1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_drv.h> 37 #include <drm/drmP.h> 38 39 #include "drm_crtc_internal.h" 40 #include "drm_legacy.h" 41 #include "drm_internal.h" 42 #include "drm_crtc_internal.h" 43 44 /* 45 * drm_debug: Enable debug output. 46 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details. 47 */ 48 unsigned int drm_debug = 0; 49 EXPORT_SYMBOL(drm_debug); 50 51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 52 MODULE_DESCRIPTION("DRM shared core routines"); 53 MODULE_LICENSE("GPL and additional rights"); 54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)"); 61 module_param_named(debug, drm_debug, int, 0600); 62 63 static DEFINE_SPINLOCK(drm_minor_lock); 64 static struct idr drm_minors_idr; 65 66 static struct dentry *drm_debugfs_root; 67 68 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV" 69 70 void drm_dev_printk(const struct device *dev, const char *level, 71 unsigned int category, const char *function_name, 72 const char *prefix, const char *format, ...) 73 { 74 struct va_format vaf; 75 va_list args; 76 77 if (category != DRM_UT_NONE && !(drm_debug & category)) 78 return; 79 80 va_start(args, format); 81 vaf.fmt = format; 82 vaf.va = &args; 83 84 if (dev) 85 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix, 86 &vaf); 87 else 88 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf); 89 90 va_end(args); 91 } 92 EXPORT_SYMBOL(drm_dev_printk); 93 94 void drm_printk(const char *level, unsigned int category, 95 const char *format, ...) 96 { 97 struct va_format vaf; 98 va_list args; 99 100 if (category != DRM_UT_NONE && !(drm_debug & category)) 101 return; 102 103 va_start(args, format); 104 vaf.fmt = format; 105 vaf.va = &args; 106 107 printk("%s" "[" DRM_NAME ":%ps]%s %pV", 108 level, __builtin_return_address(0), 109 strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf); 110 111 va_end(args); 112 } 113 EXPORT_SYMBOL(drm_printk); 114 115 /* 116 * DRM Minors 117 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 118 * of them is represented by a drm_minor object. Depending on the capabilities 119 * of the device-driver, different interfaces are registered. 120 * 121 * Minors can be accessed via dev->$minor_name. This pointer is either 122 * NULL or a valid drm_minor pointer and stays valid as long as the device is 123 * valid. This means, DRM minors have the same life-time as the underlying 124 * device. However, this doesn't mean that the minor is active. Minors are 125 * registered and unregistered dynamically according to device-state. 126 */ 127 128 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 129 unsigned int type) 130 { 131 switch (type) { 132 case DRM_MINOR_PRIMARY: 133 return &dev->primary; 134 case DRM_MINOR_RENDER: 135 return &dev->render; 136 case DRM_MINOR_CONTROL: 137 return &dev->control; 138 default: 139 return NULL; 140 } 141 } 142 143 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 144 { 145 struct drm_minor *minor; 146 unsigned long flags; 147 int r; 148 149 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 150 if (!minor) 151 return -ENOMEM; 152 153 minor->type = type; 154 minor->dev = dev; 155 156 idr_preload(GFP_KERNEL); 157 spin_lock_irqsave(&drm_minor_lock, flags); 158 r = idr_alloc(&drm_minors_idr, 159 NULL, 160 64 * type, 161 64 * (type + 1), 162 GFP_NOWAIT); 163 spin_unlock_irqrestore(&drm_minor_lock, flags); 164 idr_preload_end(); 165 166 if (r < 0) 167 goto err_free; 168 169 minor->index = r; 170 171 minor->kdev = drm_sysfs_minor_alloc(minor); 172 if (IS_ERR(minor->kdev)) { 173 r = PTR_ERR(minor->kdev); 174 goto err_index; 175 } 176 177 *drm_minor_get_slot(dev, type) = minor; 178 return 0; 179 180 err_index: 181 spin_lock_irqsave(&drm_minor_lock, flags); 182 idr_remove(&drm_minors_idr, minor->index); 183 spin_unlock_irqrestore(&drm_minor_lock, flags); 184 err_free: 185 kfree(minor); 186 return r; 187 } 188 189 static void drm_minor_free(struct drm_device *dev, unsigned int type) 190 { 191 struct drm_minor **slot, *minor; 192 unsigned long flags; 193 194 slot = drm_minor_get_slot(dev, type); 195 minor = *slot; 196 if (!minor) 197 return; 198 199 put_device(minor->kdev); 200 201 spin_lock_irqsave(&drm_minor_lock, flags); 202 idr_remove(&drm_minors_idr, minor->index); 203 spin_unlock_irqrestore(&drm_minor_lock, flags); 204 205 kfree(minor); 206 *slot = NULL; 207 } 208 209 static int drm_minor_register(struct drm_device *dev, unsigned int type) 210 { 211 struct drm_minor *minor; 212 unsigned long flags; 213 int ret; 214 215 DRM_DEBUG("\n"); 216 217 minor = *drm_minor_get_slot(dev, type); 218 if (!minor) 219 return 0; 220 221 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 222 if (ret) { 223 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 224 goto err_debugfs; 225 } 226 227 ret = device_add(minor->kdev); 228 if (ret) 229 goto err_debugfs; 230 231 /* replace NULL with @minor so lookups will succeed from now on */ 232 spin_lock_irqsave(&drm_minor_lock, flags); 233 idr_replace(&drm_minors_idr, minor, minor->index); 234 spin_unlock_irqrestore(&drm_minor_lock, flags); 235 236 DRM_DEBUG("new minor registered %d\n", minor->index); 237 return 0; 238 239 err_debugfs: 240 drm_debugfs_cleanup(minor); 241 return ret; 242 } 243 244 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 245 { 246 struct drm_minor *minor; 247 unsigned long flags; 248 249 minor = *drm_minor_get_slot(dev, type); 250 if (!minor || !device_is_registered(minor->kdev)) 251 return; 252 253 /* replace @minor with NULL so lookups will fail from now on */ 254 spin_lock_irqsave(&drm_minor_lock, flags); 255 idr_replace(&drm_minors_idr, NULL, minor->index); 256 spin_unlock_irqrestore(&drm_minor_lock, flags); 257 258 device_del(minor->kdev); 259 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 260 drm_debugfs_cleanup(minor); 261 } 262 263 /* 264 * Looks up the given minor-ID and returns the respective DRM-minor object. The 265 * refence-count of the underlying device is increased so you must release this 266 * object with drm_minor_release(). 267 * 268 * As long as you hold this minor, it is guaranteed that the object and the 269 * minor->dev pointer will stay valid! However, the device may get unplugged and 270 * unregistered while you hold the minor. 271 */ 272 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 273 { 274 struct drm_minor *minor; 275 unsigned long flags; 276 277 spin_lock_irqsave(&drm_minor_lock, flags); 278 minor = idr_find(&drm_minors_idr, minor_id); 279 if (minor) 280 drm_dev_ref(minor->dev); 281 spin_unlock_irqrestore(&drm_minor_lock, flags); 282 283 if (!minor) { 284 return ERR_PTR(-ENODEV); 285 } else if (drm_device_is_unplugged(minor->dev)) { 286 drm_dev_unref(minor->dev); 287 return ERR_PTR(-ENODEV); 288 } 289 290 return minor; 291 } 292 293 void drm_minor_release(struct drm_minor *minor) 294 { 295 drm_dev_unref(minor->dev); 296 } 297 298 /** 299 * DOC: driver instance overview 300 * 301 * A device instance for a drm driver is represented by &struct drm_device. This 302 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe() 303 * callbacks implemented by the driver. The driver then needs to initialize all 304 * the various subsystems for the drm device like memory management, vblank 305 * handling, modesetting support and intial output configuration plus obviously 306 * initialize all the corresponding hardware bits. An important part of this is 307 * also calling drm_dev_set_unique() to set the userspace-visible unique name of 308 * this device instance. Finally when everything is up and running and ready for 309 * userspace the device instance can be published using drm_dev_register(). 310 * 311 * There is also deprecated support for initalizing device instances using 312 * bus-specific helpers and the &drm_driver.load callback. But due to 313 * backwards-compatibility needs the device instance have to be published too 314 * early, which requires unpretty global locking to make safe and is therefore 315 * only support for existing drivers not yet converted to the new scheme. 