1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_drv.h> 37 #include <drm/drmP.h> 38 39 #include "drm_crtc_internal.h" 40 #include "drm_legacy.h" 41 #include "drm_internal.h" 42 #include "drm_crtc_internal.h" 43 44 /* 45 * drm_debug: Enable debug output. 46 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details. 47 */ 48 unsigned int drm_debug = 0; 49 EXPORT_SYMBOL(drm_debug); 50 51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 52 MODULE_DESCRIPTION("DRM shared core routines"); 53 MODULE_LICENSE("GPL and additional rights"); 54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)"); 61 module_param_named(debug, drm_debug, int, 0600); 62 63 static DEFINE_SPINLOCK(drm_minor_lock); 64 static struct idr drm_minors_idr; 65 66 static struct dentry *drm_debugfs_root; 67 68 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV" 69 70 void drm_dev_printk(const struct device *dev, const char *level, 71 unsigned int category, const char *function_name, 72 const char *prefix, const char *format, ...) 73 { 74 struct va_format vaf; 75 va_list args; 76 77 if (category != DRM_UT_NONE && !(drm_debug & category)) 78 return; 79 80 va_start(args, format); 81 vaf.fmt = format; 82 vaf.va = &args; 83 84 if (dev) 85 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix, 86 &vaf); 87 else 88 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf); 89 90 va_end(args); 91 } 92 EXPORT_SYMBOL(drm_dev_printk); 93 94 void drm_printk(const char *level, unsigned int category, 95 const char *format, ...) 96 { 97 struct va_format vaf; 98 va_list args; 99 100 if (category != DRM_UT_NONE && !(drm_debug & category)) 101 return; 102 103 va_start(args, format); 104 vaf.fmt = format; 105 vaf.va = &args; 106 107 printk("%s" "[" DRM_NAME ":%ps]%s %pV", 108 level, __builtin_return_address(0), 109 strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf); 110 111 va_end(args); 112 } 113 EXPORT_SYMBOL(drm_printk); 114 115 /* 116 * DRM Minors 117 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 118 * of them is represented by a drm_minor object. Depending on the capabilities 119 * of the device-driver, different interfaces are registered. 120 * 121 * Minors can be accessed via dev->$minor_name. This pointer is either 122 * NULL or a valid drm_minor pointer and stays valid as long as the device is 123 * valid. This means, DRM minors have the same life-time as the underlying 124 * device. However, this doesn't mean that the minor is active. Minors are 125 * registered and unregistered dynamically according to device-state. 126 */ 127 128 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 129 unsigned int type) 130 { 131 switch (type) { 132 case DRM_MINOR_PRIMARY: 133 return &dev->primary; 134 case DRM_MINOR_RENDER: 135 return &dev->render; 136 case DRM_MINOR_CONTROL: 137 return &dev->control; 138 default: 139 return NULL; 140 } 141 } 142 143 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 144 { 145 struct drm_minor *minor; 146 unsigned long flags; 147 int r; 148 149 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 150 if (!minor) 151 return -ENOMEM; 152 153 minor->type = type; 154 minor->dev = dev; 155 156 idr_preload(GFP_KERNEL); 157 spin_lock_irqsave(&drm_minor_lock, flags); 158 r = idr_alloc(&drm_minors_idr, 159 NULL, 160 64 * type, 161 64 * (type + 1), 162 GFP_NOWAIT); 163 spin_unlock_irqrestore(&drm_minor_lock, flags); 164 idr_preload_end(); 165 166 if (r < 0) 167 goto err_free; 168 169 minor->index = r; 170 171 minor->kdev = drm_sysfs_minor_alloc(minor); 172 if (IS_ERR(minor->kdev)) { 173 r = PTR_ERR(minor->kdev); 174 goto err_index; 175 } 176 177 *drm_minor_get_slot(dev, type) = minor; 178 return 0; 179 180 err_index: 181 spin_lock_irqsave(&drm_minor_lock, flags); 182 idr_remove(&drm_minors_idr, minor->index); 183 spin_unlock_irqrestore(&drm_minor_lock, flags); 184 err_free: 185 kfree(minor); 186 return r; 187 } 188 189 static void drm_minor_free(struct drm_device *dev, unsigned int type) 190 { 191 struct drm_minor **slot, *minor; 192 unsigned long flags; 193 194 slot = drm_minor_get_slot(dev, type); 195 minor = *slot; 196 if (!minor) 197 return; 198 199 put_device(minor->kdev); 200 201 spin_lock_irqsave(&drm_minor_lock, flags); 202 idr_remove(&drm_minors_idr, minor->index); 203 spin_unlock_irqrestore(&drm_minor_lock, flags); 204 205 kfree(minor); 206 *slot = NULL; 207 } 208 209 static int drm_minor_register(struct drm_device *dev, unsigned int type) 210 { 211 struct drm_minor *minor; 212 unsigned long flags; 213 int ret; 214 215 DRM_DEBUG("\n"); 216 217 minor = *drm_minor_get_slot(dev, type); 218 if (!minor) 219 return 0; 220 221 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 222 if (ret) { 223 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 224 return ret; 225 } 226 227 ret = device_add(minor->kdev); 228 if (ret) 229 goto err_debugfs; 230 231 /* replace NULL with @minor so lookups will succeed from now on */ 232 spin_lock_irqsave(&drm_minor_lock, flags); 233 idr_replace(&drm_minors_idr, minor, minor->index); 234 spin_unlock_irqrestore(&drm_minor_lock, flags); 235 236 DRM_DEBUG("new minor registered %d\n", minor->index); 237 return 0; 238 239 err_debugfs: 240 drm_debugfs_cleanup(minor); 241 return ret; 242 } 243 244 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 245 { 246 struct drm_minor *minor; 247 unsigned long flags; 248 249 minor = *drm_minor_get_slot(dev, type); 250 if (!minor || !device_is_registered(minor->kdev)) 251 return; 252 253 /* replace @minor with NULL so lookups will fail from now on */ 254 spin_lock_irqsave(&drm_minor_lock, flags); 255 idr_replace(&drm_minors_idr, NULL, minor->index); 256 spin_unlock_irqrestore(&drm_minor_lock, flags); 257 258 device_del(minor->kdev); 259 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 260 drm_debugfs_cleanup(minor); 261 } 262 263 /* 264 * Looks up the given minor-ID and returns the respective DRM-minor object. The 265 * refence-count of the underlying device is increased so you must release this 266 * object with drm_minor_release(). 267 * 268 * As long as you hold this minor, it is guaranteed that the object and the 269 * minor->dev pointer will stay valid! However, the device may get unplugged and 270 * unregistered while you hold the minor. 271 */ 272 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 273 { 274 struct drm_minor *minor; 275 unsigned long flags; 276 277 spin_lock_irqsave(&drm_minor_lock, flags); 278 minor = idr_find(&drm_minors_idr, minor_id); 279 if (minor) 280 drm_dev_ref(minor->dev); 281 spin_unlock_irqrestore(&drm_minor_lock, flags); 282 283 if (!minor) { 284 return ERR_PTR(-ENODEV); 285 } else if (drm_device_is_unplugged(minor->dev)) { 286 drm_dev_unref(minor->dev); 287 return ERR_PTR(-ENODEV); 288 } 289 290 return minor; 291 } 292 293 void drm_minor_release(struct drm_minor *minor) 294 { 295 drm_dev_unref(minor->dev); 296 } 297 298 /** 299 * DOC: driver instance overview 300 * 301 * A device instance for a drm driver is represented by struct &drm_device. This 302 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe() 303 * callbacks implemented by the driver. The driver then needs to initialize all 304 * the various subsystems for the drm device like memory management, vblank 305 * handling, modesetting support and intial output configuration plus obviously 306 * initialize all the corresponding hardware bits. An important part of this is 307 * also calling drm_dev_set_unique() to set the userspace-visible unique name of 308 * this device instance. Finally when everything is up and running and ready for 309 * userspace the device instance can be published using drm_dev_register(). 310 * 311 * There is also deprecated support for initalizing device instances using 312 * bus-specific helpers and the ->load() callback. But due to 313 * backwards-compatibility needs the device instance have to be published too 314 * early, which requires unpretty global locking to make safe and is therefore 315 * only support for existing drivers not yet converted to the new scheme. 316 * 317 * When cleaning up a device instance everything needs to be done in reverse: 318 * First unpublish the device instance with drm_dev_unregister(). Then clean up 319 * any other resources allocated at device initialization and drop the driver's 320 * reference to &drm_device using drm_dev_unref(). 321 * 322 * Note that the lifetime rules for &drm_device instance has still a lot of 323 * historical baggage. Hence use the reference counting provided by 324 * drm_dev_ref() and drm_dev_unref() only carefully. 325 * 326 * Also note that embedding of &drm_device is currently not (yet) supported (but 327 * it would be easy to add). Drivers can store driver-private data in the 328 * dev_priv field of &drm_device. 329 */ 330 331 /** 332 * drm_put_dev - Unregister and release a DRM device 333 * @dev: DRM device 334 * 335 * Called at module unload time or when a PCI device is unplugged. 336 * 337 * Cleans up all DRM device, calling drm_lastclose(). 