1752  *
1753  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1754  */
1755 int drm_edid_header_is_valid(const void *_edid)
1756 {
1757 	const struct edid *edid = _edid;
1758 	int i, score = 0;
1759 
1760 	for (i = 0; i < sizeof(edid_header); i++) {
1761 		if (edid->header[i] == edid_header[i])
1762 			score++;
1763 	}
1764 
1765 	return score;
1766 }
1767 EXPORT_SYMBOL(drm_edid_header_is_valid);
1768 
1769 static int edid_fixup __read_mostly = 6;
1770 module_param_named(edid_fixup, edid_fixup, int, 0400);
1771 MODULE_PARM_DESC(edid_fixup,
1772 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1773 
1774 static int edid_block_compute_checksum(const void *_block)
1775 {
1776 	const u8 *block = _block;
1777 	int i;
1778 	u8 csum = 0, crc = 0;
1779 
1780 	for (i = 0; i < EDID_LENGTH - 1; i++)
1781 		csum += block[i];
1782 
1783 	crc = 0x100 - csum;
1784 
1785 	return crc;
1786 }
1787 
1788 static int edid_block_get_checksum(const void *_block)
1789 {
1790 	const struct edid *block = _block;
1791 
1792 	return block->checksum;
1793 }
1794 
1795 static int edid_block_tag(const void *_block)
1796 {
1797 	const u8 *block = _block;
1798 
1799 	return block[0];
1800 }
1801 
1802 static bool edid_block_is_zero(const void *edid)
1803 {
1804 	return !memchr_inv(edid, 0, EDID_LENGTH);
1805 }
1806 
1807 /**
1808  * drm_edid_are_equal - compare two edid blobs.
1809  * @edid1: pointer to first blob
1810  * @edid2: pointer to second blob
1811  * This helper can be used during probing to determine if
1812  * edid had changed.
1813  */
1814 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1815 {
1816 	int edid1_len, edid2_len;
1817 	bool edid1_present = edid1 != NULL;
1818 	bool edid2_present = edid2 != NULL;
1819 
1820 	if (edid1_present != edid2_present)
1821 		return false;
1822 
1823 	if (edid1) {
1824 		edid1_len = edid_size(edid1);
1825 		edid2_len = edid_size(edid2);
1826 
1827 		if (edid1_len != edid2_len)
1828 			return false;
1829 
1830 		if (memcmp(edid1, edid2, edid1_len))
1831 			return false;
1832 	}
1833 
1834 	return true;
1835 }
1836 EXPORT_SYMBOL(drm_edid_are_equal);
1837 
1838 enum edid_block_status {
1839 	EDID_BLOCK_OK = 0,
1840 	EDID_BLOCK_READ_FAIL,
1841 	EDID_BLOCK_NULL,
1842 	EDID_BLOCK_ZERO,
1843 	EDID_BLOCK_HEADER_CORRUPT,
1844 	EDID_BLOCK_HEADER_REPAIR,
1845 	EDID_BLOCK_HEADER_FIXED,
1846 	EDID_BLOCK_CHECKSUM,
1847 	EDID_BLOCK_VERSION,
1848 };
1849 
1850 static enum edid_block_status edid_block_check(const void *_block,
1851 					       bool is_base_block)
1852 {
1853 	const struct edid *block = _block;
1854 
1855 	if (!block)
1856 		return EDID_BLOCK_NULL;
1857 
1858 	if (is_base_block) {
1859 		int score = drm_edid_header_is_valid(block);
1860 
1861 		if (score < clamp(edid_fixup, 0, 8)) {
1862 			if (edid_block_is_zero(block))
1863 				return EDID_BLOCK_ZERO;
1864 			else
1865 				return EDID_BLOCK_HEADER_CORRUPT;
1866 		}
1867 
1868 		if (score < 8)
1869 			return EDID_BLOCK_HEADER_REPAIR;
1870 	}
1871 
1872 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1873 		if (edid_block_is_zero(block))
1874 			return EDID_BLOCK_ZERO;
1875 		else
1876 			return EDID_BLOCK_CHECKSUM;
1877 	}
1878 
1879 	if (is_base_block) {
1880 		if (block->version != 1)
1881 			return EDID_BLOCK_VERSION;
1882 	}
1883 
1884 	return EDID_BLOCK_OK;
1885 }
1886 
1887 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1888 {
1889 	return status == EDID_BLOCK_OK ||
1890 		status == EDID_BLOCK_HEADER_FIXED ||
1891 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1892 }
1893 
1894 static bool edid_block_valid(const void *block, bool base)
1895 {
1896 	return edid_block_status_valid(edid_block_check(block, base),
1897 				       edid_block_tag(block));
1898 }
1899 
1900 static void edid_block_status_print(enum edid_block_status status,
1901 				    const struct edid *block,
1902 				    int block_num)
1903 {
1904 	switch (status) {
1905 	case EDID_BLOCK_OK:
1906 		break;
1907 	case EDID_BLOCK_READ_FAIL:
1908 		pr_debug("EDID block %d read failed\n", block_num);
1909 		break;
1910 	case EDID_BLOCK_NULL:
1911 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1912 		break;
1913 	case EDID_BLOCK_ZERO:
1914 		pr_notice("EDID block %d is all zeroes\n", block_num);
1915 		break;
1916 	case EDID_BLOCK_HEADER_CORRUPT:
1917 		pr_notice("EDID has corrupt header\n");
1918 		break;
1919 	case EDID_BLOCK_HEADER_REPAIR:
1920 		pr_debug("EDID corrupt header needs repair\n");
1921 		break;
1922 	case EDID_BLOCK_HEADER_FIXED:
1923 		pr_debug("EDID corrupt header fixed\n");
1924 		break;
1925 	case EDID_BLOCK_CHECKSUM:
1926 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1927 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1928 				 block_num, edid_block_tag(block),
1929 				 edid_block_compute_checksum(block));
1930 		} else {
1931 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1932 				  block_num, edid_block_tag(block),
1933 				  edid_block_compute_checksum(block));
1934 		}
1935 		break;
1936 	case EDID_BLOCK_VERSION:
1937 		pr_notice("EDID has major version %d, instead of 1\n",
1938 			  block->version);
1939 		break;
1940 	default:
1941 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1942 		     block_num, status);
1943 		break;
1944 	}
1945 }
1946 
1947 static void edid_block_dump(const char *level, const void *block, int block_num)
1948 {
1949 	enum edid_block_status status;
1950 	char prefix[20];
1951 
1952 	status = edid_block_check(block, block_num == 0);
1953 	if (status == EDID_BLOCK_ZERO)
1954 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1955 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1956 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1957 	else
1958 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1959 
1960 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1961 		       block, EDID_LENGTH, false);
1962 }
1963 
1964 /**
1965  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1966  * @_block: pointer to raw EDID block
1967  * @block_num: type of block to validate (0 for base, extension otherwise)
1968  * @print_bad_edid: if true, dump bad EDID blocks to the console
1969  * @edid_corrupt: if true, the header or checksum is invalid
1970  *
1971  * Validate a base or extension EDID block and optionally dump bad blocks to
1972  * the console.
1973  *
1974  * Return: True if the block is valid, false otherwise.
1975  */
1976 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1977 			  bool *edid_corrupt)
1978 {
1979 	struct edid *block = (struct edid *)_block;
1980 	enum edid_block_status status;
1981 	bool is_base_block = block_num == 0;
1982 	bool valid;
1983 
1984 	if (WARN_ON(!block))
1985 		return false;
1986 
1987 	status = edid_block_check(block, is_base_block);
1988 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1989 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1990 		edid_header_fix(block);
1991 
1992 		/* Retry with fixed header, update status if that worked. */
1993 		status = edid_block_check(block, is_base_block);
1994 		if (status == EDID_BLOCK_OK)
1995 			status = EDID_BLOCK_HEADER_FIXED;
1996 	}
1997 
1998 	if (edid_corrupt) {
1999 		/*
2000 		 * Unknown major version isn't corrupt but we can't use it. Only
2001 		 * the base block can reset edid_corrupt to false.
2002 		 */
2003 		if (is_base_block &&
2004 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2005 			*edid_corrupt = false;
2006 		else if (status != EDID_BLOCK_OK)
2007 			*edid_corrupt = true;
2008 	}
2009 
2010 	edid_block_status_print(status, block, block_num);
2011 
2012 	/* Determine whether we can use this block with this status. */
2013 	valid = edid_block_status_valid(status, edid_block_tag(block));
2014 
2015 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2016 		pr_notice("Raw EDID:\n");
2017 		edid_block_dump(KERN_NOTICE, block, block_num);
2018 	}
2019 
2020 	return valid;
2021 }
2022 EXPORT_SYMBOL(drm_edid_block_valid);
2023 
2024 /**
2025  * drm_edid_is_valid - sanity check EDID data
2026  * @edid: EDID data
2027  *
2028  * Sanity-check an entire EDID record (including extensions)
2029  *
2030  * Return: True if the EDID data is valid, false otherwise.
2031  */
2032 bool drm_edid_is_valid(struct edid *edid)
2033 {
2034 	int i;
2035 
2036 	if (!edid)
2037 		return false;
2038 
2039 	for (i = 0; i < edid_block_count(edid); i++) {
2040 		void *block = (void *)edid_block_data(edid, i);
2041 
2042 		if (!drm_edid_block_valid(block, i, true, NULL))
2043 			return false;
2044 	}
2045 
2046 	return true;
2047 }
2048 EXPORT_SYMBOL(drm_edid_is_valid);
2049 
2050 /**
2051  * drm_edid_valid - sanity check EDID data
2052  * @drm_edid: EDID data
2053  *
2054  * Sanity check an EDID. Cross check block count against allocated size and
2055  * checksum the blocks.
2056  *
2057  * Return: True if the EDID data is valid, false otherwise.
2058  */
2059 bool drm_edid_valid(const struct drm_edid *drm_edid)
2060 {
2061 	int i;
2062 
2063 	if (!drm_edid)
2064 		return false;
2065 
2066 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2067 		return false;
2068 
2069 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2070 		const void *block = drm_edid_block_data(drm_edid, i);
2071 
2072 		if (!edid_block_valid(block, i == 0))
2073 			return false;
2074 	}
2075 
2076 	return true;
2077 }
2078 EXPORT_SYMBOL(drm_edid_valid);
2079 
2080 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2081 					       size_t *alloc_size)
2082 {
2083 	struct edid *new;
2084 	int i, valid_blocks = 0;
2085 
2086 	/*
2087 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2088 	 * back to regular extension count here. We don't want to start
2089 	 * modifying the HF-EEODB extension too.
2090 	 */
2091 	for (i = 0; i < edid_block_count(edid); i++) {
2092 		const void *src_block = edid_block_data(edid, i);
2093 
2094 		if (edid_block_valid(src_block, i == 0)) {
2095 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2096 
2097 			memmove(dst_block, src_block, EDID_LENGTH);
2098 			valid_blocks++;
2099 		}
2100 	}
2101 
2102 	/* We already trusted the base block to be valid here... */
2103 	if (WARN_ON(!valid_blocks)) {
2104 		kfree(edid);
2105 		return NULL;
2106 	}
2107 
2108 	edid->extensions = valid_blocks - 1;
2109 	edid->checksum = edid_block_compute_checksum(edid);
2110 
2111 	*alloc_size = edid_size_by_blocks(valid_blocks);
2112 
2113 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2114 	if (!new)
2115 		kfree(edid);
2116 
2117 	return new;
2118 }
2119 
2120 #define DDC_SEGMENT_ADDR 0x30
2121 /**
2122  * drm_do_probe_ddc_edid() - get EDID information via I2C
2123  * @data: I2C device adapter
2124  * @buf: EDID data buffer to be filled
2125  * @block: 128 byte EDID block to start fetching from
2126  * @len: EDID data buffer length to fetch
2127  *
2128  * Try to fetch EDID information by calling I2C driver functions.
2129  *
2130  * Return: 0 on success or -1 on failure.
2131  */
2132 static int
2133 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2134 {
2135 	struct i2c_adapter *adapter = data;
2136 	unsigned char start = block * EDID_LENGTH;
2137 	unsigned char segment = block >> 1;
2138 	unsigned char xfers = segment ? 3 : 2;
2139 	int ret, retries = 5;
2140 
2141 	/*
2142 	 * The core I2C driver will automatically retry the transfer if the
2143 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2144 	 * are susceptible to errors under a heavily loaded machine and
2145 	 * generate spurious NAKs and timeouts. Retrying the transfer
2146 	 * of the individual block a few times seems to overcome this.
2147 	 */
2148 	do {
2149 		struct i2c_msg msgs[] = {
2150 			{
2151 				.addr	= DDC_SEGMENT_ADDR,
2152 				.flags	= 0,
2153 				.len	= 1,
2154 				.buf	= &segment,
2155 			}, {
2156 				.addr	= DDC_ADDR,
2157 				.flags	= 0,
2158 				.len	= 1,
2159 				.buf	= &start,
2160 			}, {
2161 				.addr	= DDC_ADDR,
2162 				.flags	= I2C_M_RD,
2163 				.len	= len,
2164 				.buf	= buf,
2165 			}
2166 		};
2167 
2168 		/*
2169 		 * Avoid sending the segment addr to not upset non-compliant
2170 		 * DDC monitors.
2171 		 */
2172 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2173 
2174 		if (ret == -ENXIO) {
2175 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2176 					adapter->name);
2177 			break;
2178 		}
2179 	} while (ret != xfers && --retries);
2180 
2181 	return ret == xfers ? 0 : -1;
2182 }
2183 
2184 static void connector_bad_edid(struct drm_connector *connector,
2185 			       const struct edid *edid, int num_blocks)
2186 {
2187 	int i;
2188 	u8 last_block;
2189 
2190 	/*
2191 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2192 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2193 	 * of 0x7e in the EDID of the _index_ of the last block in the
2194 	 * combined chunk of memory.
2195 	 */
2196 	last_block = edid->extensions;
2197 
2198 	/* Calculate real checksum for the last edid extension block data */
2199 	if (last_block < num_blocks)
2200 		connector->real_edid_checksum =
2201 			edid_block_compute_checksum(edid + last_block);
2202 
2203 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2204 		return;
2205 
2206 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2207 		    connector->base.id, connector->name);
2208 	for (i = 0; i < num_blocks; i++)
2209 		edid_block_dump(KERN_DEBUG, edid + i, i);
2210 }
2211 
2212 /* Get override or firmware EDID */
2213 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2214 {
2215 	const struct drm_edid *override = NULL;
2216 
2217 	mutex_lock(&connector->edid_override_mutex);
2218 
2219 	if (connector->edid_override)
2220 		override = drm_edid_dup(connector->edid_override);
2221 
2222 	mutex_unlock(&connector->edid_override_mutex);
2223 
2224 	if (!override)
2225 		override = drm_edid_load_firmware(connector);
2226 
2227 	return IS_ERR(override) ? NULL : override;
2228 }
2229 
2230 /* For debugfs edid_override implementation */
2231 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2232 {
2233 	const struct drm_edid *drm_edid;
2234 
2235 	mutex_lock(&connector->edid_override_mutex);
2236 
2237 	drm_edid = connector->edid_override;
2238 	if (drm_edid)
2239 		seq_write(m, drm_edid->edid, drm_edid->size);
2240 
2241 	mutex_unlock(&connector->edid_override_mutex);
2242 
2243 	return 0;
2244 }
2245 
2246 /* For debugfs edid_override implementation */
2247 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2248 			  size_t size)
2249 {
2250 	const struct drm_edid *drm_edid;
2251 
2252 	drm_edid = drm_edid_alloc(edid, size);
2253 	if (!drm_edid_valid(drm_edid)) {
2254 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2255 			    connector->base.id, connector->name);
2256 		drm_edid_free(drm_edid);
2257 		return -EINVAL;
2258 	}
2259 
2260 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2261 		    connector->base.id, connector->name);
2262 
2263 	mutex_lock(&connector->edid_override_mutex);
2264 
2265 	drm_edid_free(connector->edid_override);
2266 	connector->edid_override = drm_edid;
2267 
2268 	mutex_unlock(&connector->edid_override_mutex);
2269 
2270 	return 0;
2271 }
2272 
2273 /* For debugfs edid_override implementation */
2274 int drm_edid_override_reset(struct drm_connector *connector)
2275 {
2276 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2277 		    connector->base.id, connector->name);
2278 
2279 	mutex_lock(&connector->edid_override_mutex);
2280 
2281 	drm_edid_free(connector->edid_override);
2282 	connector->edid_override = NULL;
2283 
2284 	mutex_unlock(&connector->edid_override_mutex);
2285 
2286 	return 0;
2287 }
2288 
2289 /**
2290  * drm_edid_override_connector_update - add modes from override/firmware EDID
2291  * @connector: connector we're probing
2292  *
2293  * Add modes from the override/firmware EDID, if available. Only to be used from
2294  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2295  * failed during drm_get_edid() and caused the override/firmware EDID to be
2296  * skipped.
2297  *
2298  * Return: The number of modes added or 0 if we couldn't find any.
2299  */
2300 int drm_edid_override_connector_update(struct drm_connector *connector)
2301 {
2302 	const struct drm_edid *override;
2303 	int num_modes = 0;
2304 
2305 	override = drm_edid_override_get(connector);
2306 	if (override) {
2307 		num_modes = drm_edid_connector_update(connector, override);
2308 
2309 		drm_edid_free(override);
2310 
2311 		drm_dbg_kms(connector->dev,
2312 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2313 			    connector->base.id, connector->name, num_modes);
2314 	}
2315 
2316 	return num_modes;
2317 }
2318 EXPORT_SYMBOL(drm_edid_override_connector_update);
2319 
2320 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2321 
2322 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2323 					      read_block_fn read_block,
2324 					      void *context)
2325 {
2326 	enum edid_block_status status;
2327 	bool is_base_block = block_num == 0;
2328 	int try;
2329 
2330 	for (try = 0; try < 4; try++) {
2331 		if (read_block(context, block, block_num, EDID_LENGTH))
2332 			return EDID_BLOCK_READ_FAIL;
2333 
2334 		status = edid_block_check(block, is_base_block);
2335 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2336 			edid_header_fix(block);
2337 
2338 			/* Retry with fixed header, update status if that worked. */
2339 			status = edid_block_check(block, is_base_block);
2340 			if (status == EDID_BLOCK_OK)
2341 				status = EDID_BLOCK_HEADER_FIXED;
2342 		}
2343 
2344 		if (edid_block_status_valid(status, edid_block_tag(block)))
2345 			break;
2346 
2347 		/* Fail early for unrepairable base block all zeros. */
2348 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2349 			break;
2350 	}
2351 
2352 	return status;
2353 }
2354 
2355 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2356 				     read_block_fn read_block, void *context,
2357 				     size_t *size)
2358 {
2359 	enum edid_block_status status;
2360 	int i, num_blocks, invalid_blocks = 0;
2361 	const struct drm_edid *override;
2362 	struct edid *edid, *new;
2363 	size_t alloc_size = EDID_LENGTH;
2364 
2365 	override = drm_edid_override_get(connector);
2366 	if (override) {
2367 		alloc_size = override->size;
2368 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2369 		drm_edid_free(override);
2370 		if (!edid)
2371 			return NULL;
2372 		goto ok;
2373 	}
2374 
2375 	edid = kmalloc(alloc_size, GFP_KERNEL);
2376 	if (!edid)
2377 		return NULL;
2378 
2379 	status = edid_block_read(edid, 0, read_block, context);
2380 
2381 	edid_block_status_print(status, edid, 0);
2382 
2383 	if (status == EDID_BLOCK_READ_FAIL)
2384 		goto fail;
2385 
2386 	/* FIXME: Clarify what a corrupt EDID actually means. */
2387 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2388 		connector->edid_corrupt = false;
2389 	else
2390 		connector->edid_corrupt = true;
2391 
2392 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2393 		if (status == EDID_BLOCK_ZERO)
2394 			connector->null_edid_counter++;
2395 
2396 		connector_bad_edid(connector, edid, 1);
2397 		goto fail;
2398 	}
2399 
2400 	if (!edid_extension_block_count(edid))
2401 		goto ok;
2402 
2403 	alloc_size = edid_size(edid);
2404 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2405 	if (!new)
2406 		goto fail;
2407 	edid = new;
2408 
2409 	num_blocks = edid_block_count(edid);
2410 	for (i = 1; i < num_blocks; i++) {
2411 		void *block = (void *)edid_block_data(edid, i);
2412 
2413 		status = edid_block_read(block, i, read_block, context);
2414 
2415 		edid_block_status_print(status, block, i);
2416 
2417 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2418 			if (status == EDID_BLOCK_READ_FAIL)
2419 				goto fail;
2420 			invalid_blocks++;
2421 		} else if (i == 1) {
2422 			/*
2423 			 * If the first EDID extension is a CTA extension, and
2424 			 * the first Data Block is HF-EEODB, override the
2425 			 * extension block count.
