1 /* 2 * Copyright (c) 2006 Luc Verhaegen (quirks list) 3 * Copyright (c) 2007-2008 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * Copyright 2010 Red Hat, Inc. 6 * 7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from 8 * FB layer. 9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com> 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sub license, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice (including the 19 * next paragraph) shall be included in all copies or substantial portions 20 * of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 28 * DEALINGS IN THE SOFTWARE. 29 */ 30 #include <linux/kernel.h> 31 #include <linux/slab.h> 32 #include <linux/hdmi.h> 33 #include <linux/i2c.h> 34 #include <linux/module.h> 35 #include <linux/vga_switcheroo.h> 36 #include <drm/drmP.h> 37 #include <drm/drm_edid.h> 38 #include <drm/drm_encoder.h> 39 #include <drm/drm_displayid.h> 40 #include <drm/drm_scdc_helper.h> 41 42 #include "drm_crtc_internal.h" 43 44 #define version_greater(edid, maj, min) \ 45 (((edid)->version > (maj)) || \ 46 ((edid)->version == (maj) && (edid)->revision > (min))) 47 48 #define EDID_EST_TIMINGS 16 49 #define EDID_STD_TIMINGS 8 50 #define EDID_DETAILED_TIMINGS 4 51 52 /* 53 * EDID blocks out in the wild have a variety of bugs, try to collect 54 * them here (note that userspace may work around broken monitors first, 55 * but fixes should make their way here so that the kernel "just works" 56 * on as many displays as possible). 57 */ 58 59 /* First detailed mode wrong, use largest 60Hz mode */ 60 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) 61 /* Reported 135MHz pixel clock is too high, needs adjustment */ 62 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) 63 /* Prefer the largest mode at 75 Hz */ 64 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) 65 /* Detail timing is in cm not mm */ 66 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) 67 /* Detailed timing descriptors have bogus size values, so just take the 68 * maximum size and use that. 69 */ 70 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) 71 /* Monitor forgot to set the first detailed is preferred bit. */ 72 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5) 73 /* use +hsync +vsync for detailed mode */ 74 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) 75 /* Force reduced-blanking timings for detailed modes */ 76 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) 77 /* Force 8bpc */ 78 #define EDID_QUIRK_FORCE_8BPC (1 << 8) 79 /* Force 12bpc */ 80 #define EDID_QUIRK_FORCE_12BPC (1 << 9) 81 /* Force 6bpc */ 82 #define EDID_QUIRK_FORCE_6BPC (1 << 10) 83 /* Force 10bpc */ 84 #define EDID_QUIRK_FORCE_10BPC (1 << 11) 85 /* Non desktop display (i.e. HMD) */ 86 #define EDID_QUIRK_NON_DESKTOP (1 << 12) 87 88 struct detailed_mode_closure { 89 struct drm_connector *connector; 90 struct edid *edid; 91 bool preferred; 92 u32 quirks; 93 int modes; 94 }; 95 96 #define LEVEL_DMT 0 97 #define LEVEL_GTF 1 98 #define LEVEL_GTF2 2 99 #define LEVEL_CVT 3 100 101 static const struct edid_quirk { 102 char vendor[4]; 103 int product_id; 104 u32 quirks; 105 } edid_quirk_list[] = { 106 /* Acer AL1706 */ 107 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 }, 108 /* Acer F51 */ 109 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 }, 110 /* Unknown Acer */ 111 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 112 113 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */ 114 { "AEO", 0, EDID_QUIRK_FORCE_6BPC }, 115 116 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */ 117 { "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC }, 118 119 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */ 120 { "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC }, 121 122 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */ 123 { "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC }, 124 125 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */ 126 { "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC }, 127 128 /* Belinea 10 15 55 */ 129 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 }, 130 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 }, 131 132 /* Envision Peripherals, Inc. EN-7100e */ 133 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH }, 134 /* Envision EN2028 */ 135 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 }, 136 137 /* Funai Electronics PM36B */ 138 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 | 139 EDID_QUIRK_DETAILED_IN_CM }, 140 141 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */ 142 { "LGD", 764, EDID_QUIRK_FORCE_10BPC }, 143 144 /* LG Philips LCD LP154W01-A5 */ 145 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, 146 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, 147 148 /* Philips 107p5 CRT */ 149 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 150 151 /* Proview AY765C */ 152 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 153 154 /* Samsung SyncMaster 205BW. Note: irony */ 155 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP }, 156 /* Samsung SyncMaster 22[5-6]BW */ 157 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 }, 158 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 }, 159 160 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */ 161 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC }, 162 163 /* ViewSonic VA2026w */ 164 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING }, 165 166 /* Medion MD 30217 PG */ 167 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 }, 168 169 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ 170 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC }, 171 172 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/ 173 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC }, 174 175 /* HTC Vive and Vive Pro VR Headsets */ 176 { "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP }, 177 { "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP }, 178 179 /* Oculus Rift DK1, DK2, and CV1 VR Headsets */ 180 { "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP }, 181 { "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP }, 182 { "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP }, 183 184 /* Windows Mixed Reality Headsets */ 185 { "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP }, 186 { "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP }, 187 { "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP }, 188 { "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP }, 189 { "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP }, 190 { "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP }, 191 { "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP }, 192 { "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP }, 193 194 /* Sony PlayStation VR Headset */ 195 { "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP }, 196 }; 197 198 /* 199 * Autogenerated from the DMT spec. 200 * This table is copied from xfree86/modes/xf86EdidModes.c. 201 */ 202 static const struct drm_display_mode drm_dmt_modes[] = { 203 /* 0x01 - 640x350@85Hz */ 204 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 205 736, 832, 0, 350, 382, 385, 445, 0, 206 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 207 /* 0x02 - 640x400@85Hz */ 208 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 209 736, 832, 0, 400, 401, 404, 445, 0, 210 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 211 /* 0x03 - 720x400@85Hz */ 212 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 213 828, 936, 0, 400, 401, 404, 446, 0, 214 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 215 /* 0x04 - 640x480@60Hz */ 216 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 217 752, 800, 0, 480, 490, 492, 525, 0, 218 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 219 /* 0x05 - 640x480@72Hz */ 220 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 221 704, 832, 0, 480, 489, 492, 520, 0, 222 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 223 /* 0x06 - 640x480@75Hz */ 224 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 225 720, 840, 0, 480, 481, 484, 500, 0, 226 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 227 /* 0x07 - 640x480@85Hz */ 228 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 229 752, 832, 0, 480, 481, 484, 509, 0, 230 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 231 /* 0x08 - 800x600@56Hz */ 232 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 233 896, 1024, 0, 600, 601, 603, 625, 0, 234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 235 /* 0x09 - 800x600@60Hz */ 236 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 237 968, 1056, 0, 600, 601, 605, 628, 0, 238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 239 /* 0x0a - 800x600@72Hz */ 240 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 241 976, 1040, 0, 600, 637, 643, 666, 0, 242 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 243 /* 0x0b - 800x600@75Hz */ 244 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 245 896, 1056, 0, 600, 601, 604, 625, 0, 246 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 247 /* 0x0c - 800x600@85Hz */ 248 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 249 896, 1048, 0, 600, 601, 604, 631, 0, 250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 251 /* 0x0d - 800x600@120Hz RB */ 252 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 253 880, 960, 0, 600, 603, 607, 636, 0, 254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 255 /* 0x0e - 848x480@60Hz */ 256 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 257 976, 1088, 0, 480, 486, 494, 517, 0, 258 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 259 /* 0x0f - 1024x768@43Hz, interlace */ 260 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 261 1208, 1264, 0, 768, 768, 776, 817, 0, 262 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 263 DRM_MODE_FLAG_INTERLACE) }, 264 /* 0x10 - 1024x768@60Hz */ 265 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 266 1184, 1344, 0, 768, 771, 777, 806, 0, 267 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 268 /* 0x11 - 1024x768@70Hz */ 269 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 270 1184, 1328, 0, 768, 771, 777, 806, 0, 271 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 272 /* 0x12 - 1024x768@75Hz */ 273 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 274 1136, 1312, 0, 768, 769, 772, 800, 0, 275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 276 /* 0x13 - 1024x768@85Hz */ 277 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 278 1168, 1376, 0, 768, 769, 772, 808, 0, 279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 280 /* 0x14 - 1024x768@120Hz RB */ 281 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 282 1104, 1184, 0, 768, 771, 775, 813, 0, 283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 284 /* 0x15 - 1152x864@75Hz */ 285 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 286 1344, 1600, 0, 864, 865, 868, 900, 0, 287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 288 /* 0x55 - 1280x720@60Hz */ 289 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 290 1430, 1650, 0, 720, 725, 730, 750, 0, 291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 292 /* 0x16 - 1280x768@60Hz RB */ 293 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 294 1360, 1440, 0, 768, 771, 778, 790, 0, 295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 296 /* 0x17 - 1280x768@60Hz */ 297 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 298 1472, 1664, 0, 768, 771, 778, 798, 0, 299 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 300 /* 0x18 - 1280x768@75Hz */ 301 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 302 1488, 1696, 0, 768, 771, 778, 805, 0, 303 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 304 /* 0x19 - 1280x768@85Hz */ 305 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 306 1496, 1712, 0, 768, 771, 778, 809, 0, 307 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 308 /* 0x1a - 1280x768@120Hz RB */ 309 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 310 1360, 1440, 0, 768, 771, 778, 813, 0, 311 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 312 /* 0x1b - 1280x800@60Hz RB */ 313 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 314 1360, 1440, 0, 800, 803, 809, 823, 0, 315 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 316 /* 0x1c - 1280x800@60Hz */ 317 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 318 1480, 1680, 0, 800, 803, 809, 831, 0, 319 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 320 /* 0x1d - 1280x800@75Hz */ 321 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 322 1488, 1696, 0, 800, 803, 809, 838, 0, 323 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 324 /* 0x1e - 1280x800@85Hz */ 325 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 326 1496, 1712, 0, 800, 803, 809, 843, 0, 327 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 328 /* 0x1f - 1280x800@120Hz RB */ 329 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 330 1360, 1440, 0, 800, 803, 809, 847, 0, 331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 332 /* 0x20 - 1280x960@60Hz */ 333 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 334 1488, 1800, 0, 960, 961, 964, 1000, 0, 335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 336 /* 0x21 - 1280x960@85Hz */ 337 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 338 1504, 1728, 0, 960, 961, 964, 1011, 0, 339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 340 /* 0x22 - 1280x960@120Hz RB */ 341 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 342 1360, 1440, 0, 960, 963, 967, 1017, 0, 343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 344 /* 0x23 - 1280x1024@60Hz */ 345 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 346 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 347 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 348 /* 0x24 - 1280x1024@75Hz */ 349 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 350 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 351 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 352 /* 0x25 - 1280x1024@85Hz */ 353 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 354 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, 355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 356 /* 0x26 - 1280x1024@120Hz RB */ 357 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 358 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, 359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 360 /* 0x27 - 1360x768@60Hz */ 361 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 362 1536, 1792, 0, 768, 771, 777, 795, 0, 363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 364 /* 0x28 - 1360x768@120Hz RB */ 365 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 366 1440, 1520, 0, 768, 771, 776, 813, 0, 367 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 368 /* 0x51 - 1366x768@60Hz */ 369 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436, 370 1579, 1792, 0, 768, 771, 774, 798, 0, 371 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 372 /* 0x56 - 1366x768@60Hz */ 373 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380, 374 1436, 1500, 0, 768, 769, 772, 800, 0, 375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 376 /* 0x29 - 1400x1050@60Hz RB */ 377 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 378 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, 379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 380 /* 0x2a - 1400x1050@60Hz */ 381 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 382 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 383 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 384 /* 0x2b - 1400x1050@75Hz */ 385 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 386 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, 387 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 388 /* 0x2c - 1400x1050@85Hz */ 389 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 390 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, 391 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 392 /* 0x2d - 1400x1050@120Hz RB */ 393 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 394 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, 395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 396 /* 0x2e - 1440x900@60Hz RB */ 397 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 398 1520, 1600, 0, 900, 903, 909, 926, 0, 399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 400 /* 0x2f - 1440x900@60Hz */ 401 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 402 1672, 1904, 0, 900, 903, 909, 934, 0, 403 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 404 /* 0x30 - 1440x900@75Hz */ 405 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 406 1688, 1936, 0, 900, 903, 909, 942, 0, 407 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 408 /* 0x31 - 1440x900@85Hz */ 409 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 410 1696, 1952, 0, 900, 903, 909, 948, 0, 411 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 412 /* 0x32 - 1440x900@120Hz RB */ 413 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 414 1520, 1600, 0, 900, 903, 909, 953, 0, 415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 416 /* 0x53 - 1600x900@60Hz */ 417 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624, 418 1704, 1800, 0, 900, 901, 904, 1000, 0, 419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 420 /* 0x33 - 1600x1200@60Hz */ 421 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 422 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 424 /* 0x34 - 1600x1200@65Hz */ 425 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 426 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 428 /* 0x35 - 1600x1200@70Hz */ 429 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 430 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 432 /* 0x36 - 1600x1200@75Hz */ 433 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 434 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 435 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 436 /* 0x37 - 1600x1200@85Hz */ 437 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 438 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 440 /* 0x38 - 1600x1200@120Hz RB */ 441 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 442 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, 443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 444 /* 0x39 - 1680x1050@60Hz RB */ 445 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 446 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, 447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 448 /* 0x3a - 1680x1050@60Hz */ 449 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 450 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 452 /* 0x3b - 1680x1050@75Hz */ 453 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 454 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, 455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 456 /* 0x3c - 1680x1050@85Hz */ 457 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 458 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, 459 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 460 /* 0x3d - 1680x1050@120Hz RB */ 461 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 462 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, 463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 464 /* 0x3e - 1792x1344@60Hz */ 465 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 466 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 467 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 468 /* 0x3f - 1792x1344@75Hz */ 469 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 470 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, 471 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 472 /* 0x40 - 1792x1344@120Hz RB */ 473 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 474 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, 475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 476 /* 0x41 - 1856x1392@60Hz */ 477 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 478 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 479 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 480 /* 0x42 - 1856x1392@75Hz */ 481 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 482 2208, 2560, 0, 1392, 1393, 1396, 1500, 0, 483 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 484 /* 0x43 - 1856x1392@120Hz RB */ 485 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 486 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, 487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 488 /* 0x52 - 1920x1080@60Hz */ 489 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 490 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 491 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 492 /* 0x44 - 1920x1200@60Hz RB */ 493 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 494 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, 495 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 496 /* 0x45 - 1920x1200@60Hz */ 497 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 498 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 500 /* 0x46 - 1920x1200@75Hz */ 501 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 502 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, 503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 504 /* 0x47 - 1920x1200@85Hz */ 505 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 506 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, 507 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 508 /* 0x48 - 1920x1200@120Hz RB */ 509 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 510 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, 511 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 512 /* 0x49 - 1920x1440@60Hz */ 513 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 514 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 515 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 516 /* 0x4a - 1920x1440@75Hz */ 517 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 518 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, 519 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 520 /* 0x4b - 1920x1440@120Hz RB */ 521 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 522 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, 523 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 524 /* 0x54 - 2048x1152@60Hz */ 525 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074, 526 2154, 2250, 0, 1152, 1153, 1156, 1200, 0, 527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 528 /* 0x4c - 2560x1600@60Hz RB */ 529 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 530 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, 531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 532 /* 0x4d - 2560x1600@60Hz */ 533 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 534 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 536 /* 0x4e - 2560x1600@75Hz */ 537 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 538 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, 539 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 540 /* 0x4f - 2560x1600@85Hz */ 541 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 542 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, 543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 544 /* 0x50 - 2560x1600@120Hz RB */ 545 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 546 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, 547 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 548 /* 0x57 - 4096x2160@60Hz RB */ 549 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104, 550 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 551 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 552 /* 0x58 - 4096x2160@59.94Hz RB */ 553 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104, 554 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 556 }; 557 558 /* 559 * These more or less come from the DMT spec. The 720x400 modes are 560 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 561 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode 562 * should be 1152x870, again for the Mac, but instead we use the x864 DMT 563 * mode. 564 * 565 * The DMT modes have been fact-checked; the rest are mild guesses. 