316 * 317 * When cleaning up a device instance everything needs to be done in reverse: 318 * First unpublish the device instance with drm_dev_unregister(). Then clean up 319 * any other resources allocated at device initialization and drop the driver's 320 * reference to &drm_device using drm_dev_unref(). 321 * 322 * Note that the lifetime rules for &drm_device instance has still a lot of 323 * historical baggage. Hence use the reference counting provided by 324 * drm_dev_ref() and drm_dev_unref() only carefully. 325 * 326 * It is recommended that drivers embed &struct drm_device into their own device 327 * structure, which is supported through drm_dev_init(). 328 */ 329 330 /** 331 * drm_put_dev - Unregister and release a DRM device 332 * @dev: DRM device 333 * 334 * Called at module unload time or when a PCI device is unplugged. 335 * 336 * Cleans up all DRM device, calling drm_lastclose(). 337 * 338 * Note: Use of this function is deprecated. It will eventually go away 339 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly 340 * instead to make sure that the device isn't userspace accessible any more 341 * while teardown is in progress, ensuring that userspace can't access an 342 * inconsistent state. 343 */ 344 void drm_put_dev(struct drm_device *dev) 345 { 346 DRM_DEBUG("\n"); 347 348 if (!dev) { 349 DRM_ERROR("cleanup called no dev\n"); 350 return; 351 } 352 353 drm_dev_unregister(dev); 354 drm_dev_unref(dev); 355 } 356 EXPORT_SYMBOL(drm_put_dev); 357 358 void drm_unplug_dev(struct drm_device *dev) 359 { 360 /* for a USB device */ 361 if (drm_core_check_feature(dev, DRIVER_MODESET)) 362 drm_modeset_unregister_all(dev); 363 364 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 365 drm_minor_unregister(dev, DRM_MINOR_RENDER); 366 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 367 368 mutex_lock(&drm_global_mutex); 369 370 drm_device_set_unplugged(dev); 371 372 if (dev->open_count == 0) { 373 drm_put_dev(dev); 374 } 375 mutex_unlock(&drm_global_mutex); 376 } 377 EXPORT_SYMBOL(drm_unplug_dev); 378 379 /* 380 * DRM internal mount 381 * We want to be able to allocate our own "struct address_space" to control 382 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 383 * stand-alone address_space objects, so we need an underlying inode. As there 384 * is no way to allocate an independent inode easily, we need a fake internal 385 * VFS mount-point. 386 * 387 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 388 * frees it again. You are allowed to use iget() and iput() to get references to 389 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 390 * drm_fs_inode_free() call (which does not have to be the last iput()). 391 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 392 * between multiple inode-users. You could, technically, call 393 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 394 * iput(), but this way you'd end up with a new vfsmount for each inode. 395 */ 396 397 static int drm_fs_cnt; 398 static struct vfsmount *drm_fs_mnt; 399 400 static const struct dentry_operations drm_fs_dops = { 401 .d_dname = simple_dname, 402 }; 403 404 static const struct super_operations drm_fs_sops = { 405 .statfs = simple_statfs, 406 }; 407 408 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 409 const char *dev_name, void *data) 410 { 411 return mount_pseudo(fs_type, 412 "drm:", 413 &drm_fs_sops, 414 &drm_fs_dops, 415 0x010203ff); 416 } 417 418 static struct file_system_type drm_fs_type = { 419 .name = "drm", 420 .owner = THIS_MODULE, 421 .mount = drm_fs_mount, 422 .kill_sb = kill_anon_super, 423 }; 424 425 static struct inode *drm_fs_inode_new(void) 426 { 427 struct inode *inode; 428 int r; 429 430 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 431 if (r < 0) { 432 