2426 			 *
2427 			 * Note: HF-EEODB could specify a smaller extension
2428 			 * count too, but we can't risk allocating a smaller
2429 			 * amount.
2430 			 */
2431 			int eeodb = edid_hfeeodb_block_count(edid);
2432 
2433 			if (eeodb > num_blocks) {
2434 				num_blocks = eeodb;
2435 				alloc_size = edid_size_by_blocks(num_blocks);
2436 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2437 				if (!new)
2438 					goto fail;
2439 				edid = new;
2440 			}
2441 		}
2442 	}
2443 
2444 	if (invalid_blocks) {
2445 		connector_bad_edid(connector, edid, num_blocks);
2446 
2447 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2448 	}
2449 
2450 ok:
2451 	if (size)
2452 		*size = alloc_size;
2453 
2454 	return edid;
2455 
2456 fail:
2457 	kfree(edid);
2458 	return NULL;
2459 }
2460 
2461 /**
2462  * drm_do_get_edid - get EDID data using a custom EDID block read function
2463  * @connector: connector we're probing
2464  * @read_block: EDID block read function
2465  * @context: private data passed to the block read function
2466  *
2467  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2468  * exposes a different interface to read EDID blocks this function can be used
2469  * to get EDID data using a custom block read function.
2470  *
2471  * As in the general case the DDC bus is accessible by the kernel at the I2C
2472  * level, drivers must make all reasonable efforts to expose it as an I2C
2473  * adapter and use drm_get_edid() instead of abusing this function.
2474  *
2475  * The EDID may be overridden using debugfs override_edid or firmware EDID
2476  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2477  * order. Having either of them bypasses actual EDID reads.
2478  *
2479  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2480  */
2481 struct edid *drm_do_get_edid(struct drm_connector *connector,
2482 			     read_block_fn read_block,
2483 			     void *context)
2484 {
2485 	return _drm_do_get_edid(connector, read_block, context, NULL);
2486 }
2487 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2488 
2489 /**
2490  * drm_edid_raw - Get a pointer to the raw EDID data.
2491  * @drm_edid: drm_edid container
2492  *
2493  * Get a pointer to the raw EDID data.
2494  *
2495  * This is for transition only. Avoid using this like the plague.
2496  *
2497  * Return: Pointer to raw EDID data.
2498  */
2499 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2500 {
2501 	if (!drm_edid || !drm_edid->size)
2502 		return NULL;
2503 
2504 	/*
2505 	 * Do not return pointers where relying on EDID extension count would
2506 	 * lead to buffer overflow.
2507 	 */
2508 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2509 		return NULL;
2510 
2511 	return drm_edid->edid;
2512 }
2513 EXPORT_SYMBOL(drm_edid_raw);
2514 
2515 /* Allocate struct drm_edid container *without* duplicating the edid data */
2516 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2517 {
2518 	struct drm_edid *drm_edid;
2519 
2520 	if (!edid || !size || size < EDID_LENGTH)
2521 		return NULL;
2522 
2523 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2524 	if (drm_edid) {
2525 		drm_edid->edid = edid;
2526 		drm_edid->size = size;
2527 	}
2528 
2529 	return drm_edid;
2530 }
2531 
2532 /**
2533  * drm_edid_alloc - Allocate a new drm_edid container
2534  * @edid: Pointer to raw EDID data
2535  * @size: Size of memory allocated for EDID
2536  *
2537  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2538  * the actual size that has been allocated for the data. There is no validation
2539  * of the raw EDID data against the size, but at least the EDID base block must
2540  * fit in the buffer.
2541  *
2542  * The returned pointer must be freed using drm_edid_free().
2543  *
2544  * Return: drm_edid container, or NULL on errors
2545  */
2546 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2547 {
2548 	const struct drm_edid *drm_edid;
2549 
2550 	if (!edid || !size || size < EDID_LENGTH)
2551 		return NULL;
2552 
2553 	edid = kmemdup(edid, size, GFP_KERNEL);
2554 	if (!edid)
2555 		return NULL;
2556 
2557 	drm_edid = _drm_edid_alloc(edid, size);
2558 	if (!drm_edid)
2559 		kfree(edid);
2560 
2561 	return drm_edid;
2562 }
2563 EXPORT_SYMBOL(drm_edid_alloc);
2564 
2565 /**
2566  * drm_edid_dup - Duplicate a drm_edid container
2567  * @drm_edid: EDID to duplicate
2568  *
2569  * The returned pointer must be freed using drm_edid_free().
2570  *
2571  * Returns: drm_edid container copy, or NULL on errors
2572  */
2573 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2574 {
2575 	if (!drm_edid)
2576 		return NULL;
2577 
2578 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2579 }
2580 EXPORT_SYMBOL(drm_edid_dup);
2581 
2582 /**
2583  * drm_edid_free - Free the drm_edid container
2584  * @drm_edid: EDID to free
2585  */
2586 void drm_edid_free(const struct drm_edid *drm_edid)
2587 {
2588 	if (!drm_edid)
2589 		return;
2590 
2591 	kfree(drm_edid->edid);
2592 	kfree(drm_edid);
2593 }
2594 EXPORT_SYMBOL(drm_edid_free);
2595 
2596 /**
2597  * drm_probe_ddc() - probe DDC presence
2598  * @adapter: I2C adapter to probe
2599  *
2600  * Return: True on success, false on failure.
2601  */
2602 bool
2603 drm_probe_ddc(struct i2c_adapter *adapter)
2604 {
2605 	unsigned char out;
2606 
2607 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2608 }
2609 EXPORT_SYMBOL(drm_probe_ddc);
2610 
2611 /**
2612  * drm_get_edid - get EDID data, if available
2613  * @connector: connector we're probing
2614  * @adapter: I2C adapter to use for DDC
2615  *
2616  * Poke the given I2C channel to grab EDID data if possible.  If found,
2617  * attach it to the connector.
2618  *
2619  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2620  */
2621 struct edid *drm_get_edid(struct drm_connector *connector,
2622 			  struct i2c_adapter *adapter)
2623 {
2624 	struct edid *edid;
2625 
2626 	if (connector->force == DRM_FORCE_OFF)
2627 		return NULL;
2628 
2629 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2630 		return NULL;
2631 
2632 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2633 	drm_connector_update_edid_property(connector, edid);
2634 	return edid;
2635 }
2636 EXPORT_SYMBOL(drm_get_edid);
2637 
2638 /**
2639  * drm_edid_read_custom - Read EDID data using given EDID block read function
2640  * @connector: Connector to use
2641  * @read_block: EDID block read function
2642  * @context: Private data passed to the block read function
2643  *
2644  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2645  * exposes a different interface to read EDID blocks this function can be used
2646  * to get EDID data using a custom block read function.
2647  *
2648  * As in the general case the DDC bus is accessible by the kernel at the I2C
2649  * level, drivers must make all reasonable efforts to expose it as an I2C
2650  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2651  * this function.
2652  *
2653  * The EDID may be overridden using debugfs override_edid or firmware EDID
2654  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2655  * order. Having either of them bypasses actual EDID reads.
2656  *
2657  * The returned pointer must be freed using drm_edid_free().
2658  *
2659  * Return: Pointer to EDID, or NULL if probe/read failed.
2660  */
2661 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2662 					    read_block_fn read_block,
2663 					    void *context)
2664 {
2665 	const struct drm_edid *drm_edid;
2666 	struct edid *edid;
2667 	size_t size = 0;
2668 
2669 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2670 	if (!edid)
2671 		return NULL;
2672 
2673 	/* Sanity check for now */
2674 	drm_WARN_ON(connector->dev, !size);
2675 
2676 	drm_edid = _drm_edid_alloc(edid, size);
2677 	if (!drm_edid)
2678 		kfree(edid);
2679 
2680 	return drm_edid;
2681 }
2682 EXPORT_SYMBOL(drm_edid_read_custom);
2683 
2684 /**
2685  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2686  * @connector: Connector to use
2687  * @adapter: I2C adapter to use for DDC
2688  *
2689  * Read EDID using the given I2C adapter.
2690  *
2691  * The EDID may be overridden using debugfs override_edid or firmware EDID
2692  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2693  * order. Having either of them bypasses actual EDID reads.
2694  *
2695  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2696  * using drm_edid_read() instead of this function.
2697  *
2698  * The returned pointer must be freed using drm_edid_free().
2699  *
2700  * Return: Pointer to EDID, or NULL if probe/read failed.
2701  */
2702 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2703 					 struct i2c_adapter *adapter)
2704 {
2705 	const struct drm_edid *drm_edid;
2706 
2707 	if (connector->force == DRM_FORCE_OFF)
2708 		return NULL;
2709 
2710 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2711 		return NULL;
2712 
2713 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2714 
2715 	/* Note: Do *not* call connector updates here. */
2716 
2717 	return drm_edid;
2718 }
2719 EXPORT_SYMBOL(drm_edid_read_ddc);
2720 
2721 /**
2722  * drm_edid_read - Read EDID data using connector's I2C adapter
2723  * @connector: Connector to use
2724  *
2725  * Read EDID using the connector's I2C adapter.
2726  *
2727  * The EDID may be overridden using debugfs override_edid or firmware EDID
2728  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2729  * order. Having either of them bypasses actual EDID reads.
2730  *
2731  * The returned pointer must be freed using drm_edid_free().
2732  *
2733  * Return: Pointer to EDID, or NULL if probe/read failed.
2734  */
2735 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2736 {
2737 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2738 		return NULL;
2739 
2740 	return drm_edid_read_ddc(connector, connector->ddc);
2741 }
2742 EXPORT_SYMBOL(drm_edid_read);
2743 
2744 static u32 edid_extract_panel_id(const struct edid *edid)
2745 {
2746 	/*
2747 	 * We represent the ID as a 32-bit number so it can easily be compared
2748 	 * with "==".
2749 	 *
2750 	 * NOTE that we deal with endianness differently for the top half
2751 	 * of this ID than for the bottom half. The bottom half (the product
2752 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2753 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2754 	 * gets stored as big endian because that makes
2755 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2756 	 * to write (it's easier to extract the ASCII). It doesn't really
2757 	 * matter, though, as long as the number here is unique.
2758 	 */
2759 	return (u32)edid->mfg_id[0] << 24   |
2760 	       (u32)edid->mfg_id[1] << 16   |
2761 	       (u32)EDID_PRODUCT_ID(edid);
2762 }
2763 
2764 /**
2765  * drm_edid_get_panel_id - Get a panel's ID through DDC
2766  * @adapter: I2C adapter to use for DDC
2767  *
2768  * This function reads the first block of the EDID of a panel and (assuming
2769  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2770  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2771  * supposed to be different for each different modem of panel.
2772  *
2773  * This function is intended to be used during early probing on devices where
2774  * more than one panel might be present. Because of its intended use it must
2775  * assume that the EDID of the panel is correct, at least as far as the ID
2776  * is concerned (in other words, we don't process any overrides here).
2777  *
2778  * NOTE: it's expected that this function and drm_do_get_edid() will both
2779  * be read the EDID, but there is no caching between them. Since we're only
2780  * reading the first block, hopefully this extra overhead won't be too big.
2781  *
2782  * Return: A 32-bit ID that should be different for each make/model of panel.
2783  *         See the functions drm_edid_encode_panel_id() and
2784  *         drm_edid_decode_panel_id() for some details on the structure of this
2785  *         ID.
2786  */
2787 
2788 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2789 {
2790 	enum edid_block_status status;
2791 	void *base_block;
2792 	u32 panel_id = 0;
2793 
2794 	/*
2795 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2796 	 * the EDID then we'll just return 0.
2797 	 */
2798 
2799 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2800 	if (!base_block)
2801 		return 0;
2802 
2803 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2804 
2805 	edid_block_status_print(status, base_block, 0);
2806 
2807 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2808 		panel_id = edid_extract_panel_id(base_block);
2809 	else
2810 		edid_block_dump(KERN_NOTICE, base_block, 0);
2811 
2812 	kfree(base_block);
2813 
2814 	return panel_id;
2815 }
2816 EXPORT_SYMBOL(drm_edid_get_panel_id);
2817 
2818 /**
2819  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2820  * @connector: connector we're probing
2821  * @adapter: I2C adapter to use for DDC
2822  *
2823  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2824  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2825  * switch DDC to the GPU which is retrieving EDID.
2826  *
2827  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2828  */
2829 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2830 				     struct i2c_adapter *adapter)
2831 {
2832 	struct drm_device *dev = connector->dev;
2833 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2834 	struct edid *edid;
2835 
2836 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2837 		return NULL;
2838 
2839 	vga_switcheroo_lock_ddc(pdev);
2840 	edid = drm_get_edid(connector, adapter);
2841 	vga_switcheroo_unlock_ddc(pdev);
2842 
2843 	return edid;
2844 }
2845 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2846 
2847 /**
2848  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2849  * @connector: connector we're probing
2850  * @adapter: I2C adapter to use for DDC
2851  *
2852  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2853  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2854  * temporarily switch DDC to the GPU which is retrieving EDID.
2855  *
2856  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2857  */
2858 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2859 						struct i2c_adapter *adapter)
2860 {
2861 	struct drm_device *dev = connector->dev;
2862 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2863 	const struct drm_edid *drm_edid;
2864 
2865 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2866 		return NULL;
2867 
2868 	vga_switcheroo_lock_ddc(pdev);
2869 	drm_edid = drm_edid_read_ddc(connector, adapter);
2870 	vga_switcheroo_unlock_ddc(pdev);
2871 
2872 	return drm_edid;
2873 }
2874 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2875 
2876 /**
2877  * drm_edid_duplicate - duplicate an EDID and the extensions
2878  * @edid: EDID to duplicate
2879  *
2880  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2881  */
2882 struct edid *drm_edid_duplicate(const struct edid *edid)
2883 {
2884 	if (!edid)
2885 		return NULL;
2886 
2887 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2888 }
2889 EXPORT_SYMBOL(drm_edid_duplicate);
2890 
2891 /*** EDID parsing ***/
2892 
2893 /**
2894  * edid_get_quirks - return quirk flags for a given EDID
2895  * @drm_edid: EDID to process
2896  *
2897  * This tells subsequent routines what fixes they need to apply.
2898  */
2899 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2900 {
2901 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2902 	const struct edid_quirk *quirk;
2903 	int i;
2904 
2905 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2906 		quirk = &edid_quirk_list[i];
2907 		if (quirk->panel_id == panel_id)
2908 			return quirk->quirks;
2909 	}
2910 
2911 	return 0;
2912 }
2913 
2914 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2915 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2916 
2917 /*
2918  * Walk the mode list for connector, clearing the preferred status on existing
2919  * modes and setting it anew for the right mode ala quirks.
2920  */
2921 static void edid_fixup_preferred(struct drm_connector *connector)
2922 {
2923 	const struct drm_display_info *info = &connector->display_info;
2924 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2925 	int target_refresh = 0;
2926 	int cur_vrefresh, preferred_vrefresh;
2927 
2928 	if (list_empty(&connector->probed_modes))
2929 		return;
2930 
2931 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2932 		target_refresh = 60;
2933 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2934 		target_refresh = 75;
2935 
2936 	preferred_mode = list_first_entry(&connector->probed_modes,
2937 					  struct drm_display_mode, head);
2938 
2939 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2940 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2941 
2942 		if (cur_mode == preferred_mode)
2943 			continue;
2944 
2945 		/* Largest mode is preferred */
2946 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2947 			preferred_mode = cur_mode;
2948 
2949 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2950 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2951 		/* At a given size, try to get closest to target refresh */
2952 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2953 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2954 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2955 			preferred_mode = cur_mode;
2956 		}
2957 	}
2958 
2959 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2960 }
2961 
2962 static bool
2963 mode_is_rb(const struct drm_display_mode *mode)
2964 {
2965 	return (mode->htotal - mode->hdisplay == 160) &&
2966 	       (mode->hsync_end - mode->hdisplay == 80) &&
2967 	       (mode->hsync_end - mode->hsync_start == 32) &&
2968 	       (mode->vsync_start - mode->vdisplay == 3);
2969 }
2970 
2971 /*
2972  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2973  * @dev: Device to duplicate against
2974  * @hsize: Mode width
2975  * @vsize: Mode height
2976  * @fresh: Mode refresh rate
2977  * @rb: Mode reduced-blanking-ness
2978  *
2979  * Walk the DMT mode list looking for a match for the given parameters.
2980  *
2981  * Return: A newly allocated copy of the mode, or NULL if not found.
2982  */
2983 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2984 					   int hsize, int vsize, int fresh,
2985 					   bool rb)
2986 {
2987 	int i;
2988 
2989 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2990 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2991 
2992 		if (hsize != ptr->hdisplay)
2993 			continue;
2994 		if (vsize != ptr->vdisplay)
2995 			continue;
2996 		if (fresh != drm_mode_vrefresh(ptr))
2997 			continue;
2998 		if (rb != mode_is_rb(ptr))
2999 			continue;
3000 
3001 		return drm_mode_duplicate(dev, ptr);
3002 	}
3003 
3004 	return NULL;
3005 }
3006 EXPORT_SYMBOL(drm_mode_find_dmt);
3007 
3008 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3009 {
3010 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3011 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3012 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3013 
3014 	return descriptor->pixel_clock == 0 &&
3015 		descriptor->data.other_data.pad1 == 0 &&
3016 		descriptor->data.other_data.type == type;
3017 }
3018 
3019 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3020 {
3021 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3022 
3023 	return descriptor->pixel_clock != 0;
3024 }
3025 
3026 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3027 
3028 static void
3029 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3030 {
3031 	int i, n;
3032 	u8 d = ext[0x02];
3033 	const u8 *det_base = ext + d;
3034 
3035 	if (d < 4 || d > 127)
3036 		return;
3037 
3038 	n = (127 - d) / 18;
3039 	for (i = 0; i < n; i++)
3040 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3041 }
3042 
3043 static void
3044 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3045 {
3046 	unsigned int i, n = min((int)ext[0x02], 6);
3047 	const u8 *det_base = ext + 5;
3048 
3049 	if (ext[0x01] != 1)
3050 		return; /* unknown version */
3051 
3052 	for (i = 0; i < n; i++)
3053 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3054 }
3055 
3056 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3057 					detailed_cb *cb, void *closure)
3058 {
3059 	struct drm_edid_iter edid_iter;
3060 	const u8 *ext;
3061 	int i;
3062 
3063 	if (!drm_edid)
3064 		return;
3065 
3066 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3067 		cb(&drm_edid->edid->detailed_timings[i], closure);
3068 
3069 	drm_edid_iter_begin(drm_edid, &edid_iter);
3070 	drm_edid_iter_for_each(ext, &edid_iter) {
3071 		switch (*ext) {
3072 		case CEA_EXT:
3073 			cea_for_each_detailed_block(ext, cb, closure);
3074 			break;
3075 		case VTB_EXT:
3076 			vtb_for_each_detailed_block(ext, cb, closure);
3077 			break;
3078 		default:
3079 			break;
3080 		}
3081 	}
3082 	drm_edid_iter_end(&edid_iter);
3083 }
3084 
3085 static void
3086 is_rb(const struct detailed_timing *descriptor, void *data)
3087 {
3088 	bool *res = data;
3089 
3090 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3091 		return;
3092 
3093 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3094 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3095 
3096 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3097 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3098 		*res = true;
3099 }
3100 
3101 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3102 static bool
3103 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3104 {
3105 	if (drm_edid->edid->revision >= 4) {
3106 		bool ret = false;
3107 
3108 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3109 		return ret;
3110 	}
3111 
3112 	return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3113 }
3114 
3115 static void
3116 find_gtf2(const struct detailed_timing *descriptor, void *data)
3117 {
3118 	const struct detailed_timing **res = data;
3119 
3120 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3121 		return;
3122 
3123 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3124 
3125 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3126 		*res = descriptor;
3127 }
3128 
3129 /* Secondary GTF curve kicks in above some break frequency */
3130 static int
3131 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3132 {
3133 	const struct detailed_timing *descriptor = NULL;
3134 
3135 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3136 
3137 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3138 
3139 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3140 }
3141 
3142 static int
3143 drm_gtf2_2c(const struct drm_edid *drm_edid)
3144 {
3145 	const struct detailed_timing *descriptor = NULL;
3146 
3147 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3148 
3149 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3150 
3151 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3152 }
3153 
3154 static int
3155 drm_gtf2_m(const struct drm_edid *drm_edid)
3156 {
3157 	const struct detailed_timing *descriptor = NULL;
3158 
3159 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3160 
3161 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3162 
3163 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3164 }
3165 
3166 static int
3167 drm_gtf2_k(const struct drm_edid *drm_edid)
3168 {
3169 	const struct detailed_timing *descriptor = NULL;
3170 
3171 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3172 
3173 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3174 
3175 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3176 }
3177 
3178 static int
3179 drm_gtf2_2j(const struct drm_edid *drm_edid)
3180 {
3181 	const struct detailed_timing *descriptor = NULL;
3182 
3183 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3184 
3185 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3186 
3187 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3188 }
3189 
3190 static void
3191 get_timing_level(const struct detailed_timing *descriptor, void *data)
3192 {
3193 	int *res = data;
3194 
3195 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3196 		return;
3197 
3198 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3199 
3200 	switch (descriptor->data.other_data.data.range.flags) {
3201 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3202 		*res = LEVEL_GTF;
3203 		break;
3204 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3205 		*res = LEVEL_GTF2;
3206 		break;
3207 	case DRM_EDID_CVT_SUPPORT_FLAG:
3208 		*res = LEVEL_CVT;
3209 		break;
3210 	default:
3211 		break;
3212 	}
3213 }
3214 
3215 /* Get standard timing level (CVT/GTF/DMT). */
3216 static int standard_timing_level(const struct drm_edid *drm_edid)
3217 {
3218 	const struct edid *edid = drm_edid->edid;
3219 
3220 	if (edid->revision >= 4) {
3221 		/*
3222 		 * If the range descriptor doesn't
3223 		 * indicate otherwise default to CVT
3224 		 */
3225 		int ret = LEVEL_CVT;
3226 
3227 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3228 
3229 		return ret;
3230 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3231 		return LEVEL_GTF2;
3232 	} else if (edid->revision >= 2) {
3233 		return LEVEL_GTF;
3234 	} else {
3235 		return LEVEL_DMT;
3236 	}
3237 }
3238 
3239 /*
3240  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3241  * monitors fill with ascii space (0x20) instead.