566 */ 567 static const struct drm_display_mode edid_est_modes[] = { 568 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 569 968, 1056, 0, 600, 601, 605, 628, 0, 570 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ 571 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 572 896, 1024, 0, 600, 601, 603, 625, 0, 573 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ 574 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 575 720, 840, 0, 480, 481, 484, 500, 0, 576 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ 577 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 578 704, 832, 0, 480, 489, 492, 520, 0, 579 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ 580 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 581 768, 864, 0, 480, 483, 486, 525, 0, 582 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ 583 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 584 752, 800, 0, 480, 490, 492, 525, 0, 585 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ 586 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 587 846, 900, 0, 400, 421, 423, 449, 0, 588 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ 589 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 590 846, 900, 0, 400, 412, 414, 449, 0, 591 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ 592 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 593 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 594 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ 595 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 596 1136, 1312, 0, 768, 769, 772, 800, 0, 597 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ 598 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 599 1184, 1328, 0, 768, 771, 777, 806, 0, 600 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ 601 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 602 1184, 1344, 0, 768, 771, 777, 806, 0, 603 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ 604 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 605 1208, 1264, 0, 768, 768, 776, 817, 0, 606 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ 607 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 608 928, 1152, 0, 624, 625, 628, 667, 0, 609 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ 610 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 611 896, 1056, 0, 600, 601, 604, 625, 0, 612 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ 613 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 614 976, 1040, 0, 600, 637, 643, 666, 0, 615 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ 616 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 617 1344, 1600, 0, 864, 865, 868, 900, 0, 618 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ 619 }; 620 621 struct minimode { 622 short w; 623 short h; 624 short r; 625 short rb; 626 }; 627 628 static const struct minimode est3_modes[] = { 629 /* byte 6 */ 630 { 640, 350, 85, 0 }, 631 { 640, 400, 85, 0 }, 632 { 720, 400, 85, 0 }, 633 { 640, 480, 85, 0 }, 634 { 848, 480, 60, 0 }, 635 { 800, 600, 85, 0 }, 636 { 1024, 768, 85, 0 }, 637 { 1152, 864, 75, 0 }, 638 /* byte 7 */ 639 { 1280, 768, 60, 1 }, 640 { 1280, 768, 60, 0 }, 641 { 1280, 768, 75, 0 }, 642 { 1280, 768, 85, 0 }, 643 { 1280, 960, 60, 0 }, 644 { 1280, 960, 85, 0 }, 645 { 1280, 1024, 60, 0 }, 646 { 1280, 1024, 85, 0 }, 647 /* byte 8 */ 648 { 1360, 768, 60, 0 }, 649 { 1440, 900, 60, 1 }, 650 { 1440, 900, 60, 0 }, 651 { 1440, 900, 75, 0 }, 652 { 1440, 900, 85, 0 }, 653 { 1400, 1050, 60, 1 }, 654 { 1400, 1050, 60, 0 }, 655 { 1400, 1050, 75, 0 }, 656 /* byte 9 */ 657 { 1400, 1050, 85, 0 }, 658 { 1680, 1050, 60, 1 }, 659 { 1680, 1050, 60, 0 }, 660 { 1680, 1050, 75, 0 }, 661 { 1680, 1050, 85, 0 }, 662 { 1600, 1200, 60, 0 }, 663 { 1600, 1200, 65, 0 }, 664 { 1600, 1200, 70, 0 }, 665 /* byte 10 */ 666 { 1600, 1200, 75, 0 }, 667 { 1600, 1200, 85, 0 }, 668 { 1792, 1344, 60, 0 }, 669 { 1792, 1344, 75, 0 }, 670 { 1856, 1392, 60, 0 }, 671 { 1856, 1392, 75, 0 }, 672 { 1920, 1200, 60, 1 }, 673 { 1920, 1200, 60, 0 }, 674 /* byte 11 */ 675 { 1920, 1200, 75, 0 }, 676 { 1920, 1200, 85, 0 }, 677 { 1920, 1440, 60, 0 }, 678 { 1920, 1440, 75, 0 }, 679 }; 680 681 static const struct minimode extra_modes[] = { 682 { 1024, 576, 60, 0 }, 683 { 1366, 768, 60, 0 }, 684 { 1600, 900, 60, 0 }, 685 { 1680, 945, 60, 0 }, 686 { 1920, 1080, 60, 0 }, 687 { 2048, 1152, 60, 0 }, 688 { 2048, 1536, 60, 0 }, 689 }; 690 691 /* 692 * Probably taken from CEA-861 spec. 693 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c. 694 * 695 * Index using the VIC. 696 */ 697 static const struct drm_display_mode edid_cea_modes[] = { 698 /* 0 - dummy, VICs start at 1 */ 699 { }, 700 /* 1 - 640x480@60Hz 4:3 */ 701 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 702 752, 800, 0, 480, 490, 492, 525, 0, 703 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 704 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 705 /* 2 - 720x480@60Hz 4:3 */ 706 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 707 798, 858, 0, 480, 489, 495, 525, 0, 708 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 709 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 710 /* 3 - 720x480@60Hz 16:9 */ 711 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 712 798, 858, 0, 480, 489, 495, 525, 0, 713 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 714 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 715 /* 4 - 1280x720@60Hz 16:9 */ 716 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 717 1430, 1650, 0, 720, 725, 730, 750, 0, 718 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 719 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 720 /* 5 - 1920x1080i@60Hz 16:9 */ 721 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 722 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 723 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 724 DRM_MODE_FLAG_INTERLACE), 725 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 726 /* 6 - 720(1440)x480i@60Hz 4:3 */ 727 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 728 801, 858, 0, 480, 488, 494, 525, 0, 729 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 730 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 731 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 732 /* 7 - 720(1440)x480i@60Hz 16:9 */ 733 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 734 801, 858, 0, 480, 488, 494, 525, 0, 735 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 736 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 737 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 738 /* 8 - 720(1440)x240@60Hz 4:3 */ 739 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 740 801, 858, 0, 240, 244, 247, 262, 0, 741 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 742 DRM_MODE_FLAG_DBLCLK), 743 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 744 /* 9 - 720(1440)x240@60Hz 16:9 */ 745 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 746 801, 858, 0, 240, 244, 247, 262, 0, 747 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 748 DRM_MODE_FLAG_DBLCLK), 749 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 750 /* 10 - 2880x480i@60Hz 4:3 */ 751 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 752 3204, 3432, 0, 480, 488, 494, 525, 0, 753 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 754 DRM_MODE_FLAG_INTERLACE), 755 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 756 /* 11 - 2880x480i@60Hz 16:9 */ 757 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 758 3204, 3432, 0, 480, 488, 494, 525, 0, 759 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 760 DRM_MODE_FLAG_INTERLACE), 761 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 762 /* 12 - 2880x240@60Hz 4:3 */ 763 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 764 3204, 3432, 0, 240, 244, 247, 262, 0, 765 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 766 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 767 /* 13 - 2880x240@60Hz 16:9 */ 768 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 769 3204, 3432, 0, 240, 244, 247, 262, 0, 770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 771 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 772 /* 14 - 1440x480@60Hz 4:3 */ 773 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 774 1596, 1716, 0, 480, 489, 495, 525, 0, 775 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 776 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 777 /* 15 - 1440x480@60Hz 16:9 */ 778 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 779 1596, 1716, 0, 480, 489, 495, 525, 0, 780 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 781 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 782 /* 16 - 1920x1080@60Hz 16:9 */ 783 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 784 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 785 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 786 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 787 /* 17 - 720x576@50Hz 4:3 */ 788 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 789 796, 864, 0, 576, 581, 586, 625, 0, 790 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 791 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 792 /* 18 - 720x576@50Hz 16:9 */ 793 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 794 796, 864, 0, 576, 581, 586, 625, 0, 795 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 796 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 797 /* 19 - 1280x720@50Hz 16:9 */ 798 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 799 1760, 1980, 0, 720, 725, 730, 750, 0, 800 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 801 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 802 /* 20 - 1920x1080i@50Hz 16:9 */ 803 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 804 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 805 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 806 DRM_MODE_FLAG_INTERLACE), 807 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 808 /* 21 - 720(1440)x576i@50Hz 4:3 */ 809 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 810 795, 864, 0, 576, 580, 586, 625, 0, 811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 812 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 813 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 814 /* 22 - 720(1440)x576i@50Hz 16:9 */ 815 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 816 795, 864, 0, 576, 580, 586, 625, 0, 817 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 818 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 819 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 820 /* 23 - 720(1440)x288@50Hz 4:3 */ 821 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 822 795, 864, 0, 288, 290, 293, 312, 0, 823 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 824 DRM_MODE_FLAG_DBLCLK), 825 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 826 /* 24 - 720(1440)x288@50Hz 16:9 */ 827 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 828 795, 864, 0, 288, 290, 293, 312, 0, 829 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 830 DRM_MODE_FLAG_DBLCLK), 831 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 832 /* 25 - 2880x576i@50Hz 4:3 */ 833 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 834 3180, 3456, 0, 576, 580, 586, 625, 0, 835 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 836 DRM_MODE_FLAG_INTERLACE), 837 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 838 /* 26 - 2880x576i@50Hz 16:9 */ 839 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 840 3180, 3456, 0, 576, 580, 586, 625, 0, 841 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 842 DRM_MODE_FLAG_INTERLACE), 843 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 844 /* 27 - 2880x288@50Hz 4:3 */ 845 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 846 3180, 3456, 0, 288, 290, 293, 312, 0, 847 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 848 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 849 /* 28 - 2880x288@50Hz 16:9 */ 850 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 851 3180, 3456, 0, 288, 290, 293, 312, 0, 852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 853 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 854 /* 29 - 1440x576@50Hz 4:3 */ 855 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 856 1592, 1728, 0, 576, 581, 586, 625, 0, 857 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 858 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 859 /* 30 - 1440x576@50Hz 16:9 */ 860 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 861 1592, 1728, 0, 576, 581, 586, 625, 0, 862 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 863 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 864 /* 31 - 1920x1080@50Hz 16:9 */ 865 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 866 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 867 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 868 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 869 /* 32 - 1920x1080@24Hz 16:9 */ 870 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 871 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 872 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 873 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 874 /* 33 - 1920x1080@25Hz 16:9 */ 875 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 876 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 877 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 878 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 879 /* 34 - 1920x1080@30Hz 16:9 */ 880 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 881 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 882 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 883 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 884 /* 35 - 2880x480@60Hz 4:3 */ 885 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 886 3192, 3432, 0, 480, 489, 495, 525, 0, 887 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 888 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 889 /* 36 - 2880x480@60Hz 16:9 */ 890 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 891 3192, 3432, 0, 480, 489, 495, 525, 0, 892 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 893 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 894 /* 37 - 2880x576@50Hz 4:3 */ 895 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 896 3184, 3456, 0, 576, 581, 586, 625, 0, 897 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 898 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 899 /* 38 - 2880x576@50Hz 16:9 */ 900 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 901 3184, 3456, 0, 576, 581, 586, 625, 0, 902 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 903 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 904 /* 39 - 1920x1080i@50Hz 16:9 */ 905 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 906 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, 907 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | 908 DRM_MODE_FLAG_INTERLACE), 909 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 910 /* 40 - 1920x1080i@100Hz 16:9 */ 911 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 912 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 914 DRM_MODE_FLAG_INTERLACE), 915 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 916 /* 41 - 1280x720@100Hz 16:9 */ 917 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 918 1760, 1980, 0, 720, 725, 730, 750, 0, 919 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 920 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 921 /* 42 - 720x576@100Hz 4:3 */ 922 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 923 796, 864, 0, 576, 581, 586, 625, 0, 924 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 925 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 926 /* 43 - 720x576@100Hz 16:9 */ 927 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 928 796, 864, 0, 576, 581, 586, 625, 0, 929 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 930 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 931 /* 44 - 720(1440)x576i@100Hz 4:3 */ 932 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 933 795, 864, 0, 576, 580, 586, 625, 0, 934 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 935 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 936 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 937 /* 45 - 720(1440)x576i@100Hz 16:9 */ 938 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 939 795, 864, 0, 576, 580, 586, 625, 0, 940 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 941 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 942 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 943 /* 46 - 1920x1080i@120Hz 16:9 */ 944 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 945 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 946 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 947 DRM_MODE_FLAG_INTERLACE), 948 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 949 /* 47 - 1280x720@120Hz 16:9 */ 950 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 951 1430, 1650, 0, 720, 725, 730, 750, 0, 952 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 953 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 954 /* 48 - 720x480@120Hz 4:3 */ 955 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 956 798, 858, 0, 480, 489, 495, 525, 0, 957 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 958 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 959 /* 49 - 720x480@120Hz 16:9 */ 960 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 961 798, 858, 0, 480, 489, 495, 525, 0, 962 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 963 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 964 /* 50 - 720(1440)x480i@120Hz 4:3 */ 965 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 966 801, 858, 0, 480, 488, 494, 525, 0, 967 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 968 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 969 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 970 /* 51 - 720(1440)x480i@120Hz 16:9 */ 971 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 972 801, 858, 0, 480, 488, 494, 525, 0, 973 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 974 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 975 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 976 /* 52 - 720x576@200Hz 4:3 */ 977 