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 433 return ERR_PTR(r); 434 } 435 436 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 437 if (IS_ERR(inode)) 438 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 439 440 return inode; 441 } 442 443 static void drm_fs_inode_free(struct inode *inode) 444 { 445 if (inode) { 446 iput(inode); 447 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 448 } 449 } 450 451 /** 452 * drm_dev_init - Initialise new DRM device 453 * @dev: DRM device 454 * @driver: DRM driver 455 * @parent: Parent device object 456 * 457 * Initialize a new DRM device. No device registration is done. 458 * Call drm_dev_register() to advertice the device to user space and register it 459 * with other core subsystems. This should be done last in the device 460 * initialization sequence to make sure userspace can't access an inconsistent 461 * state. 462 * 463 * The initial ref-count of the object is 1. Use drm_dev_ref() and 464 * drm_dev_unref() to take and drop further ref-counts. 465 * 466 * Note that for purely virtual devices @parent can be NULL. 467 * 468 * Drivers that do not want to allocate their own device struct 469 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 470 * that do embed &struct drm_device it must be placed first in the overall 471 * structure, and the overall structure must be allocated using kmalloc(): The 472 * drm core's release function unconditionally calls kfree() on the @dev pointer 473 * when the final reference is released. To override this behaviour, and so 474 * allow embedding of the drm_device inside the driver's device struct at an 475 * arbitrary offset, you must supply a &drm_driver.release callback and control 476 * the finalization explicitly. 477 * 478 * RETURNS: 479 * 0 on success, or error code on failure. 480 */ 481 int drm_dev_init(struct drm_device *dev, 482 struct drm_driver *driver, 483 struct device *parent) 484 { 485 int ret; 486 487 kref_init(&dev->ref); 488 dev->dev = parent; 489 dev->driver = driver; 490 491 INIT_LIST_HEAD(&dev->filelist); 492 INIT_LIST_HEAD(&dev->ctxlist); 493 INIT_LIST_HEAD(&dev->vmalist); 494 INIT_LIST_HEAD(&dev->maplist); 495 INIT_LIST_HEAD(&dev->vblank_event_list); 496 497 spin_lock_init(&dev->buf_lock); 498 spin_lock_init(&dev->event_lock); 499 mutex_init(&dev->struct_mutex); 500 mutex_init(&dev->filelist_mutex); 501 mutex_init(&dev->ctxlist_mutex); 502 mutex_init(&dev->master_mutex); 503 504 dev->anon_inode = drm_fs_inode_new(); 505 if (IS_ERR(dev->anon_inode)) { 506 ret = PTR_ERR(dev->anon_inode); 507 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 508 goto err_free; 509 } 510 511 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 512 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 513 if (ret) 514 goto err_minors; 515 } 516 517 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 518 if (ret) 519 goto err_minors; 520 521 ret = drm_ht_create(&dev->map_hash, 12); 522 if (ret) 523 goto err_minors; 524 525 drm_legacy_ctxbitmap_init(dev); 526 527 if (drm_core_check_feature(dev, DRIVER_GEM)) { 528 ret = drm_gem_init(dev); 529 if (ret) { 530 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 531 goto err_ctxbitmap; 532 } 533 } 534 535 /* Use the parent device name as DRM device unique identifier, but fall 536 * back to the driver name for virtual devices like vgem. */ 537 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name); 538 if (ret) 539 goto err_setunique; 540 541 return 0; 542 543 err_setunique: 544 if (drm_core_check_feature(dev, DRIVER_GEM)) 545 drm_gem_destroy(dev); 546 err_ctxbitmap: 547 drm_legacy_ctxbitmap_cleanup(dev); 548 drm_ht_remove(&dev->map_hash); 549 err_minors: 550 drm_minor_free(dev, DRM_MINOR_PRIMARY); 551 drm_minor_free(dev, DRM_MINOR_RENDER); 552 drm_minor_free(dev, DRM_MINOR_CONTROL); 553 drm_fs_inode_free(dev->anon_inode); 554 err_free: 555 mutex_destroy(&dev->master_mutex); 556 mutex_destroy(&dev->ctxlist_mutex); 557 mutex_destroy(&dev->filelist_mutex); 558 mutex_destroy(&dev->struct_mutex); 559 return ret; 560 } 561 EXPORT_SYMBOL(drm_dev_init); 562 563 /** 564 * drm_dev_fini - Finalize a dead DRM device 565 * @dev: DRM device 566 * 567 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 568 * frees up all data allocated by it. All driver private data should be 569 * finalized first. Note that this function does not free the @dev, that is 570 * left to the caller. 