3242  */
3243 static int
3244 bad_std_timing(u8 a, u8 b)
3245 {
3246 	return (a == 0x00 && b == 0x00) ||
3247 	       (a == 0x01 && b == 0x01) ||
3248 	       (a == 0x20 && b == 0x20);
3249 }
3250 
3251 static int drm_mode_hsync(const struct drm_display_mode *mode)
3252 {
3253 	if (mode->htotal <= 0)
3254 		return 0;
3255 
3256 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3257 }
3258 
3259 static struct drm_display_mode *
3260 drm_gtf2_mode(struct drm_device *dev,
3261 	      const struct drm_edid *drm_edid,
3262 	      int hsize, int vsize, int vrefresh_rate)
3263 {
3264 	struct drm_display_mode *mode;
3265 
3266 	/*
3267 	 * This is potentially wrong if there's ever a monitor with
3268 	 * more than one ranges section, each claiming a different
3269 	 * secondary GTF curve.  Please don't do that.
3270 	 */
3271 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3272 	if (!mode)
3273 		return NULL;
3274 
3275 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3276 		drm_mode_destroy(dev, mode);
3277 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3278 					    vrefresh_rate, 0, 0,
3279 					    drm_gtf2_m(drm_edid),
3280 					    drm_gtf2_2c(drm_edid),
3281 					    drm_gtf2_k(drm_edid),
3282 					    drm_gtf2_2j(drm_edid));
3283 	}
3284 
3285 	return mode;
3286 }
3287 
3288 /*
3289  * Take the standard timing params (in this case width, aspect, and refresh)
3290  * and convert them into a real mode using CVT/GTF/DMT.
3291  */
3292 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3293 					     const struct drm_edid *drm_edid,
3294 					     const struct std_timing *t)
3295 {
3296 	struct drm_device *dev = connector->dev;
3297 	struct drm_display_mode *m, *mode = NULL;
3298 	int hsize, vsize;
3299 	int vrefresh_rate;
3300 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3301 		>> EDID_TIMING_ASPECT_SHIFT;
3302 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3303 		>> EDID_TIMING_VFREQ_SHIFT;
3304 	int timing_level = standard_timing_level(drm_edid);
3305 
3306 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3307 		return NULL;
3308 
3309 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3310 	hsize = t->hsize * 8 + 248;
3311 	/* vrefresh_rate = vfreq + 60 */
3312 	vrefresh_rate = vfreq + 60;
3313 	/* the vdisplay is calculated based on the aspect ratio */
3314 	if (aspect_ratio == 0) {
3315 		if (drm_edid->edid->revision < 3)
3316 			vsize = hsize;
3317 		else
3318 			vsize = (hsize * 10) / 16;
3319 	} else if (aspect_ratio == 1)
3320 		vsize = (hsize * 3) / 4;
3321 	else if (aspect_ratio == 2)
3322 		vsize = (hsize * 4) / 5;
3323 	else
3324 		vsize = (hsize * 9) / 16;
3325 
3326 	/* HDTV hack, part 1 */
3327 	if (vrefresh_rate == 60 &&
3328 	    ((hsize == 1360 && vsize == 765) ||
3329 	     (hsize == 1368 && vsize == 769))) {
3330 		hsize = 1366;
3331 		vsize = 768;
3332 	}
3333 
3334 	/*
3335 	 * If this connector already has a mode for this size and refresh
3336 	 * rate (because it came from detailed or CVT info), use that
3337 	 * instead.  This way we don't have to guess at interlace or
3338 	 * reduced blanking.
3339 	 */
3340 	list_for_each_entry(m, &connector->probed_modes, head)
3341 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3342 		    drm_mode_vrefresh(m) == vrefresh_rate)
3343 			return NULL;
3344 
3345 	/* HDTV hack, part 2 */
3346 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3347 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3348 				    false);
3349 		if (!mode)
3350 			return NULL;
3351 		mode->hdisplay = 1366;
3352 		mode->hsync_start = mode->hsync_start - 1;
3353 		mode->hsync_end = mode->hsync_end - 1;
3354 		return mode;
3355 	}
3356 
3357 	/* check whether it can be found in default mode table */
3358 	if (drm_monitor_supports_rb(drm_edid)) {
3359 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3360 					 true);
3361 		if (mode)
3362 			return mode;
3363 	}
3364 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3365 	if (mode)
3366 		return mode;
3367 
3368 	/* okay, generate it */
3369 	switch (timing_level) {
3370 	case LEVEL_DMT:
3371 		break;
3372 	case LEVEL_GTF:
3373 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3374 		break;
3375 	case LEVEL_GTF2:
3376 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3377 		break;
3378 	case LEVEL_CVT:
3379 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3380 				    false);
3381 		break;
3382 	}
3383 	return mode;
3384 }
3385 
3386 /*
3387  * EDID is delightfully ambiguous about how interlaced modes are to be
3388  * encoded.  Our internal representation is of frame height, but some
3389  * HDTV detailed timings are encoded as field height.
3390  *
3391  * The format list here is from CEA, in frame size.  Technically we
3392  * should be checking refresh rate too.  Whatever.
3393  */
3394 static void
3395 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3396 			    const struct detailed_pixel_timing *pt)
3397 {
3398 	int i;
3399 	static const struct {
3400 		int w, h;
3401 	} cea_interlaced[] = {
3402 		{ 1920, 1080 },
3403 		{  720,  480 },
3404 		{ 1440,  480 },
3405 		{ 2880,  480 },
3406 		{  720,  576 },
3407 		{ 1440,  576 },
3408 		{ 2880,  576 },
3409 	};
3410 
3411 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3412 		return;
3413 
3414 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3415 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3416 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3417 			mode->vdisplay *= 2;
3418 			mode->vsync_start *= 2;
3419 			mode->vsync_end *= 2;
3420 			mode->vtotal *= 2;
3421 			mode->vtotal |= 1;
3422 		}
3423 	}
3424 
3425 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3426 }
3427 
3428 /*
3429  * Create a new mode from an EDID detailed timing section. An EDID detailed
3430  * timing block contains enough info for us to create and return a new struct
3431  * drm_display_mode.
3432  */
3433 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3434 						  const struct drm_edid *drm_edid,
3435 						  const struct detailed_timing *timing)
3436 {
3437 	const struct drm_display_info *info = &connector->display_info;
3438 	struct drm_device *dev = connector->dev;
3439 	struct drm_display_mode *mode;
3440 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3441 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3442 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3443 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3444 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3445 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3446 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3447 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3448 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3449 
3450 	/* ignore tiny modes */
3451 	if (hactive < 64 || vactive < 64)
3452 		return NULL;
3453 
3454 	if (pt->misc & DRM_EDID_PT_STEREO) {
3455 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3456 			    connector->base.id, connector->name);
3457 		return NULL;
3458 	}
3459 
3460 	/* it is incorrect if hsync/vsync width is zero */
3461 	if (!hsync_pulse_width || !vsync_pulse_width) {
3462 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3463 			    connector->base.id, connector->name);
3464 		return NULL;
3465 	}
3466 
3467 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3468 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3469 		if (!mode)
3470 			return NULL;
3471 
3472 		goto set_size;
3473 	}
3474 
3475 	mode = drm_mode_create(dev);
3476 	if (!mode)
3477 		return NULL;
3478 
3479 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3480 		mode->clock = 1088 * 10;
3481 	else
3482 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3483 
3484 	mode->hdisplay = hactive;
3485 	mode->hsync_start = mode->hdisplay + hsync_offset;
3486 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3487 	mode->htotal = mode->hdisplay + hblank;
3488 
3489 	mode->vdisplay = vactive;
3490 	mode->vsync_start = mode->vdisplay + vsync_offset;
3491 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3492 	mode->vtotal = mode->vdisplay + vblank;
3493 
3494 	/* Some EDIDs have bogus h/vtotal values */
3495 	if (mode->hsync_end > mode->htotal)
3496 		mode->htotal = mode->hsync_end + 1;
3497 	if (mode->vsync_end > mode->vtotal)
3498 		mode->vtotal = mode->vsync_end + 1;
3499 
3500 	drm_mode_do_interlace_quirk(mode, pt);
3501 
3502 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3503 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3504 	} else {
3505 		switch (pt->misc & DRM_EDID_PT_SYNC_MASK) {
3506 		case DRM_EDID_PT_ANALOG_CSYNC:
3507 		case DRM_EDID_PT_BIPOLAR_ANALOG_CSYNC:
3508 			drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Analog composite sync!\n",
3509 				    connector->base.id, connector->name);
3510 			mode->flags |= DRM_MODE_FLAG_CSYNC | DRM_MODE_FLAG_NCSYNC;
3511 			break;
3512 		case DRM_EDID_PT_DIGITAL_CSYNC:
3513 			drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Digital composite sync!\n",
3514 				    connector->base.id, connector->name);
3515 			mode->flags |= DRM_MODE_FLAG_CSYNC;
3516 			mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3517 				DRM_MODE_FLAG_PCSYNC : DRM_MODE_FLAG_NCSYNC;
3518 			break;
3519 		case DRM_EDID_PT_DIGITAL_SEPARATE_SYNC:
3520 			mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3521 				DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3522 			mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3523 				DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3524 			break;
3525 		}
3526 	}
3527 
3528 set_size:
3529 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3530 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3531 
3532 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3533 		mode->width_mm *= 10;
3534 		mode->height_mm *= 10;
3535 	}
3536 
3537 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3538 		mode->width_mm = drm_edid->edid->width_cm * 10;
3539 		mode->height_mm = drm_edid->edid->height_cm * 10;
3540 	}
3541 
3542 	mode->type = DRM_MODE_TYPE_DRIVER;
3543 	drm_mode_set_name(mode);
3544 
3545 	return mode;
3546 }
3547 
3548 static bool
3549 mode_in_hsync_range(const struct drm_display_mode *mode,
3550 		    const struct edid *edid, const u8 *t)
3551 {
3552 	int hsync, hmin, hmax;
3553 
3554 	hmin = t[7];
3555 	if (edid->revision >= 4)
3556 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3557 	hmax = t[8];
3558 	if (edid->revision >= 4)
3559 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3560 	hsync = drm_mode_hsync(mode);
3561 
3562 	return (hsync <= hmax && hsync >= hmin);
3563 }
3564 
3565 static bool
3566 mode_in_vsync_range(const struct drm_display_mode *mode,
3567 		    const struct edid *edid, const u8 *t)
3568 {
3569 	int vsync, vmin, vmax;
3570 
3571 	vmin = t[5];
3572 	if (edid->revision >= 4)
3573 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3574 	vmax = t[6];
3575 	if (edid->revision >= 4)
3576 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3577 	vsync = drm_mode_vrefresh(mode);
3578 
3579 	return (vsync <= vmax && vsync >= vmin);
3580 }
3581 
3582 static u32
3583 range_pixel_clock(const struct edid *edid, const u8 *t)
3584 {
3585 	/* unspecified */
3586 	if (t[9] == 0 || t[9] == 255)
3587 		return 0;
3588 
3589 	/* 1.4 with CVT support gives us real precision, yay */
3590 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3591 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3592 
3593 	/* 1.3 is pathetic, so fuzz up a bit */
3594 	return t[9] * 10000 + 5001;
3595 }
3596 
3597 static bool mode_in_range(const struct drm_display_mode *mode,
3598 			  const struct drm_edid *drm_edid,
3599 			  const struct detailed_timing *timing)
3600 {
3601 	const struct edid *edid = drm_edid->edid;
3602 	u32 max_clock;
3603 	const u8 *t = (const u8 *)timing;
3604 
3605 	if (!mode_in_hsync_range(mode, edid, t))
3606 		return false;
3607 
3608 	if (!mode_in_vsync_range(mode, edid, t))
3609 		return false;
3610 
3611 	if ((max_clock = range_pixel_clock(edid, t)))
3612 		if (mode->clock > max_clock)
3613 			return false;
3614 
3615 	/* 1.4 max horizontal check */
3616 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3617 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3618 			return false;
3619 
3620 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3621 		return false;
3622 
3623 	return true;
3624 }
3625 
3626 static bool valid_inferred_mode(const struct drm_connector *connector,
3627 				const struct drm_display_mode *mode)
3628 {
3629 	const struct drm_display_mode *m;
3630 	bool ok = false;
3631 
3632 	list_for_each_entry(m, &connector->probed_modes, head) {
3633 		if (mode->hdisplay == m->hdisplay &&
3634 		    mode->vdisplay == m->vdisplay &&
3635 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3636 			return false; /* duplicated */
3637 		if (mode->hdisplay <= m->hdisplay &&
3638 		    mode->vdisplay <= m->vdisplay)
3639 			ok = true;
3640 	}
3641 	return ok;
3642 }
3643 
3644 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3645 				   const struct drm_edid *drm_edid,
3646 				   const struct detailed_timing *timing)
3647 {
3648 	int i, modes = 0;
3649 	struct drm_display_mode *newmode;
3650 	struct drm_device *dev = connector->dev;
3651 
3652 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3653 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3654 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3655 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3656 			if (newmode) {
3657 				drm_mode_probed_add(connector, newmode);
3658 				modes++;
3659 			}
3660 		}
3661 	}
3662 
3663 	return modes;
3664 }
3665 
3666 /* fix up 1366x768 mode from 1368x768;
3667  * GFT/CVT can't express 1366 width which isn't dividable by 8
3668  */
3669 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3670 {
3671 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3672 		mode->hdisplay = 1366;
3673 		mode->hsync_start--;
3674 		mode->hsync_end--;
3675 		drm_mode_set_name(mode);
3676 	}
3677 }
3678 
3679 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3680 				   const struct drm_edid *drm_edid,
3681 				   const struct detailed_timing *timing)
3682 {
3683 	int i, modes = 0;
3684 	struct drm_display_mode *newmode;
3685 	struct drm_device *dev = connector->dev;
3686 
3687 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3688 		const struct minimode *m = &extra_modes[i];
3689 
3690 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3691 		if (!newmode)
3692 			return modes;
3693 
3694 		drm_mode_fixup_1366x768(newmode);
3695 		if (!mode_in_range(newmode, drm_edid, timing) ||
3696 		    !valid_inferred_mode(connector, newmode)) {
3697 			drm_mode_destroy(dev, newmode);
3698 			continue;
3699 		}
3700 
3701 		drm_mode_probed_add(connector, newmode);
3702 		modes++;
3703 	}
3704 
3705 	return modes;
3706 }
3707 
3708 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3709 				    const struct drm_edid *drm_edid,
3710 				    const struct detailed_timing *timing)
3711 {
3712 	int i, modes = 0;
3713 	struct drm_display_mode *newmode;
3714 	struct drm_device *dev = connector->dev;
3715 
3716 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3717 		const struct minimode *m = &extra_modes[i];
3718 
3719 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3720 		if (!newmode)
3721 			return modes;
3722 
3723 		drm_mode_fixup_1366x768(newmode);
3724 		if (!mode_in_range(newmode, drm_edid, timing) ||
3725 		    !valid_inferred_mode(connector, newmode)) {
3726 			drm_mode_destroy(dev, newmode);
3727 			continue;
3728 		}
3729 
3730 		drm_mode_probed_add(connector, newmode);
3731 		modes++;
3732 	}
3733 
3734 	return modes;
3735 }
3736 
3737 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3738 				   const struct drm_edid *drm_edid,
3739 				   const struct detailed_timing *timing)
3740 {
3741 	int i, modes = 0;
3742 	struct drm_display_mode *newmode;
3743 	struct drm_device *dev = connector->dev;
3744 	bool rb = drm_monitor_supports_rb(drm_edid);
3745 
3746 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3747 		const struct minimode *m = &extra_modes[i];
3748 
3749 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3750 		if (!newmode)
3751 			return modes;
3752 
3753 		drm_mode_fixup_1366x768(newmode);
3754 		if (!mode_in_range(newmode, drm_edid, timing) ||
3755 		    !valid_inferred_mode(connector, newmode)) {
3756 			drm_mode_destroy(dev, newmode);
3757 			continue;
3758 		}
3759 
3760 		drm_mode_probed_add(connector, newmode);
3761 		modes++;
3762 	}
3763 
3764 	return modes;
3765 }
3766 
3767 static void
3768 do_inferred_modes(const struct detailed_timing *timing, void *c)
3769 {
3770 	struct detailed_mode_closure *closure = c;
3771 	const struct detailed_non_pixel *data = &timing->data.other_data;
3772 	const struct detailed_data_monitor_range *range = &data->data.range;
3773 
3774 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3775 		return;
3776 
3777 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3778 						  closure->drm_edid,
3779 						  timing);
3780 
3781 	if (closure->drm_edid->edid->revision < 2)
3782 		return; /* GTF not defined yet */
3783 
3784 	switch (range->flags) {
3785 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3786 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3787 							   closure->drm_edid,
3788 							   timing);
3789 		break;
3790 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3791 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3792 							  closure->drm_edid,
3793 							  timing);
3794 		break;
3795 	case DRM_EDID_CVT_SUPPORT_FLAG:
3796 		if (closure->drm_edid->edid->revision < 4)
3797 			break;
3798 
3799 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3800 							  closure->drm_edid,
3801 							  timing);
3802 		break;
3803 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3804 	default:
3805 		break;
3806 	}
3807 }
3808 
3809 static int add_inferred_modes(struct drm_connector *connector,
3810 			      const struct drm_edid *drm_edid)
3811 {
3812 	struct detailed_mode_closure closure = {
3813 		.connector = connector,
3814 		.drm_edid = drm_edid,
3815 	};
3816 
3817 	if (drm_edid->edid->revision >= 1)
3818 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3819 
3820 	return closure.modes;
3821 }
3822 
3823 static int
3824 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3825 {
3826 	int i, j, m, modes = 0;
3827 	struct drm_display_mode *mode;
3828 	const u8 *est = ((const u8 *)timing) + 6;
3829 
3830 	for (i = 0; i < 6; i++) {
3831 		for (j = 7; j >= 0; j--) {
3832 			m = (i * 8) + (7 - j);
3833 			if (m >= ARRAY_SIZE(est3_modes))
3834 				break;
3835 			if (est[i] & (1 << j)) {
3836 				mode = drm_mode_find_dmt(connector->dev,
3837 							 est3_modes[m].w,
3838 							 est3_modes[m].h,
3839 							 est3_modes[m].r,
3840 							 est3_modes[m].rb);
3841 				if (mode) {
3842 					drm_mode_probed_add(connector, mode);
3843 					modes++;
3844 				}
3845 			}
3846 		}
3847 	}
3848 
3849 	return modes;
3850 }
3851 
3852 static void
3853 do_established_modes(const struct detailed_timing *timing, void *c)
3854 {
3855 	struct detailed_mode_closure *closure = c;
3856 
3857 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3858 		return;
3859 
3860 	closure->modes += drm_est3_modes(closure->connector, timing);
3861 }
3862 
3863 /*
3864  * Get established modes from EDID and add them. Each EDID block contains a
3865  * bitmap of the supported "established modes" list (defined above). Tease them
3866  * out and add them to the global modes list.