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 978 796, 864, 0, 576, 581, 586, 625, 0, 979 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 980 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 981 /* 53 - 720x576@200Hz 16:9 */ 982 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 983 796, 864, 0, 576, 581, 586, 625, 0, 984 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 985 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 986 /* 54 - 720(1440)x576i@200Hz 4:3 */ 987 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 988 795, 864, 0, 576, 580, 586, 625, 0, 989 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 990 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 991 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 992 /* 55 - 720(1440)x576i@200Hz 16:9 */ 993 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 994 795, 864, 0, 576, 580, 586, 625, 0, 995 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 996 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 997 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 998 /* 56 - 720x480@240Hz 4:3 */ 999 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1000 798, 858, 0, 480, 489, 495, 525, 0, 1001 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1002 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1003 /* 57 - 720x480@240Hz 16:9 */ 1004 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1005 798, 858, 0, 480, 489, 495, 525, 0, 1006 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1007 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1008 /* 58 - 720(1440)x480i@240Hz 4:3 */ 1009 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1010 801, 858, 0, 480, 488, 494, 525, 0, 1011 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1012 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1013 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1014 /* 59 - 720(1440)x480i@240Hz 16:9 */ 1015 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1016 801, 858, 0, 480, 488, 494, 525, 0, 1017 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1018 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1019 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1020 /* 60 - 1280x720@24Hz 16:9 */ 1021 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1022 3080, 3300, 0, 720, 725, 730, 750, 0, 1023 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1024 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1025 /* 61 - 1280x720@25Hz 16:9 */ 1026 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1027 3740, 3960, 0, 720, 725, 730, 750, 0, 1028 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1029 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1030 /* 62 - 1280x720@30Hz 16:9 */ 1031 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1032 3080, 3300, 0, 720, 725, 730, 750, 0, 1033 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1034 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1035 /* 63 - 1920x1080@120Hz 16:9 */ 1036 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1037 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1038 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1039 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1040 /* 64 - 1920x1080@100Hz 16:9 */ 1041 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1042 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1043 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1044 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1045 /* 65 - 1280x720@24Hz 64:27 */ 1046 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1047 3080, 3300, 0, 720, 725, 730, 750, 0, 1048 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1049 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1050 /* 66 - 1280x720@25Hz 64:27 */ 1051 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1052 3740, 3960, 0, 720, 725, 730, 750, 0, 1053 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1054 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1055 /* 67 - 1280x720@30Hz 64:27 */ 1056 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1057 3080, 3300, 0, 720, 725, 730, 750, 0, 1058 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1059 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1060 /* 68 - 1280x720@50Hz 64:27 */ 1061 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1062 1760, 1980, 0, 720, 725, 730, 750, 0, 1063 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1064 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1065 /* 69 - 1280x720@60Hz 64:27 */ 1066 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1067 1430, 1650, 0, 720, 725, 730, 750, 0, 1068 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1069 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1070 /* 70 - 1280x720@100Hz 64:27 */ 1071 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1072 1760, 1980, 0, 720, 725, 730, 750, 0, 1073 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1074 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1075 /* 71 - 1280x720@120Hz 64:27 */ 1076 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1077 1430, 1650, 0, 720, 725, 730, 750, 0, 1078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1079 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1080 /* 72 - 1920x1080@24Hz 64:27 */ 1081 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 1082 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1083 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1084 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1085 /* 73 - 1920x1080@25Hz 64:27 */ 1086 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 1087 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1088 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1089 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1090 /* 74 - 1920x1080@30Hz 64:27 */ 1091 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 1092 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1093 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1094 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1095 /* 75 - 1920x1080@50Hz 64:27 */ 1096 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 1097 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1098 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1099 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1100 /* 76 - 1920x1080@60Hz 64:27 */ 1101 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 1102 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1103 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1104 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1105 /* 77 - 1920x1080@100Hz 64:27 */ 1106 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1107 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1108 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1109 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1110 /* 78 - 1920x1080@120Hz 64:27 */ 1111 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1112 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1113 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1114 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1115 /* 79 - 1680x720@24Hz 64:27 */ 1116 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040, 1117 3080, 3300, 0, 720, 725, 730, 750, 0, 1118 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1119 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1120 /* 80 - 1680x720@25Hz 64:27 */ 1121 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908, 1122 2948, 3168, 0, 720, 725, 730, 750, 0, 1123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1124 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1125 /* 81 - 1680x720@30Hz 64:27 */ 1126 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380, 1127 2420, 2640, 0, 720, 725, 730, 750, 0, 1128 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1129 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1130 /* 82 - 1680x720@50Hz 64:27 */ 1131 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940, 1132 1980, 2200, 0, 720, 725, 730, 750, 0, 1133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1134 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1135 /* 83 - 1680x720@60Hz 64:27 */ 1136 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940, 1137 1980, 2200, 0, 720, 725, 730, 750, 0, 1138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1139 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1140 /* 84 - 1680x720@100Hz 64:27 */ 1141 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740, 1142 1780, 2000, 0, 720, 725, 730, 825, 0, 1143 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1144 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1145 /* 85 - 1680x720@120Hz 64:27 */ 1146 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740, 1147 1780, 2000, 0, 720, 725, 730, 825, 0, 1148 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1149 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1150 /* 86 - 2560x1080@24Hz 64:27 */ 1151 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558, 1152 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, 1153 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1154 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1155 /* 87 - 2560x1080@25Hz 64:27 */ 1156 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008, 1157 3052, 3200, 0, 1080, 1084, 1089, 1125, 0, 1158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1159 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1160 /* 88 - 2560x1080@30Hz 64:27 */ 1161 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328, 1162 3372, 3520, 0, 1080, 1084, 1089, 1125, 0, 1163 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1164 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1165 /* 89 - 2560x1080@50Hz 64:27 */ 1166 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108, 1167 3152, 3300, 0, 1080, 1084, 1089, 1125, 0, 1168 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1169 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1170 /* 90 - 2560x1080@60Hz 64:27 */ 1171 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808, 1172 2852, 3000, 0, 1080, 1084, 1089, 1100, 0, 1173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1174 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1175 /* 91 - 2560x1080@100Hz 64:27 */ 1176 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778, 1177 2822, 2970, 0, 1080, 1084, 1089, 1250, 0, 1178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1179 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1180 /* 92 - 2560x1080@120Hz 64:27 */ 1181 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108, 1182 3152, 3300, 0, 1080, 1084, 1089, 1250, 0, 1183 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1184 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1185 /* 93 - 3840x2160@24Hz 16:9 */ 1186 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1187 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1189 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1190 /* 94 - 3840x2160@25Hz 16:9 */ 1191 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1192 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1194 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1195 /* 95 - 3840x2160@30Hz 16:9 */ 1196 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1197 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1199 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1200 /* 96 - 3840x2160@50Hz 16:9 */ 1201 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1202 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1203 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1204 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1205 /* 97 - 3840x2160@60Hz 16:9 */ 1206 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1207 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1209 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1210 /* 98 - 4096x2160@24Hz 256:135 */ 1211 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 1212 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1214 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1215 /* 99 - 4096x2160@25Hz 256:135 */ 1216 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064, 1217 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1219 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1220 /* 100 - 4096x2160@30Hz 256:135 */ 1221 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184, 1222 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1224 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1225 /* 101 - 4096x2160@50Hz 256:135 */ 1226 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064, 1227 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1229 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1230 /* 102 - 4096x2160@60Hz 256:135 */ 1231 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184, 1232 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1234 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1235 /* 103 - 3840x2160@24Hz 64:27 */ 1236 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1237 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1239 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1240 /* 104 - 3840x2160@25Hz 64:27 */ 1241 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1242 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1244 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1245 /* 105 - 3840x2160@30Hz 64:27 */ 1246 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1247 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1248 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1249 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1250 /* 106 - 3840x2160@50Hz 64:27 */ 1251 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1252 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1253 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1254 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1255 /* 107 - 3840x2160@60Hz 64:27 */ 1256 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1257 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1258 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1259 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1260 }; 1261 1262 /* 1263 * HDMI 1.4 4k modes. Index using the VIC. 1264 */ 1265 static const struct drm_display_mode edid_4k_modes[] = { 1266 /* 0 - dummy, VICs start at 1 */ 1267 { }, 1268 /* 1 - 3840x2160@30Hz */ 1269 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1270 3840, 4016, 4104, 4400, 0, 1271 2160, 2168, 2178, 2250, 0, 1272 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1273 .vrefresh = 30, }, 1274 /* 2 - 3840x2160@25Hz */ 1275 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1276 3840, 4896, 4984, 5280, 0, 1277 2160, 2168, 2178, 2250, 0, 1278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1279 .vrefresh = 25, }, 1280 /* 3 - 3840x2160@24Hz */ 1281 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1282 3840, 5116, 5204, 5500, 0, 1283 2160, 2168, 2178, 2250, 0, 1284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1285 .vrefresh = 24, }, 1286 /* 4 - 4096x2160@24Hz (SMPTE) */ 1287 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 1288 4096, 5116, 5204, 5500, 0, 1289 2160, 2168, 2178, 2250, 0, 1290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1291 .vrefresh = 24, }, 1292 }; 1293 1294 /*** DDC fetch and block validation ***/ 1295 1296 static const u8 edid_header[] = { 1297 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 1298 }; 1299 1300 /** 1301 * drm_edid_header_is_valid - sanity check the header of the base EDID block 1302 * @raw_edid: pointer to raw base EDID block 1303 * 1304 * Sanity check the header of the base EDID block. 1305 * 1306 * Return: 8 if the header is perfect, down to 0 if it's totally wrong. 1307 */ 1308 int drm_edid_header_is_valid(const u8 *raw_edid) 1309 { 1310 int i, score = 0; 1311 1312 for (i = 0; i < sizeof(edid_header); i++) 1313 if (raw_edid[i] == edid_header[i]) 1314 score++; 1315 1316 return score; 1317 } 1318 EXPORT_SYMBOL(drm_edid_header_is_valid); 1319 1320 static int edid_fixup __read_mostly = 6; 1321 module_param_named(edid_fixup, edid_fixup, int, 0400); 1322 MODULE_PARM_DESC(edid_fixup, 1323 "Minimum number of valid EDID header bytes (0-8, default 6)"); 1324 1325 static void drm_get_displayid(struct drm_connector *connector, 1326 struct edid *edid); 1327 1328 static int drm_edid_block_checksum(const u8 *raw_edid) 1329 { 1330 int i; 1331 u8 csum = 0; 1332 for (i = 0; i < EDID_LENGTH; i++) 1333 csum += raw_edid[i]; 1334 1335 return csum; 1336 } 1337 1338 static bool drm_edid_is_zero(const u8 *in_edid, int length) 1339 { 1340 if (memchr_inv(in_edid, 0, length)) 1341 return false; 1342 1343 return true; 1344 } 1345 1346 /** 1347 * drm_edid_block_valid - Sanity check the EDID block (base or extension) 1348 * @raw_edid: pointer to raw EDID block 1349 * @block: type of block to validate (0 for base, extension otherwise) 1350 * @print_bad_edid: if true, dump bad EDID blocks to the console 1351 * @edid_corrupt: if true, the header or checksum is invalid 1352 * 1353 * Validate a base or extension EDID block and optionally dump bad blocks to 1354 * the console. 1355 * 1356 * Return: True if the block is valid, false otherwise. 1357 */ 1358 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid, 1359 bool *edid_corrupt) 1360 { 1361 u8 csum; 1362 struct edid *edid = (struct edid *)raw_edid; 1363 1364 if (WARN_ON(!raw_edid)) 1365 return false; 1366 1367 if (edid_fixup > 8 || edid_fixup < 0) 1368 edid_fixup = 6; 1369 1370 if (block == 0) { 1371 int score = drm_edid_header_is_valid(raw_edid); 1372 if (score == 8) { 1373 if (edid_corrupt) 1374 *edid_corrupt = false; 1375 } else if (score >= edid_fixup) { 1376 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6 1377 * The corrupt flag needs to be set here otherwise, the 1378 * fix-up code here will correct the problem, the 1379 * checksum is correct and the test fails 1380 */ 1381 if (edid_corrupt) 1382 *edid_corrupt = true; 1383 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n"); 1384 memcpy(raw_edid, edid_header, sizeof(edid_header)); 1385 } else { 1386 if (edid_corrupt) 1387 *edid_corrupt = true; 1388 goto bad; 1389 } 1390 } 1391 1392 csum = drm_edid_block_checksum(raw_edid); 1393 if (csum) { 1394 if (edid_corrupt) 1395 *edid_corrupt = true; 1396 1397 /* allow CEA to slide through, switches mangle this */ 1398 if (raw_edid[0] == CEA_EXT) { 1399 DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum); 1400 DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n"); 1401 } else { 1402 if (print_bad_edid) 1403 DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum); 1404 1405 goto bad; 1406 } 1407 } 1408 1409 /* per-block-type checks */ 1410 switch (raw_edid[0]) { 1411 case 0: /* base */ 1412 if (edid->version != 1) { 1413 DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version); 1414 goto bad; 1415 } 1416 1417 if (edid->revision > 4) 1418 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n"); 1419 break; 1420 1421 default: 1422 break; 1423 } 1424 1425 return true; 1426 1427 bad: 1428 if (print_bad_edid) { 1429 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) { 1430 pr_notice("EDID block is all zeroes\n"); 1431 } else { 1432 pr_notice("Raw EDID:\n"); 1433 print_hex_dump(KERN_NOTICE, 1434 " \t", DUMP_PREFIX_NONE, 16, 1, 1435 raw_edid, EDID_LENGTH, false); 1436 } 1437 } 1438 return false; 1439 } 1440 EXPORT_SYMBOL(drm_edid_block_valid); 1441 1442 /** 1443 * drm_edid_is_valid - sanity check EDID data 1444 * @edid: EDID data 1445 * 1446 * Sanity-check an entire EDID record (including extensions) 1447 * 1448 * Return: True if the EDID data is valid, false otherwise. 1449 */ 1450 bool drm_edid_is_valid(struct edid *edid) 1451 { 1452 int i; 1453 u8 *raw = (u8 *)edid; 1454 1455 if (!edid) 1456 return false; 1457 1458 for (i = 0; i <= edid->extensions; i++) 1459 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL)) 1460 return false; 1461 1462 return true; 1463 } 1464 EXPORT_SYMBOL(drm_edid_is_valid); 1465 1466 #define DDC_SEGMENT_ADDR 0x30 1467 /** 1468 * drm_do_probe_ddc_edid() - get EDID information via I2C 1469 * @data: I2C device adapter 1470 * @buf: EDID data buffer to be filled 1471 * @block: 128 byte EDID block to start fetching from 1472 * @len: EDID data buffer length to fetch 1473 * 1474 * Try to fetch EDID information by calling I2C driver functions. 1475 * 1476 * Return: 0 on success or -1 on failure. 1477 */ 1478 static int 1479 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len) 1480 { 1481 struct i2c_adapter *adapter = data; 1482 unsigned char start = block * EDID_LENGTH; 1483 unsigned char segment = block >> 1; 1484 unsigned char xfers = segment ? 3 : 2; 1485 int ret, retries = 5; 1486 1487 /* 1488 * The core I2C driver will automatically retry the transfer if the 1489 * adapter reports EAGAIN. However, we find that bit-banging transfers 1490 * are susceptible to errors under a heavily loaded machine and 1491 * generate spurious NAKs and timeouts. Retrying the transfer 1492 * of the individual block a few times seems to overcome this. 1493 */ 1494 do { 1495 struct i2c_msg msgs[] = { 1496 { 1497 .addr = DDC_SEGMENT_ADDR, 1498 .flags = 0, 1499 .len = 1, 1500 .buf = &segment, 1501 }, { 1502 .addr = DDC_ADDR, 1503 .flags = 0, 1504 .len = 1, 1505 .buf = &start, 1506 }, { 1507 .addr = DDC_ADDR, 1508 .flags = I2C_M_RD, 1509 .len = len, 1510 .buf = buf, 1511 } 1512 }; 1513 1514 /* 1515 * Avoid sending the segment addr to not upset non-compliant 1516 * DDC monitors. 