571 * 572 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 573 * from a &drm_driver.release callback. 574 */ 575 void drm_dev_fini(struct drm_device *dev) 576 { 577 drm_vblank_cleanup(dev); 578 579 if (drm_core_check_feature(dev, DRIVER_GEM)) 580 drm_gem_destroy(dev); 581 582 drm_legacy_ctxbitmap_cleanup(dev); 583 drm_ht_remove(&dev->map_hash); 584 drm_fs_inode_free(dev->anon_inode); 585 586 drm_minor_free(dev, DRM_MINOR_PRIMARY); 587 drm_minor_free(dev, DRM_MINOR_RENDER); 588 drm_minor_free(dev, DRM_MINOR_CONTROL); 589 590 mutex_destroy(&dev->master_mutex); 591 mutex_destroy(&dev->ctxlist_mutex); 592 mutex_destroy(&dev->filelist_mutex); 593 mutex_destroy(&dev->struct_mutex); 594 kfree(dev->unique); 595 } 596 EXPORT_SYMBOL(drm_dev_fini); 597 598 /** 599 * drm_dev_alloc - Allocate new DRM device 600 * @driver: DRM driver to allocate device for 601 * @parent: Parent device object 602 * 603 * Allocate and initialize a new DRM device. No device registration is done. 604 * Call drm_dev_register() to advertice the device to user space and register it 605 * with other core subsystems. This should be done last in the device 606 * initialization sequence to make sure userspace can't access an inconsistent 607 * state. 608 * 609 * The initial ref-count of the object is 1. Use drm_dev_ref() and 610 * drm_dev_unref() to take and drop further ref-counts. 611 * 612 * Note that for purely virtual devices @parent can be NULL. 613 * 614 * Drivers that wish to subclass or embed &struct drm_device into their 615 * own struct should look at using drm_dev_init() instead. 616 * 617 * RETURNS: 618 * Pointer to new DRM device, or ERR_PTR on failure. 619 */ 620 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 621 struct device *parent) 622 { 623 struct drm_device *dev; 624 int ret; 625 626 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 627 if (!dev) 628 return ERR_PTR(-ENOMEM); 629 630 ret = drm_dev_init(dev, driver, parent); 631 if (ret) { 632 kfree(dev); 633 return ERR_PTR(ret); 634 } 635 636 return dev; 637 } 638 EXPORT_SYMBOL(drm_dev_alloc); 639 640 static void drm_dev_release(struct kref *ref) 641 { 642 struct drm_device *dev = container_of(ref, struct drm_device, ref); 643 644 if (dev->driver->release) { 645 dev->driver->release(dev); 646 } else { 647 drm_dev_fini(dev); 648 kfree(dev); 649 } 650 } 651 652 /** 653 * drm_dev_ref - Take reference of a DRM device 654 * @dev: device to take reference of or NULL 655 * 656 * This increases the ref-count of @dev by one. You *must* already own a 657 * reference when calling this. Use drm_dev_unref() to drop this reference 658 * again. 659 * 660 * This function never fails. However, this function does not provide *any* 661 * guarantee whether the device is alive or running. It only provides a 662 * reference to the object and the memory associated with it. 663 */ 664 void drm_dev_ref(struct drm_device *dev) 665 { 666 if (dev) 667 kref_get(&dev->ref); 668 } 669 EXPORT_SYMBOL(drm_dev_ref); 670 671 /** 672 * drm_dev_unref - Drop reference of a DRM device 673 * @dev: device to drop reference of or NULL 674 * 675 * This decreases the ref-count of @dev by one. The device is destroyed if the 676 * ref-count drops to zero. 677 */ 678 void drm_dev_unref(struct drm_device *dev) 679 { 680 if (dev) 681 kref_put(&dev->ref, drm_dev_release); 682 } 683 EXPORT_SYMBOL(drm_dev_unref); 684 685 static int create_compat_control_link(struct drm_device *dev) 686 { 687 struct drm_minor *minor; 688 char *name; 689 int ret; 690 691 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 692 return 0; 693 694 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 695 if (!minor) 696 return 0; 697 698 /* 699 * Some existing userspace out there uses the existing of the controlD* 700 * sysfs files to figure out whether it's a modeset driver. It only does 701 * readdir, hence a symlink is sufficient (and the least confusing 702 * option). Otherwise controlD* is entirely unused. 