3867  */
3868 static int add_established_modes(struct drm_connector *connector,
3869 				 const struct drm_edid *drm_edid)
3870 {
3871 	struct drm_device *dev = connector->dev;
3872 	const struct edid *edid = drm_edid->edid;
3873 	unsigned long est_bits = edid->established_timings.t1 |
3874 		(edid->established_timings.t2 << 8) |
3875 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3876 	int i, modes = 0;
3877 	struct detailed_mode_closure closure = {
3878 		.connector = connector,
3879 		.drm_edid = drm_edid,
3880 	};
3881 
3882 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3883 		if (est_bits & (1<<i)) {
3884 			struct drm_display_mode *newmode;
3885 
3886 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3887 			if (newmode) {
3888 				drm_mode_probed_add(connector, newmode);
3889 				modes++;
3890 			}
3891 		}
3892 	}
3893 
3894 	if (edid->revision >= 1)
3895 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3896 					    &closure);
3897 
3898 	return modes + closure.modes;
3899 }
3900 
3901 static void
3902 do_standard_modes(const struct detailed_timing *timing, void *c)
3903 {
3904 	struct detailed_mode_closure *closure = c;
3905 	const struct detailed_non_pixel *data = &timing->data.other_data;
3906 	struct drm_connector *connector = closure->connector;
3907 	int i;
3908 
3909 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3910 		return;
3911 
3912 	for (i = 0; i < 6; i++) {
3913 		const struct std_timing *std = &data->data.timings[i];
3914 		struct drm_display_mode *newmode;
3915 
3916 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3917 		if (newmode) {
3918 			drm_mode_probed_add(connector, newmode);
3919 			closure->modes++;
3920 		}
3921 	}
3922 }
3923 
3924 /*
3925  * Get standard modes from EDID and add them. Standard modes can be calculated
3926  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3927  * add them to the list.
3928  */
3929 static int add_standard_modes(struct drm_connector *connector,
3930 			      const struct drm_edid *drm_edid)
3931 {
3932 	int i, modes = 0;
3933 	struct detailed_mode_closure closure = {
3934 		.connector = connector,
3935 		.drm_edid = drm_edid,
3936 	};
3937 
3938 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3939 		struct drm_display_mode *newmode;
3940 
3941 		newmode = drm_mode_std(connector, drm_edid,
3942 				       &drm_edid->edid->standard_timings[i]);
3943 		if (newmode) {
3944 			drm_mode_probed_add(connector, newmode);
3945 			modes++;
3946 		}
3947 	}
3948 
3949 	if (drm_edid->edid->revision >= 1)
3950 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3951 					    &closure);
3952 
3953 	/* XXX should also look for standard codes in VTB blocks */
3954 
3955 	return modes + closure.modes;
3956 }
3957 
3958 static int drm_cvt_modes(struct drm_connector *connector,
3959 			 const struct detailed_timing *timing)
3960 {
3961 	int i, j, modes = 0;
3962 	struct drm_display_mode *newmode;
3963 	struct drm_device *dev = connector->dev;
3964 	const struct cvt_timing *cvt;
3965 	const int rates[] = { 60, 85, 75, 60, 50 };
3966 	const u8 empty[3] = { 0, 0, 0 };
3967 
3968 	for (i = 0; i < 4; i++) {
3969 		int width, height;
3970 
3971 		cvt = &(timing->data.other_data.data.cvt[i]);
3972 
3973 		if (!memcmp(cvt->code, empty, 3))
3974 			continue;
3975 
3976 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3977 		switch (cvt->code[1] & 0x0c) {
3978 		/* default - because compiler doesn't see that we've enumerated all cases */
3979 		default:
3980 		case 0x00:
3981 			width = height * 4 / 3;
3982 			break;
3983 		case 0x04:
3984 			width = height * 16 / 9;
3985 			break;
3986 		case 0x08:
3987 			width = height * 16 / 10;
3988 			break;
3989 		case 0x0c:
3990 			width = height * 15 / 9;
3991 			break;
3992 		}
3993 
3994 		for (j = 1; j < 5; j++) {
3995 			if (cvt->code[2] & (1 << j)) {
3996 				newmode = drm_cvt_mode(dev, width, height,
3997 						       rates[j], j == 0,
3998 						       false, false);
3999 				if (newmode) {
4000 					drm_mode_probed_add(connector, newmode);
4001 					modes++;
4002 				}
4003 			}
4004 		}
4005 	}
4006 
4007 	return modes;
4008 }
4009 
4010 static void
4011 do_cvt_mode(const struct detailed_timing *timing, void *c)
4012 {
4013 	struct detailed_mode_closure *closure = c;
4014 
4015 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4016 		return;
4017 
4018 	closure->modes += drm_cvt_modes(closure->connector, timing);
4019 }
4020 
4021 static int
4022 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4023 {
4024 	struct detailed_mode_closure closure = {
4025 		.connector = connector,
4026 		.drm_edid = drm_edid,
4027 	};
4028 
4029 	if (drm_edid->edid->revision >= 3)
4030 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4031 
4032 	/* XXX should also look for CVT codes in VTB blocks */
4033 
4034 	return closure.modes;
4035 }
4036 
4037 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4038 					  struct drm_display_mode *mode);
4039 
4040 static void
4041 do_detailed_mode(const struct detailed_timing *timing, void *c)
4042 {
4043 	struct detailed_mode_closure *closure = c;
4044 	struct drm_display_mode *newmode;
4045 
4046 	if (!is_detailed_timing_descriptor(timing))
4047 		return;
4048 
4049 	newmode = drm_mode_detailed(closure->connector,
4050 				    closure->drm_edid, timing);
4051 	if (!newmode)
4052 		return;
4053 
4054 	if (closure->preferred)
4055 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4056 
4057 	/*
4058 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4059 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4060 	 * is just slightly off.
4061 	 */
4062 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4063 
4064 	drm_mode_probed_add(closure->connector, newmode);
4065 	closure->modes++;
4066 	closure->preferred = false;
4067 }
4068 
4069 /*
4070  * add_detailed_modes - Add modes from detailed timings
4071  * @connector: attached connector
4072  * @drm_edid: EDID block to scan
4073  */
4074 static int add_detailed_modes(struct drm_connector *connector,
4075 			      const struct drm_edid *drm_edid)
4076 {
4077 	struct detailed_mode_closure closure = {
4078 		.connector = connector,
4079 		.drm_edid = drm_edid,
4080 	};
4081 
4082 	if (drm_edid->edid->revision >= 4)
4083 		closure.preferred = true; /* first detailed timing is always preferred */
4084 	else
4085 		closure.preferred =
4086 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4087 
4088 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4089 
4090 	return closure.modes;
4091 }
4092 
4093 /* CTA-861-H Table 60 - CTA Tag Codes */
4094 #define CTA_DB_AUDIO			1
4095 #define CTA_DB_VIDEO			2
4096 #define CTA_DB_VENDOR			3
4097 #define CTA_DB_SPEAKER			4
4098 #define CTA_DB_EXTENDED_TAG		7
4099 
4100 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4101 #define CTA_EXT_DB_VIDEO_CAP		0
4102 #define CTA_EXT_DB_VENDOR		1
4103 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4104 #define CTA_EXT_DB_420_VIDEO_DATA	14
4105 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4106 #define CTA_EXT_DB_HF_EEODB		0x78
4107 #define CTA_EXT_DB_HF_SCDB		0x79
4108 
4109 #define EDID_BASIC_AUDIO	(1 << 6)
4110 #define EDID_CEA_YCRCB444	(1 << 5)
4111 #define EDID_CEA_YCRCB422	(1 << 4)
4112 #define EDID_CEA_VCDB_QS	(1 << 6)
4113 
4114 /*
4115  * Search EDID for CEA extension block.
4116  *
4117  * FIXME: Prefer not returning pointers to raw EDID data.
4118  */
4119 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4120 				  int ext_id, int *ext_index)
4121 {
4122 	const u8 *edid_ext = NULL;
4123 	int i;
4124 
4125 	/* No EDID or EDID extensions */
4126 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4127 		return NULL;
4128 
4129 	/* Find CEA extension */
4130 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4131 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4132 		if (edid_block_tag(edid_ext) == ext_id)
4133 			break;
4134 	}
4135 
4136 	if (i >= drm_edid_extension_block_count(drm_edid))
4137 		return NULL;
4138 
4139 	*ext_index = i + 1;
4140 
4141 	return edid_ext;
4142 }
4143 
4144 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4145 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4146 {
4147 	const struct displayid_block *block;
4148 	struct displayid_iter iter;
4149 	int ext_index = 0;
4150 	bool found = false;
4151 
4152 	/* Look for a top level CEA extension block */
4153 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4154 		return true;
4155 
4156 	/* CEA blocks can also be found embedded in a DisplayID block */
4157 	displayid_iter_edid_begin(drm_edid, &iter);
4158 	displayid_iter_for_each(block, &iter) {
4159 		if (block->tag == DATA_BLOCK_CTA) {
4160 			found = true;
4161 			break;
4162 		}
4163 	}
4164 	displayid_iter_end(&iter);
4165 
4166 	return found;
4167 }
4168 
4169 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4170 {
4171 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4172 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4173 
4174 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4175 		return &edid_cea_modes_1[vic - 1];
4176 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4177 		return &edid_cea_modes_193[vic - 193];
4178 	return NULL;
4179 }
4180 
4181 static u8 cea_num_vics(void)
4182 {
4183 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4184 }
4185 
4186 static u8 cea_next_vic(u8 vic)
4187 {
4188 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4189 		vic = 193;
4190 	return vic;
4191 }
4192 
4193 /*
4194  * Calculate the alternate clock for the CEA mode
4195  * (60Hz vs. 59.94Hz etc.)
4196  */
4197 static unsigned int
4198 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4199 {
4200 	unsigned int clock = cea_mode->clock;
4201 
4202 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4203 		return clock;
4204 
4205 	/*
4206 	 * edid_cea_modes contains the 59.94Hz
4207 	 * variant for 240 and 480 line modes,
4208 	 * and the 60Hz variant otherwise.
4209 	 */
4210 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4211 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4212 	else
4213 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4214 
4215 	return clock;
4216 }
4217 
4218 static bool
4219 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4220 {
4221 	/*
4222 	 * For certain VICs the spec allows the vertical
4223 	 * front porch to vary by one or two lines.
4224 	 *
4225 	 * cea_modes[] stores the variant with the shortest
4226 	 * vertical front porch. We can adjust the mode to
4227 	 * get the other variants by simply increasing the
4228 	 * vertical front porch length.
4229 	 */
4230 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4231 		     cea_mode_for_vic(9)->vtotal != 262 ||
4232 		     cea_mode_for_vic(12)->vtotal != 262 ||
4233 		     cea_mode_for_vic(13)->vtotal != 262 ||
4234 		     cea_mode_for_vic(23)->vtotal != 312 ||
4235 		     cea_mode_for_vic(24)->vtotal != 312 ||
4236 		     cea_mode_for_vic(27)->vtotal != 312 ||
4237 		     cea_mode_for_vic(28)->vtotal != 312);
4238 
4239 	if (((vic == 8 || vic == 9 ||
4240 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4241 	    ((vic == 23 || vic == 24 ||
4242 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4243 		mode->vsync_start++;
4244 		mode->vsync_end++;
4245 		mode->vtotal++;
4246 
4247 		return true;
4248 	}
4249 
4250 	return false;
4251 }
4252 
4253 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4254 					     unsigned int clock_tolerance)
4255 {
4256 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4257 	u8 vic;
4258 
4259 	if (!to_match->clock)
4260 		return 0;
4261 
4262 	if (to_match->picture_aspect_ratio)
4263 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4264 
4265 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266 		struct drm_display_mode cea_mode;
4267 		unsigned int clock1, clock2;
4268 
4269 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4270 
4271 		/* Check both 60Hz and 59.94Hz */
4272 		clock1 = cea_mode.clock;
4273 		clock2 = cea_mode_alternate_clock(&cea_mode);
4274 
4275 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4276 		    abs(to_match->clock - clock2) > clock_tolerance)
4277 			continue;
4278 
4279 		do {
4280 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4281 				return vic;
4282 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4283 	}
4284 
4285 	return 0;
4286 }
4287 
4288 /**
4289  * drm_match_cea_mode - look for a CEA mode matching given mode
4290  * @to_match: display mode
4291  *
4292  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4293  * mode.
4294  */
4295 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4296 {
4297 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4298 	u8 vic;
4299 
4300 	if (!to_match->clock)
4301 		return 0;
4302 
4303 	if (to_match->picture_aspect_ratio)
4304 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4305 
4306 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4307 		struct drm_display_mode cea_mode;
4308 		unsigned int clock1, clock2;
4309 
4310 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4311 
4312 		/* Check both 60Hz and 59.94Hz */
4313 		clock1 = cea_mode.clock;
4314 		clock2 = cea_mode_alternate_clock(&cea_mode);
4315 
4316 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4317 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4318 			continue;
4319 
4320 		do {
4321 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4322 				return vic;
4323 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4324 	}
4325 
4326 	return 0;
4327 }
4328 EXPORT_SYMBOL(drm_match_cea_mode);
4329 
4330 static bool drm_valid_cea_vic(u8 vic)
4331 {
4332 	return cea_mode_for_vic(vic) != NULL;
4333 }
4334 
4335 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4336 {
4337 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4338 
4339 	if (mode)
4340 		return mode->picture_aspect_ratio;
4341 
4342 	return HDMI_PICTURE_ASPECT_NONE;
4343 }
4344 
4345 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4346 {
4347 	return edid_4k_modes[video_code].picture_aspect_ratio;
4348 }
4349 
4350 /*
4351  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4352  * specific block).
4353  */
4354 static unsigned int
4355 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4356 {
4357 	return cea_mode_alternate_clock(hdmi_mode);
4358 }
4359 
4360 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4361 					      unsigned int clock_tolerance)
4362 {
4363 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4364 	u8 vic;
4365 
4366 	if (!to_match->clock)
4367 		return 0;
4368 
4369 	if (to_match->picture_aspect_ratio)
4370 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4371 
4372 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4373 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4374 		unsigned int clock1, clock2;
4375 
4376 		/* Make sure to also match alternate clocks */
4377 		clock1 = hdmi_mode->clock;
4378 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4379 
4380 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4381 		    abs(to_match->clock - clock2) > clock_tolerance)
4382 			continue;
4383 
4384 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4385 			return vic;
4386 	}
4387 
4388 	return 0;
4389 }
4390 
4391 /*
4392  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4393  * @to_match: display mode
4394  *
4395  * An HDMI mode is one defined in the HDMI vendor specific block.
4396  *
4397  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4398  */
4399 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4400 {
4401 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4402 	u8 vic;
4403 
4404 	if (!to_match->clock)
4405 		return 0;
4406 
4407 	if (to_match->picture_aspect_ratio)
4408 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4409 
4410 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4411 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4412 		unsigned int clock1, clock2;
4413 
4414 		/* Make sure to also match alternate clocks */
4415 		clock1 = hdmi_mode->clock;
4416 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4417 
4418 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4419 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4420 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4421 			return vic;
4422 	}
4423 	return 0;
4424 }
4425 
4426 static bool drm_valid_hdmi_vic(u8 vic)
4427 {
4428 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4429 }
4430 
4431 static int add_alternate_cea_modes(struct drm_connector *connector,
4432 				   const struct drm_edid *drm_edid)
4433 {
4434 	struct drm_device *dev = connector->dev;
4435 	struct drm_display_mode *mode, *tmp;
4436 	LIST_HEAD(list);
4437 	int modes = 0;
4438 
4439 	/* Don't add CTA modes if the CTA extension block is missing */
4440 	if (!drm_edid_has_cta_extension(drm_edid))
4441 		return 0;
4442 
4443 	/*
4444 	 * Go through all probed modes and create a new mode
4445 	 * with the alternate clock for certain CEA modes.
4446 	 */
4447 	list_for_each_entry(mode, &connector->probed_modes, head) {
4448 		const struct drm_display_mode *cea_mode = NULL;
4449 		struct drm_display_mode *newmode;
4450 		u8 vic = drm_match_cea_mode(mode);
4451 		unsigned int clock1, clock2;
4452 
4453 		if (drm_valid_cea_vic(vic)) {
4454 			cea_mode = cea_mode_for_vic(vic);
4455 			clock2 = cea_mode_alternate_clock(cea_mode);
4456 		} else {
4457 			vic = drm_match_hdmi_mode(mode);
4458 			if (drm_valid_hdmi_vic(vic)) {
4459 				cea_mode = &edid_4k_modes[vic];
4460 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4461 			}
4462 		}
4463 
4464 		if (!cea_mode)
4465 			continue;
4466 
4467 		clock1 = cea_mode->clock;
4468 
4469 		if (clock1 == clock2)
4470 			continue;
4471 
4472 		if (mode->clock != clock1 && mode->clock != clock2)
4473 			continue;
4474 
4475 		newmode = drm_mode_duplicate(dev, cea_mode);
4476 		if (!newmode)
4477 			continue;
4478 
4479 		/* Carry over the stereo flags */
4480 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4481 
4482 		/*
4483 		 * The current mode could be either variant. Make
4484 		 * sure to pick the "other" clock for the new mode.
4485 		 */
4486 		if (mode->clock != clock1)
4487 			newmode->clock = clock1;
4488 		else
4489 			newmode->clock = clock2;
4490 
4491 		list_add_tail(&newmode->head, &list);
4492 	}
4493 
4494 	list_for_each_entry_safe(mode, tmp, &list, head) {
4495 		list_del(&mode->head);
4496 		drm_mode_probed_add(connector, mode);
4497 		modes++;
4498 	}
4499 
4500 	return modes;
4501 }
4502 
4503 static u8 svd_to_vic(u8 svd)
4504 {
4505 	/* 0-6 bit vic, 7th bit native mode indicator */
4506 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4507 		return svd & 127;
4508 
4509 	return svd;
4510 }
4511 
4512 /*
4513  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4514  * the EDID, or NULL on errors.
4515  */
4516 static struct drm_display_mode *
4517 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4518 {
4519 	const struct drm_display_info *info = &connector->display_info;
4520 	struct drm_device *dev = connector->dev;
4521 
4522 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4523 		return NULL;
4524 
4525 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4526 }
4527 
4528 /*
4529  * do_y420vdb_modes - Parse YCBCR 420 only modes
4530  * @connector: connector corresponding to the HDMI sink
4531  * @svds: start of the data block of CEA YCBCR 420 VDB
4532  * @len: length of the CEA YCBCR 420 VDB
4533  *
4534  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4535  * which contains modes which can be supported in YCBCR 420
4536  * output format only.