1517 */ 1518 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); 1519 1520 if (ret == -ENXIO) { 1521 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", 1522 adapter->name); 1523 break; 1524 } 1525 } while (ret != xfers && --retries); 1526 1527 return ret == xfers ? 0 : -1; 1528 } 1529 1530 static void connector_bad_edid(struct drm_connector *connector, 1531 u8 *edid, int num_blocks) 1532 { 1533 int i; 1534 1535 if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS)) 1536 return; 1537 1538 dev_warn(connector->dev->dev, 1539 "%s: EDID is invalid:\n", 1540 connector->name); 1541 for (i = 0; i < num_blocks; i++) { 1542 u8 *block = edid + i * EDID_LENGTH; 1543 char prefix[20]; 1544 1545 if (drm_edid_is_zero(block, EDID_LENGTH)) 1546 sprintf(prefix, "\t[%02x] ZERO ", i); 1547 else if (!drm_edid_block_valid(block, i, false, NULL)) 1548 sprintf(prefix, "\t[%02x] BAD ", i); 1549 else 1550 sprintf(prefix, "\t[%02x] GOOD ", i); 1551 1552 print_hex_dump(KERN_WARNING, 1553 prefix, DUMP_PREFIX_NONE, 16, 1, 1554 block, EDID_LENGTH, false); 1555 } 1556 } 1557 1558 /** 1559 * drm_do_get_edid - get EDID data using a custom EDID block read function 1560 * @connector: connector we're probing 1561 * @get_edid_block: EDID block read function 1562 * @data: private data passed to the block read function 1563 * 1564 * When the I2C adapter connected to the DDC bus is hidden behind a device that 1565 * exposes a different interface to read EDID blocks this function can be used 1566 * to get EDID data using a custom block read function. 1567 * 1568 * As in the general case the DDC bus is accessible by the kernel at the I2C 1569 * level, drivers must make all reasonable efforts to expose it as an I2C 1570 * adapter and use drm_get_edid() instead of abusing this function. 1571 * 1572 * The EDID may be overridden using debugfs override_edid or firmare EDID 1573 * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority 1574 * order. Having either of them bypasses actual EDID reads. 1575 * 1576 * Return: Pointer to valid EDID or NULL if we couldn't find any. 1577 */ 1578 struct edid *drm_do_get_edid(struct drm_connector *connector, 1579 int (*get_edid_block)(void *data, u8 *buf, unsigned int block, 1580 size_t len), 1581 void *data) 1582 { 1583 int i, j = 0, valid_extensions = 0; 1584 u8 *edid, *new; 1585 struct edid *override = NULL; 1586 1587 if (connector->override_edid) 1588 override = drm_edid_duplicate(connector->edid_blob_ptr->data); 1589 1590 if (!override) 1591 override = drm_load_edid_firmware(connector); 1592 1593 if (!IS_ERR_OR_NULL(override)) 1594 return override; 1595 1596 if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL) 1597 return NULL; 1598 1599 /* base block fetch */ 1600 for (i = 0; i < 4; i++) { 1601 if (get_edid_block(data, edid, 0, EDID_LENGTH)) 1602 goto out; 1603 if (drm_edid_block_valid(edid, 0, false, 1604 &connector->edid_corrupt)) 1605 break; 1606 if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) { 1607 connector->null_edid_counter++; 1608 goto carp; 1609 } 1610 } 1611 if (i == 4) 1612 goto carp; 1613 1614 /* if there's no extensions, we're done */ 1615 valid_extensions = edid[0x7e]; 1616 if (valid_extensions == 0) 1617 return (struct edid *)edid; 1618 1619 new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL); 1620 if (!new) 1621 goto out; 1622 edid = new; 1623 1624 for (j = 1; j <= edid[0x7e]; j++) { 1625 u8 *block = edid + j * EDID_LENGTH; 1626 1627 for (i = 0; i < 4; i++) { 1628 if (get_edid_block(data, block, j, EDID_LENGTH)) 1629 goto out; 1630 if (drm_edid_block_valid(block, j, false, NULL)) 1631 break; 1632 } 1633 1634 if (i == 4) 1635 valid_extensions--; 1636 } 1637 1638 if (valid_extensions != edid[0x7e]) { 1639 u8 *base; 1640 1641 connector_bad_edid(connector, edid, edid[0x7e] + 1); 1642 1643 edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions; 1644 edid[0x7e] = valid_extensions; 1645 1646 new = kmalloc_array(valid_extensions + 1, EDID_LENGTH, 1647 GFP_KERNEL); 1648 if (!new) 1649 goto out; 1650 1651 base = new; 1652 for (i = 0; i <= edid[0x7e]; i++) { 1653 u8 *block = edid + i * EDID_LENGTH; 1654 1655 if (!drm_edid_block_valid(block, i, false, NULL)) 1656 continue; 1657 1658 memcpy(base, block, EDID_LENGTH); 1659 base += EDID_LENGTH; 1660 } 1661 1662 kfree(edid); 1663 edid = new; 1664 } 1665 1666 return (struct edid *)edid; 1667 1668 carp: 1669 connector_bad_edid(connector, edid, 1); 1670 out: 1671 kfree(edid); 1672 return NULL; 1673 } 1674 EXPORT_SYMBOL_GPL(drm_do_get_edid); 1675 1676 /** 1677 * drm_probe_ddc() - probe DDC presence 1678 * @adapter: I2C adapter to probe 1679 * 1680 * Return: True on success, false on failure. 1681 */ 1682 bool 1683 drm_probe_ddc(struct i2c_adapter *adapter) 1684 { 1685 unsigned char out; 1686 1687 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); 1688 } 1689 EXPORT_SYMBOL(drm_probe_ddc); 1690 1691 /** 1692 * drm_get_edid - get EDID data, if available 1693 * @connector: connector we're probing 1694 * @adapter: I2C adapter to use for DDC 1695 * 1696 * Poke the given I2C channel to grab EDID data if possible. If found, 1697 * attach it to the connector. 1698 * 1699 * Return: Pointer to valid EDID or NULL if we couldn't find any. 1700 */ 1701 struct edid *drm_get_edid(struct drm_connector *connector, 1702 struct i2c_adapter *adapter) 1703 { 1704 struct edid *edid; 1705 1706 if (connector->force == DRM_FORCE_OFF) 1707 return NULL; 1708 1709 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 1710 return NULL; 1711 1712 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter); 1713 if (edid) 1714 drm_get_displayid(connector, edid); 1715 return edid; 1716 } 1717 EXPORT_SYMBOL(drm_get_edid); 1718 1719 /** 1720 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output 1721 * @connector: connector we're probing 1722 * @adapter: I2C adapter to use for DDC 1723 * 1724 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of 1725 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily 1726 * switch DDC to the GPU which is retrieving EDID. 1727 * 1728 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 1729 */ 1730 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector, 1731 struct i2c_adapter *adapter) 1732 { 1733 struct pci_dev *pdev = connector->dev->pdev; 1734 struct edid *edid; 1735 1736 vga_switcheroo_lock_ddc(pdev); 1737 edid = drm_get_edid(connector, adapter); 1738 vga_switcheroo_unlock_ddc(pdev); 1739 1740 return edid; 1741 } 1742 EXPORT_SYMBOL(drm_get_edid_switcheroo); 1743 1744 /** 1745 * drm_edid_duplicate - duplicate an EDID and the extensions 1746 * @edid: EDID to duplicate 1747 * 1748 * Return: Pointer to duplicated EDID or NULL on allocation failure. 1749 */ 1750 struct edid *drm_edid_duplicate(const struct edid *edid) 1751 { 1752 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL); 1753 } 1754 EXPORT_SYMBOL(drm_edid_duplicate); 1755 1756 /*** EDID parsing ***/ 1757 1758 /** 1759 * edid_vendor - match a string against EDID's obfuscated vendor field 1760 * @edid: EDID to match 1761 * @vendor: vendor string 1762 * 1763 * Returns true if @vendor is in @edid, false otherwise 1764 */ 1765 static bool edid_vendor(const struct edid *edid, const char *vendor) 1766 { 1767 char edid_vendor[3]; 1768 1769 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@'; 1770 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) | 1771 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@'; 1772 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@'; 1773 1774 return !strncmp(edid_vendor, vendor, 3); 1775 } 1776 1777 /** 1778 * edid_get_quirks - return quirk flags for a given EDID 1779 * @edid: EDID to process 1780 * 1781 * This tells subsequent routines what fixes they need to apply. 1782 */ 1783 static u32 edid_get_quirks(const struct edid *edid) 1784 { 1785 const struct edid_quirk *quirk; 1786 int i; 1787 1788 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { 1789 quirk = &edid_quirk_list[i]; 1790 1791 if (edid_vendor(edid, quirk->vendor) && 1792 (EDID_PRODUCT_ID(edid) == quirk->product_id)) 1793 return quirk->quirks; 1794 } 1795 1796 return 0; 1797 } 1798 1799 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) 1800 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) 1801 1802 /** 1803 * edid_fixup_preferred - set preferred modes based on quirk list 1804 * @connector: has mode list to fix up 1805 * @quirks: quirks list 1806 * 1807 * Walk the mode list for @connector, clearing the preferred status 1808 * on existing modes and setting it anew for the right mode ala @quirks. 1809 */ 1810 static void edid_fixup_preferred(struct drm_connector *connector, 1811 u32 quirks) 1812 { 1813 struct drm_display_mode *t, *cur_mode, *preferred_mode; 1814 int target_refresh = 0; 1815 int cur_vrefresh, preferred_vrefresh; 1816 1817 if (list_empty(&connector->probed_modes)) 1818 return; 1819 1820 if (quirks & EDID_QUIRK_PREFER_LARGE_60) 1821 target_refresh = 60; 1822 if (quirks & EDID_QUIRK_PREFER_LARGE_75) 1823 target_refresh = 75; 1824 1825 preferred_mode = list_first_entry(&connector->probed_modes, 1826 struct drm_display_mode, head); 1827 1828 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { 1829 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; 1830 1831 if (cur_mode == preferred_mode) 1832 continue; 1833 1834 /* Largest mode is preferred */ 1835 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) 1836 preferred_mode = cur_mode; 1837 1838 cur_vrefresh = cur_mode->vrefresh ? 1839 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode); 1840 preferred_vrefresh = preferred_mode->vrefresh ? 1841 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode); 1842 /* At a given size, try to get closest to target refresh */ 1843 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && 1844 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < 1845 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { 1846 preferred_mode = cur_mode; 1847 } 1848 } 1849 1850 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; 1851 } 1852 1853 static bool 1854 mode_is_rb(const struct drm_display_mode *mode) 1855 { 1856 return (mode->htotal - mode->hdisplay == 160) && 1857 (mode->hsync_end - mode->hdisplay == 80) && 1858 (mode->hsync_end - mode->hsync_start == 32) && 1859 (mode->vsync_start - mode->vdisplay == 3); 1860 } 1861 1862 /* 1863 * drm_mode_find_dmt - Create a copy of a mode if present in DMT 1864 * @dev: Device to duplicate against 1865 * @hsize: Mode width 1866 * @vsize: Mode height 1867 * @fresh: Mode refresh rate 1868 * @rb: Mode reduced-blanking-ness 1869 * 1870 * Walk the DMT mode list looking for a match for the given parameters. 1871 * 1872 * Return: A newly allocated copy of the mode, or NULL if not found. 1873 */ 1874 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, 1875 int hsize, int vsize, int fresh, 1876 bool rb) 1877 { 1878 int i; 1879 1880 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 1881 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 1882 if (hsize != ptr->hdisplay) 1883 continue; 1884 if (vsize != ptr->vdisplay) 1885 continue; 1886 if (fresh != drm_mode_vrefresh(ptr)) 1887 continue; 1888 if (rb != mode_is_rb(ptr)) 1889 continue; 1890 1891 return drm_mode_duplicate(dev, ptr); 1892 } 1893 1894 return NULL; 1895 } 1896 EXPORT_SYMBOL(drm_mode_find_dmt); 1897 1898 typedef void detailed_cb(struct detailed_timing *timing, void *closure); 1899 1900 static void 1901 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) 1902 { 1903 int i, n = 0; 1904 u8 d = ext[0x02]; 1905 u8 *det_base = ext + d; 1906 1907 n = (127 - d) / 18; 1908 for (i = 0; i < n; i++) 1909 cb((struct detailed_timing *)(det_base + 18 * i), closure); 1910 } 1911 1912 static void 1913 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) 1914 { 1915 unsigned int i, n = min((int)ext[0x02], 6); 1916 u8 *det_base = ext + 5; 1917 1918 if (ext[0x01] != 1) 1919 return; /* unknown version */ 1920 1921 for (i = 0; i < n; i++) 1922 cb((struct detailed_timing *)(det_base + 18 * i), closure); 1923 } 1924 1925 static void 1926 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure) 1927 { 1928 int i; 1929 struct edid *edid = (struct edid *)raw_edid; 1930 1931 if (edid == NULL) 1932 return; 1933 1934 for (i = 0; i < EDID_DETAILED_TIMINGS; i++) 1935 cb(&(edid->detailed_timings[i]), closure); 1936 1937 for (i = 1; i <= raw_edid[0x7e]; i++) { 1938 u8 *ext = raw_edid + (i * EDID_LENGTH); 1939 switch (*ext) { 1940 case CEA_EXT: 1941 cea_for_each_detailed_block(ext, cb, closure); 1942 break; 1943 case VTB_EXT: 1944 vtb_for_each_detailed_block(ext, cb, closure); 1945 break; 1946 default: 1947 break; 1948 } 1949 } 1950 } 1951 1952 static void 1953 is_rb(struct detailed_timing *t, void *data) 1954 { 1955 u8 *r = (u8 *)t; 1956 if (r[3] == EDID_DETAIL_MONITOR_RANGE) 1957 if (r[15] & 0x10) 1958 *(bool *)data = true; 1959 } 1960 1961 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ 1962 static bool 1963 drm_monitor_supports_rb(struct edid *edid) 1964 { 1965 if (edid->revision >= 4) { 1966 bool ret = false; 1967 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret); 1968 return ret; 1969 } 1970 1971 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0); 1972 } 1973 1974 static void 1975 find_gtf2(struct detailed_timing *t, void *data) 1976 { 1977 u8 *r = (u8 *)t; 1978 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02) 1979 *(u8 **)data = r; 1980 } 1981 1982 /* Secondary GTF curve kicks in above some break frequency */ 1983 static int 1984 drm_gtf2_hbreak(struct edid *edid) 1985 { 1986 u8 *r = NULL; 1987 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1988 return r ? (r[12] * 2) : 0; 1989 } 1990 1991 static int 1992 drm_gtf2_2c(struct edid *edid) 1993 { 1994 u8 *r = NULL; 1995 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1996 return r ? r[13] : 0; 1997 } 1998 1999 static int 2000 drm_gtf2_m(struct edid *edid) 2001 { 2002 u8 *r = NULL; 2003 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 2004 return r ? (r[15] << 8) + r[14] : 0; 2005 } 2006 2007 static int 2008 drm_gtf2_k(struct edid *edid) 2009 { 2010 u8 *r = NULL; 2011 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 2012 return r ? r[16] : 0; 2013 } 2014 2015 static int 2016 drm_gtf2_2j(struct edid *edid) 2017 { 2018 u8 *r = NULL; 2019 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 2020 return r ? r[17] : 0; 2021 } 2022 2023 /** 2024 * standard_timing_level - get std. timing level(CVT/GTF/DMT) 2025 * @edid: EDID block to scan 2026 */ 2027 static int standard_timing_level(struct edid *edid) 2028 { 2029 if (edid->revision >= 2) { 2030 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)) 2031 return LEVEL_CVT; 2032 if (drm_gtf2_hbreak(edid)) 2033 return LEVEL_GTF2; 2034 return LEVEL_GTF; 2035 } 2036 return LEVEL_DMT; 2037 } 2038 2039 /* 2040 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old 2041 * monitors fill with ascii space (0x20) instead. 2042 */ 2043 static int 2044 bad_std_timing(u8 a, u8 b) 2045 { 2046 return (a == 0x00 && b == 0x00) || 2047 (a == 0x01 && b == 0x01) || 2048 (a == 0x20 && b == 0x20); 2049 } 2050 2051 /** 2052 * drm_mode_std - convert standard mode info (width, height, refresh) into mode 2053 * @connector: connector of for the EDID block 2054 * @edid: EDID block to scan 2055 * @t: standard timing params 2056 * 2057 * Take the standard timing params (in this case width, aspect, and refresh) 2058 * and convert them into a real mode using CVT/GTF/DMT. 2059 */ 2060 static struct drm_display_mode * 2061 drm_mode_std(struct drm_connector *connector, struct edid *edid, 2062 struct std_timing *t) 2063 { 2064 struct drm_device *dev = connector->dev; 2065 struct drm_display_mode *m, *mode = NULL; 2066 int hsize, vsize; 2067 int vrefresh_rate; 2068 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) 2069 >> EDID_TIMING_ASPECT_SHIFT; 2070 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) 2071 >> EDID_TIMING_VFREQ_SHIFT; 2072 int timing_level = standard_timing_level(edid); 2073 2074 if (bad_std_timing(t->hsize, t->vfreq_aspect)) 2075 return NULL; 2076 2077 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ 2078 hsize = t->hsize * 8 + 248; 2079 /* vrefresh_rate = vfreq + 60 */ 2080 vrefresh_rate = vfreq + 60; 2081 /* the vdisplay is calculated based on the aspect ratio */ 2082 if (aspect_ratio == 0) { 2083 if (edid->revision < 3) 2084 vsize = hsize; 2085 else 2086 vsize = (hsize * 10) / 16; 2087 } else if (aspect_ratio == 1) 2088 vsize = (hsize * 3) / 4; 2089 else if (aspect_ratio == 2) 2090 vsize = (hsize * 4) / 5; 2091 else 2092 vsize = (hsize * 9) / 16; 2093 2094 /* HDTV hack, part 1 */ 2095 if (vrefresh_rate == 60 && 2096 ((hsize == 1360 && vsize == 765) || 2097 (hsize == 1368 && vsize == 769))) { 2098 hsize = 1366; 2099 vsize = 768; 2100 } 2101 2102 /* 2103 * If this connector already has a mode for this size and refresh 2104 * rate (because it came from detailed or CVT info), use that 2105 * instead. This way we don't have to guess at interlace or 2106 * reduced blanking. 2107 */ 2108 list_for_each_entry(m, &connector->probed_modes, head) 2109 if (m->hdisplay == hsize && m->vdisplay == vsize && 2110 drm_mode_vrefresh(m) == vrefresh_rate) 2111 return NULL; 2112 2113 /* HDTV hack, part 2 */ 2114 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { 2115 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, 2116 false); 2117 if (!mode) 2118 return NULL; 2119 mode->hdisplay = 1366; 2120 mode->hsync_start = mode->hsync_start - 1; 2121 mode->hsync_end = mode->hsync_end - 1; 2122 return mode; 2123 } 2124 2125 /* check whether it can be found in default mode table */ 2126 if (drm_monitor_supports_rb(edid)) { 2127 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, 2128 true); 2129 if (mode) 2130 return mode; 2131 } 2132 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); 2133 if (mode) 2134 return mode; 2135 2136 /* okay, generate it */ 2137 switch (timing_level) { 2138 case LEVEL_DMT: 2139 break; 2140 case LEVEL_GTF: 2141 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 2142 break; 2143 case LEVEL_GTF2: 2144 /* 2145 * This is potentially wrong if there's ever a monitor with 2146 * more than one ranges section, each claiming a different 2147 * secondary GTF curve. Please don't do that. 2148 */ 2149 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 2150 if (!mode) 2151 return NULL; 2152 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) { 2153 drm_mode_destroy(dev, mode); 2154 mode = drm_gtf_mode_complex(dev, hsize, vsize, 2155 vrefresh_rate, 0, 0, 2156 drm_gtf2_m(edid), 2157 drm_gtf2_2c(edid), 2158 drm_gtf2_k(edid), 2159 drm_gtf2_2j(edid)); 2160 } 2161 break; 2162 case LEVEL_CVT: 2163 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, 2164 false); 2165 break; 2166 } 2167 return mode; 2168 } 2169 2170 /* 2171 * EDID is delightfully ambiguous about how interlaced modes are to be 2172 * encoded. Our internal representation is of frame height, but some 2173 * HDTV detailed timings are encoded as field height. 2174 * 2175 * The format list here is from CEA, in frame size. Technically we 2176 * should be checking refresh rate too. Whatever. 2177 */ 2178 static void 2179 drm_mode_do_interlace_quirk(struct drm_display_mode *mode, 2180 struct detailed_pixel_timing *pt) 2181 { 2182 int i; 2183 static const struct { 2184 int w, h; 2185 } cea_interlaced[] = { 2186 { 1920, 1080 }, 2187 { 720, 480 }, 2188 { 1440, 480 }, 2189 { 2880, 480 }, 2190 { 720, 576 }, 2191 { 1440, 576 }, 2192 { 2880, 576 }, 2193 }; 2194 2195 if (!(pt->misc & DRM_EDID_PT_INTERLACED)) 2196 return; 2197 2198 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { 2199 if ((mode->hdisplay == cea_interlaced[i].w) && 2200 (mode->vdisplay == cea_interlaced[i].h / 2)) { 2201 mode->vdisplay *= 2; 2202 mode->vsync_start *= 2; 2203 mode->vsync_end *= 2; 2204 mode->vtotal *= 2; 2205 mode->vtotal |= 1; 2206 } 2207 } 2208 2209 mode->flags |= DRM_MODE_FLAG_INTERLACE; 2210 } 2211 2212 /** 2213 * drm_mode_detailed - create a new mode from an EDID detailed timing section 2214 * @dev: DRM device (needed to create new mode) 2215 * @edid: EDID block 2216 * @timing: EDID detailed timing info 2217 * @quirks: quirks to apply 2218 * 2219 * An EDID detailed timing block contains enough info for us to create and 2220 * return a new struct drm_display_mode. 2221 */ 2222 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev, 2223 struct edid *edid, 2224 struct detailed_timing *timing, 2225 u32 quirks) 2226 { 2227 struct drm_display_mode *mode; 2228 struct detailed_pixel_timing *pt = &timing->data.pixel_data; 2229 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; 2230 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; 2231 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; 2232 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; 2233 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; 2234 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; 2235 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; 2236 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); 2237 2238 /* ignore tiny modes */ 2239 if (hactive < 64 || vactive < 64) 2240 return NULL; 2241 2242 if (pt->misc & DRM_EDID_PT_STEREO) { 2243 DRM_DEBUG_KMS("stereo mode not supported\n"); 2244 return NULL; 2245 } 2246 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { 2247 DRM_DEBUG_KMS("composite sync not supported\n"); 2248 } 2249 2250 /* it is incorrect if hsync/vsync width is zero */ 2251 if (!hsync_pulse_width || !vsync_pulse_width) { 2252 DRM_DEBUG_KMS("Incorrect Detailed timing. " 2253 "Wrong Hsync/Vsync pulse width\n"); 2254 return NULL; 2255 } 2256 2257 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { 2258 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); 2259 if (!mode) 2260 return NULL; 2261 2262 goto set_size; 2263 } 2264 2265 mode = drm_mode_create(dev); 2266 if (!mode) 2267 return NULL; 2268 2269 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) 2270 timing->pixel_clock = cpu_to_le16(1088); 2271 2272 mode->clock = le16_to_cpu(timing->pixel_clock) * 10; 2273 2274 mode->hdisplay = hactive; 2275 mode->hsync_start = mode->hdisplay + hsync_offset; 2276 mode->hsync_end = mode->hsync_start + hsync_pulse_width; 2277 mode->htotal = mode->hdisplay + hblank; 2278 2279 mode->vdisplay = vactive; 2280 mode->vsync_start = mode->vdisplay + vsync_offset; 2281 mode->vsync_end = mode->vsync_start + vsync_pulse_width; 2282 mode->vtotal = mode->vdisplay + vblank; 2283 2284 /* Some EDIDs have bogus h/vtotal values */ 2285 if (mode->hsync_end > mode->htotal) 2286 mode->htotal = mode->hsync_end + 1; 2287 if (mode->vsync_end > mode->vtotal) 2288 mode->vtotal = mode->vsync_end + 1; 2289 2290 drm_mode_do_interlace_quirk(mode, pt); 2291 2292 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) { 2293 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE; 2294 } 2295 2296 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? 