703 * 704 * Old controlD chardev have been allocated in the range 705 * 64-127. 706 */ 707 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 708 if (!name) 709 return -ENOMEM; 710 711 ret = sysfs_create_link(minor->kdev->kobj.parent, 712 &minor->kdev->kobj, 713 name); 714 715 kfree(name); 716 717 return ret; 718 } 719 720 static void remove_compat_control_link(struct drm_device *dev) 721 { 722 struct drm_minor *minor; 723 char *name; 724 725 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 726 return; 727 728 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 729 if (!minor) 730 return; 731 732 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index); 733 if (!name) 734 return; 735 736 sysfs_remove_link(minor->kdev->kobj.parent, name); 737 738 kfree(name); 739 } 740 741 /** 742 * drm_dev_register - Register DRM device 743 * @dev: Device to register 744 * @flags: Flags passed to the driver's .load() function 745 * 746 * Register the DRM device @dev with the system, advertise device to user-space 747 * and start normal device operation. @dev must be allocated via drm_dev_alloc() 748 * previously. 749 * 750 * Never call this twice on any device! 751 * 752 * NOTE: To ensure backward compatibility with existing drivers method this 753 * function calls the &drm_driver.load method after registering the device 754 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 755 * therefore deprecated, drivers must perform all initialization before calling 756 * drm_dev_register(). 757 * 758 * RETURNS: 759 * 0 on success, negative error code on failure. 760 */ 761 int drm_dev_register(struct drm_device *dev, unsigned long flags) 762 { 763 struct drm_driver *driver = dev->driver; 764 int ret; 765 766 mutex_lock(&drm_global_mutex); 767 768 ret = drm_minor_register(dev, DRM_MINOR_CONTROL); 769 if (ret) 770 goto err_minors; 771 772 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 773 if (ret) 774 goto err_minors; 775 776 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 777 if (ret) 778 goto err_minors; 779 780 ret = create_compat_control_link(dev); 781 if (ret) 782 goto err_minors; 783 784 dev->registered = true; 785 786 if (dev->driver->load) { 787 ret = dev->driver->load(dev, flags); 788 if (ret) 789 goto err_minors; 790 } 791 792 if (drm_core_check_feature(dev, DRIVER_MODESET)) 793 drm_modeset_register_all(dev); 794 795 ret = 0; 796 797 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 798 driver->name, driver->major, driver->minor, 799 driver->patchlevel, driver->date, 800 dev->dev ? dev_name(dev->dev) : "virtual device", 801 dev->primary->index); 802 803 goto out_unlock; 804 805 err_minors: 806 remove_compat_control_link(dev); 807 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 808 drm_minor_unregister(dev, DRM_MINOR_RENDER); 809 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 810 out_unlock: 811 mutex_unlock(&drm_global_mutex); 812 return ret; 813 } 814 EXPORT_SYMBOL(drm_dev_register); 815 816 /** 817 * drm_dev_unregister - Unregister DRM device 818 * @dev: Device to unregister 819 * 820 * Unregister the DRM device from the system. This does the reverse of 821 * drm_dev_register() but does not deallocate the device. The caller must call 822 * drm_dev_unref() to drop their final reference. 