4537  */
4538 static int do_y420vdb_modes(struct drm_connector *connector,
4539 			    const u8 *svds, u8 svds_len)
4540 {
4541 	struct drm_device *dev = connector->dev;
4542 	int modes = 0, i;
4543 
4544 	for (i = 0; i < svds_len; i++) {
4545 		u8 vic = svd_to_vic(svds[i]);
4546 		struct drm_display_mode *newmode;
4547 
4548 		if (!drm_valid_cea_vic(vic))
4549 			continue;
4550 
4551 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4552 		if (!newmode)
4553 			break;
4554 		drm_mode_probed_add(connector, newmode);
4555 		modes++;
4556 	}
4557 
4558 	return modes;
4559 }
4560 
4561 /**
4562  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4563  * @dev: DRM device
4564  * @video_code: CEA VIC of the mode
4565  *
4566  * Creates a new mode matching the specified CEA VIC.
4567  *
4568  * Returns: A new drm_display_mode on success or NULL on failure
4569  */
4570 struct drm_display_mode *
4571 drm_display_mode_from_cea_vic(struct drm_device *dev,
4572 			      u8 video_code)
4573 {
4574 	const struct drm_display_mode *cea_mode;
4575 	struct drm_display_mode *newmode;
4576 
4577 	cea_mode = cea_mode_for_vic(video_code);
4578 	if (!cea_mode)
4579 		return NULL;
4580 
4581 	newmode = drm_mode_duplicate(dev, cea_mode);
4582 	if (!newmode)
4583 		return NULL;
4584 
4585 	return newmode;
4586 }
4587 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4588 
4589 /* Add modes based on VICs parsed in parse_cta_vdb() */
4590 static int add_cta_vdb_modes(struct drm_connector *connector)
4591 {
4592 	const struct drm_display_info *info = &connector->display_info;
4593 	int i, modes = 0;
4594 
4595 	if (!info->vics)
4596 		return 0;
4597 
4598 	for (i = 0; i < info->vics_len; i++) {
4599 		struct drm_display_mode *mode;
4600 
4601 		mode = drm_display_mode_from_vic_index(connector, i);
4602 		if (mode) {
4603 			drm_mode_probed_add(connector, mode);
4604 			modes++;
4605 		}
4606 	}
4607 
4608 	return modes;
4609 }
4610 
4611 struct stereo_mandatory_mode {
4612 	int width, height, vrefresh;
4613 	unsigned int flags;
4614 };
4615 
4616 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4619 	{ 1920, 1080, 50,
4620 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4621 	{ 1920, 1080, 60,
4622 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627 };
4628 
4629 static bool
4630 stereo_match_mandatory(const struct drm_display_mode *mode,
4631 		       const struct stereo_mandatory_mode *stereo_mode)
4632 {
4633 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4634 
4635 	return mode->hdisplay == stereo_mode->width &&
4636 	       mode->vdisplay == stereo_mode->height &&
4637 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4639 }
4640 
4641 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4642 {
4643 	struct drm_device *dev = connector->dev;
4644 	const struct drm_display_mode *mode;
4645 	struct list_head stereo_modes;
4646 	int modes = 0, i;
4647 
4648 	INIT_LIST_HEAD(&stereo_modes);
4649 
4650 	list_for_each_entry(mode, &connector->probed_modes, head) {
4651 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652 			const struct stereo_mandatory_mode *mandatory;
4653 			struct drm_display_mode *new_mode;
4654 
4655 			if (!stereo_match_mandatory(mode,
4656 						    &stereo_mandatory_modes[i]))
4657 				continue;
4658 
4659 			mandatory = &stereo_mandatory_modes[i];
4660 			new_mode = drm_mode_duplicate(dev, mode);
4661 			if (!new_mode)
4662 				continue;
4663 
4664 			new_mode->flags |= mandatory->flags;
4665 			list_add_tail(&new_mode->head, &stereo_modes);
4666 			modes++;
4667 		}
4668 	}
4669 
4670 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4671 
4672 	return modes;
4673 }
4674 
4675 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4676 {
4677 	struct drm_device *dev = connector->dev;
4678 	struct drm_display_mode *newmode;
4679 
4680 	if (!drm_valid_hdmi_vic(vic)) {
4681 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682 			connector->base.id, connector->name, vic);
4683 		return 0;
4684 	}
4685 
4686 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687 	if (!newmode)
4688 		return 0;
4689 
4690 	drm_mode_probed_add(connector, newmode);
4691 
4692 	return 1;
4693 }
4694 
4695 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696 			       int vic_index)
4697 {
4698 	struct drm_display_mode *newmode;
4699 	int modes = 0;
4700 
4701 	if (structure & (1 << 0)) {
4702 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4703 		if (newmode) {
4704 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4705 			drm_mode_probed_add(connector, newmode);
4706 			modes++;
4707 		}
4708 	}
4709 	if (structure & (1 << 6)) {
4710 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4711 		if (newmode) {
4712 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4713 			drm_mode_probed_add(connector, newmode);
4714 			modes++;
4715 		}
4716 	}
4717 	if (structure & (1 << 8)) {
4718 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4719 		if (newmode) {
4720 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4721 			drm_mode_probed_add(connector, newmode);
4722 			modes++;
4723 		}
4724 	}
4725 
4726 	return modes;
4727 }
4728 
4729 static bool hdmi_vsdb_latency_present(const u8 *db)
4730 {
4731 	return db[8] & BIT(7);
4732 }
4733 
4734 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4735 {
4736 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4737 }
4738 
4739 static int hdmi_vsdb_latency_length(const u8 *db)
4740 {
4741 	if (hdmi_vsdb_i_latency_present(db))
4742 		return 4;
4743 	else if (hdmi_vsdb_latency_present(db))
4744 		return 2;
4745 	else
4746 		return 0;
4747 }
4748 
4749 /*
4750  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4751  * @connector: connector corresponding to the HDMI sink
4752  * @db: start of the CEA vendor specific block
4753  * @len: length of the CEA block payload, ie. one can access up to db[len]
4754  *
4755  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4756  * also adds the stereo 3d modes when applicable.
4757  */
4758 static int
4759 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4760 {
4761 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4762 	u8 vic_len, hdmi_3d_len = 0;
4763 	u16 mask;
4764 	u16 structure_all;
4765 
4766 	if (len < 8)
4767 		goto out;
4768 
4769 	/* no HDMI_Video_Present */
4770 	if (!(db[8] & (1 << 5)))
4771 		goto out;
4772 
4773 	offset += hdmi_vsdb_latency_length(db);
4774 
4775 	/* the declared length is not long enough for the 2 first bytes
4776 	 * of additional video format capabilities */
4777 	if (len < (8 + offset + 2))
4778 		goto out;
4779 
4780 	/* 3D_Present */
4781 	offset++;
4782 	if (db[8 + offset] & (1 << 7)) {
4783 		modes += add_hdmi_mandatory_stereo_modes(connector);
4784 
4785 		/* 3D_Multi_present */
4786 		multi_present = (db[8 + offset] & 0x60) >> 5;
4787 	}
4788 
4789 	offset++;
4790 	vic_len = db[8 + offset] >> 5;
4791 	hdmi_3d_len = db[8 + offset] & 0x1f;
4792 
4793 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4794 		u8 vic;
4795 
4796 		vic = db[9 + offset + i];
4797 		modes += add_hdmi_mode(connector, vic);
4798 	}
4799 	offset += 1 + vic_len;
4800 
4801 	if (multi_present == 1)
4802 		multi_len = 2;
4803 	else if (multi_present == 2)
4804 		multi_len = 4;
4805 	else
4806 		multi_len = 0;
4807 
4808 	if (len < (8 + offset + hdmi_3d_len - 1))
4809 		goto out;
4810 
4811 	if (hdmi_3d_len < multi_len)
4812 		goto out;
4813 
4814 	if (multi_present == 1 || multi_present == 2) {
4815 		/* 3D_Structure_ALL */
4816 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4817 
4818 		/* check if 3D_MASK is present */
4819 		if (multi_present == 2)
4820 			mask = (db[10 + offset] << 8) | db[11 + offset];
4821 		else
4822 			mask = 0xffff;
4823 
4824 		for (i = 0; i < 16; i++) {
4825 			if (mask & (1 << i))
4826 				modes += add_3d_struct_modes(connector,
4827 							     structure_all, i);
4828 		}
4829 	}
4830 
4831 	offset += multi_len;
4832 
4833 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4834 		int vic_index;
4835 		struct drm_display_mode *newmode = NULL;
4836 		unsigned int newflag = 0;
4837 		bool detail_present;
4838 
4839 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4840 
4841 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4842 			break;
4843 
4844 		/* 2D_VIC_order_X */
4845 		vic_index = db[8 + offset + i] >> 4;
4846 
4847 		/* 3D_Structure_X */
4848 		switch (db[8 + offset + i] & 0x0f) {
4849 		case 0:
4850 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4851 			break;
4852 		case 6:
4853 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4854 			break;
4855 		case 8:
4856 			/* 3D_Detail_X */
4857 			if ((db[9 + offset + i] >> 4) == 1)
4858 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4859 			break;
4860 		}
4861 
4862 		if (newflag != 0) {
4863 			newmode = drm_display_mode_from_vic_index(connector,
4864 								  vic_index);
4865 
4866 			if (newmode) {
4867 				newmode->flags |= newflag;
4868 				drm_mode_probed_add(connector, newmode);
4869 				modes++;
4870 			}
4871 		}
4872 
4873 		if (detail_present)
4874 			i++;
4875 	}
4876 
4877 out:
4878 	return modes;
4879 }
4880 
4881 static int
4882 cea_revision(const u8 *cea)
4883 {
4884 	/*
4885 	 * FIXME is this correct for the DispID variant?
4886 	 * The DispID spec doesn't really specify whether
4887 	 * this is the revision of the CEA extension or
4888 	 * the DispID CEA data block. And the only value
4889 	 * given as an example is 0.
4890 	 */
4891 	return cea[1];
4892 }
4893 
4894 /*
4895  * CTA Data Block iterator.
4896  *
4897  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4898  * CTA Data Blocks.
4899  *
4900  * struct cea_db *db:
4901  * struct cea_db_iter iter;
4902  *
4903  * cea_db_iter_edid_begin(edid, &iter);
4904  * cea_db_iter_for_each(db, &iter) {
4905  *         // do stuff with db
4906  * }
4907  * cea_db_iter_end(&iter);
4908  */
4909 struct cea_db_iter {
4910 	struct drm_edid_iter edid_iter;
4911 	struct displayid_iter displayid_iter;
4912 
4913 	/* Current Data Block Collection. */
4914 	const u8 *collection;
4915 
4916 	/* Current Data Block index in current collection. */
4917 	int index;
4918 
4919 	/* End index in current collection. */
4920 	int end;
4921 };
4922 
4923 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4924 struct cea_db {
4925 	u8 tag_length;
4926 	u8 data[];
4927 } __packed;
4928 
4929 static int cea_db_tag(const struct cea_db *db)
4930 {
4931 	return db->tag_length >> 5;
4932 }
4933 
4934 static int cea_db_payload_len(const void *_db)
4935 {
4936 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4937 	const struct cea_db *db = _db;
4938 
4939 	return db->tag_length & 0x1f;
4940 }
4941 
4942 static const void *cea_db_data(const struct cea_db *db)
4943 {
4944 	return db->data;
4945 }
4946 
4947 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4948 {
4949 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950 		cea_db_payload_len(db) >= 1 &&
4951 		db->data[0] == tag;
4952 }
4953 
4954 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4955 {
4956 	const u8 *data = cea_db_data(db);
4957 
4958 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4959 		cea_db_payload_len(db) >= 3 &&
4960 		oui(data[2], data[1], data[0]) == vendor_oui;
4961 }
4962 
4963 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964 				   struct cea_db_iter *iter)
4965 {
4966 	memset(iter, 0, sizeof(*iter));
4967 
4968 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4970 }
4971 
4972 static const struct cea_db *
4973 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4974 {
4975 	const struct cea_db *db;
4976 
4977 	if (!iter->collection)
4978 		return NULL;
4979 
4980 	db = (const struct cea_db *)&iter->collection[iter->index];
4981 
4982 	if (iter->index + sizeof(*db) <= iter->end &&
4983 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4984 		return db;
4985 
4986 	return NULL;
4987 }
4988 
4989 /*
4990  * References:
4991  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4992  */
4993 static int cea_db_collection_size(const u8 *cta)
4994 {
4995 	u8 d = cta[2];
4996 
4997 	if (d < 4 || d > 127)
4998 		return 0;
4999 
5000 	return d - 4;
5001 }
5002 
5003 /*
5004  * References:
5005  * - VESA E-EDID v1.4
5006  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5007  */
5008 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009 {
5010 	const u8 *ext;
5011 
5012 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5013 		int size;
5014 
5015 		/* Only support CTA Extension revision 3+ */
5016 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5017 			continue;
5018 
5019 		size = cea_db_collection_size(ext);
5020 		if (!size)
5021 			continue;
5022 
5023 		iter->index = 4;
5024 		iter->end = iter->index + size;
5025 
5026 		return ext;
5027 	}
5028 
5029 	return NULL;
5030 }
5031 
5032 /*
5033  * References:
5034  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5036  *
5037  * Note that the above do not specify any connection between DisplayID Data
5038  * Block revision and CTA Extension versions.
5039  */
5040 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5041 {
5042 	const struct displayid_block *block;
5043 
5044 	displayid_iter_for_each(block, &iter->displayid_iter) {
5045 		if (block->tag != DATA_BLOCK_CTA)
5046 			continue;
5047 
5048 		/*
5049 		 * The displayid iterator has already verified the block bounds
5050 		 * in displayid_iter_block().
5051 		 */
5052 		iter->index = sizeof(*block);
5053 		iter->end = iter->index + block->num_bytes;
5054 
5055 		return block;
5056 	}
5057 
5058 	return NULL;
5059 }
5060 
5061 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5062 {
5063 	const struct cea_db *db;
5064 
5065 	if (iter->collection) {
5066 		/* Current collection should always be valid. */
5067 		db = __cea_db_iter_current_block(iter);
5068 		if (WARN_ON(!db)) {
5069 			iter->collection = NULL;
5070 			return NULL;
5071 		}
5072 
5073 		/* Next block in CTA Data Block Collection */
5074 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5075 
5076 		db = __cea_db_iter_current_block(iter);
5077 		if (db)
5078 			return db;
5079 	}
5080 
5081 	for (;;) {
5082 		/*
5083 		 * Find the next CTA Data Block Collection. First iterate all
5084 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5085 		 *
5086 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087 		 * Extension, it's recommended that DisplayID extensions are
5088 		 * exposed after all of the CTA Extensions.
5089 		 */
5090 		iter->collection = __cea_db_iter_edid_next(iter);
5091 		if (!iter->collection)
5092 			iter->collection = __cea_db_iter_displayid_next(iter);
5093 
5094 		if (!iter->collection)
5095 			return NULL;
5096 
5097 		db = __cea_db_iter_current_block(iter);
5098 		if (db)
5099 			return db;
5100 	}
5101 }
5102 
5103 #define cea_db_iter_for_each(__db, __iter) \
5104 	while (((__db) = __cea_db_iter_next(__iter)))
5105 
5106 static void cea_db_iter_end(struct cea_db_iter *iter)
5107 {
5108 	displayid_iter_end(&iter->displayid_iter);
5109 	drm_edid_iter_end(&iter->edid_iter);
5110 
5111 	memset(iter, 0, sizeof(*iter));
5112 }
5113 
5114 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5115 {
5116 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117 		cea_db_payload_len(db) >= 5;
5118 }
5119 
5120 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5121 {
5122 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123 		cea_db_payload_len(db) >= 7;
5124 }
5125 
5126 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5127 {
5128 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129 		cea_db_payload_len(db) >= 2;
5130 }
5131 
5132 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5133 {
5134 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135 		cea_db_payload_len(db) == 21;
5136 }
5137 
5138 static bool cea_db_is_vcdb(const struct cea_db *db)
5139 {
5140 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141 		cea_db_payload_len(db) == 2;
5142 }
5143 
5144 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5145 {
5146 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147 		cea_db_payload_len(db) >= 7;
5148 }
5149 
5150 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5151 {
5152 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5153 }
5154 
5155 static bool cea_db_is_y420vdb(const struct cea_db *db)
5156 {
5157 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5158 }
5159 
5160 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5161 {
5162 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163 		cea_db_payload_len(db) >= 3;
5164 }
5165 
5166 /*
5167  * Get the HF-EEODB override extension block count from EDID.
5168  *
5169  * The passed in EDID may be partially read, as long as it has at least two
5170  * blocks (base block and one extension block) if EDID extension count is > 0.
5171  *
5172  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174  * iterators instead.
5175  *
5176  * References:
5177  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5178  */
5179 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180 {
5181 	const u8 *cta;
5182 
5183 	/* No extensions according to base block, no HF-EEODB. */
5184 	if (!edid_extension_block_count(edid))
5185 		return 0;
5186 
5187 	/* HF-EEODB is always in the first EDID extension block only */
5188 	cta = edid_extension_block_data(edid, 0);
5189 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5190 		return 0;
5191 
5192 	/* Need to have the data block collection, and at least 3 bytes. */
5193 	if (cea_db_collection_size(cta) < 3)
5194 		return 0;
5195 
5196 	/*
5197 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199 	 * through 6 of Block 1 of the E-EDID.
5200 	 */
5201 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5202 		return 0;
5203 
5204 	return cta[4 + 2];
5205 }
5206 
5207 /*
5208  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5209  *
5210  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5211  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5212  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5213  * support YCBCR420 output too.
5214  */
5215 static void parse_cta_y420cmdb(struct drm_connector *connector,
5216 			       const struct cea_db *db, u64 *y420cmdb_map)
5217 {
5218 	struct drm_display_info *info = &connector->display_info;
5219 	int i, map_len = cea_db_payload_len(db) - 1;
5220 	const u8 *data = cea_db_data(db) + 1;
5221 	u64 map = 0;
5222 
5223 	if (map_len == 0) {
5224 		/* All CEA modes support ycbcr420 sampling also.*/
5225 		map = U64_MAX;
5226 		goto out;
5227 	}
5228 
5229 	/*
5230 	 * This map indicates which of the existing CEA block modes
5231 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5232 	 * set, first mode from VDB can support YCBCR420 output too.
5233 	 * We will parse and keep this map, before parsing VDB itself
5234 	 * to avoid going through the same block again and again.
5235 	 *
5236 	 * Spec is not clear about max possible size of this block.
5237 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5238 	 * address 8 CEA modes, in this way this map can address
5239 	 * 8*8 = first 64 SVDs.
5240 	 */
5241 	if (WARN_ON_ONCE(map_len > 8))
5242 		map_len = 8;
5243 
5244 	for (i = 0; i < map_len; i++)
5245 		map |= (u64)data[i] << (8 * i);
5246 
5247 out:
5248 	if (map)
5249 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5250 
5251 	*y420cmdb_map = map;
5252 }
5253 
5254 static int add_cea_modes(struct drm_connector *connector,
5255 			 const struct drm_edid *drm_edid)
5256 {
5257 	const struct cea_db *db;
5258 	struct cea_db_iter iter;
5259 	int modes;
5260 
5261 	/* CTA VDB block VICs parsed earlier */
5262 	modes = add_cta_vdb_modes(connector);
5263 
5264 	cea_db_iter_edid_begin(drm_edid, &iter);
5265 	cea_db_iter_for_each(db, &iter) {
5266 		if (cea_db_is_hdmi_vsdb(db)) {
5267 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5268 						    cea_db_payload_len(db));
5269 		} else if (cea_db_is_y420vdb(db)) {
5270 			const u8 *vdb420 = cea_db_data(db) + 1;
5271 
5272 			/* Add 4:2:0(only) modes present in EDID */
5273 			modes += do_y420vdb_modes(connector, vdb420,
5274 						  cea_db_payload_len(db) - 1);
5275 		}
5276 	}
5277 	cea_db_iter_end(&iter);
5278 
5279 	return modes;
5280 }
5281 
5282 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5283 					  struct drm_display_mode *mode)
5284 {
5285 	const struct drm_display_mode *cea_mode;
5286 	int clock1, clock2, clock;
5287 	u8 vic;
5288 	const char *type;
5289 
5290 	/*
5291 	 * allow 5kHz clock difference either way to account for
5292 	 * the 10kHz clock resolution limit of detailed timings.