2297 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 2298 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? 2299 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 2300 2301 set_size: 2302 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; 2303 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; 2304 2305 if (quirks & EDID_QUIRK_DETAILED_IN_CM) { 2306 mode->width_mm *= 10; 2307 mode->height_mm *= 10; 2308 } 2309 2310 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { 2311 mode->width_mm = edid->width_cm * 10; 2312 mode->height_mm = edid->height_cm * 10; 2313 } 2314 2315 mode->type = DRM_MODE_TYPE_DRIVER; 2316 mode->vrefresh = drm_mode_vrefresh(mode); 2317 drm_mode_set_name(mode); 2318 2319 return mode; 2320 } 2321 2322 static bool 2323 mode_in_hsync_range(const struct drm_display_mode *mode, 2324 struct edid *edid, u8 *t) 2325 { 2326 int hsync, hmin, hmax; 2327 2328 hmin = t[7]; 2329 if (edid->revision >= 4) 2330 hmin += ((t[4] & 0x04) ? 255 : 0); 2331 hmax = t[8]; 2332 if (edid->revision >= 4) 2333 hmax += ((t[4] & 0x08) ? 255 : 0); 2334 hsync = drm_mode_hsync(mode); 2335 2336 return (hsync <= hmax && hsync >= hmin); 2337 } 2338 2339 static bool 2340 mode_in_vsync_range(const struct drm_display_mode *mode, 2341 struct edid *edid, u8 *t) 2342 { 2343 int vsync, vmin, vmax; 2344 2345 vmin = t[5]; 2346 if (edid->revision >= 4) 2347 vmin += ((t[4] & 0x01) ? 255 : 0); 2348 vmax = t[6]; 2349 if (edid->revision >= 4) 2350 vmax += ((t[4] & 0x02) ? 255 : 0); 2351 vsync = drm_mode_vrefresh(mode); 2352 2353 return (vsync <= vmax && vsync >= vmin); 2354 } 2355 2356 static u32 2357 range_pixel_clock(struct edid *edid, u8 *t) 2358 { 2359 /* unspecified */ 2360 if (t[9] == 0 || t[9] == 255) 2361 return 0; 2362 2363 /* 1.4 with CVT support gives us real precision, yay */ 2364 if (edid->revision >= 4 && t[10] == 0x04) 2365 return (t[9] * 10000) - ((t[12] >> 2) * 250); 2366 2367 /* 1.3 is pathetic, so fuzz up a bit */ 2368 return t[9] * 10000 + 5001; 2369 } 2370 2371 static bool 2372 mode_in_range(const struct drm_display_mode *mode, struct edid *edid, 2373 struct detailed_timing *timing) 2374 { 2375 u32 max_clock; 2376 u8 *t = (u8 *)timing; 2377 2378 if (!mode_in_hsync_range(mode, edid, t)) 2379 return false; 2380 2381 if (!mode_in_vsync_range(mode, edid, t)) 2382 return false; 2383 2384 if ((max_clock = range_pixel_clock(edid, t))) 2385 if (mode->clock > max_clock) 2386 return false; 2387 2388 /* 1.4 max horizontal check */ 2389 if (edid->revision >= 4 && t[10] == 0x04) 2390 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) 2391 return false; 2392 2393 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid)) 2394 return false; 2395 2396 return true; 2397 } 2398 2399 static bool valid_inferred_mode(const struct drm_connector *connector, 2400 const struct drm_display_mode *mode) 2401 { 2402 const struct drm_display_mode *m; 2403 bool ok = false; 2404 2405 list_for_each_entry(m, &connector->probed_modes, head) { 2406 if (mode->hdisplay == m->hdisplay && 2407 mode->vdisplay == m->vdisplay && 2408 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) 2409 return false; /* duplicated */ 2410 if (mode->hdisplay <= m->hdisplay && 2411 mode->vdisplay <= m->vdisplay) 2412 ok = true; 2413 } 2414 return ok; 2415 } 2416 2417 static int 2418 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid, 2419 struct detailed_timing *timing) 2420 { 2421 int i, modes = 0; 2422 struct drm_display_mode *newmode; 2423 struct drm_device *dev = connector->dev; 2424 2425 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 2426 if (mode_in_range(drm_dmt_modes + i, edid, timing) && 2427 valid_inferred_mode(connector, drm_dmt_modes + i)) { 2428 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); 2429 if (newmode) { 2430 drm_mode_probed_add(connector, newmode); 2431 modes++; 2432 } 2433 } 2434 } 2435 2436 return modes; 2437 } 2438 2439 /* fix up 1366x768 mode from 1368x768; 2440 * GFT/CVT can't express 1366 width which isn't dividable by 8 2441 */ 2442 void drm_mode_fixup_1366x768(struct drm_display_mode *mode) 2443 { 2444 if (mode->hdisplay == 1368 && mode->vdisplay == 768) { 2445 mode->hdisplay = 1366; 2446 mode->hsync_start--; 2447 mode->hsync_end--; 2448 drm_mode_set_name(mode); 2449 } 2450 } 2451 2452 static int 2453 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid, 2454 struct detailed_timing *timing) 2455 { 2456 int i, modes = 0; 2457 struct drm_display_mode *newmode; 2458 struct drm_device *dev = connector->dev; 2459 2460 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 2461 const struct minimode *m = &extra_modes[i]; 2462 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); 2463 if (!newmode) 2464 return modes; 2465 2466 drm_mode_fixup_1366x768(newmode); 2467 if (!mode_in_range(newmode, edid, timing) || 2468 !valid_inferred_mode(connector, newmode)) { 2469 drm_mode_destroy(dev, newmode); 2470 continue; 2471 } 2472 2473 drm_mode_probed_add(connector, newmode); 2474 modes++; 2475 } 2476 2477 return modes; 2478 } 2479 2480 static int 2481 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid, 2482 struct detailed_timing *timing) 2483 { 2484 int i, modes = 0; 2485 struct drm_display_mode *newmode; 2486 struct drm_device *dev = connector->dev; 2487 bool rb = drm_monitor_supports_rb(edid); 2488 2489 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 2490 const struct minimode *m = &extra_modes[i]; 2491 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); 2492 if (!newmode) 2493 return modes; 2494 2495 drm_mode_fixup_1366x768(newmode); 2496 if (!mode_in_range(newmode, edid, timing) || 2497 !valid_inferred_mode(connector, newmode)) { 2498 drm_mode_destroy(dev, newmode); 2499 continue; 2500 } 2501 2502 drm_mode_probed_add(connector, newmode); 2503 modes++; 2504 } 2505 2506 return modes; 2507 } 2508 2509 static void 2510 do_inferred_modes(struct detailed_timing *timing, void *c) 2511 { 2512 struct detailed_mode_closure *closure = c; 2513 struct detailed_non_pixel *data = &timing->data.other_data; 2514 struct detailed_data_monitor_range *range = &data->data.range; 2515 2516 if (data->type != EDID_DETAIL_MONITOR_RANGE) 2517 return; 2518 2519 closure->modes += drm_dmt_modes_for_range(closure->connector, 2520 closure->edid, 2521 timing); 2522 2523 if (!version_greater(closure->edid, 1, 1)) 2524 return; /* GTF not defined yet */ 2525 2526 switch (range->flags) { 2527 case 0x02: /* secondary gtf, XXX could do more */ 2528 case 0x00: /* default gtf */ 2529 closure->modes += drm_gtf_modes_for_range(closure->connector, 2530 closure->edid, 2531 timing); 2532 break; 2533 case 0x04: /* cvt, only in 1.4+ */ 2534 if (!version_greater(closure->edid, 1, 3)) 2535 break; 2536 2537 closure->modes += drm_cvt_modes_for_range(closure->connector, 2538 closure->edid, 2539 timing); 2540 break; 2541 case 0x01: /* just the ranges, no formula */ 2542 default: 2543 break; 2544 } 2545 } 2546 2547 static int 2548 add_inferred_modes(struct drm_connector *connector, struct edid *edid) 2549 { 2550 struct detailed_mode_closure closure = { 2551 .connector = connector, 2552 .edid = edid, 2553 }; 2554 2555 if (version_greater(edid, 1, 0)) 2556 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes, 2557 &closure); 2558 2559 return closure.modes; 2560 } 2561 2562 static int 2563 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing) 2564 { 2565 int i, j, m, modes = 0; 2566 struct drm_display_mode *mode; 2567 u8 *est = ((u8 *)timing) + 6; 2568 2569 for (i = 0; i < 6; i++) { 2570 for (j = 7; j >= 0; j--) { 2571 m = (i * 8) + (7 - j); 2572 if (m >= ARRAY_SIZE(est3_modes)) 2573 break; 2574 if (est[i] & (1 << j)) { 2575 mode = drm_mode_find_dmt(connector->dev, 2576 est3_modes[m].w, 2577 est3_modes[m].h, 2578 est3_modes[m].r, 2579 est3_modes[m].rb); 2580 if (mode) { 2581 drm_mode_probed_add(connector, mode); 2582 modes++; 2583 } 2584 } 2585 } 2586 } 2587 2588 return modes; 2589 } 2590 2591 static void 2592 do_established_modes(struct detailed_timing *timing, void *c) 2593 { 2594 struct detailed_mode_closure *closure = c; 2595 struct detailed_non_pixel *data = &timing->data.other_data; 2596 2597 if (data->type == EDID_DETAIL_EST_TIMINGS) 2598 closure->modes += drm_est3_modes(closure->connector, timing); 2599 } 2600 2601 /** 2602 * add_established_modes - get est. modes from EDID and add them 2603 * @connector: connector to add mode(s) to 2604 * @edid: EDID block to scan 2605 * 2606 * Each EDID block contains a bitmap of the supported "established modes" list 2607 * (defined above). Tease them out and add them to the global modes list. 2608 */ 2609 static int 2610 add_established_modes(struct drm_connector *connector, struct edid *edid) 2611 { 2612 struct drm_device *dev = connector->dev; 2613 unsigned long est_bits = edid->established_timings.t1 | 2614 (edid->established_timings.t2 << 8) | 2615 ((edid->established_timings.mfg_rsvd & 0x80) << 9); 2616 int i, modes = 0; 2617 struct detailed_mode_closure closure = { 2618 .connector = connector, 2619 .edid = edid, 2620 }; 2621 2622 for (i = 0; i <= EDID_EST_TIMINGS; i++) { 2623 if (est_bits & (1<<i)) { 2624 struct drm_display_mode *newmode; 2625 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]); 2626 if (newmode) { 2627 drm_mode_probed_add(connector, newmode); 2628 modes++; 2629 } 2630 } 2631 } 2632 2633 if (version_greater(edid, 1, 0)) 2634 drm_for_each_detailed_block((u8 *)edid, 2635 do_established_modes, &closure); 2636 2637 return modes + closure.modes; 2638 } 2639 2640 static void 2641 do_standard_modes(struct detailed_timing *timing, void *c) 2642 { 2643 struct detailed_mode_closure *closure = c; 2644 struct detailed_non_pixel *data = &timing->data.other_data; 2645 struct drm_connector *connector = closure->connector; 2646 struct edid *edid = closure->edid; 2647 2648 if (data->type == EDID_DETAIL_STD_MODES) { 2649 int i; 2650 for (i = 0; i < 6; i++) { 2651 struct std_timing *std; 2652 struct drm_display_mode *newmode; 2653 2654 std = &data->data.timings[i]; 2655 newmode = drm_mode_std(connector, edid, std); 2656 if (newmode) { 2657 drm_mode_probed_add(connector, newmode); 2658 closure->modes++; 2659 } 2660 } 2661 } 2662 } 2663 2664 /** 2665 * add_standard_modes - get std. modes from EDID and add them 2666 * @connector: connector to add mode(s) to 2667 * @edid: EDID block to scan 2668 * 2669 * Standard modes can be calculated using the appropriate standard (DMT, 2670 * GTF or CVT. Grab them from @edid and add them to the list. 2671 */ 2672 static int 2673 add_standard_modes(struct drm_connector *connector, struct edid *edid) 2674 { 2675 int i, modes = 0; 2676 struct detailed_mode_closure closure = { 2677 .connector = connector, 2678 .edid = edid, 2679 }; 2680 2681 for (i = 0; i < EDID_STD_TIMINGS; i++) { 2682 struct drm_display_mode *newmode; 2683 2684 newmode = drm_mode_std(connector, edid, 2685 &edid->standard_timings[i]); 2686 if (newmode) { 2687 drm_mode_probed_add(connector, newmode); 2688 modes++; 2689 } 2690 } 2691 2692 if (version_greater(edid, 1, 0)) 2693 drm_for_each_detailed_block((u8 *)edid, do_standard_modes, 2694 &closure); 2695 2696 /* XXX should also look for standard codes in VTB blocks */ 2697 2698 return modes + closure.modes; 2699 } 2700 2701 static int drm_cvt_modes(struct drm_connector *connector, 2702 struct detailed_timing *timing) 2703 { 2704 int i, j, modes = 0; 2705 struct drm_display_mode *newmode; 2706 struct drm_device *dev = connector->dev; 2707 struct cvt_timing *cvt; 2708 const int rates[] = { 60, 85, 75, 60, 50 }; 2709 const u8 empty[3] = { 0, 0, 0 }; 2710 2711 for (i = 0; i < 4; i++) { 2712 int uninitialized_var(width), height; 2713 cvt = &(timing->data.other_data.data.cvt[i]); 2714 2715 if (!memcmp(cvt->code, empty, 3)) 2716 continue; 2717 2718 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; 2719 switch (cvt->code[1] & 0x0c) { 2720 case 0x00: 2721 width = height * 4 / 3; 2722 break; 2723 case 0x04: 2724 width = height * 16 / 9; 2725 break; 2726 case 0x08: 2727 width = height * 16 / 10; 2728 break; 2729 case 0x0c: 2730 width = height * 15 / 9; 2731 break; 2732 } 2733 2734 for (j = 1; j < 5; j++) { 2735 if (cvt->code[2] & (1 << j)) { 2736 newmode = drm_cvt_mode(dev, width, height, 2737 rates[j], j == 0, 2738 false, false); 2739 if (newmode) { 2740 drm_mode_probed_add(connector, newmode); 2741 modes++; 2742 } 2743 } 2744 } 2745 } 2746 2747 return modes; 2748 } 2749 2750 static void 2751 do_cvt_mode(struct detailed_timing *timing, void *c) 2752 { 2753 struct detailed_mode_closure *closure = c; 2754 struct detailed_non_pixel *data = &timing->data.other_data; 2755 2756 if (data->type == EDID_DETAIL_CVT_3BYTE) 2757 closure->modes += drm_cvt_modes(closure->connector, timing); 2758 } 2759 2760 static int 2761 add_cvt_modes(struct drm_connector *connector, struct edid *edid) 2762 { 2763 struct detailed_mode_closure closure = { 2764 .connector = connector, 2765 .edid = edid, 2766 }; 2767 2768 if (version_greater(edid, 1, 2)) 2769 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure); 2770 2771 /* XXX should also look for CVT codes in VTB blocks */ 2772 2773 return closure.modes; 2774 } 2775 2776 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode); 2777 2778 static void 2779 do_detailed_mode(struct detailed_timing *timing, void *c) 2780 { 2781 struct detailed_mode_closure *closure = c; 2782 struct drm_display_mode *newmode; 2783 2784 if (timing->pixel_clock) { 2785 newmode = drm_mode_detailed(closure->connector->dev, 2786 closure->edid, timing, 2787 closure->quirks); 2788 if (!newmode) 2789 return; 2790 2791 if (closure->preferred) 2792 newmode->type |= DRM_MODE_TYPE_PREFERRED; 2793 2794 /* 2795 * Detailed modes are limited to 10kHz pixel clock resolution, 2796 * so fix up anything that looks like CEA/HDMI mode, but the clock 2797 * is just slightly off. 2798 */ 2799 fixup_detailed_cea_mode_clock(newmode); 2800 2801 drm_mode_probed_add(closure->connector, newmode); 2802 closure->modes++; 2803 closure->preferred = false; 2804 } 2805 } 2806 2807 /* 2808 * add_detailed_modes - Add modes from detailed timings 2809 * @connector: attached connector 2810 * @edid: EDID block to scan 2811 * @quirks: quirks to apply 2812 */ 2813 static int 2814 add_detailed_modes(struct drm_connector *connector, struct edid *edid, 2815 u32 quirks) 2816 { 2817 struct detailed_mode_closure closure = { 2818 .connector = connector, 2819 .edid = edid, 2820 .preferred = true, 2821 .quirks = quirks, 2822 }; 2823 2824 if (closure.preferred && !version_greater(edid, 1, 3)) 2825 closure.preferred = 2826 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING); 2827 2828 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure); 2829 2830 return closure.modes; 2831 } 2832 2833 #define AUDIO_BLOCK 0x01 2834 #define VIDEO_BLOCK 0x02 2835 #define VENDOR_BLOCK 0x03 2836 #define SPEAKER_BLOCK 0x04 2837 #define USE_EXTENDED_TAG 0x07 2838 #define EXT_VIDEO_CAPABILITY_BLOCK 0x00 2839 #define EXT_VIDEO_DATA_BLOCK_420 0x0E 2840 #define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F 2841 #define EDID_BASIC_AUDIO (1 << 6) 2842 #define EDID_CEA_YCRCB444 (1 << 5) 2843 #define EDID_CEA_YCRCB422 (1 << 4) 2844 #define EDID_CEA_VCDB_QS (1 << 6) 2845 2846 /* 2847 * Search EDID for CEA extension block. 2848 */ 2849 static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id) 2850 { 2851 u8 *edid_ext = NULL; 2852 int i; 2853 2854 /* No EDID or EDID extensions */ 2855 if (edid == NULL || edid->extensions == 0) 2856 return NULL; 2857 2858 /* Find CEA extension */ 2859 for (i = 0; i < edid->extensions; i++) { 2860 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1); 2861 if (edid_ext[0] == ext_id) 2862 break; 2863 } 2864 2865 if (i == edid->extensions) 2866 return NULL; 2867 2868 return edid_ext; 2869 } 2870 2871 static u8 *drm_find_cea_extension(const struct edid *edid) 2872 { 2873 return drm_find_edid_extension(edid, CEA_EXT); 2874 } 2875 2876 static u8 *drm_find_displayid_extension(const struct edid *edid) 2877 { 2878 return drm_find_edid_extension(edid, DISPLAYID_EXT); 2879 } 2880 2881 /* 2882 * Calculate the alternate clock for the CEA mode 2883 * (60Hz vs. 59.94Hz etc.) 2884 */ 2885 static unsigned int 2886 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) 2887 { 2888 unsigned int clock = cea_mode->clock; 2889 2890 if (cea_mode->vrefresh % 6 != 0) 2891 return clock; 2892 2893 /* 2894 * edid_cea_modes contains the 59.94Hz 2895 * variant for 240 and 480 line modes, 2896 * and the 60Hz variant otherwise. 2897 */ 2898 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) 2899 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000); 2900 else 2901 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001); 2902 2903 return clock; 2904 } 2905 2906 static bool 2907 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode) 2908 { 2909 /* 2910 * For certain VICs the spec allows the vertical 2911 * front porch to vary by one or two lines. 2912 * 2913 * cea_modes[] stores the variant with the shortest 2914 * vertical front porch. We can adjust the mode to 2915 * get the other variants by simply increasing the 2916 * vertical front porch length. 2917 */ 2918 BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 || 2919 edid_cea_modes[9].vtotal != 262 || 2920 edid_cea_modes[12].vtotal != 262 || 2921 edid_cea_modes[13].vtotal != 262 || 2922 edid_cea_modes[23].vtotal != 312 || 2923 edid_cea_modes[24].vtotal != 312 || 2924 edid_cea_modes[27].vtotal != 312 || 2925 edid_cea_modes[28].vtotal != 312); 2926 2927 if (((vic == 8 || vic == 9 || 2928 vic == 12 || vic == 13) && mode->vtotal < 263) || 2929 ((vic == 23 || vic == 24 || 2930 vic == 27 || vic == 28) && mode->vtotal < 314)) { 2931 mode->vsync_start++; 2932 mode->vsync_end++; 2933 mode->vtotal++; 2934 2935 return true; 2936 } 2937 2938 return false; 2939 } 2940 2941 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match, 2942 unsigned int clock_tolerance) 2943 { 2944 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 2945 u8 vic; 2946 2947 if (!to_match->clock) 2948 return 0; 2949 2950 if (to_match->picture_aspect_ratio) 2951 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 2952 2953 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) { 2954 struct drm_display_mode cea_mode = edid_cea_modes[vic]; 2955 unsigned int clock1, clock2; 2956 2957 /* Check both 60Hz and 59.94Hz */ 2958 clock1 = cea_mode.clock; 2959 clock2 = cea_mode_alternate_clock(&cea_mode); 2960 2961 if (abs(to_match->clock - clock1) > clock_tolerance && 2962 abs(to_match->clock - clock2) > clock_tolerance) 2963 continue; 2964 2965 do { 2966 if (drm_mode_match(to_match, &cea_mode, match_flags)) 2967 return vic; 2968 } while (cea_mode_alternate_timings(vic, &cea_mode)); 2969 } 2970 2971 return 0; 2972 } 2973 2974 /** 2975 * drm_match_cea_mode - look for a CEA mode matching given mode 2976 * @to_match: display mode 2977 * 2978 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 2979 * mode. 2980 */ 2981 u8 drm_match_cea_mode(const struct drm_display_mode *to_match) 2982 { 2983 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 2984 u8 vic; 2985 2986 if (!to_match->clock) 2987 return 0; 2988 2989 if (to_match->picture_aspect_ratio) 2990 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 2991 2992 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) { 2993 struct drm_display_mode cea_mode = edid_cea_modes[vic]; 2994 unsigned int clock1, clock2; 2995 2996 /* Check both 60Hz and 59.94Hz */ 2997 clock1 = cea_mode.clock; 2998 clock2 = cea_mode_alternate_clock(&cea_mode); 2999 3000 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) && 3001 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2)) 3002 continue; 3003 3004 do { 3005 if (drm_mode_match(to_match, &cea_mode, match_flags)) 3006 return vic; 3007 } while (cea_mode_alternate_timings(vic, &cea_mode)); 3008 } 3009 3010 return 0; 3011 } 3012 EXPORT_SYMBOL(drm_match_cea_mode); 3013 3014 static bool drm_valid_cea_vic(u8 vic) 3015 { 3016 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes); 3017 } 3018 3019 /** 3020 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to 3021 * the input VIC from the CEA mode list 3022 * @video_code: ID given to each of the CEA modes 3023 * 3024 * Returns picture aspect ratio 3025 */ 3026 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code) 3027 { 3028 return edid_cea_modes[video_code].picture_aspect_ratio; 3029 } 3030 EXPORT_SYMBOL(drm_get_cea_aspect_ratio); 3031 3032 /* 3033 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor 3034 * specific block). 