823 * 824 * This should be called first in the device teardown code to make sure 825 * userspace can't access the device instance any more. 826 */ 827 void drm_dev_unregister(struct drm_device *dev) 828 { 829 struct drm_map_list *r_list, *list_temp; 830 831 drm_lastclose(dev); 832 833 dev->registered = false; 834 835 if (drm_core_check_feature(dev, DRIVER_MODESET)) 836 drm_modeset_unregister_all(dev); 837 838 if (dev->driver->unload) 839 dev->driver->unload(dev); 840 841 if (dev->agp) 842 drm_pci_agp_destroy(dev); 843 844 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) 845 drm_legacy_rmmap(dev, r_list->map); 846 847 remove_compat_control_link(dev); 848 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 849 drm_minor_unregister(dev, DRM_MINOR_RENDER); 850 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 851 } 852 EXPORT_SYMBOL(drm_dev_unregister); 853 854 /** 855 * drm_dev_set_unique - Set the unique name of a DRM device 856 * @dev: device of which to set the unique name 857 * @name: unique name 858 * 859 * Sets the unique name of a DRM device using the specified string. Drivers 860 * can use this at driver probe time if the unique name of the devices they 861 * drive is static. 862 * 863 * Return: 0 on success or a negative error code on failure. 864 */ 865 int drm_dev_set_unique(struct drm_device *dev, const char *name) 866 { 867 kfree(dev->unique); 868 dev->unique = kstrdup(name, GFP_KERNEL); 869 870 return dev->unique ? 0 : -ENOMEM; 871 } 872 EXPORT_SYMBOL(drm_dev_set_unique); 873 874 /* 875 * DRM Core 876 * The DRM core module initializes all global DRM objects and makes them 877 * available to drivers. Once setup, drivers can probe their respective 878 * devices. 879 * Currently, core management includes: 880 * - The "DRM-Global" key/value database 881 * - Global ID management for connectors 882 * - DRM major number allocation 883 * - DRM minor management 884 * - DRM sysfs class 885 * - DRM debugfs root 886 * 887 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 888 * interface registered on a DRM device, you can request minor numbers from DRM 889 * core. DRM core takes care of major-number management and char-dev 890 * registration. A stub ->open() callback forwards any open() requests to the 891 * registered minor. 892 */ 893 894 static int drm_stub_open(struct inode *inode, struct file *filp) 895 { 896 const struct file_operations *new_fops; 897 struct drm_minor *minor; 898 int err; 899 900 DRM_DEBUG("\n"); 901 902 mutex_lock(&drm_global_mutex); 903 minor = drm_minor_acquire(iminor(inode)); 904 if (IS_ERR(minor)) { 905 err = PTR_ERR(minor); 906 goto out_unlock; 907 } 908 909 new_fops = fops_get(minor->dev->driver->fops); 910 if (!new_fops) { 911 err = -ENODEV; 912 goto out_release; 913 } 914 915 replace_fops(filp, new_fops); 916 if (filp->f_op->open) 917 err = filp->f_op->open(inode, filp); 918 else 919 err = 0; 920 921 out_release: 922 drm_minor_release(minor); 923 out_unlock: 924 mutex_unlock(&drm_global_mutex); 925 return err; 926 } 927 928 static const struct file_operations drm_stub_fops = { 929 .owner = THIS_MODULE, 930 .open = drm_stub_open, 931 .llseek = noop_llseek, 932 }; 933 934 static void drm_core_exit(void) 935 { 936 unregister_chrdev(DRM_MAJOR, "drm"); 937 debugfs_remove(drm_debugfs_root); 938 drm_sysfs_destroy(); 939 idr_destroy(&drm_minors_idr); 940 drm_connector_ida_destroy(); 941 drm_global_release(); 942 } 943 944 static int __init drm_core_init(void) 945 { 946 int ret; 947 948 drm_global_init(); 949 drm_connector_ida_init(); 950 idr_init(&drm_minors_idr); 951 952 ret = drm_sysfs_init(); 953 if (ret < 0) { 954 DRM_ERROR("Cannot create DRM class: %d\n", ret); 955 goto error; 956 } 957 958 drm_debugfs_root = debugfs_create_dir("dri", NULL); 959 if (!drm_debugfs_root) { 960 ret = -ENOMEM; 961 DRM_ERROR("Cannot create debugfs-root: %d\n", ret); 962 goto error; 963 } 964 965 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 966 if (ret < 0) 967 goto error; 968 969 DRM_DEBUG("Initialized\n"); 970 return 0; 971 972 error: 973 drm_core_exit(); 974 return ret; 975 } 976 977 module_init(drm_core_init); 978 module_exit(drm_core_exit); 979