5293 	 */
5294 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5295 	if (drm_valid_cea_vic(vic)) {
5296 		type = "CEA";
5297 		cea_mode = cea_mode_for_vic(vic);
5298 		clock1 = cea_mode->clock;
5299 		clock2 = cea_mode_alternate_clock(cea_mode);
5300 	} else {
5301 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5302 		if (drm_valid_hdmi_vic(vic)) {
5303 			type = "HDMI";
5304 			cea_mode = &edid_4k_modes[vic];
5305 			clock1 = cea_mode->clock;
5306 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5307 		} else {
5308 			return;
5309 		}
5310 	}
5311 
5312 	/* pick whichever is closest */
5313 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5314 		clock = clock1;
5315 	else
5316 		clock = clock2;
5317 
5318 	if (mode->clock == clock)
5319 		return;
5320 
5321 	drm_dbg_kms(connector->dev,
5322 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5323 		    connector->base.id, connector->name,
5324 		    type, vic, mode->clock, clock);
5325 	mode->clock = clock;
5326 }
5327 
5328 static void drm_calculate_luminance_range(struct drm_connector *connector)
5329 {
5330 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5331 	struct drm_luminance_range_info *luminance_range =
5332 		&connector->display_info.luminance_range;
5333 	static const u8 pre_computed_values[] = {
5334 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5335 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5336 	};
5337 	u32 max_avg, min_cll, max, min, q, r;
5338 
5339 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5340 		return;
5341 
5342 	max_avg = hdr_metadata->max_fall;
5343 	min_cll = hdr_metadata->min_cll;
5344 
5345 	/*
5346 	 * From the specification (CTA-861-G), for calculating the maximum
5347 	 * luminance we need to use:
5348 	 *	Luminance = 50*2**(CV/32)
5349 	 * Where CV is a one-byte value.
5350 	 * For calculating this expression we may need float point precision;
5351 	 * to avoid this complexity level, we take advantage that CV is divided
5352 	 * by a constant. From the Euclids division algorithm, we know that CV
5353 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5354 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5355 	 * need to pre-compute the value of r/32. For pre-computing the values
5356 	 * We just used the following Ruby line:
5357 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5358 	 * The results of the above expressions can be verified at
5359 	 * pre_computed_values.
5360 	 */
5361 	q = max_avg >> 5;
5362 	r = max_avg % 32;
5363 	max = (1 << q) * pre_computed_values[r];
5364 
5365 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5366 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5367 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5368 
5369 	luminance_range->min_luminance = min;
5370 	luminance_range->max_luminance = max;
5371 }
5372 
5373 static uint8_t eotf_supported(const u8 *edid_ext)
5374 {
5375 	return edid_ext[2] &
5376 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5377 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5378 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5379 		 BIT(HDMI_EOTF_BT_2100_HLG));
5380 }
5381 
5382 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5383 {
5384 	return edid_ext[3] &
5385 		BIT(HDMI_STATIC_METADATA_TYPE1);
5386 }
5387 
5388 static void
5389 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5390 {
5391 	u16 len;
5392 
5393 	len = cea_db_payload_len(db);
5394 
5395 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5396 						eotf_supported(db);
5397 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5398 						hdr_metadata_type(db);
5399 
5400 	if (len >= 4)
5401 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5402 	if (len >= 5)
5403 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5404 	if (len >= 6) {
5405 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5406 
5407 		/* Calculate only when all values are available */
5408 		drm_calculate_luminance_range(connector);
5409 	}
5410 }
5411 
5412 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5413 static void
5414 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5415 {
5416 	u8 len = cea_db_payload_len(db);
5417 
5418 	if (len >= 6 && (db[6] & (1 << 7)))
5419 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5420 
5421 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5422 		connector->latency_present[0] = true;
5423 		connector->video_latency[0] = db[9];
5424 		connector->audio_latency[0] = db[10];
5425 	}
5426 
5427 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5428 		connector->latency_present[1] = true;
5429 		connector->video_latency[1] = db[11];
5430 		connector->audio_latency[1] = db[12];
5431 	}
5432 
5433 	drm_dbg_kms(connector->dev,
5434 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5435 		    connector->base.id, connector->name,
5436 		    connector->latency_present[0], connector->latency_present[1],
5437 		    connector->video_latency[0], connector->video_latency[1],
5438 		    connector->audio_latency[0], connector->audio_latency[1]);
5439 }
5440 
5441 static void
5442 monitor_name(const struct detailed_timing *timing, void *data)
5443 {
5444 	const char **res = data;
5445 
5446 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5447 		return;
5448 
5449 	*res = timing->data.other_data.data.str.str;
5450 }
5451 
5452 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5453 {
5454 	const char *edid_name = NULL;
5455 	int mnl;
5456 
5457 	if (!drm_edid || !name)
5458 		return 0;
5459 
5460 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5461 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5462 		if (edid_name[mnl] == 0x0a)
5463 			break;
5464 
5465 		name[mnl] = edid_name[mnl];
5466 	}
5467 
5468 	return mnl;
5469 }
5470 
5471 /**
5472  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5473  * @edid: monitor EDID information
5474  * @name: pointer to a character array to hold the name of the monitor
5475  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5476  *
5477  */
5478 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5479 {
5480 	int name_length = 0;
5481 
5482 	if (bufsize <= 0)
5483 		return;
5484 
5485 	if (edid) {
5486 		char buf[13];
5487 		struct drm_edid drm_edid = {
5488 			.edid = edid,
5489 			.size = edid_size(edid),
5490 		};
5491 
5492 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5493 		memcpy(name, buf, name_length);
5494 	}
5495 
5496 	name[name_length] = '\0';
5497 }
5498 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5499 
5500 static void clear_eld(struct drm_connector *connector)
5501 {
5502 	memset(connector->eld, 0, sizeof(connector->eld));
5503 
5504 	connector->latency_present[0] = false;
5505 	connector->latency_present[1] = false;
5506 	connector->video_latency[0] = 0;
5507 	connector->audio_latency[0] = 0;
5508 	connector->video_latency[1] = 0;
5509 	connector->audio_latency[1] = 0;
5510 }
5511 
5512 /*
5513  * drm_edid_to_eld - build ELD from EDID
5514  * @connector: connector corresponding to the HDMI/DP sink
5515  * @drm_edid: EDID to parse
5516  *
5517  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5518  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5519  */
5520 static void drm_edid_to_eld(struct drm_connector *connector,
5521 			    const struct drm_edid *drm_edid)
5522 {
5523 	const struct drm_display_info *info = &connector->display_info;
5524 	const struct cea_db *db;
5525 	struct cea_db_iter iter;
5526 	uint8_t *eld = connector->eld;
5527 	int total_sad_count = 0;
5528 	int mnl;
5529 
5530 	if (!drm_edid)
5531 		return;
5532 
5533 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5534 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5535 		    connector->base.id, connector->name,
5536 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5537 
5538 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5539 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5540 
5541 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5542 
5543 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5544 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5545 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5546 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5547 
5548 	cea_db_iter_edid_begin(drm_edid, &iter);
5549 	cea_db_iter_for_each(db, &iter) {
5550 		const u8 *data = cea_db_data(db);
5551 		int len = cea_db_payload_len(db);
5552 		int sad_count;
5553 
5554 		switch (cea_db_tag(db)) {
5555 		case CTA_DB_AUDIO:
5556 			/* Audio Data Block, contains SADs */
5557 			sad_count = min(len / 3, 15 - total_sad_count);
5558 			if (sad_count >= 1)
5559 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5560 				       data, sad_count * 3);
5561 			total_sad_count += sad_count;
5562 			break;
5563 		case CTA_DB_SPEAKER:
5564 			/* Speaker Allocation Data Block */
5565 			if (len >= 1)
5566 				eld[DRM_ELD_SPEAKER] = data[0];
5567 			break;
5568 		case CTA_DB_VENDOR:
5569 			/* HDMI Vendor-Specific Data Block */
5570 			if (cea_db_is_hdmi_vsdb(db))
5571 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5572 			break;
5573 		default:
5574 			break;
5575 		}
5576 	}
5577 	cea_db_iter_end(&iter);
5578 
5579 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5580 
5581 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5582 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5583 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5584 	else
5585 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5586 
5587 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5588 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5589 
5590 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5591 		    connector->base.id, connector->name,
5592 		    drm_eld_size(eld), total_sad_count);
5593 }
5594 
5595 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5596 			    struct cea_sad **sads)
5597 {
5598 	const struct cea_db *db;
5599 	struct cea_db_iter iter;
5600 	int count = 0;
5601 
5602 	cea_db_iter_edid_begin(drm_edid, &iter);
5603 	cea_db_iter_for_each(db, &iter) {
5604 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5605 			int j;
5606 
5607 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5608 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5609 			if (!*sads)
5610 				return -ENOMEM;
5611 			for (j = 0; j < count; j++) {
5612 				const u8 *sad = &db->data[j * 3];
5613 
5614 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
5615 				(*sads)[j].channels = sad[0] & 0x7;
5616 				(*sads)[j].freq = sad[1] & 0x7F;
5617 				(*sads)[j].byte2 = sad[2];
5618 			}
5619 			break;
5620 		}
5621 	}
5622 	cea_db_iter_end(&iter);
5623 
5624 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5625 
5626 	return count;
5627 }
5628 
5629 /**
5630  * drm_edid_to_sad - extracts SADs from EDID
5631  * @edid: EDID to parse
5632  * @sads: pointer that will be set to the extracted SADs
5633  *
5634  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5635  *
5636  * Note: The returned pointer needs to be freed using kfree().
5637  *
5638  * Return: The number of found SADs or negative number on error.
5639  */
5640 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5641 {
5642 	struct drm_edid drm_edid;
5643 
5644 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5645 }
5646 EXPORT_SYMBOL(drm_edid_to_sad);
5647 
5648 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5649 					   u8 **sadb)
5650 {
5651 	const struct cea_db *db;
5652 	struct cea_db_iter iter;
5653 	int count = 0;
5654 
5655 	cea_db_iter_edid_begin(drm_edid, &iter);
5656 	cea_db_iter_for_each(db, &iter) {
5657 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5658 		    cea_db_payload_len(db) == 3) {
5659 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5660 					GFP_KERNEL);
5661 			if (!*sadb)
5662 				return -ENOMEM;
5663 			count = cea_db_payload_len(db);
5664 			break;
5665 		}
5666 	}
5667 	cea_db_iter_end(&iter);
5668 
5669 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5670 
5671 	return count;
5672 }
5673 
5674 /**
5675  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5676  * @edid: EDID to parse
5677  * @sadb: pointer to the speaker block
5678  *
5679  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5680  *
5681  * Note: The returned pointer needs to be freed using kfree().
5682  *
5683  * Return: The number of found Speaker Allocation Blocks or negative number on
5684  * error.
5685  */
5686 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5687 {
5688 	struct drm_edid drm_edid;
5689 
5690 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5691 					       sadb);
5692 }
5693 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5694 
5695 /**
5696  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5697  * @connector: connector associated with the HDMI/DP sink
5698  * @mode: the display mode
5699  *
5700  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5701  * the sink doesn't support audio or video.
5702  */
5703 int drm_av_sync_delay(struct drm_connector *connector,
5704 		      const struct drm_display_mode *mode)
5705 {
5706 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5707 	int a, v;
5708 
5709 	if (!connector->latency_present[0])
5710 		return 0;
5711 	if (!connector->latency_present[1])
5712 		i = 0;
5713 
5714 	a = connector->audio_latency[i];
5715 	v = connector->video_latency[i];
5716 
5717 	/*
5718 	 * HDMI/DP sink doesn't support audio or video?
5719 	 */
5720 	if (a == 255 || v == 255)
5721 		return 0;
5722 
5723 	/*
5724 	 * Convert raw EDID values to millisecond.
5725 	 * Treat unknown latency as 0ms.
5726 	 */
5727 	if (a)
5728 		a = min(2 * (a - 1), 500);
5729 	if (v)
5730 		v = min(2 * (v - 1), 500);
5731 
5732 	return max(v - a, 0);
5733 }
5734 EXPORT_SYMBOL(drm_av_sync_delay);
5735 
5736 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5737 {
5738 	const struct cea_db *db;
5739 	struct cea_db_iter iter;
5740 	bool hdmi = false;
5741 
5742 	/*
5743 	 * Because HDMI identifier is in Vendor Specific Block,
5744 	 * search it from all data blocks of CEA extension.
5745 	 */
5746 	cea_db_iter_edid_begin(drm_edid, &iter);
5747 	cea_db_iter_for_each(db, &iter) {
5748 		if (cea_db_is_hdmi_vsdb(db)) {
5749 			hdmi = true;
5750 			break;
5751 		}
5752 	}
5753 	cea_db_iter_end(&iter);
5754 
5755 	return hdmi;
5756 }
5757 
5758 /**
5759  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5760  * @edid: monitor EDID information
5761  *
5762  * Parse the CEA extension according to CEA-861-B.
5763  *
5764  * Drivers that have added the modes parsed from EDID to drm_display_info
5765  * should use &drm_display_info.is_hdmi instead of calling this function.
5766  *
5767  * Return: True if the monitor is HDMI, false if not or unknown.
5768  */
5769 bool drm_detect_hdmi_monitor(const struct edid *edid)
5770 {
5771 	struct drm_edid drm_edid;
5772 
5773 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5774 }
5775 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5776 
5777 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5778 {
5779 	struct drm_edid_iter edid_iter;
5780 	const struct cea_db *db;
5781 	struct cea_db_iter iter;
5782 	const u8 *edid_ext;
5783 	bool has_audio = false;
5784 
5785 	drm_edid_iter_begin(drm_edid, &edid_iter);
5786 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5787 		if (edid_ext[0] == CEA_EXT) {
5788 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5789 			if (has_audio)
5790 				break;
5791 		}
5792 	}
5793 	drm_edid_iter_end(&edid_iter);
5794 
5795 	if (has_audio) {
5796 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5797 		goto end;
5798 	}
5799 
5800 	cea_db_iter_edid_begin(drm_edid, &iter);
5801 	cea_db_iter_for_each(db, &iter) {
5802 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5803 			const u8 *data = cea_db_data(db);
5804 			int i;
5805 
5806 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5807 				DRM_DEBUG_KMS("CEA audio format %d\n",
5808 					      (data[i] >> 3) & 0xf);
5809 			has_audio = true;
5810 			break;
5811 		}
5812 	}
5813 	cea_db_iter_end(&iter);
5814 
5815 end:
5816 	return has_audio;
5817 }
5818 
5819 /**
5820  * drm_detect_monitor_audio - check monitor audio capability
5821  * @edid: EDID block to scan
5822  *
5823  * Monitor should have CEA extension block.
5824  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5825  * audio' only. If there is any audio extension block and supported
5826  * audio format, assume at least 'basic audio' support, even if 'basic
5827  * audio' is not defined in EDID.
5828  *
5829  * Return: True if the monitor supports audio, false otherwise.
5830  */
5831 bool drm_detect_monitor_audio(const struct edid *edid)
5832 {
5833 	struct drm_edid drm_edid;
5834 
5835 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5836 }
5837 EXPORT_SYMBOL(drm_detect_monitor_audio);
5838 
5839 
5840 /**
5841  * drm_default_rgb_quant_range - default RGB quantization range
5842  * @mode: display mode
5843  *
5844  * Determine the default RGB quantization range for the mode,
5845  * as specified in CEA-861.
5846  *
5847  * Return: The default RGB quantization range for the mode
5848  */
5849 enum hdmi_quantization_range
5850 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5851 {
5852 	/* All CEA modes other than VIC 1 use limited quantization range. */
5853 	return drm_match_cea_mode(mode) > 1 ?
5854 		HDMI_QUANTIZATION_RANGE_LIMITED :
5855 		HDMI_QUANTIZATION_RANGE_FULL;
5856 }
5857 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5858 
5859 /* CTA-861 Video Data Block (CTA VDB) */
5860 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5861 {
5862 	struct drm_display_info *info = &connector->display_info;
5863 	int i, vic_index, len = cea_db_payload_len(db);
5864 	const u8 *svds = cea_db_data(db);
5865 	u8 *vics;
5866 
5867 	if (!len)
5868 		return;
5869 
5870 	/* Gracefully handle multiple VDBs, however unlikely that is */
5871 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5872 	if (!vics)
5873 		return;
5874 
5875 	vic_index = info->vics_len;
5876 	info->vics_len += len;
5877 	info->vics = vics;
5878 
5879 	for (i = 0; i < len; i++) {
5880 		u8 vic = svd_to_vic(svds[i]);
5881 
5882 		if (!drm_valid_cea_vic(vic))
5883 			vic = 0;
5884 
5885 		info->vics[vic_index++] = vic;
5886 	}
5887 }
5888 
5889 /*
5890  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5891  *
5892  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5893  * using the VICs themselves.