3035 * 3036 * It's almost like cea_mode_alternate_clock(), we just need to add an 3037 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this 3038 * one. 3039 */ 3040 static unsigned int 3041 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) 3042 { 3043 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160) 3044 return hdmi_mode->clock; 3045 3046 return cea_mode_alternate_clock(hdmi_mode); 3047 } 3048 3049 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match, 3050 unsigned int clock_tolerance) 3051 { 3052 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 3053 u8 vic; 3054 3055 if (!to_match->clock) 3056 return 0; 3057 3058 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 3059 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 3060 unsigned int clock1, clock2; 3061 3062 /* Make sure to also match alternate clocks */ 3063 clock1 = hdmi_mode->clock; 3064 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 3065 3066 if (abs(to_match->clock - clock1) > clock_tolerance && 3067 abs(to_match->clock - clock2) > clock_tolerance) 3068 continue; 3069 3070 if (drm_mode_match(to_match, hdmi_mode, match_flags)) 3071 return vic; 3072 } 3073 3074 return 0; 3075 } 3076 3077 /* 3078 * drm_match_hdmi_mode - look for a HDMI mode matching given mode 3079 * @to_match: display mode 3080 * 3081 * An HDMI mode is one defined in the HDMI vendor specific block. 3082 * 3083 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. 3084 */ 3085 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) 3086 { 3087 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 3088 u8 vic; 3089 3090 if (!to_match->clock) 3091 return 0; 3092 3093 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 3094 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 3095 unsigned int clock1, clock2; 3096 3097 /* Make sure to also match alternate clocks */ 3098 clock1 = hdmi_mode->clock; 3099 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 3100 3101 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || 3102 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && 3103 drm_mode_match(to_match, hdmi_mode, match_flags)) 3104 return vic; 3105 } 3106 return 0; 3107 } 3108 3109 static bool drm_valid_hdmi_vic(u8 vic) 3110 { 3111 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes); 3112 } 3113 3114 static int 3115 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid) 3116 { 3117 struct drm_device *dev = connector->dev; 3118 struct drm_display_mode *mode, *tmp; 3119 LIST_HEAD(list); 3120 int modes = 0; 3121 3122 /* Don't add CEA modes if the CEA extension block is missing */ 3123 if (!drm_find_cea_extension(edid)) 3124 return 0; 3125 3126 /* 3127 * Go through all probed modes and create a new mode 3128 * with the alternate clock for certain CEA modes. 3129 */ 3130 list_for_each_entry(mode, &connector->probed_modes, head) { 3131 const struct drm_display_mode *cea_mode = NULL; 3132 struct drm_display_mode *newmode; 3133 u8 vic = drm_match_cea_mode(mode); 3134 unsigned int clock1, clock2; 3135 3136 if (drm_valid_cea_vic(vic)) { 3137 cea_mode = &edid_cea_modes[vic]; 3138 clock2 = cea_mode_alternate_clock(cea_mode); 3139 } else { 3140 vic = drm_match_hdmi_mode(mode); 3141 if (drm_valid_hdmi_vic(vic)) { 3142 cea_mode = &edid_4k_modes[vic]; 3143 clock2 = hdmi_mode_alternate_clock(cea_mode); 3144 } 3145 } 3146 3147 if (!cea_mode) 3148 continue; 3149 3150 clock1 = cea_mode->clock; 3151 3152 if (clock1 == clock2) 3153 continue; 3154 3155 if (mode->clock != clock1 && mode->clock != clock2) 3156 continue; 3157 3158 newmode = drm_mode_duplicate(dev, cea_mode); 3159 if (!newmode) 3160 continue; 3161 3162 /* Carry over the stereo flags */ 3163 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; 3164 3165 /* 3166 * The current mode could be either variant. Make 3167 * sure to pick the "other" clock for the new mode. 3168 */ 3169 if (mode->clock != clock1) 3170 newmode->clock = clock1; 3171 else 3172 newmode->clock = clock2; 3173 3174 list_add_tail(&newmode->head, &list); 3175 } 3176 3177 list_for_each_entry_safe(mode, tmp, &list, head) { 3178 list_del(&mode->head); 3179 drm_mode_probed_add(connector, mode); 3180 modes++; 3181 } 3182 3183 return modes; 3184 } 3185 3186 static u8 svd_to_vic(u8 svd) 3187 { 3188 /* 0-6 bit vic, 7th bit native mode indicator */ 3189 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192)) 3190 return svd & 127; 3191 3192 return svd; 3193 } 3194 3195 static struct drm_display_mode * 3196 drm_display_mode_from_vic_index(struct drm_connector *connector, 3197 const u8 *video_db, u8 video_len, 3198 u8 video_index) 3199 { 3200 struct drm_device *dev = connector->dev; 3201 struct drm_display_mode *newmode; 3202 u8 vic; 3203 3204 if (video_db == NULL || video_index >= video_len) 3205 return NULL; 3206 3207 /* CEA modes are numbered 1..127 */ 3208 vic = svd_to_vic(video_db[video_index]); 3209 if (!drm_valid_cea_vic(vic)) 3210 return NULL; 3211 3212 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]); 3213 if (!newmode) 3214 return NULL; 3215 3216 newmode->vrefresh = 0; 3217 3218 return newmode; 3219 } 3220 3221 /* 3222 * do_y420vdb_modes - Parse YCBCR 420 only modes 3223 * @connector: connector corresponding to the HDMI sink 3224 * @svds: start of the data block of CEA YCBCR 420 VDB 3225 * @len: length of the CEA YCBCR 420 VDB 3226 * 3227 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB) 3228 * which contains modes which can be supported in YCBCR 420 3229 * output format only. 3230 */ 3231 static int do_y420vdb_modes(struct drm_connector *connector, 3232 const u8 *svds, u8 svds_len) 3233 { 3234 int modes = 0, i; 3235 struct drm_device *dev = connector->dev; 3236 struct drm_display_info *info = &connector->display_info; 3237 struct drm_hdmi_info *hdmi = &info->hdmi; 3238 3239 for (i = 0; i < svds_len; i++) { 3240 u8 vic = svd_to_vic(svds[i]); 3241 struct drm_display_mode *newmode; 3242 3243 if (!drm_valid_cea_vic(vic)) 3244 continue; 3245 3246 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]); 3247 if (!newmode) 3248 break; 3249 bitmap_set(hdmi->y420_vdb_modes, vic, 1); 3250 drm_mode_probed_add(connector, newmode); 3251 modes++; 3252 } 3253 3254 if (modes > 0) 3255 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420; 3256 return modes; 3257 } 3258 3259 /* 3260 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap 3261 * @connector: connector corresponding to the HDMI sink 3262 * @vic: CEA vic for the video mode to be added in the map 3263 * 3264 * Makes an entry for a videomode in the YCBCR 420 bitmap 3265 */ 3266 static void 3267 drm_add_cmdb_modes(struct drm_connector *connector, u8 svd) 3268 { 3269 u8 vic = svd_to_vic(svd); 3270 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 3271 3272 if (!drm_valid_cea_vic(vic)) 3273 return; 3274 3275 bitmap_set(hdmi->y420_cmdb_modes, vic, 1); 3276 } 3277 3278 static int 3279 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len) 3280 { 3281 int i, modes = 0; 3282 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 3283 3284 for (i = 0; i < len; i++) { 3285 struct drm_display_mode *mode; 3286 mode = drm_display_mode_from_vic_index(connector, db, len, i); 3287 if (mode) { 3288 /* 3289 * YCBCR420 capability block contains a bitmap which 3290 * gives the index of CEA modes from CEA VDB, which 3291 * can support YCBCR 420 sampling output also (apart 3292 * from RGB/YCBCR444 etc). 3293 * For example, if the bit 0 in bitmap is set, 3294 * first mode in VDB can support YCBCR420 output too. 3295 * Add YCBCR420 modes only if sink is HDMI 2.0 capable. 3296 */ 3297 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i)) 3298 drm_add_cmdb_modes(connector, db[i]); 3299 3300 drm_mode_probed_add(connector, mode); 3301 modes++; 3302 } 3303 } 3304 3305 return modes; 3306 } 3307 3308 struct stereo_mandatory_mode { 3309 int width, height, vrefresh; 3310 unsigned int flags; 3311 }; 3312 3313 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { 3314 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 3315 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, 3316 { 1920, 1080, 50, 3317 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 3318 { 1920, 1080, 60, 3319 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 3320 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 3321 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, 3322 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 3323 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } 3324 }; 3325 3326 static bool 3327 stereo_match_mandatory(const struct drm_display_mode *mode, 3328 const struct stereo_mandatory_mode *stereo_mode) 3329 { 3330 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 3331 3332 return mode->hdisplay == stereo_mode->width && 3333 mode->vdisplay == stereo_mode->height && 3334 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && 3335 drm_mode_vrefresh(mode) == stereo_mode->vrefresh; 3336 } 3337 3338 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) 3339 { 3340 struct drm_device *dev = connector->dev; 3341 const struct drm_display_mode *mode; 3342 struct list_head stereo_modes; 3343 int modes = 0, i; 3344 3345 INIT_LIST_HEAD(&stereo_modes); 3346 3347 list_for_each_entry(mode, &connector->probed_modes, head) { 3348 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { 3349 const struct stereo_mandatory_mode *mandatory; 3350 struct drm_display_mode *new_mode; 3351 3352 if (!stereo_match_mandatory(mode, 3353 &stereo_mandatory_modes[i])) 3354 continue; 3355 3356 mandatory = &stereo_mandatory_modes[i]; 3357 new_mode = drm_mode_duplicate(dev, mode); 3358 if (!new_mode) 3359 continue; 3360 3361 new_mode->flags |= mandatory->flags; 3362 list_add_tail(&new_mode->head, &stereo_modes); 3363 modes++; 3364 } 3365 } 3366 3367 list_splice_tail(&stereo_modes, &connector->probed_modes); 3368 3369 return modes; 3370 } 3371 3372 static int add_hdmi_mode(struct drm_connector *connector, u8 vic) 3373 { 3374 struct drm_device *dev = connector->dev; 3375 struct drm_display_mode *newmode; 3376 3377 if (!drm_valid_hdmi_vic(vic)) { 3378 DRM_ERROR("Unknown HDMI VIC: %d\n", vic); 3379 return 0; 3380 } 3381 3382 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); 3383 if (!newmode) 3384 return 0; 3385 3386 drm_mode_probed_add(connector, newmode); 3387 3388 return 1; 3389 } 3390 3391 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, 3392 const u8 *video_db, u8 video_len, u8 video_index) 3393 { 3394 struct drm_display_mode *newmode; 3395 int modes = 0; 3396 3397 if (structure & (1 << 0)) { 3398 newmode = drm_display_mode_from_vic_index(connector, video_db, 3399 video_len, 3400 video_index); 3401 if (newmode) { 3402 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; 3403 drm_mode_probed_add(connector, newmode); 3404 modes++; 3405 } 3406 } 3407 if (structure & (1 << 6)) { 3408 newmode = drm_display_mode_from_vic_index(connector, video_db, 3409 video_len, 3410 video_index); 3411 if (newmode) { 3412 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 3413 drm_mode_probed_add(connector, newmode); 3414 modes++; 3415 } 3416 } 3417 if (structure & (1 << 8)) { 3418 newmode = drm_display_mode_from_vic_index(connector, video_db, 3419 video_len, 3420 video_index); 3421 if (newmode) { 3422 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 3423 drm_mode_probed_add(connector, newmode); 3424 modes++; 3425 } 3426 } 3427 3428 return modes; 3429 } 3430 3431 /* 3432 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block 3433 * @connector: connector corresponding to the HDMI sink 3434 * @db: start of the CEA vendor specific block 3435 * @len: length of the CEA block payload, ie. one can access up to db[len] 3436 * 3437 * Parses the HDMI VSDB looking for modes to add to @connector. This function 3438 * also adds the stereo 3d modes when applicable. 3439 */ 3440 static int 3441 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len, 3442 const u8 *video_db, u8 video_len) 3443 { 3444 struct drm_display_info *info = &connector->display_info; 3445 int modes = 0, offset = 0, i, multi_present = 0, multi_len; 3446 u8 vic_len, hdmi_3d_len = 0; 3447 u16 mask; 3448 u16 structure_all; 3449 3450 if (len < 8) 3451 goto out; 3452 3453 /* no HDMI_Video_Present */ 3454 if (!(db[8] & (1 << 5))) 3455 goto out; 3456 3457 /* Latency_Fields_Present */ 3458 if (db[8] & (1 << 7)) 3459 offset += 2; 3460 3461 /* I_Latency_Fields_Present */ 3462 if (db[8] & (1 << 6)) 3463 offset += 2; 3464 3465 /* the declared length is not long enough for the 2 first bytes 3466 * of additional video format capabilities */ 3467 if (len < (8 + offset + 2)) 3468 goto out; 3469 3470 /* 3D_Present */ 3471 offset++; 3472 if (db[8 + offset] & (1 << 7)) { 3473 modes += add_hdmi_mandatory_stereo_modes(connector); 3474 3475 /* 3D_Multi_present */ 3476 multi_present = (db[8 + offset] & 0x60) >> 5; 3477 } 3478 3479 offset++; 3480 vic_len = db[8 + offset] >> 5; 3481 hdmi_3d_len = db[8 + offset] & 0x1f; 3482 3483 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { 3484 u8 vic; 3485 3486 vic = db[9 + offset + i]; 3487 modes += add_hdmi_mode(connector, vic); 3488 } 3489 offset += 1 + vic_len; 3490 3491 if (multi_present == 1) 3492 multi_len = 2; 3493 else if (multi_present == 2) 3494 multi_len = 4; 3495 else 3496 multi_len = 0; 3497 3498 if (len < (8 + offset + hdmi_3d_len - 1)) 3499 goto out; 3500 3501 if (hdmi_3d_len < multi_len) 3502 goto out; 3503 3504 if (multi_present == 1 || multi_present == 2) { 3505 /* 3D_Structure_ALL */ 3506 structure_all = (db[8 + offset] << 8) | db[9 + offset]; 3507 3508 /* check if 3D_MASK is present */ 3509 if (multi_present == 2) 3510 mask = (db[10 + offset] << 8) | db[11 + offset]; 3511 else 3512 mask = 0xffff; 3513 3514 for (i = 0; i < 16; i++) { 3515 if (mask & (1 << i)) 3516 modes += add_3d_struct_modes(connector, 3517 structure_all, 3518 video_db, 3519 video_len, i); 3520 } 3521 } 3522 3523 offset += multi_len; 3524 3525 for (i = 0; i < (hdmi_3d_len - multi_len); i++) { 3526 int vic_index; 3527 struct drm_display_mode *newmode = NULL; 3528 unsigned int newflag = 0; 3529 bool detail_present; 3530 3531 detail_present = ((db[8 + offset + i] & 0x0f) > 7); 3532 3533 if (detail_present && (i + 1 == hdmi_3d_len - multi_len)) 3534 break; 3535 3536 /* 2D_VIC_order_X */ 3537 vic_index = db[8 + offset + i] >> 4; 3538 3539 /* 3D_Structure_X */ 3540 switch (db[8 + offset + i] & 0x0f) { 3541 case 0: 3542 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING; 3543 break; 3544 case 6: 3545 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 3546 break; 3547 case 8: 3548 /* 3D_Detail_X */ 3549 if ((db[9 + offset + i] >> 4) == 1) 3550 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 3551 break; 3552 } 3553 3554 if (newflag != 0) { 3555 newmode = drm_display_mode_from_vic_index(connector, 3556 video_db, 3557 video_len, 3558 vic_index); 3559 3560 if (newmode) { 3561 newmode->flags |= newflag; 3562 drm_mode_probed_add(connector, newmode); 3563 modes++; 3564 } 3565 } 3566 3567 if (detail_present) 3568 i++; 3569 } 3570 3571 out: 3572 if (modes > 0) 3573 info->has_hdmi_infoframe = true; 3574 return modes; 3575 } 3576 3577 static int 3578 cea_db_payload_len(const u8 *db) 3579 { 3580 return db[0] & 0x1f; 3581 } 3582 3583 static int 3584 cea_db_extended_tag(const u8 *db) 3585 { 3586 return db[1]; 3587 } 3588 3589 static int 3590 cea_db_tag(const u8 *db) 3591 { 3592 return db[0] >> 5; 3593 } 3594 3595 static int 3596 cea_revision(const u8 *cea) 3597 { 3598 return cea[1]; 3599 } 3600 3601 static int 3602 cea_db_offsets(const u8 *cea, int *start, int *end) 3603 { 3604 /* Data block offset in CEA extension block */ 3605 *start = 4; 3606 *end = cea[2]; 3607 if (*end == 0) 3608 *end = 127; 3609 if (*end < 4 || *end > 127) 3610 return -ERANGE; 3611 return 0; 3612 } 3613 3614 static bool cea_db_is_hdmi_vsdb(const u8 *db) 3615 { 3616 int hdmi_id; 3617 3618 if (cea_db_tag(db) != VENDOR_BLOCK) 3619 return false; 3620 3621 if (cea_db_payload_len(db) < 5) 3622 return false; 3623 3624 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16); 3625 3626 return hdmi_id == HDMI_IEEE_OUI; 3627 } 3628 3629 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db) 3630 { 3631 unsigned int oui; 3632 3633 if (cea_db_tag(db) != VENDOR_BLOCK) 3634 return false; 3635 3636 if (cea_db_payload_len(db) < 7) 3637 return false; 3638 3639 oui = db[3] << 16 | db[2] << 8 | db[1]; 3640 3641 return oui == HDMI_FORUM_IEEE_OUI; 3642 } 3643 3644 static bool cea_db_is_y420cmdb(const u8 *db) 3645 { 3646 if (cea_db_tag(db) != USE_EXTENDED_TAG) 3647 return false; 3648 3649 if (!cea_db_payload_len(db)) 3650 return false; 3651 3652 if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB) 3653 return false; 3654 3655 return true; 3656 } 3657 3658 static bool cea_db_is_y420vdb(const u8 *db) 3659 { 3660 if (cea_db_tag(db) != USE_EXTENDED_TAG) 3661 return false; 3662 3663 if (!cea_db_payload_len(db)) 3664 return false; 3665 3666 if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420) 3667 return false; 3668 3669 return true; 3670 } 3671 3672 #define for_each_cea_db(cea, i, start, end) \ 3673 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1) 3674 3675 static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector, 3676 const u8 *db) 3677 { 3678 struct drm_display_info *info = &connector->display_info; 3679 struct drm_hdmi_info *hdmi = &info->hdmi; 3680 u8 map_len = cea_db_payload_len(db) - 1; 3681 u8 count; 3682 u64 map = 0; 3683 3684 if (map_len == 0) { 3685 /* All CEA modes support ycbcr420 sampling also.*/ 3686 hdmi->y420_cmdb_map = U64_MAX; 3687 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420; 3688 return; 3689 } 3690 3691 /* 3692 * This map indicates which of the existing CEA block modes 3693 * from VDB can support YCBCR420 output too. So if bit=0 is 3694 * set, first mode from VDB can support YCBCR420 output too. 3695 * We will parse and keep this map, before parsing VDB itself 3696 * to avoid going through the same block again and again. 3697 * 3698 * Spec is not clear about max possible size of this block. 3699 * Clamping max bitmap block size at 8 bytes. Every byte can 3700 * address 8 CEA modes, in this way this map can address 3701 * 8*8 = first 64 SVDs. 3702 */ 3703 if (WARN_ON_ONCE(map_len > 8)) 3704 map_len = 8; 3705 3706 for (count = 0; count < map_len; count++) 3707 map |= (u64)db[2 + count] << (8 * count); 3708 3709 if (map) 3710 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420; 3711 3712 hdmi->y420_cmdb_map = map; 3713 } 3714 3715 static int 3716 add_cea_modes(struct drm_connector *connector, struct edid *edid) 3717 { 3718 const u8 *cea = drm_find_cea_extension(edid); 3719 const u8 *db, *hdmi = NULL, *video = NULL; 3720 u8 dbl, hdmi_len, video_len = 0; 3721 int modes = 0; 3722 3723 if (cea && cea_revision(cea) >= 3) { 3724 int i, start, end; 3725 3726 if (cea_db_offsets(cea, &start, &end)) 3727 return 0; 3728 3729 for_each_cea_db(cea, i, start, end) { 3730 db = &cea[i]; 3731 dbl = cea_db_payload_len(db); 3732 3733 if (cea_db_tag(db) == VIDEO_BLOCK) { 3734 video = db + 1; 3735 video_len = dbl; 3736 modes += do_cea_modes(connector, video, dbl); 3737 } else if (cea_db_is_hdmi_vsdb(db)) { 3738 hdmi = db; 3739 hdmi_len = dbl; 3740 } else if (cea_db_is_y420vdb(db)) { 3741 const u8 *vdb420 = &db[2]; 3742 3743 /* Add 4:2:0(only) modes present in EDID */ 3744 modes += do_y420vdb_modes(connector, 3745 vdb420, 3746 dbl - 1); 3747 } 3748 } 3749 } 3750 3751 /* 3752 * We parse the HDMI VSDB after having added the cea modes as we will 3753 * be patching their flags when the sink supports stereo 3D. 3754 */ 3755 if (hdmi) 3756 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video, 3757 video_len); 3758 3759 return modes; 3760 } 3761 3762 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode) 3763 { 3764 const struct drm_display_mode *cea_mode; 3765 int clock1, clock2, clock; 3766 u8 vic; 3767 const char *type; 3768 3769 /* 3770 * allow 5kHz clock difference either way to account for 3771 * the 10kHz clock resolution limit of detailed timings. 