5894  */
5895 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5896 {
5897 	struct drm_display_info *info = &connector->display_info;
5898 	struct drm_hdmi_info *hdmi = &info->hdmi;
5899 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5900 
5901 	for (i = 0; i < len; i++) {
5902 		u8 vic = info->vics[i];
5903 
5904 		if (vic && y420cmdb_map & BIT_ULL(i))
5905 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5906 	}
5907 }
5908 
5909 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5910 {
5911 	const struct drm_display_info *info = &connector->display_info;
5912 	int i;
5913 
5914 	if (!vic || !info->vics)
5915 		return false;
5916 
5917 	for (i = 0; i < info->vics_len; i++) {
5918 		if (info->vics[i] == vic)
5919 			return true;
5920 	}
5921 
5922 	return false;
5923 }
5924 
5925 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5926 static void parse_cta_y420vdb(struct drm_connector *connector,
5927 			      const struct cea_db *db)
5928 {
5929 	struct drm_display_info *info = &connector->display_info;
5930 	struct drm_hdmi_info *hdmi = &info->hdmi;
5931 	const u8 *svds = cea_db_data(db) + 1;
5932 	int i;
5933 
5934 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5935 		u8 vic = svd_to_vic(svds[i]);
5936 
5937 		if (!drm_valid_cea_vic(vic))
5938 			continue;
5939 
5940 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5941 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5942 	}
5943 }
5944 
5945 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5946 {
5947 	struct drm_display_info *info = &connector->display_info;
5948 
5949 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5950 		    connector->base.id, connector->name, db[2]);
5951 
5952 	if (db[2] & EDID_CEA_VCDB_QS)
5953 		info->rgb_quant_range_selectable = true;
5954 }
5955 
5956 static
5957 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5958 {
5959 	switch (max_frl_rate) {
5960 	case 1:
5961 		*max_lanes = 3;
5962 		*max_rate_per_lane = 3;
5963 		break;
5964 	case 2:
5965 		*max_lanes = 3;
5966 		*max_rate_per_lane = 6;
5967 		break;
5968 	case 3:
5969 		*max_lanes = 4;
5970 		*max_rate_per_lane = 6;
5971 		break;
5972 	case 4:
5973 		*max_lanes = 4;
5974 		*max_rate_per_lane = 8;
5975 		break;
5976 	case 5:
5977 		*max_lanes = 4;
5978 		*max_rate_per_lane = 10;
5979 		break;
5980 	case 6:
5981 		*max_lanes = 4;
5982 		*max_rate_per_lane = 12;
5983 		break;
5984 	case 0:
5985 	default:
5986 		*max_lanes = 0;
5987 		*max_rate_per_lane = 0;
5988 	}
5989 }
5990 
5991 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5992 					       const u8 *db)
5993 {
5994 	u8 dc_mask;
5995 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5996 
5997 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5998 	hdmi->y420_dc_modes = dc_mask;
5999 }
6000 
6001 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6002 			       const u8 *hf_scds)
6003 {
6004 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6005 
6006 	if (!hdmi_dsc->v_1p2)
6007 		return;
6008 
6009 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6010 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6011 
6012 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6013 		hdmi_dsc->bpc_supported = 16;
6014 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6015 		hdmi_dsc->bpc_supported = 12;
6016 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6017 		hdmi_dsc->bpc_supported = 10;
6018 	else
6019 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6020 		hdmi_dsc->bpc_supported = 8;
6021 
6022 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6023 		u8 dsc_max_slices;
6024 		u8 dsc_max_frl_rate;
6025 
6026 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6027 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6028 				     &hdmi_dsc->max_frl_rate_per_lane);
6029 
6030 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6031 
6032 		switch (dsc_max_slices) {
6033 		case 1:
6034 			hdmi_dsc->max_slices = 1;
6035 			hdmi_dsc->clk_per_slice = 340;
6036 			break;
6037 		case 2:
6038 			hdmi_dsc->max_slices = 2;
6039 			hdmi_dsc->clk_per_slice = 340;
6040 			break;
6041 		case 3:
6042 			hdmi_dsc->max_slices = 4;
6043 			hdmi_dsc->clk_per_slice = 340;
6044 			break;
6045 		case 4:
6046 			hdmi_dsc->max_slices = 8;
6047 			hdmi_dsc->clk_per_slice = 340;
6048 			break;
6049 		case 5:
6050 			hdmi_dsc->max_slices = 8;
6051 			hdmi_dsc->clk_per_slice = 400;
6052 			break;
6053 		case 6:
6054 			hdmi_dsc->max_slices = 12;
6055 			hdmi_dsc->clk_per_slice = 400;
6056 			break;
6057 		case 7:
6058 			hdmi_dsc->max_slices = 16;
6059 			hdmi_dsc->clk_per_slice = 400;
6060 			break;
6061 		case 0:
6062 		default:
6063 			hdmi_dsc->max_slices = 0;
6064 			hdmi_dsc->clk_per_slice = 0;
6065 		}
6066 	}
6067 
6068 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6069 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6070 }
6071 
6072 /* Sink Capability Data Structure */
6073 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6074 				      const u8 *hf_scds)
6075 {
6076 	struct drm_display_info *info = &connector->display_info;
6077 	struct drm_hdmi_info *hdmi = &info->hdmi;
6078 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6079 	int max_tmds_clock = 0;
6080 	u8 max_frl_rate = 0;
6081 	bool dsc_support = false;
6082 
6083 	info->has_hdmi_infoframe = true;
6084 
6085 	if (hf_scds[6] & 0x80) {
6086 		hdmi->scdc.supported = true;
6087 		if (hf_scds[6] & 0x40)
6088 			hdmi->scdc.read_request = true;
6089 	}
6090 
6091 	/*
6092 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6093 	 * And as per the spec, three factors confirm this:
6094 	 * * Availability of a HF-VSDB block in EDID (check)
6095 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6096 	 * * SCDC support available (let's check)
6097 	 * Lets check it out.
6098 	 */
6099 
6100 	if (hf_scds[5]) {
6101 		struct drm_scdc *scdc = &hdmi->scdc;
6102 
6103 		/* max clock is 5000 KHz times block value */
6104 		max_tmds_clock = hf_scds[5] * 5000;
6105 
6106 		if (max_tmds_clock > 340000) {
6107 			info->max_tmds_clock = max_tmds_clock;
6108 		}
6109 
6110 		if (scdc->supported) {
6111 			scdc->scrambling.supported = true;
6112 
6113 			/* Few sinks support scrambling for clocks < 340M */
6114 			if ((hf_scds[6] & 0x8))
6115 				scdc->scrambling.low_rates = true;
6116 		}
6117 	}
6118 
6119 	if (hf_scds[7]) {
6120 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6121 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6122 				     &hdmi->max_frl_rate_per_lane);
6123 	}
6124 
6125 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6126 
6127 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6128 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6129 		dsc_support = true;
6130 	}
6131 
6132 	drm_dbg_kms(connector->dev,
6133 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6134 		    connector->base.id, connector->name,
6135 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6136 }
6137 
6138 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6139 					   const u8 *hdmi)
6140 {
6141 	struct drm_display_info *info = &connector->display_info;
6142 	unsigned int dc_bpc = 0;
6143 
6144 	/* HDMI supports at least 8 bpc */
6145 	info->bpc = 8;
6146 
6147 	if (cea_db_payload_len(hdmi) < 6)
6148 		return;
6149 
6150 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6151 		dc_bpc = 10;
6152 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6153 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6154 			    connector->base.id, connector->name);
6155 	}
6156 
6157 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6158 		dc_bpc = 12;
6159 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6160 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6161 			    connector->base.id, connector->name);
6162 	}
6163 
6164 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6165 		dc_bpc = 16;
6166 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6167 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6168 			    connector->base.id, connector->name);
6169 	}
6170 
6171 	if (dc_bpc == 0) {
6172 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6173 			    connector->base.id, connector->name);
6174 		return;
6175 	}
6176 
6177 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6178 		    connector->base.id, connector->name, dc_bpc);
6179 	info->bpc = dc_bpc;
6180 
6181 	/* YCRCB444 is optional according to spec. */
6182 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6183 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6184 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6185 			    connector->base.id, connector->name);
6186 	}
6187 
6188 	/*
6189 	 * Spec says that if any deep color mode is supported at all,
6190 	 * then deep color 36 bit must be supported.
6191 	 */
6192 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6193 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6194 			    connector->base.id, connector->name);
6195 	}
6196 }
6197 
6198 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6199 static void
6200 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6201 {
6202 	struct drm_display_info *info = &connector->display_info;
6203 	u8 len = cea_db_payload_len(db);
6204 
6205 	info->is_hdmi = true;
6206 
6207 	if (len >= 6)
6208 		info->dvi_dual = db[6] & 1;
6209 	if (len >= 7)
6210 		info->max_tmds_clock = db[7] * 5000;
6211 
6212 	/*
6213 	 * Try to infer whether the sink supports HDMI infoframes.
6214 	 *
6215 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6216 	 * supports infoframes if HDMI_Video_present is set.
6217 	 */
6218 	if (len >= 8 && db[8] & BIT(5))
6219 		info->has_hdmi_infoframe = true;
6220 
6221 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6222 		    connector->base.id, connector->name,
6223 		    info->dvi_dual, info->max_tmds_clock);
6224 
6225 	drm_parse_hdmi_deep_color_info(connector, db);
6226 }
6227 
6228 /*
6229  * See EDID extension for head-mounted and specialized monitors, specified at:
6230  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6231  */
6232 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6233 				     const u8 *db)
6234 {
6235 	struct drm_display_info *info = &connector->display_info;
6236 	u8 version = db[4];
6237 	bool desktop_usage = db[5] & BIT(6);
6238 
6239 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6240 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6241 		info->non_desktop = true;
6242 
6243 	drm_dbg_kms(connector->dev,
6244 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6245 		    connector->base.id, connector->name, version, db[5]);
6246 }
6247 
6248 static void drm_parse_cea_ext(struct drm_connector *connector,
6249 			      const struct drm_edid *drm_edid)
6250 {
6251 	struct drm_display_info *info = &connector->display_info;
6252 	struct drm_edid_iter edid_iter;
6253 	const struct cea_db *db;
6254 	struct cea_db_iter iter;
6255 	const u8 *edid_ext;
6256 	u64 y420cmdb_map = 0;
6257 
6258 	drm_edid_iter_begin(drm_edid, &edid_iter);
6259 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6260 		if (edid_ext[0] != CEA_EXT)
6261 			continue;
6262 
6263 		if (!info->cea_rev)
6264 			info->cea_rev = edid_ext[1];
6265 
6266 		if (info->cea_rev != edid_ext[1])
6267 			drm_dbg_kms(connector->dev,
6268 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6269 				    connector->base.id, connector->name,
6270 				    info->cea_rev, edid_ext[1]);
6271 
6272 		/* The existence of a CTA extension should imply RGB support */
6273 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6274 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6275 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6276 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6277 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6278 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6279 			info->has_audio = true;
6280 
6281 	}
6282 	drm_edid_iter_end(&edid_iter);
6283 
6284 	cea_db_iter_edid_begin(drm_edid, &iter);
6285 	cea_db_iter_for_each(db, &iter) {
6286 		/* FIXME: convert parsers to use struct cea_db */
6287 		const u8 *data = (const u8 *)db;
6288 
6289 		if (cea_db_is_hdmi_vsdb(db))
6290 			drm_parse_hdmi_vsdb_video(connector, data);
6291 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6292 			 cea_db_is_hdmi_forum_scdb(db))
6293 			drm_parse_hdmi_forum_scds(connector, data);
6294 		else if (cea_db_is_microsoft_vsdb(db))
6295 			drm_parse_microsoft_vsdb(connector, data);
6296 		else if (cea_db_is_y420cmdb(db))
6297 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6298 		else if (cea_db_is_y420vdb(db))
6299 			parse_cta_y420vdb(connector, db);
6300 		else if (cea_db_is_vcdb(db))
6301 			drm_parse_vcdb(connector, data);
6302 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6303 			drm_parse_hdr_metadata_block(connector, data);
6304 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6305 			parse_cta_vdb(connector, db);
6306 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6307 			info->has_audio = true;
6308 	}
6309 	cea_db_iter_end(&iter);
6310 
6311 	if (y420cmdb_map)
6312 		update_cta_y420cmdb(connector, y420cmdb_map);
6313 }
6314 
6315 static
6316 void get_monitor_range(const struct detailed_timing *timing, void *c)
6317 {
6318 	struct detailed_mode_closure *closure = c;
6319 	struct drm_display_info *info = &closure->connector->display_info;
6320 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6321 	const struct detailed_non_pixel *data = &timing->data.other_data;
6322 	const struct detailed_data_monitor_range *range = &data->data.range;
6323 	const struct edid *edid = closure->drm_edid->edid;
6324 
6325 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6326 		return;
6327 
6328 	/*
6329 	 * These limits are used to determine the VRR refresh
6330 	 * rate range. Only the "range limits only" variant
6331 	 * of the range descriptor seems to guarantee that
6332 	 * any and all timings are accepted by the sink, as
6333 	 * opposed to just timings conforming to the indicated
6334 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6335 	 * range descriptor are not accepted here.
6336 	 */
6337 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6338 		return;
6339 
6340 	monitor_range->min_vfreq = range->min_vfreq;
6341 	monitor_range->max_vfreq = range->max_vfreq;
6342 
6343 	if (edid->revision >= 4) {
6344 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6345 			monitor_range->min_vfreq += 255;
6346 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6347 			monitor_range->max_vfreq += 255;
6348 	}
6349 }
6350 
6351 static void drm_get_monitor_range(struct drm_connector *connector,
6352 				  const struct drm_edid *drm_edid)
6353 {
6354 	const struct drm_display_info *info = &connector->display_info;
6355 	struct detailed_mode_closure closure = {
6356 		.connector = connector,
6357 		.drm_edid = drm_edid,
6358 	};
6359 
6360 	if (drm_edid->edid->revision < 4)
6361 		return;
6362 
6363 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6364 		return;
6365 
6366 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6367 
6368 	drm_dbg_kms(connector->dev,
6369 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6370 		    connector->base.id, connector->name,
6371 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6372 }
6373 
6374 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6375 				    const struct displayid_block *block)
6376 {
6377 	struct displayid_vesa_vendor_specific_block *vesa =
6378 		(struct displayid_vesa_vendor_specific_block *)block;
6379 	struct drm_display_info *info = &connector->display_info;
6380 
6381 	if (block->num_bytes < 3) {
6382 		drm_dbg_kms(connector->dev,
6383 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6384 			    connector->base.id, connector->name, block->num_bytes);
6385 		return;
6386 	}
6387 
6388 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6389 		return;
6390 
6391 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6392 		drm_dbg_kms(connector->dev,
6393 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6394 			    connector->base.id, connector->name);
6395 		return;
6396 	}
6397 
6398 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6399 	default:
6400 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6401 			    connector->base.id, connector->name);
6402 		fallthrough;
6403 	case 0:
6404 		info->mso_stream_count = 0;
6405 		break;
6406 	case 1:
6407 		info->mso_stream_count = 2; /* 2 or 4 links */
6408 		break;
6409 	case 2:
6410 		info->mso_stream_count = 4; /* 4 links */
6411 		break;
6412 	}
6413 
6414 	if (!info->mso_stream_count) {
6415 		info->mso_pixel_overlap = 0;
6416 		return;
6417 	}
6418 
6419 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6420 	if (info->mso_pixel_overlap > 8) {
6421 		drm_dbg_kms(connector->dev,
6422 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6423 			    connector->base.id, connector->name,
6424 			    info->mso_pixel_overlap);
6425 		info->mso_pixel_overlap = 8;
6426 	}
6427 
6428 	drm_dbg_kms(connector->dev,
6429 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6430 		    connector->base.id, connector->name,
6431 		    info->mso_stream_count, info->mso_pixel_overlap);
6432 }
6433 
6434 static void drm_update_mso(struct drm_connector *connector,
6435 			   const struct drm_edid *drm_edid)
6436 {
6437 	const struct displayid_block *block;
6438 	struct displayid_iter iter;
6439 
6440 	displayid_iter_edid_begin(drm_edid, &iter);
6441 	displayid_iter_for_each(block, &iter) {
6442 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6443 			drm_parse_vesa_mso_data(connector, block);
6444 	}
6445 	displayid_iter_end(&iter);
6446 }
6447 
6448 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6449  * all of the values which would have been set from EDID
6450  */
6451 static void drm_reset_display_info(struct drm_connector *connector)
6452 {
6453 	struct drm_display_info *info = &connector->display_info;
6454 
6455 	info->width_mm = 0;
6456 	info->height_mm = 0;
6457 
6458 	info->bpc = 0;
6459 	info->color_formats = 0;
6460 	info->cea_rev = 0;
6461 	info->max_tmds_clock = 0;
6462 	info->dvi_dual = false;
6463 	info->is_hdmi = false;
6464 	info->has_audio = false;
6465 	info->has_hdmi_infoframe = false;
6466 	info->rgb_quant_range_selectable = false;
6467 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6468 
6469 	info->edid_hdmi_rgb444_dc_modes = 0;
6470 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6471 
6472 	info->non_desktop = 0;
6473 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6474 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6475 
6476 	info->mso_stream_count = 0;
6477 	info->mso_pixel_overlap = 0;
6478 	info->max_dsc_bpp = 0;
6479 
6480 	kfree(info->vics);
6481 	info->vics = NULL;
6482 	info->vics_len = 0;
6483 
6484 	info->quirks = 0;
6485 }
6486 
6487 static void update_displayid_info(struct drm_connector *connector,
6488 				  const struct drm_edid *drm_edid)
6489 {
6490 	struct drm_display_info *info = &connector->display_info;
6491 	const struct displayid_block *block;
6492 	struct displayid_iter iter;
6493 
6494 	displayid_iter_edid_begin(drm_edid, &iter);
6495 	displayid_iter_for_each(block, &iter) {
6496 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6497 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6498 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6499 			info->non_desktop = true;
6500 
6501 		/*
6502 		 * We're only interested in the base section here, no need to
6503 		 * iterate further.
6504 		 */
6505 		break;
6506 	}
6507 	displayid_iter_end(&iter);
6508 }
6509 
6510 static void update_display_info(struct drm_connector *connector,
6511 				const struct drm_edid *drm_edid)
6512 {
6513 	struct drm_display_info *info = &connector->display_info;
6514 	const struct edid *edid;
6515 
6516 	drm_reset_display_info(connector);
6517 	clear_eld(connector);
6518 
6519 	if (!drm_edid)
6520 		return;
6521 
6522 	edid = drm_edid->edid;
6523 
6524 	info->quirks = edid_get_quirks(drm_edid);
6525 
6526 	info->width_mm = edid->width_cm * 10;
6527 	info->height_mm = edid->height_cm * 10;
6528 
6529 	drm_get_monitor_range(connector, drm_edid);
6530 
6531 	if (edid->revision < 3)
6532 		goto out;
6533 
6534 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6535 		goto out;
6536 
6537 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6538 	drm_parse_cea_ext(connector, drm_edid);
6539 
6540 	update_displayid_info(connector, drm_edid);
6541 
6542 	/*
6543 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6544 	 *
6545 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6546 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6547 	 * extensions which tell otherwise.
6548 	 */
6549 	if (info->bpc == 0 && edid->revision == 3 &&
6550 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6551 		info->bpc = 8;
6552 		drm_dbg_kms(connector->dev,
6553 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6554 			    connector->base.id, connector->name, info->bpc);
6555 	}
6556 
6557 	/* Only defined for 1.4 with digital displays */
6558 	if (edid->revision < 4)
6559 		goto out;
6560 
6561 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6562 	case DRM_EDID_DIGITAL_DEPTH_6:
6563 		info->bpc = 6;
6564 		break;
6565 	case DRM_EDID_DIGITAL_DEPTH_8:
6566 		info->bpc = 8;
6567 		break;
6568 	case DRM_EDID_DIGITAL_DEPTH_10:
6569 		info->bpc = 10;
6570 		break;
6571 	case DRM_EDID_DIGITAL_DEPTH_12:
6572 		info->bpc = 12;
6573 		break;
6574 	case DRM_EDID_DIGITAL_DEPTH_14:
6575 		info->bpc = 14;
6576 		break;
6577 	case DRM_EDID_DIGITAL_DEPTH_16:
6578 		info->bpc = 16;
6579 		break;
6580 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6581 	default:
6582 		info->bpc = 0;
6583 		break;
6584 	}
6585 
6586 	drm_dbg_kms(connector->dev,
6587 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6588 		    connector->base.id, connector->name, info->bpc);
6589 
6590 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6591 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6592 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6593 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6594 
6595 	drm_update_mso(connector, drm_edid);
6596 
6597 out:
6598 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6599 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6600 			    connector->base.id, connector->name,
6601 			    info->non_desktop ? " (redundant quirk)" : "");
6602 		info->non_desktop = true;
6603 	}
6604 
6605 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6606 		info->max_dsc_bpp = 15;
6607 
6608 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6609 		info->bpc = 6;
6610 
6611 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6612 		info->bpc = 8;
6613 
6614 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6615 		info->bpc = 10;
6616 
6617 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6618 		info->bpc = 12;
6619 
6620 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6621 	drm_edid_to_eld(connector, drm_edid);
6622 }
6623 
6624 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6625 							    struct displayid_detailed_timings_1 *timings,
6626 							    bool type_7)
6627 {
6628 	struct drm_display_mode *mode;
6629 	unsigned pixel_clock = (timings->pixel_clock[0] |
6630 				(timings->pixel_clock[1] << 8) |
6631 				(timings->pixel_clock[2] << 16)) + 1;
6632 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6633 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6634 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6635 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6636 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6637 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6638 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6639 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6640 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6641 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6642 
6643 	mode = drm_mode_create(dev);
6644 	if (!mode)
6645 		return NULL;
6646 
6647 	/* resolution is kHz for type VII, and 10 kHz for type I */
6648 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6649 	mode->hdisplay = hactive;
6650 	mode->hsync_start = mode->hdisplay + hsync;
6651 	mode->hsync_end = mode->hsync_start + hsync_width;
6652 	mode->htotal = mode->hdisplay + hblank;
6653 
6654 	mode->vdisplay = vactive;
6655 	mode->vsync_start = mode->vdisplay + vsync;
6656 	mode->vsync_end = mode->vsync_start + vsync_width;
6657 	mode->vtotal = mode->vdisplay + vblank;
6658 
6659 	mode->flags = 0;
6660 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6661 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6662 	mode->type = DRM_MODE_TYPE_DRIVER;
6663 
6664 	if (timings->flags & 0x80)
6665 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6666 	drm_mode_set_name(mode);
6667 
6668 	return mode;
6669 }
6670 
6671 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6672 					  const struct displayid_block *block)
6673 {
6674 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6675 	int i;
6676 	int num_timings;
6677 	struct drm_display_mode *newmode;
6678 	int num_modes = 0;
6679 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6680 	/* blocks must be multiple of 20 bytes length */
6681 	if (block->num_bytes % 20)
6682 		return 0;
6683 
6684 	num_timings = block->num_bytes / 20;
6685 	for (i = 0; i < num_timings; i++) {
6686 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6687 
6688 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6689 		if (!newmode)
6690 			continue;
6691 
6692 		drm_mode_probed_add(connector, newmode);
6693 		num_modes++;
6694 	}
6695 	return num_modes;
6696 }
6697 
6698 static int add_displayid_detailed_modes(struct drm_connector *connector,
6699 					const struct drm_edid *drm_edid)
6700 {
6701 	const struct displayid_block *block;
6702 	struct displayid_iter iter;
6703 	int num_modes = 0;
6704 
6705 	displayid_iter_edid_begin(drm_edid, &iter);
6706 	displayid_iter_for_each(block, &iter) {
6707 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6708 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6709 			num_modes += add_displayid_detailed_1_modes(connector, block);
6710 	}
6711 	displayid_iter_end(&iter);
6712 
6713 	return num_modes;
6714 }
6715 
6716 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6717 					 const struct drm_edid *drm_edid)
6718 {
6719 	const struct drm_display_info *info = &connector->display_info;
6720 	int num_modes = 0;
6721 
6722 	if (!drm_edid)
6723 		return 0;
6724 
6725 	/*
6726 	 * EDID spec says modes should be preferred in this order:
6727 	 * - preferred detailed mode
6728 	 * - other detailed modes from base block
6729 	 * - detailed modes from extension blocks
6730 	 * - CVT 3-byte code modes
6731 	 * - standard timing codes
6732 	 * - established timing codes
6733 	 * - modes inferred from GTF or CVT range information
6734 	 *
6735 	 * We get this pretty much right.
6736 	 *
6737 	 * XXX order for additional mode types in extension blocks?
6738 	 */
6739 	num_modes += add_detailed_modes(connector, drm_edid);
6740 	num_modes += add_cvt_modes(connector, drm_edid);
6741 	num_modes += add_standard_modes(connector, drm_edid);
6742 	num_modes += add_established_modes(connector, drm_edid);
6743 	num_modes += add_cea_modes(connector, drm_edid);
6744 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6745 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6746 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6747 		num_modes += add_inferred_modes(connector, drm_edid);
6748 
6749 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6750 		edid_fixup_preferred(connector);
6751 
6752 	return num_modes;
6753 }
6754 
6755 static void _drm_update_tile_info(struct drm_connector *connector,
6756 				  const struct drm_edid *drm_edid);
6757 
6758 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6759 					       const struct drm_edid *drm_edid)
6760 {
6761 	struct drm_device *dev = connector->dev;
6762 	int ret;
6763 
6764 	if (connector->edid_blob_ptr) {
6765 		const struct edid *old_edid = connector->edid_blob_ptr->data;
6766 
6767 		if (old_edid) {
6768 			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6769 				connector->epoch_counter++;
6770 				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6771 					    connector->base.id, connector->name,
6772 					    connector->epoch_counter);
6773 			}
6774 		}
6775 	}
6776 
6777 	ret = drm_property_replace_global_blob(dev,
6778 					       &connector->edid_blob_ptr,
6779 					       drm_edid ? drm_edid->size : 0,
6780 					       drm_edid ? drm_edid->edid : NULL,
6781 					       &connector->base,
6782 					       dev->mode_config.edid_property);
6783 	if (ret) {
6784 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6785 			    connector->base.id, connector->name, ret);
6786 		goto out;
6787 	}
6788 
6789 	ret = drm_object_property_set_value(&connector->base,
6790 					    dev->mode_config.non_desktop_property,
6791 					    connector->display_info.non_desktop);
6792 	if (ret) {
6793 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6794 			    connector->base.id, connector->name, ret);
6795 		goto out;
6796 	}
6797 
6798 	ret = drm_connector_set_tile_property(connector);
6799 	if (ret) {
6800 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6801 			    connector->base.id, connector->name, ret);
6802 		goto out;
6803 	}
6804 
6805 out:
6806 	return ret;
6807 }
6808 
6809 /**
6810  * drm_edid_connector_update - Update connector information from EDID
6811  * @connector: Connector
6812  * @drm_edid: EDID
6813  *
6814  * Update the connector display info, ELD, HDR metadata, relevant properties,
6815  * etc. from the passed in EDID.
6816  *
6817  * If EDID is NULL, reset the information.
6818  *
6819  * Must be called before calling drm_edid_connector_add_modes().
6820  *
6821  * Return: 0 on success, negative error on errors.
6822  */
6823 int drm_edid_connector_update(struct drm_connector *connector,
6824 			      const struct drm_edid *drm_edid)
6825 {
6826 	update_display_info(connector, drm_edid);
6827 
6828 	_drm_update_tile_info(connector, drm_edid);
6829 
6830 	return _drm_edid_connector_property_update(connector, drm_edid);
6831 }
6832 EXPORT_SYMBOL(drm_edid_connector_update);
6833 
6834 /**
6835  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6836  * @connector: Connector
6837  *
6838  * Add the modes from the previously updated EDID property to the connector
6839  * probed modes list.
6840  *
6841  * drm_edid_connector_update() must have been called before this to update the
6842  * EDID property.
6843  *
6844  * Return: The number of modes added, or 0 if we couldn't find any.
6845  */
6846 int drm_edid_connector_add_modes(struct drm_connector *connector)
6847 {
6848 	const struct drm_edid *drm_edid = NULL;
6849 	int count;
6850 
6851 	if (connector->edid_blob_ptr)
6852 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6853 					  connector->edid_blob_ptr->length);
6854 
6855 	count = _drm_edid_connector_add_modes(connector, drm_edid);
6856 
6857 	drm_edid_free(drm_edid);
6858 
6859 	return count;
6860 }
6861 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6862 
6863 /**
6864  * drm_connector_update_edid_property - update the edid property of a connector
6865  * @connector: drm connector
6866  * @edid: new value of the edid property
6867  *
6868  * This function creates a new blob modeset object and assigns its id to the
6869  * connector's edid property.
6870  * Since we also parse tile information from EDID's displayID block, we also
6871  * set the connector's tile property here. See drm_connector_set_tile_property()
6872  * for more details.
6873  *
6874  * This function is deprecated. Use drm_edid_connector_update() instead.
6875  *
6876  * Returns:
6877  * Zero on success, negative errno on failure.
6878  */
6879 int drm_connector_update_edid_property(struct drm_connector *connector,
6880 				       const struct edid *edid)
6881 {
6882 	struct drm_edid drm_edid;
6883 
6884 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6885 }
6886 EXPORT_SYMBOL(drm_connector_update_edid_property);
6887 
6888 /**
6889  * drm_add_edid_modes - add modes from EDID data, if available
6890  * @connector: connector we're probing
6891  * @edid: EDID data
6892  *
6893  * Add the specified modes to the connector's mode list. Also fills out the
6894  * &drm_display_info structure and ELD in @connector with any information which
6895  * can be derived from the edid.
6896  *
6897  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6898  *
6899  * Return: The number of modes added or 0 if we couldn't find any.
6900  */
6901 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6902 {
6903 	struct drm_edid _drm_edid;
6904 	const struct drm_edid *drm_edid;
6905 
6906 	if (edid && !drm_edid_is_valid(edid)) {
6907 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6908 			 connector->base.id, connector->name);
6909 		edid = NULL;
6910 	}
6911 
6912 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6913 
6914 	update_display_info(connector, drm_edid);
6915 
6916 	return _drm_edid_connector_add_modes(connector, drm_edid);
6917 }
6918 EXPORT_SYMBOL(drm_add_edid_modes);
6919 
6920 /**
6921  * drm_add_modes_noedid - add modes for the connectors without EDID
6922  * @connector: connector we're probing
6923  * @hdisplay: the horizontal display limit
6924  * @vdisplay: the vertical display limit
6925  *
6926  * Add the specified modes to the connector's mode list. Only when the
6927  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6928  *
6929  * Return: The number of modes added or 0 if we couldn't find any.
6930  */
6931 int drm_add_modes_noedid(struct drm_connector *connector,
6932 			int hdisplay, int vdisplay)
6933 {
6934 	int i, count, num_modes = 0;
6935 	struct drm_display_mode *mode;
6936 	struct drm_device *dev = connector->dev;
6937 
6938 	count = ARRAY_SIZE(drm_dmt_modes);
6939 	if (hdisplay < 0)
6940 		hdisplay = 0;
6941 	if (vdisplay < 0)
6942 		vdisplay = 0;
6943 
6944 	for (i = 0; i < count; i++) {
6945 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6946 
6947 		if (hdisplay && vdisplay) {
6948 			/*
6949 			 * Only when two are valid, they will be used to check
6950 			 * whether the mode should be added to the mode list of
6951 			 * the connector.
6952 			 */
6953 			if (ptr->hdisplay > hdisplay ||
6954 					ptr->vdisplay > vdisplay)
6955 				continue;
6956 		}
6957 		if (drm_mode_vrefresh(ptr) > 61)
6958 			continue;
6959 		mode = drm_mode_duplicate(dev, ptr);
6960 		if (mode) {
6961 			drm_mode_probed_add(connector, mode);
6962 			num_modes++;
6963 		}
6964 	}
6965 	return num_modes;
6966 }
6967 EXPORT_SYMBOL(drm_add_modes_noedid);
6968 
6969 /**
6970  * drm_set_preferred_mode - Sets the preferred mode of a connector
6971  * @connector: connector whose mode list should be processed
6972  * @hpref: horizontal resolution of preferred mode
6973  * @vpref: vertical resolution of preferred mode
6974  *
6975  * Marks a mode as preferred if it matches the resolution specified by @hpref
6976  * and @vpref.
6977  */
6978 void drm_set_preferred_mode(struct drm_connector *connector,
6979 			   int hpref, int vpref)
6980 {
6981 	struct drm_display_mode *mode;
6982 
6983 	list_for_each_entry(mode, &connector->probed_modes, head) {
6984 		if (mode->hdisplay == hpref &&
6985 		    mode->vdisplay == vpref)
6986 			mode->type |= DRM_MODE_TYPE_PREFERRED;
6987 	}
6988 }
6989 EXPORT_SYMBOL(drm_set_preferred_mode);
6990 
6991 static bool is_hdmi2_sink(const struct drm_connector *connector)
6992 {
6993 	/*
6994 	 * FIXME: sil-sii8620 doesn't have a connector around when
6995 	 * we need one, so we have to be prepared for a NULL connector.
6996 	 */
6997 	if (!connector)
6998 		return true;
6999 
7000 	return connector->display_info.hdmi.scdc.supported ||
7001 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7002 }
7003 
7004 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7005 			    const struct drm_display_mode *mode)
7006 {
7007 	bool has_hdmi_infoframe = connector ?
7008 		connector->display_info.has_hdmi_infoframe : false;
7009 
7010 	if (!has_hdmi_infoframe)
7011 		return 0;
7012 
7013 	/* No HDMI VIC when signalling 3D video format */
7014 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7015 		return 0;
7016 
7017 	return drm_match_hdmi_mode(mode);
7018 }
7019 
7020 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7021 			   const struct drm_display_mode *mode)
7022 {
7023 	/*
7024 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7025 	 * we should send its VIC in vendor infoframes, else send the
7026 	 * VIC in AVI infoframes. Lets check if this mode is present in
7027 	 * HDMI 1.4b 4K modes
7028 	 */
7029 	if (drm_mode_hdmi_vic(connector, mode))
7030 		return 0;
7031 
7032 	return drm_match_cea_mode(mode);
7033 }
7034 
7035 /*
7036  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7037  * conform to HDMI 1.4.
7038  *
7039  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7040  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7041  *
7042  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7043  * version.
7044  */
7045 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7046 {
7047 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7048 	    !cta_vdb_has_vic(connector, vic))
7049 		return 0;
7050 
7051 	return vic;
7052 }
7053 
7054 /**
7055  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7056  *                                              data from a DRM display mode
7057  * @frame: HDMI AVI infoframe
7058  * @connector: the connector
7059  * @mode: DRM display mode
7060  *
7061  * Return: 0 on success or a negative error code on failure.
7062  */
7063 int
7064 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7065 					 const struct drm_connector *connector,
7066 					 const struct drm_display_mode *mode)
7067 {
7068 	enum hdmi_picture_aspect picture_aspect;
7069 	u8 vic, hdmi_vic;
7070 
7071 	if (!frame || !mode)
7072 		return -EINVAL;
7073 
7074 	hdmi_avi_infoframe_init(frame);
7075 
7076 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7077 		frame->pixel_repeat = 1;
7078 
7079 	vic = drm_mode_cea_vic(connector, mode);
7080 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7081 
7082 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7083 
7084 	/*
7085 	 * As some drivers don't support atomic, we can't use connector state.
7086 	 * So just initialize the frame with default values, just the same way
7087 	 * as it's done with other properties here.
7088 	 */
7089 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7090 	frame->itc = 0;
7091 
7092 	/*
7093 	 * Populate picture aspect ratio from either
7094 	 * user input (if specified) or from the CEA/HDMI mode lists.
7095 	 */
7096 	picture_aspect = mode->picture_aspect_ratio;
7097 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7098 		if (vic)
7099 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7100 		else if (hdmi_vic)
7101 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7102 	}
7103 
7104 	/*
7105 	 * The infoframe can't convey anything but none, 4:3
7106 	 * and 16:9, so if the user has asked for anything else
7107 	 * we can only satisfy it by specifying the right VIC.
7108 	 */
7109 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7110 		if (vic) {
7111 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7112 				return -EINVAL;
7113 		} else if (hdmi_vic) {
7114 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7115 				return -EINVAL;
7116 		} else {
7117 			return -EINVAL;
7118 		}
7119 
7120 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7121 	}
7122 
7123 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7124 	frame->picture_aspect = picture_aspect;
7125 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7126 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7127 
7128 	return 0;
7129 }
7130 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7131 
7132 /**
7133  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7134  *                                        quantization range information
7135  * @frame: HDMI AVI infoframe
7136  * @connector: the connector
7137  * @mode: DRM display mode
7138  * @rgb_quant_range: RGB quantization range (Q)
7139  */
7140 void
7141 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7142 				   const struct drm_connector *connector,
7143 				   const struct drm_display_mode *mode,
7144 				   enum hdmi_quantization_range rgb_quant_range)
7145 {
7146 	const struct drm_display_info *info = &connector->display_info;
7147 
7148 	/*
7149 	 * CEA-861:
7150 	 * "A Source shall not send a non-zero Q value that does not correspond
7151 	 *  to the default RGB Quantization Range for the transmitted Picture
7152 	 *  unless the Sink indicates support for the Q bit in a Video
7153 	 *  Capabilities Data Block."
7154 	 *
7155 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7156 	 * default RGB quantization range for the mode, even when QS=0.
7157 	 */
7158 	if (info->rgb_quant_range_selectable ||
7159 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7160 		frame->quantization_range = rgb_quant_range;
7161 	else
7162 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7163 
7164 	/*
7165 	 * CEA-861-F:
7166 	 * "When transmitting any RGB colorimetry, the Source should set the
7167 	 *  YQ-field to match the RGB Quantization Range being transmitted
7168 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7169 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7170 	 *
7171 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7172 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7173 	 * good way to tell which version of CEA-861 the sink supports, so
7174 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7175 	 * on CEA-861-F.
7176 	 */
7177 	if (!is_hdmi2_sink(connector) ||
7178 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7179 		frame->ycc_quantization_range =
7180 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7181 	else
7182 		frame->ycc_quantization_range =
7183 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7184 }
7185 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7186 
7187 static enum hdmi_3d_structure
7188 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7189 {
7190 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7191 
7192 	switch (layout) {
7193 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7194 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7195 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7196 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7197 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7198 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7199 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7200 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7201 	case DRM_MODE_FLAG_3D_L_DEPTH:
7202 		return HDMI_3D_STRUCTURE_L_DEPTH;
7203 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7204 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7205 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7206 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7207 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7208 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7209 	default:
7210 		return HDMI_3D_STRUCTURE_INVALID;
7211 	}
7212 }
7213 
7214 /**
7215  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7216  * data from a DRM display mode
7217  * @frame: HDMI vendor infoframe
7218  * @connector: the connector
7219  * @mode: DRM display mode
7220  *
7221  * Note that there's is a need to send HDMI vendor infoframes only when using a
7222  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7223  * function will return -EINVAL, error that can be safely ignored.
7224  *
7225  * Return: 0 on success or a negative error code on failure.
7226  */
7227 int
7228 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7229 					    const struct drm_connector *connector,
7230 					    const struct drm_display_mode *mode)
7231 {
7232 	/*
7233 	 * FIXME: sil-sii8620 doesn't have a connector around when
7234 	 * we need one, so we have to be prepared for a NULL connector.
7235 	 */
7236 	bool has_hdmi_infoframe = connector ?
7237 		connector->display_info.has_hdmi_infoframe : false;
7238 	int err;
7239 
7240 	if (!frame || !mode)
7241 		return -EINVAL;
7242 
7243 	if (!has_hdmi_infoframe)
7244 		return -EINVAL;
7245 
7246 	err = hdmi_vendor_infoframe_init(frame);
7247 	if (err < 0)
7248 		return err;
7249 
7250 	/*
7251 	 * Even if it's not absolutely necessary to send the infoframe
7252 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7253 	 * know that the sink can handle it. This is based on a
7254 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7255 	 * have trouble realizing that they should switch from 3D to 2D
7256 	 * mode if the source simply stops sending the infoframe when
7257 	 * it wants to switch from 3D to 2D.
7258 	 */
7259 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7260 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7261 
7262 	return 0;
7263 }
7264 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7265 
7266 static void drm_parse_tiled_block(struct drm_connector *connector,
7267 				  const struct displayid_block *block)
7268 {
7269 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7270 	u16 w, h;
7271 	u8 tile_v_loc, tile_h_loc;
7272 	u8 num_v_tile, num_h_tile;
7273 	struct drm_tile_group *tg;
7274 
7275 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7276 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7277 
7278 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7279 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7280 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7281 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7282 
7283 	connector->has_tile = true;
7284 	if (tile->tile_cap & 0x80)
7285 		connector->tile_is_single_monitor = true;
7286 
7287 	connector->num_h_tile = num_h_tile + 1;
7288 	connector->num_v_tile = num_v_tile + 1;
7289 	connector->tile_h_loc = tile_h_loc;
7290 	connector->tile_v_loc = tile_v_loc;
7291 	connector->tile_h_size = w + 1;
7292 	connector->tile_v_size = h + 1;
7293 
7294 	drm_dbg_kms(connector->dev,
7295 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7296 		    connector->base.id, connector->name,
7297 		    tile->tile_cap,
7298 		    connector->tile_h_size, connector->tile_v_size,
7299 		    connector->num_h_tile, connector->num_v_tile,
7300 		    connector->tile_h_loc, connector->tile_v_loc,
7301 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7302 
7303 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7304 	if (!tg)
7305 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7306 	if (!tg)
7307 		return;
7308 
7309 	if (connector->tile_group != tg) {
7310 		/* if we haven't got a pointer,
7311 		   take the reference, drop ref to old tile group */
7312 		if (connector->tile_group)
7313 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7314 		connector->tile_group = tg;
7315 	} else {
7316 		/* if same tile group, then release the ref we just took. */
7317 		drm_mode_put_tile_group(connector->dev, tg);
7318 	}
7319 }
7320 
7321 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7322 				     const struct displayid_block *block)
7323 {
7324 	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7325 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7326 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7327 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7328 }
7329 
7330 static void _drm_update_tile_info(struct drm_connector *connector,
7331 				  const struct drm_edid *drm_edid)
7332 {
7333 	const struct displayid_block *block;
7334 	struct displayid_iter iter;
7335 
7336 	connector->has_tile = false;
7337 
7338 	displayid_iter_edid_begin(drm_edid, &iter);
7339 	displayid_iter_for_each(block, &iter) {
7340 		if (displayid_is_tiled_block(&iter, block))
7341 			drm_parse_tiled_block(connector, block);
7342 	}
7343 	displayid_iter_end(&iter);
7344 
7345 	if (!connector->has_tile && connector->tile_group) {
7346 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7347 		connector->tile_group = NULL;
7348 	}
7349 }
7350