3772 */ 3773 vic = drm_match_cea_mode_clock_tolerance(mode, 5); 3774 if (drm_valid_cea_vic(vic)) { 3775 type = "CEA"; 3776 cea_mode = &edid_cea_modes[vic]; 3777 clock1 = cea_mode->clock; 3778 clock2 = cea_mode_alternate_clock(cea_mode); 3779 } else { 3780 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5); 3781 if (drm_valid_hdmi_vic(vic)) { 3782 type = "HDMI"; 3783 cea_mode = &edid_4k_modes[vic]; 3784 clock1 = cea_mode->clock; 3785 clock2 = hdmi_mode_alternate_clock(cea_mode); 3786 } else { 3787 return; 3788 } 3789 } 3790 3791 /* pick whichever is closest */ 3792 if (abs(mode->clock - clock1) < abs(mode->clock - clock2)) 3793 clock = clock1; 3794 else 3795 clock = clock2; 3796 3797 if (mode->clock == clock) 3798 return; 3799 3800 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n", 3801 type, vic, mode->clock, clock); 3802 mode->clock = clock; 3803 } 3804 3805 static void 3806 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db) 3807 { 3808 u8 len = cea_db_payload_len(db); 3809 3810 if (len >= 6 && (db[6] & (1 << 7))) 3811 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI; 3812 if (len >= 8) { 3813 connector->latency_present[0] = db[8] >> 7; 3814 connector->latency_present[1] = (db[8] >> 6) & 1; 3815 } 3816 if (len >= 9) 3817 connector->video_latency[0] = db[9]; 3818 if (len >= 10) 3819 connector->audio_latency[0] = db[10]; 3820 if (len >= 11) 3821 connector->video_latency[1] = db[11]; 3822 if (len >= 12) 3823 connector->audio_latency[1] = db[12]; 3824 3825 DRM_DEBUG_KMS("HDMI: latency present %d %d, " 3826 "video latency %d %d, " 3827 "audio latency %d %d\n", 3828 connector->latency_present[0], 3829 connector->latency_present[1], 3830 connector->video_latency[0], 3831 connector->video_latency[1], 3832 connector->audio_latency[0], 3833 connector->audio_latency[1]); 3834 } 3835 3836 static void 3837 monitor_name(struct detailed_timing *t, void *data) 3838 { 3839 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME) 3840 *(u8 **)data = t->data.other_data.data.str.str; 3841 } 3842 3843 static int get_monitor_name(struct edid *edid, char name[13]) 3844 { 3845 char *edid_name = NULL; 3846 int mnl; 3847 3848 if (!edid || !name) 3849 return 0; 3850 3851 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name); 3852 for (mnl = 0; edid_name && mnl < 13; mnl++) { 3853 if (edid_name[mnl] == 0x0a) 3854 break; 3855 3856 name[mnl] = edid_name[mnl]; 3857 } 3858 3859 return mnl; 3860 } 3861 3862 /** 3863 * drm_edid_get_monitor_name - fetch the monitor name from the edid 3864 * @edid: monitor EDID information 3865 * @name: pointer to a character array to hold the name of the monitor 3866 * @bufsize: The size of the name buffer (should be at least 14 chars.) 3867 * 3868 */ 3869 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize) 3870 { 3871 int name_length; 3872 char buf[13]; 3873 3874 if (bufsize <= 0) 3875 return; 3876 3877 name_length = min(get_monitor_name(edid, buf), bufsize - 1); 3878 memcpy(name, buf, name_length); 3879 name[name_length] = '\0'; 3880 } 3881 EXPORT_SYMBOL(drm_edid_get_monitor_name); 3882 3883 static void clear_eld(struct drm_connector *connector) 3884 { 3885 memset(connector->eld, 0, sizeof(connector->eld)); 3886 3887 connector->latency_present[0] = false; 3888 connector->latency_present[1] = false; 3889 connector->video_latency[0] = 0; 3890 connector->audio_latency[0] = 0; 3891 connector->video_latency[1] = 0; 3892 connector->audio_latency[1] = 0; 3893 } 3894 3895 /* 3896 * drm_edid_to_eld - build ELD from EDID 3897 * @connector: connector corresponding to the HDMI/DP sink 3898 * @edid: EDID to parse 3899 * 3900 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The 3901 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in. 3902 */ 3903 static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid) 3904 { 3905 uint8_t *eld = connector->eld; 3906 u8 *cea; 3907 u8 *db; 3908 int total_sad_count = 0; 3909 int mnl; 3910 int dbl; 3911 3912 clear_eld(connector); 3913 3914 if (!edid) 3915 return; 3916 3917 cea = drm_find_cea_extension(edid); 3918 if (!cea) { 3919 DRM_DEBUG_KMS("ELD: no CEA Extension found\n"); 3920 return; 3921 } 3922 3923 mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]); 3924 DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]); 3925 3926 eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT; 3927 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl; 3928 3929 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D; 3930 3931 eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0]; 3932 eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1]; 3933 eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0]; 3934 eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1]; 3935 3936 if (cea_revision(cea) >= 3) { 3937 int i, start, end; 3938 3939 if (cea_db_offsets(cea, &start, &end)) { 3940 start = 0; 3941 end = 0; 3942 } 3943 3944 for_each_cea_db(cea, i, start, end) { 3945 db = &cea[i]; 3946 dbl = cea_db_payload_len(db); 3947 3948 switch (cea_db_tag(db)) { 3949 int sad_count; 3950 3951 case AUDIO_BLOCK: 3952 /* Audio Data Block, contains SADs */ 3953 sad_count = min(dbl / 3, 15 - total_sad_count); 3954 if (sad_count >= 1) 3955 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)], 3956 &db[1], sad_count * 3); 3957 total_sad_count += sad_count; 3958 break; 3959 case SPEAKER_BLOCK: 3960 /* Speaker Allocation Data Block */ 3961 if (dbl >= 1) 3962 eld[DRM_ELD_SPEAKER] = db[1]; 3963 break; 3964 case VENDOR_BLOCK: 3965 /* HDMI Vendor-Specific Data Block */ 3966 if (cea_db_is_hdmi_vsdb(db)) 3967 drm_parse_hdmi_vsdb_audio(connector, db); 3968 break; 3969 default: 3970 break; 3971 } 3972 } 3973 } 3974 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT; 3975 3976 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || 3977 connector->connector_type == DRM_MODE_CONNECTOR_eDP) 3978 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP; 3979 else 3980 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI; 3981 3982 eld[DRM_ELD_BASELINE_ELD_LEN] = 3983 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4); 3984 3985 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", 3986 drm_eld_size(eld), total_sad_count); 3987 } 3988 3989 /** 3990 * drm_edid_to_sad - extracts SADs from EDID 3991 * @edid: EDID to parse 3992 * @sads: pointer that will be set to the extracted SADs 3993 * 3994 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. 3995 * 3996 * Note: The returned pointer needs to be freed using kfree(). 3997 * 3998 * Return: The number of found SADs or negative number on error. 3999 */ 4000 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads) 4001 { 4002 int count = 0; 4003 int i, start, end, dbl; 4004 u8 *cea; 4005 4006 cea = drm_find_cea_extension(edid); 4007 if (!cea) { 4008 DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); 4009 return -ENOENT; 4010 } 4011 4012 if (cea_revision(cea) < 3) { 4013 DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); 4014 return -ENOTSUPP; 4015 } 4016 4017 if (cea_db_offsets(cea, &start, &end)) { 4018 DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); 4019 return -EPROTO; 4020 } 4021 4022 for_each_cea_db(cea, i, start, end) { 4023 u8 *db = &cea[i]; 4024 4025 if (cea_db_tag(db) == AUDIO_BLOCK) { 4026 int j; 4027 dbl = cea_db_payload_len(db); 4028 4029 count = dbl / 3; /* SAD is 3B */ 4030 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL); 4031 if (!*sads) 4032 return -ENOMEM; 4033 for (j = 0; j < count; j++) { 4034 u8 *sad = &db[1 + j * 3]; 4035 4036 (*sads)[j].format = (sad[0] & 0x78) >> 3; 4037 (*sads)[j].channels = sad[0] & 0x7; 4038 (*sads)[j].freq = sad[1] & 0x7F; 4039 (*sads)[j].byte2 = sad[2]; 4040 } 4041 break; 4042 } 4043 } 4044 4045 return count; 4046 } 4047 EXPORT_SYMBOL(drm_edid_to_sad); 4048 4049 /** 4050 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID 4051 * @edid: EDID to parse 4052 * @sadb: pointer to the speaker block 4053 * 4054 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. 4055 * 4056 * Note: The returned pointer needs to be freed using kfree(). 4057 * 4058 * Return: The number of found Speaker Allocation Blocks or negative number on 4059 * error. 4060 */ 4061 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb) 4062 { 4063 int count = 0; 4064 int i, start, end, dbl; 4065 const u8 *cea; 4066 4067 cea = drm_find_cea_extension(edid); 4068 if (!cea) { 4069 DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); 4070 return -ENOENT; 4071 } 4072 4073 if (cea_revision(cea) < 3) { 4074 DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); 4075 return -ENOTSUPP; 4076 } 4077 4078 if (cea_db_offsets(cea, &start, &end)) { 4079 DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); 4080 return -EPROTO; 4081 } 4082 4083 for_each_cea_db(cea, i, start, end) { 4084 const u8 *db = &cea[i]; 4085 4086 if (cea_db_tag(db) == SPEAKER_BLOCK) { 4087 dbl = cea_db_payload_len(db); 4088 4089 /* Speaker Allocation Data Block */ 4090 if (dbl == 3) { 4091 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL); 4092 if (!*sadb) 4093 return -ENOMEM; 4094 count = dbl; 4095 break; 4096 } 4097 } 4098 } 4099 4100 return count; 4101 } 4102 EXPORT_SYMBOL(drm_edid_to_speaker_allocation); 4103 4104 /** 4105 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay 4106 * @connector: connector associated with the HDMI/DP sink 4107 * @mode: the display mode 4108 * 4109 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if 4110 * the sink doesn't support audio or video. 4111 */ 4112 int drm_av_sync_delay(struct drm_connector *connector, 4113 const struct drm_display_mode *mode) 4114 { 4115 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); 4116 int a, v; 4117 4118 if (!connector->latency_present[0]) 4119 return 0; 4120 if (!connector->latency_present[1]) 4121 i = 0; 4122 4123 a = connector->audio_latency[i]; 4124 v = connector->video_latency[i]; 4125 4126 /* 4127 * HDMI/DP sink doesn't support audio or video? 4128 */ 4129 if (a == 255 || v == 255) 4130 return 0; 4131 4132 /* 4133 * Convert raw EDID values to millisecond. 4134 * Treat unknown latency as 0ms. 4135 */ 4136 if (a) 4137 a = min(2 * (a - 1), 500); 4138 if (v) 4139 v = min(2 * (v - 1), 500); 4140 4141 return max(v - a, 0); 4142 } 4143 EXPORT_SYMBOL(drm_av_sync_delay); 4144 4145 /** 4146 * drm_detect_hdmi_monitor - detect whether monitor is HDMI 4147 * @edid: monitor EDID information 4148 * 4149 * Parse the CEA extension according to CEA-861-B. 4150 * 4151 * Return: True if the monitor is HDMI, false if not or unknown. 4152 */ 4153 bool drm_detect_hdmi_monitor(struct edid *edid) 4154 { 4155 u8 *edid_ext; 4156 int i; 4157 int start_offset, end_offset; 4158 4159 edid_ext = drm_find_cea_extension(edid); 4160 if (!edid_ext) 4161 return false; 4162 4163 if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) 4164 return false; 4165 4166 /* 4167 * Because HDMI identifier is in Vendor Specific Block, 4168 * search it from all data blocks of CEA extension. 4169 */ 4170 for_each_cea_db(edid_ext, i, start_offset, end_offset) { 4171 if (cea_db_is_hdmi_vsdb(&edid_ext[i])) 4172 return true; 4173 } 4174 4175 return false; 4176 } 4177 EXPORT_SYMBOL(drm_detect_hdmi_monitor); 4178 4179 /** 4180 * drm_detect_monitor_audio - check monitor audio capability 4181 * @edid: EDID block to scan 4182 * 4183 * Monitor should have CEA extension block. 4184 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic 4185 * audio' only. If there is any audio extension block and supported 4186 * audio format, assume at least 'basic audio' support, even if 'basic 4187 * audio' is not defined in EDID. 4188 * 4189 * Return: True if the monitor supports audio, false otherwise. 4190 */ 4191 bool drm_detect_monitor_audio(struct edid *edid) 4192 { 4193 u8 *edid_ext; 4194 int i, j; 4195 bool has_audio = false; 4196 int start_offset, end_offset; 4197 4198 edid_ext = drm_find_cea_extension(edid); 4199 if (!edid_ext) 4200 goto end; 4201 4202 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0); 4203 4204 if (has_audio) { 4205 DRM_DEBUG_KMS("Monitor has basic audio support\n"); 4206 goto end; 4207 } 4208 4209 if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) 4210 goto end; 4211 4212 for_each_cea_db(edid_ext, i, start_offset, end_offset) { 4213 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) { 4214 has_audio = true; 4215 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3) 4216 DRM_DEBUG_KMS("CEA audio format %d\n", 4217 (edid_ext[i + j] >> 3) & 0xf); 4218 goto end; 4219 } 4220 } 4221 end: 4222 return has_audio; 4223 } 4224 EXPORT_SYMBOL(drm_detect_monitor_audio); 4225 4226 /** 4227 * drm_rgb_quant_range_selectable - is RGB quantization range selectable? 4228 * @edid: EDID block to scan 4229 * 4230 * Check whether the monitor reports the RGB quantization range selection 4231 * as supported. The AVI infoframe can then be used to inform the monitor 4232 * which quantization range (full or limited) is used. 4233 * 4234 * Return: True if the RGB quantization range is selectable, false otherwise. 4235 */ 4236 bool drm_rgb_quant_range_selectable(struct edid *edid) 4237 { 4238 u8 *edid_ext; 4239 int i, start, end; 4240 4241 edid_ext = drm_find_cea_extension(edid); 4242 if (!edid_ext) 4243 return false; 4244 4245 if (cea_db_offsets(edid_ext, &start, &end)) 4246 return false; 4247 4248 for_each_cea_db(edid_ext, i, start, end) { 4249 if (cea_db_tag(&edid_ext[i]) == USE_EXTENDED_TAG && 4250 cea_db_payload_len(&edid_ext[i]) == 2 && 4251 cea_db_extended_tag(&edid_ext[i]) == 4252 EXT_VIDEO_CAPABILITY_BLOCK) { 4253 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]); 4254 return edid_ext[i + 2] & EDID_CEA_VCDB_QS; 4255 } 4256 } 4257 4258 return false; 4259 } 4260 EXPORT_SYMBOL(drm_rgb_quant_range_selectable); 4261 4262 /** 4263 * drm_default_rgb_quant_range - default RGB quantization range 4264 * @mode: display mode 4265 * 4266 * Determine the default RGB quantization range for the mode, 4267 * as specified in CEA-861. 4268 * 4269 * Return: The default RGB quantization range for the mode 4270 */ 4271 enum hdmi_quantization_range 4272 drm_default_rgb_quant_range(const struct drm_display_mode *mode) 4273 { 4274 /* All CEA modes other than VIC 1 use limited quantization range. */ 4275 return drm_match_cea_mode(mode) > 1 ? 4276 HDMI_QUANTIZATION_RANGE_LIMITED : 4277 HDMI_QUANTIZATION_RANGE_FULL; 4278 } 4279 EXPORT_SYMBOL(drm_default_rgb_quant_range); 4280 4281 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector, 4282 const u8 *db) 4283 { 4284 u8 dc_mask; 4285 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 4286 4287 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK; 4288 hdmi->y420_dc_modes = dc_mask; 4289 } 4290 4291 static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector, 4292 const u8 *hf_vsdb) 4293 { 4294 struct drm_display_info *display = &connector->display_info; 4295 struct drm_hdmi_info *hdmi = &display->hdmi; 4296 4297 display->has_hdmi_infoframe = true; 4298 4299 if (hf_vsdb[6] & 0x80) { 4300 hdmi->scdc.supported = true; 4301 if (hf_vsdb[6] & 0x40) 4302 hdmi->scdc.read_request = true; 4303 } 4304 4305 /* 4306 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz. 4307 * And as per the spec, three factors confirm this: 4308 * * Availability of a HF-VSDB block in EDID (check) 4309 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check) 4310 * * SCDC support available (let's check) 4311 * Lets check it out. 4312 */ 4313 4314 if (hf_vsdb[5]) { 4315 /* max clock is 5000 KHz times block value */ 4316 u32 max_tmds_clock = hf_vsdb[5] * 5000; 4317 struct drm_scdc *scdc = &hdmi->scdc; 4318 4319 if (max_tmds_clock > 340000) { 4320 display->max_tmds_clock = max_tmds_clock; 4321 DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n", 4322 display->max_tmds_clock); 4323 } 4324 4325 if (scdc->supported) { 4326 scdc->scrambling.supported = true; 4327 4328 /* Few sinks support scrambling for cloks < 340M */ 4329 if ((hf_vsdb[6] & 0x8)) 4330 scdc->scrambling.low_rates = true; 4331 } 4332 } 4333 4334 drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb); 4335 } 4336 4337 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector, 4338 const u8 *hdmi) 4339 { 4340 struct drm_display_info *info = &connector->display_info; 4341 unsigned int dc_bpc = 0; 4342 4343 /* HDMI supports at least 8 bpc */ 4344 info->bpc = 8; 4345 4346 if (cea_db_payload_len(hdmi) < 6) 4347 return; 4348 4349 if (hdmi[6] & DRM_EDID_HDMI_DC_30) { 4350 dc_bpc = 10; 4351 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30; 4352 DRM_DEBUG("%s: HDMI sink does deep color 30.\n", 4353 connector->name); 4354 } 4355 4356 if (hdmi[6] & DRM_EDID_HDMI_DC_36) { 4357 dc_bpc = 12; 4358 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36; 4359 DRM_DEBUG("%s: HDMI sink does deep color 36.\n", 4360 connector->name); 4361 } 4362 4363 if (hdmi[6] & DRM_EDID_HDMI_DC_48) { 4364 dc_bpc = 16; 4365 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48; 4366 DRM_DEBUG("%s: HDMI sink does deep color 48.\n", 4367 connector->name); 4368 } 4369 4370 if (dc_bpc == 0) { 4371 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n", 4372 connector->name); 4373 return; 4374 } 4375 4376 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n", 4377 connector->name, dc_bpc); 4378 info->bpc = dc_bpc; 4379 4380 /* 4381 * Deep color support mandates RGB444 support for all video 4382 * modes and forbids YCRCB422 support for all video modes per 4383 * HDMI 1.3 spec. 4384 */ 4385 info->color_formats = DRM_COLOR_FORMAT_RGB444; 4386 4387 /* YCRCB444 is optional according to spec. */ 4388 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) { 4389 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 4390 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n", 4391 connector->name); 4392 } 4393 4394 /* 4395 * Spec says that if any deep color mode is supported at all, 4396 * then deep color 36 bit must be supported. 4397 */ 4398 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) { 4399 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n", 4400 connector->name); 4401 } 4402 } 4403 4404 static void 4405 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db) 4406 { 4407 struct drm_display_info *info = &connector->display_info; 4408 u8 len = cea_db_payload_len(db); 4409 4410 if (len >= 6) 4411 info->dvi_dual = db[6] & 1; 4412 if (len >= 7) 4413 info->max_tmds_clock = db[7] * 5000; 4414 4415 DRM_DEBUG_KMS("HDMI: DVI dual %d, " 4416 "max TMDS clock %d kHz\n", 4417 info->dvi_dual, 4418 info->max_tmds_clock); 4419 4420 drm_parse_hdmi_deep_color_info(connector, db); 4421 } 4422 4423 static void drm_parse_cea_ext(struct drm_connector *connector, 4424 const struct edid *edid) 4425 { 4426 struct drm_display_info *info = &connector->display_info; 4427 const u8 *edid_ext; 4428 int i, start, end; 4429 4430 edid_ext = drm_find_cea_extension(edid); 4431 if (!edid_ext) 4432 return; 4433 4434 info->cea_rev = edid_ext[1]; 4435 4436 /* The existence of a CEA block should imply RGB support */ 4437 info->color_formats = DRM_COLOR_FORMAT_RGB444; 4438 if (edid_ext[3] & EDID_CEA_YCRCB444) 4439 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 4440 if (edid_ext[3] & EDID_CEA_YCRCB422) 4441 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; 4442 4443 if (cea_db_offsets(edid_ext, &start, &end)) 4444 return; 4445 4446 for_each_cea_db(edid_ext, i, start, end) { 4447 const u8 *db = &edid_ext[i]; 4448 4449 if (cea_db_is_hdmi_vsdb(db)) 4450 drm_parse_hdmi_vsdb_video(connector, db); 4451 if (cea_db_is_hdmi_forum_vsdb(db)) 4452 drm_parse_hdmi_forum_vsdb(connector, db); 4453 if (cea_db_is_y420cmdb(db)) 4454 drm_parse_y420cmdb_bitmap(connector, db); 4455 } 4456 } 4457 4458 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset 4459 * all of the values which would have been set from EDID 4460 */ 4461 void 4462 drm_reset_display_info(struct drm_connector *connector) 4463 { 4464 struct drm_display_info *info = &connector->display_info; 4465 4466 info->width_mm = 0; 4467 info->height_mm = 0; 4468 4469 info->bpc = 0; 4470 info->color_formats = 0; 4471 info->cea_rev = 0; 4472 info->max_tmds_clock = 0; 4473 info->dvi_dual = false; 4474 info->has_hdmi_infoframe = false; 4475 memset(&info->hdmi, 0, sizeof(info->hdmi)); 4476 4477 info->non_desktop = 0; 4478 } 4479 4480 u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid) 4481 { 4482 struct drm_display_info *info = &connector->display_info; 4483 4484 u32 quirks = edid_get_quirks(edid); 4485 4486 drm_reset_display_info(connector); 4487 4488 info->width_mm = edid->width_cm * 10; 4489 info->height_mm = edid->height_cm * 10; 4490 4491 info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP); 4492 4493 DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop); 4494 4495 if (edid->revision < 3) 4496 return quirks; 4497 4498 if (!(edid->input & DRM_EDID_INPUT_DIGITAL)) 4499 return quirks; 4500 4501 drm_parse_cea_ext(connector, edid); 4502 4503 /* 4504 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3? 4505 * 4506 * For such displays, the DFP spec 1.0, section 3.10 "EDID support" 4507 * tells us to assume 8 bpc color depth if the EDID doesn't have 4508 * extensions which tell otherwise. 4509 */ 4510 if ((info->bpc == 0) && (edid->revision < 4) && 4511 (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) { 4512 info->bpc = 8; 4513 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n", 4514 connector->name, info->bpc); 4515 } 4516 4517 /* Only defined for 1.4 with digital displays */ 4518 if (edid->revision < 4) 4519 return quirks; 4520 4521 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { 4522 case DRM_EDID_DIGITAL_DEPTH_6: 4523 info->bpc = 6; 4524 break; 4525 case DRM_EDID_DIGITAL_DEPTH_8: 4526 info->bpc = 8; 4527 break; 4528 case DRM_EDID_DIGITAL_DEPTH_10: 4529 info->bpc = 10; 4530 break; 4531 case DRM_EDID_DIGITAL_DEPTH_12: 4532 info->bpc = 12; 4533 break; 4534 case DRM_EDID_DIGITAL_DEPTH_14: 4535 info->bpc = 14; 4536 break; 4537 case DRM_EDID_DIGITAL_DEPTH_16: 4538 info->bpc = 16; 4539 break; 4540 case DRM_EDID_DIGITAL_DEPTH_UNDEF: 4541 default: 4542 info->bpc = 0; 4543 break; 4544 } 4545 4546 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n", 4547 connector->name, info->bpc); 4548 4549 info->color_formats |= DRM_COLOR_FORMAT_RGB444; 4550 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) 4551 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 4552 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) 4553 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; 4554 return quirks; 4555 } 4556 4557 static int validate_displayid(u8 *displayid, int length, int idx) 4558 { 4559 int i; 4560 u8 csum = 0; 4561 struct displayid_hdr *base; 4562 4563 base = (struct displayid_hdr *)&displayid[idx]; 4564 4565 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n", 4566 base->rev, base->bytes, base->prod_id, base->ext_count); 4567 4568 if (base->bytes + 5 > length - idx) 4569 return -EINVAL; 4570 for (i = idx; i <= base->bytes + 5; i++) { 4571 csum += displayid[i]; 4572 } 4573 if (csum) { 4574 DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum); 4575 return -EINVAL; 4576 } 4577 return 0; 4578 } 4579 4580 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev, 4581 struct displayid_detailed_timings_1 *timings) 4582 { 4583 struct drm_display_mode *mode; 4584 unsigned pixel_clock = (timings->pixel_clock[0] | 4585 (timings->pixel_clock[1] << 8) | 4586 (timings->pixel_clock[2] << 16)); 4587 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1; 4588 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1; 4589 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1; 4590 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1; 4591 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1; 4592 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1; 4593 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1; 4594 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1; 4595 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1; 4596 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1; 4597 mode = drm_mode_create(dev); 4598 if (!mode) 4599 return NULL; 4600 4601 mode->clock = pixel_clock * 10; 4602 mode->hdisplay = hactive; 4603 mode->hsync_start = mode->hdisplay + hsync; 4604 mode->hsync_end = mode->hsync_start + hsync_width; 4605 mode->htotal = mode->hdisplay + hblank; 4606 4607 mode->vdisplay = vactive; 4608 mode->vsync_start = mode->vdisplay + vsync; 4609 mode->vsync_end = mode->vsync_start + vsync_width; 4610 mode->vtotal = mode->vdisplay + vblank; 4611 4612 mode->flags = 0; 4613 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 4614 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 4615 mode->type = DRM_MODE_TYPE_DRIVER; 4616 4617 if (timings->flags & 0x80) 4618 mode->type |= DRM_MODE_TYPE_PREFERRED; 4619 mode->vrefresh = drm_mode_vrefresh(mode); 4620 drm_mode_set_name(mode); 4621 4622 return mode; 4623 } 4624 4625 static int add_displayid_detailed_1_modes(struct drm_connector *connector, 4626 struct displayid_block *block) 4627 { 4628 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block; 4629 int i; 4630 int num_timings; 4631 struct drm_display_mode *newmode; 4632 int num_modes = 0; 4633 /* blocks must be multiple of 20 bytes length */ 4634 if (block->num_bytes % 20) 4635 return 0; 4636 4637 num_timings = block->num_bytes / 20; 4638 for (i = 0; i < num_timings; i++) { 4639 struct displayid_detailed_timings_1 *timings = &det->timings[i]; 4640 4641 newmode = drm_mode_displayid_detailed(connector->dev, timings); 4642 if (!newmode) 4643 continue; 4644 4645 drm_mode_probed_add(connector, newmode); 4646 num_modes++; 4647 } 4648 return num_modes; 4649 } 4650 4651 static int add_displayid_detailed_modes(struct drm_connector *connector, 4652 struct edid *edid) 4653 { 4654 u8 *displayid; 4655 int ret; 4656 int idx = 1; 4657 int length = EDID_LENGTH; 4658 struct displayid_block *block; 4659 int num_modes = 0; 4660 4661 displayid = drm_find_displayid_extension(edid); 4662 if (!displayid) 4663 return 0; 4664 4665 ret = validate_displayid(displayid, length, idx); 4666 if (ret) 4667 return 0; 4668 4669 idx += sizeof(struct displayid_hdr); 4670 while (block = (struct displayid_block *)&displayid[idx], 4671 idx + sizeof(struct displayid_block) <= length && 4672 idx + sizeof(struct displayid_block) + block->num_bytes <= length && 4673 block->num_bytes > 0) { 4674 idx += block->num_bytes + sizeof(struct displayid_block); 4675 switch (block->tag) { 4676 case DATA_BLOCK_TYPE_1_DETAILED_TIMING: 4677 num_modes += add_displayid_detailed_1_modes(connector, block); 4678 break; 4679 } 4680 } 4681 return num_modes; 4682 } 4683 4684 /** 4685 * drm_add_edid_modes - add modes from EDID data, if available 4686 * @connector: connector we're probing 4687 * @edid: EDID data 4688 * 4689 * Add the specified modes to the connector's mode list. Also fills out the 4690 * &drm_display_info structure and ELD in @connector with any information which 4691 * can be derived from the edid. 4692 * 4693 * Return: The number of modes added or 0 if we couldn't find any. 4694 */ 4695 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) 4696 { 4697 int num_modes = 0; 4698 u32 quirks; 4699 4700 if (edid == NULL) { 4701 clear_eld(connector); 4702 return 0; 4703 } 4704 if (!drm_edid_is_valid(edid)) { 4705 clear_eld(connector); 4706 dev_warn(connector->dev->dev, "%s: EDID invalid.\n", 4707 connector->name); 4708 return 0; 4709 } 4710 4711 drm_edid_to_eld(connector, edid); 4712 4713 /* 4714 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks. 4715 * To avoid multiple parsing of same block, lets parse that map 4716 * from sink info, before parsing CEA modes. 4717 */ 4718 quirks = drm_add_display_info(connector, edid); 4719 4720 /* 4721 * EDID spec says modes should be preferred in this order: 4722 * - preferred detailed mode 4723 * - other detailed modes from base block 4724 * - detailed modes from extension blocks 4725 * - CVT 3-byte code modes 4726 * - standard timing codes 4727 * - established timing codes 4728 * - modes inferred from GTF or CVT range information 4729 * 4730 * We get this pretty much right. 4731 * 4732 * XXX order for additional mode types in extension blocks? 4733 */ 4734 num_modes += add_detailed_modes(connector, edid, quirks); 4735 num_modes += add_cvt_modes(connector, edid); 4736 num_modes += add_standard_modes(connector, edid); 4737 num_modes += add_established_modes(connector, edid); 4738 num_modes += add_cea_modes(connector, edid); 4739 num_modes += add_alternate_cea_modes(connector, edid); 4740 num_modes += add_displayid_detailed_modes(connector, edid); 4741 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF) 4742 num_modes += add_inferred_modes(connector, edid); 4743 4744 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) 4745 edid_fixup_preferred(connector, quirks); 4746 4747 if (quirks & EDID_QUIRK_FORCE_6BPC) 4748 connector->display_info.bpc = 6; 4749 4750 if (quirks & EDID_QUIRK_FORCE_8BPC) 4751 connector->display_info.bpc = 8; 4752 4753 if (quirks & EDID_QUIRK_FORCE_10BPC) 4754 connector->display_info.bpc = 10; 4755 4756 if (quirks & EDID_QUIRK_FORCE_12BPC) 4757 connector->display_info.bpc = 12; 4758 4759 return num_modes; 4760 } 4761 EXPORT_SYMBOL(drm_add_edid_modes); 4762 4763 /** 4764 * drm_add_modes_noedid - add modes for the connectors without EDID 4765 * @connector: connector we're probing 4766 * @hdisplay: the horizontal display limit 4767 * @vdisplay: the vertical display limit 4768 * 4769 * Add the specified modes to the connector's mode list. Only when the 4770 * hdisplay/vdisplay is not beyond the given limit, it will be added. 4771 * 4772 * Return: The number of modes added or 0 if we couldn't find any. 4773 */ 4774 int drm_add_modes_noedid(struct drm_connector *connector, 4775 int hdisplay, int vdisplay) 4776 { 4777 int i, count, num_modes = 0; 4778 struct drm_display_mode *mode; 4779 struct drm_device *dev = connector->dev; 4780 4781 count = ARRAY_SIZE(drm_dmt_modes); 4782 if (hdisplay < 0) 4783 hdisplay = 0; 4784 if (vdisplay < 0) 4785 vdisplay = 0; 4786 4787 for (i = 0; i < count; i++) { 4788 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 4789 if (hdisplay && vdisplay) { 4790 /* 4791 * Only when two are valid, they will be used to check 4792 * whether the mode should be added to the mode list of 4793 * the connector. 4794 */ 4795 if (ptr->hdisplay > hdisplay || 4796 ptr->vdisplay > vdisplay) 4797 continue; 4798 } 4799 if (drm_mode_vrefresh(ptr) > 61) 4800 continue; 4801 mode = drm_mode_duplicate(dev, ptr); 4802 if (mode) { 4803 drm_mode_probed_add(connector, mode); 4804 num_modes++; 4805 } 4806 } 4807 return num_modes; 4808 } 4809 EXPORT_SYMBOL(drm_add_modes_noedid); 4810 4811 /** 4812 * drm_set_preferred_mode - Sets the preferred mode of a connector 4813 * @connector: connector whose mode list should be processed 4814 * @hpref: horizontal resolution of preferred mode 4815 * @vpref: vertical resolution of preferred mode 4816 * 4817 * Marks a mode as preferred if it matches the resolution specified by @hpref 4818 * and @vpref. 4819 */ 4820 void drm_set_preferred_mode(struct drm_connector *connector, 4821 int hpref, int vpref) 4822 { 4823 struct drm_display_mode *mode; 4824 4825 list_for_each_entry(mode, &connector->probed_modes, head) { 4826 if (mode->hdisplay == hpref && 4827 mode->vdisplay == vpref) 4828 mode->type |= DRM_MODE_TYPE_PREFERRED; 4829 } 4830 } 4831 EXPORT_SYMBOL(drm_set_preferred_mode); 4832 4833 /** 4834 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with 4835 * data from a DRM display mode 4836 * @frame: HDMI AVI infoframe 4837 * @mode: DRM display mode 4838 * @is_hdmi2_sink: Sink is HDMI 2.0 compliant 4839 * 4840 * Return: 0 on success or a negative error code on failure. 4841 */ 4842 int 4843 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, 4844 const struct drm_display_mode *mode, 4845 bool is_hdmi2_sink) 4846 { 4847 enum hdmi_picture_aspect picture_aspect; 4848 int err; 4849 4850 if (!frame || !mode) 4851 return -EINVAL; 4852 4853 err = hdmi_avi_infoframe_init(frame); 4854 if (err < 0) 4855 return err; 4856 4857 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 4858 frame->pixel_repeat = 1; 4859 4860 frame->video_code = drm_match_cea_mode(mode); 4861 4862 /* 4863 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but 4864 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we 4865 * have to make sure we dont break HDMI 1.4 sinks. 4866 */ 4867 if (!is_hdmi2_sink && frame->video_code > 64) 4868 frame->video_code = 0; 4869 4870 /* 4871 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes 4872 * we should send its VIC in vendor infoframes, else send the 4873 * VIC in AVI infoframes. Lets check if this mode is present in 4874 * HDMI 1.4b 4K modes 4875 */ 4876 if (frame->video_code) { 4877 u8 vendor_if_vic = drm_match_hdmi_mode(mode); 4878 bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK; 4879 4880 if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d) 4881 frame->video_code = 0; 4882 } 4883 4884 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; 4885 4886 /* 4887 * As some drivers don't support atomic, we can't use connector state. 4888 * So just initialize the frame with default values, just the same way 4889 * as it's done with other properties here. 4890 */ 4891 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS; 4892 frame->itc = 0; 4893 4894 /* 4895 * Populate picture aspect ratio from either 4896 * user input (if specified) or from the CEA mode list. 4897 */ 4898 picture_aspect = mode->picture_aspect_ratio; 4899 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) 4900 picture_aspect = drm_get_cea_aspect_ratio(frame->video_code); 4901 4902 /* 4903 * The infoframe can't convey anything but none, 4:3 4904 * and 16:9, so if the user has asked for anything else 4905 * we can only satisfy it by specifying the right VIC. 4906 */ 4907 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) { 4908 if (picture_aspect != 4909 drm_get_cea_aspect_ratio(frame->video_code)) 4910 return -EINVAL; 4911 picture_aspect = HDMI_PICTURE_ASPECT_NONE; 4912 } 4913 4914 frame->picture_aspect = picture_aspect; 4915 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; 4916 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN; 4917 4918 return 0; 4919 } 4920 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); 4921 4922 /** 4923 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe 4924 * quantization range information 4925 * @frame: HDMI AVI infoframe 4926 * @mode: DRM display mode 4927 * @rgb_quant_range: RGB quantization range (Q) 4928 * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS) 4929 * @is_hdmi2_sink: HDMI 2.0 sink, which has different default recommendations 4930 * 4931 * Note that @is_hdmi2_sink can be derived by looking at the 4932 * &drm_scdc.supported flag stored in &drm_hdmi_info.scdc, 4933 * &drm_display_info.hdmi, which can be found in &drm_connector.display_info. 4934 */ 4935 void 4936 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame, 4937 const struct drm_display_mode *mode, 4938 enum hdmi_quantization_range rgb_quant_range, 4939 bool rgb_quant_range_selectable, 4940 bool is_hdmi2_sink) 4941 { 4942 /* 4943 * CEA-861: 4944 * "A Source shall not send a non-zero Q value that does not correspond 4945 * to the default RGB Quantization Range for the transmitted Picture 4946 * unless the Sink indicates support for the Q bit in a Video 4947 * Capabilities Data Block." 4948 * 4949 * HDMI 2.0 recommends sending non-zero Q when it does match the 4950 * default RGB quantization range for the mode, even when QS=0. 4951 */ 4952 if (rgb_quant_range_selectable || 4953 rgb_quant_range == drm_default_rgb_quant_range(mode)) 4954 frame->quantization_range = rgb_quant_range; 4955 else 4956 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 4957 4958 /* 4959 * CEA-861-F: 4960 * "When transmitting any RGB colorimetry, the Source should set the 4961 * YQ-field to match the RGB Quantization Range being transmitted 4962 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB, 4963 * set YQ=1) and the Sink shall ignore the YQ-field." 4964 * 4965 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused 4966 * by non-zero YQ when receiving RGB. There doesn't seem to be any 4967 * good way to tell which version of CEA-861 the sink supports, so 4968 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based 4969 * on on CEA-861-F. 4970 */ 4971 if (!is_hdmi2_sink || 4972 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) 4973 frame->ycc_quantization_range = 4974 HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 4975 else 4976 frame->ycc_quantization_range = 4977 HDMI_YCC_QUANTIZATION_RANGE_FULL; 4978 } 4979 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range); 4980 4981 static enum hdmi_3d_structure 4982 s3d_structure_from_display_mode(const struct drm_display_mode *mode) 4983 { 4984 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; 4985 4986 switch (layout) { 4987 case DRM_MODE_FLAG_3D_FRAME_PACKING: 4988 return HDMI_3D_STRUCTURE_FRAME_PACKING; 4989 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: 4990 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; 4991 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: 4992 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; 4993 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: 4994 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; 4995 case DRM_MODE_FLAG_3D_L_DEPTH: 4996 return HDMI_3D_STRUCTURE_L_DEPTH; 4997 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: 4998 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; 4999 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: 5000 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; 5001 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: 5002 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; 5003 default: 5004 return HDMI_3D_STRUCTURE_INVALID; 5005 } 5006 } 5007 5008 /** 5009 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with 5010 * data from a DRM display mode 5011 * @frame: HDMI vendor infoframe 5012 * @connector: the connector 5013 * @mode: DRM display mode 5014 * 5015 * Note that there's is a need to send HDMI vendor infoframes only when using a 5016 * 4k or stereoscopic 3D mode. So when giving any other mode as input this 5017 * function will return -EINVAL, error that can be safely ignored. 5018 * 5019 * Return: 0 on success or a negative error code on failure. 5020 */ 5021 int 5022 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, 5023 struct drm_connector *connector, 5024 const struct drm_display_mode *mode) 5025 { 5026 /* 5027 * FIXME: sil-sii8620 doesn't have a connector around when 5028 * we need one, so we have to be prepared for a NULL connector. 5029 */ 5030 bool has_hdmi_infoframe = connector ? 5031 connector->display_info.has_hdmi_infoframe : false; 5032 int err; 5033 u32 s3d_flags; 5034 u8 vic; 5035 5036 if (!frame || !mode) 5037 return -EINVAL; 5038 5039 if (!has_hdmi_infoframe) 5040 return -EINVAL; 5041 5042 vic = drm_match_hdmi_mode(mode); 5043 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK; 5044 5045 /* 5046 * Even if it's not absolutely necessary to send the infoframe 5047 * (ie.vic==0 and s3d_struct==0) we will still send it if we 5048 * know that the sink can handle it. This is based on a 5049 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks 5050 * have trouble realizing that they shuld switch from 3D to 2D 5051 * mode if the source simply stops sending the infoframe when 5052 * it wants to switch from 3D to 2D. 5053 */ 5054 5055 if (vic && s3d_flags) 5056 return -EINVAL; 5057 5058 err = hdmi_vendor_infoframe_init(frame); 5059 if (err < 0) 5060 return err; 5061 5062 frame->vic = vic; 5063 frame->s3d_struct = s3d_structure_from_display_mode(mode); 5064 5065 return 0; 5066 } 5067 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); 5068 5069 static int drm_parse_tiled_block(struct drm_connector *connector, 5070 struct displayid_block *block) 5071 { 5072 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block; 5073 u16 w, h; 5074 u8 tile_v_loc, tile_h_loc; 5075 u8 num_v_tile, num_h_tile; 5076 struct drm_tile_group *tg; 5077 5078 w = tile->tile_size[0] | tile->tile_size[1] << 8; 5079 h = tile->tile_size[2] | tile->tile_size[3] << 8; 5080 5081 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30); 5082 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30); 5083 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4); 5084 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4); 5085 5086 connector->has_tile = true; 5087 if (tile->tile_cap & 0x80) 5088 connector->tile_is_single_monitor = true; 5089 5090 connector->num_h_tile = num_h_tile + 1; 5091 connector->num_v_tile = num_v_tile + 1; 5092 connector->tile_h_loc = tile_h_loc; 5093 connector->tile_v_loc = tile_v_loc; 5094 connector->tile_h_size = w + 1; 5095 connector->tile_v_size = h + 1; 5096 5097 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap); 5098 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1); 5099 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n", 5100 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc); 5101 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]); 5102 5103 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id); 5104 if (!tg) { 5105 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id); 5106 } 5107 if (!tg) 5108 return -ENOMEM; 5109 5110 if (connector->tile_group != tg) { 5111 /* if we haven't got a pointer, 5112 take the reference, drop ref to old tile group */ 5113 if (connector->tile_group) { 5114 drm_mode_put_tile_group(connector->dev, connector->tile_group); 5115 } 5116 connector->tile_group = tg; 5117 } else 5118 /* if same tile group, then release the ref we just took. */ 5119 drm_mode_put_tile_group(connector->dev, tg); 5120 return 0; 5121 } 5122 5123 static int drm_parse_display_id(struct drm_connector *connector, 5124 u8 *displayid, int length, 5125 bool is_edid_extension) 5126 { 5127 /* if this is an EDID extension the first byte will be 0x70 */ 5128 int idx = 0; 5129 struct displayid_block *block; 5130 int ret; 5131 5132 if (is_edid_extension) 5133 idx = 1; 5134 5135 ret = validate_displayid(displayid, length, idx); 5136 if (ret) 5137 return ret; 5138 5139 idx += sizeof(struct displayid_hdr); 5140 while (block = (struct displayid_block *)&displayid[idx], 5141 idx + sizeof(struct displayid_block) <= length && 5142 idx + sizeof(struct displayid_block) + block->num_bytes <= length && 5143 block->num_bytes > 0) { 5144 idx += block->num_bytes + sizeof(struct displayid_block); 5145 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n", 5146 block->tag, block->rev, block->num_bytes); 5147 5148 switch (block->tag) { 5149 case DATA_BLOCK_TILED_DISPLAY: 5150 ret = drm_parse_tiled_block(connector, block); 5151 if (ret) 5152 return ret; 5153 break; 5154 case DATA_BLOCK_TYPE_1_DETAILED_TIMING: 5155 /* handled in mode gathering code. */ 5156 break; 5157 default: 5158 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag); 5159 break; 5160 } 5161 } 5162 return 0; 5163 } 5164 5165 static void drm_get_displayid(struct drm_connector *connector, 5166 struct edid *edid) 5167 { 5168 void *displayid = NULL; 5169 int ret; 5170 connector->has_tile = false; 5171 displayid = drm_find_displayid_extension(edid); 5172 if (!displayid) { 5173 /* drop reference to any tile group we had */ 5174 goto out_drop_ref; 5175 } 5176 5177 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true); 5178 if (ret < 0) 5179 goto out_drop_ref; 5180 if (!connector->has_tile) 5181 goto out_drop_ref; 5182 return; 5183 out_drop_ref: 5184 if (connector->tile_group) { 5185 drm_mode_put_tile_group(connector->dev, connector->tile_group); 5186 connector->tile_group = NULL; 5187 } 5188 return; 5189 } 5190