338 * 339 * Note: Use of this function is deprecated. It will eventually go away 340 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly 341 * instead to make sure that the device isn't userspace accessible any more 342 * while teardown is in progress, ensuring that userspace can't access an 343 * inconsistent state. 344 */ 345 void drm_put_dev(struct drm_device *dev) 346 { 347 DRM_DEBUG("\n"); 348 349 if (!dev) { 350 DRM_ERROR("cleanup called no dev\n"); 351 return; 352 } 353 354 drm_dev_unregister(dev); 355 drm_dev_unref(dev); 356 } 357 EXPORT_SYMBOL(drm_put_dev); 358 359 void drm_unplug_dev(struct drm_device *dev) 360 { 361 /* for a USB device */ 362 drm_dev_unregister(dev); 363 364 mutex_lock(&drm_global_mutex); 365 366 drm_device_set_unplugged(dev); 367 368 if (dev->open_count == 0) { 369 drm_put_dev(dev); 370 } 371 mutex_unlock(&drm_global_mutex); 372 } 373 EXPORT_SYMBOL(drm_unplug_dev); 374 375 /* 376 * DRM internal mount 377 * We want to be able to allocate our own "struct address_space" to control 378 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 379 * stand-alone address_space objects, so we need an underlying inode. As there 380 * is no way to allocate an independent inode easily, we need a fake internal 381 * VFS mount-point. 382 * 383 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 384 * frees it again. You are allowed to use iget() and iput() to get references to 385 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 386 * drm_fs_inode_free() call (which does not have to be the last iput()). 387 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 388 * between multiple inode-users. You could, technically, call 389 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 390 * iput(), but this way you'd end up with a new vfsmount for each inode. 391 */ 392 393 static int drm_fs_cnt; 394 static struct vfsmount *drm_fs_mnt; 395 396 static const struct dentry_operations drm_fs_dops = { 397 .d_dname = simple_dname, 398 }; 399 400 static const struct super_operations drm_fs_sops = { 401 .statfs = simple_statfs, 402 }; 403 404 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 405 const char *dev_name, void *data) 406 { 407 return mount_pseudo(fs_type, 408 "drm:", 409 &drm_fs_sops, 410 &drm_fs_dops, 411 0x010203ff); 412 } 413 414 static struct file_system_type drm_fs_type = { 415 .name = "drm", 416 .owner = THIS_MODULE, 417 .mount = drm_fs_mount, 418 .kill_sb = kill_anon_super, 419 }; 420 421 static struct inode *drm_fs_inode_new(void) 422 { 423 struct inode *inode; 424 int r; 425 426 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 427 if (r < 0) { 428 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 429 return ERR_PTR(r); 430 } 431 432 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 433 if (IS_ERR(inode)) 434 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 435 436 return inode; 437 } 438 439 static void drm_fs_inode_free(struct inode *inode) 440 { 441 if (inode) { 442 iput(inode); 443 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 444 } 445 } 446 447 /** 448 * drm_dev_init - Initialise new DRM device 449 * @dev: DRM device 450 * @driver: DRM driver 451 * @parent: Parent device object 452 * 453 * Initialize a new DRM device. No device registration is done. 454 * Call drm_dev_register() to advertice the device to user space and register it 455 * with other core subsystems. This should be done last in the device 456 * initialization sequence to make sure userspace can't access an inconsistent 457 * state. 458 * 459 * The initial ref-count of the object is 1. Use drm_dev_ref() and 460 * drm_dev_unref() to take and drop further ref-counts. 461 * 462 * Note that for purely virtual devices @parent can be NULL. 463 * 464 * Drivers that do not want to allocate their own device struct 465 * embedding struct &drm_device can call drm_dev_alloc() instead. 466 * 467 * RETURNS: 468 * 0 on success, or error code on failure. 469 */ 470 int drm_dev_init(struct drm_device *dev, 471 struct drm_driver *driver, 472 struct device *parent) 473 { 474 int ret; 475 476 kref_init(&dev->ref); 477 dev->dev = parent; 478 dev->driver = driver; 479 480 INIT_LIST_HEAD(&dev->filelist); 481 INIT_LIST_HEAD(&dev->ctxlist); 482 INIT_LIST_HEAD(&dev->vmalist); 483 INIT_LIST_HEAD(&dev->maplist); 484 INIT_LIST_HEAD(&dev->vblank_event_list); 485 486 spin_lock_init(&dev->buf_lock); 487 spin_lock_init(&dev->event_lock); 488 mutex_init(&dev->struct_mutex); 489 mutex_init(&dev->filelist_mutex); 490 mutex_init(&dev->ctxlist_mutex); 491 mutex_init(&dev->master_mutex); 492 493 dev->anon_inode = drm_fs_inode_new(); 494 if (IS_ERR(dev->anon_inode)) { 495 ret = PTR_ERR(dev->anon_inode); 496 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 497 goto err_free; 498 } 499 500 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 501 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 502 if (ret) 503 goto err_minors; 504 } 505 506 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 507 if (ret) 508 goto err_minors; 509 510 ret = drm_ht_create(&dev->map_hash, 12); 511 if (ret) 512 goto err_minors; 513 514 drm_legacy_ctxbitmap_init(dev); 515 516 if (drm_core_check_feature(dev, DRIVER_GEM)) { 517 ret = drm_gem_init(dev); 518 if (ret) { 519 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 520 goto err_ctxbitmap; 521 } 522 } 523 524 /* Use the parent device name as DRM device unique identifier, but fall 525 * back to the driver name for virtual devices like vgem. */ 526 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name); 527 if (ret) 528 goto err_setunique; 529 530 return 0; 531 532 err_setunique: 533 if (drm_core_check_feature(dev, DRIVER_GEM)) 534 drm_gem_destroy(dev); 535 err_ctxbitmap: 536 drm_legacy_ctxbitmap_cleanup(dev); 537 drm_ht_remove(&dev->map_hash); 538 err_minors: 539 drm_minor_free(dev, DRM_MINOR_PRIMARY); 540 drm_minor_free(dev, DRM_MINOR_RENDER); 541 drm_minor_free(dev, DRM_MINOR_CONTROL); 542 drm_fs_inode_free(dev->anon_inode); 543 err_free: 544 mutex_destroy(&dev->master_mutex); 545 mutex_destroy(&dev->ctxlist_mutex); 546 mutex_destroy(&dev->filelist_mutex); 547 mutex_destroy(&dev->struct_mutex); 548 return ret; 549 } 550 EXPORT_SYMBOL(drm_dev_init); 551 552 /** 553 * drm_dev_alloc - Allocate new DRM device 554 * @driver: DRM driver to allocate device for 555 * @parent: Parent device object 556 * 557 * Allocate and initialize a new DRM device. No device registration is done. 558 * Call drm_dev_register() to advertice the device to user space and register it 559 * with other core subsystems. This should be done last in the device 560 * initialization sequence to make sure userspace can't access an inconsistent 561 * state. 562 * 563 * The initial ref-count of the object is 1. Use drm_dev_ref() and 564 * drm_dev_unref() to take and drop further ref-counts. 565 * 566 * Note that for purely virtual devices @parent can be NULL. 567 * 568 * Drivers that wish to subclass or embed struct &drm_device into their 569 * own struct should look at using drm_dev_init() instead. 570 * 571 * RETURNS: 572 * Pointer to new DRM device, or ERR_PTR on failure. 573 */ 574 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 575 struct device *parent) 576 { 577 struct drm_device *dev; 578 int ret; 579 580 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 581 if (!dev) 582 return ERR_PTR(-ENOMEM); 583 584 ret = drm_dev_init(dev, driver, parent); 585 if (ret) { 586 kfree(dev); 587 return ERR_PTR(ret); 588 } 589 590 return dev; 591 } 592 EXPORT_SYMBOL(drm_dev_alloc); 593 594 static void drm_dev_release(struct kref *ref) 595 { 596 struct drm_device *dev = container_of(ref, struct drm_device, ref); 597 598 if (drm_core_check_feature(dev, DRIVER_GEM)) 599 drm_gem_destroy(dev); 600 601 drm_legacy_ctxbitmap_cleanup(dev); 602 drm_ht_remove(&dev->map_hash); 603 drm_fs_inode_free(dev->anon_inode); 604 605 drm_minor_free(dev, DRM_MINOR_PRIMARY); 606 drm_minor_free(dev, DRM_MINOR_RENDER); 607 drm_minor_free(dev, DRM_MINOR_CONTROL); 608 609 mutex_destroy(&dev->master_mutex); 610 mutex_destroy(&dev->ctxlist_mutex); 611 mutex_destroy(&dev->filelist_mutex); 612 mutex_destroy(&dev->struct_mutex); 613 kfree(dev->unique); 614 kfree(dev); 615 } 616 617 /** 618 * drm_dev_ref - Take reference of a DRM device 619 * @dev: device to take reference of or NULL 620 * 621 * This increases the ref-count of @dev by one. You *must* already own a 622 * reference when calling this. Use drm_dev_unref() to drop this reference 623 * again. 624 * 625 * This function never fails. However, this function does not provide *any* 626 * guarantee whether the device is alive or running. It only provides a 627 * reference to the object and the memory associated with it. 628 */ 629 void drm_dev_ref(struct drm_device *dev) 630 { 631 if (dev) 632 kref_get(&dev->ref); 633 } 634 EXPORT_SYMBOL(drm_dev_ref); 635 636 /** 637 * drm_dev_unref - Drop reference of a DRM device 638 * @dev: device to drop reference of or NULL 639 * 640 * This decreases the ref-count of @dev by one. The device is destroyed if the 641 * ref-count drops to zero. 642 */ 643 void drm_dev_unref(struct drm_device *dev) 644 { 645 if (dev) 646 kref_put(&dev->ref, drm_dev_release); 647 } 648 EXPORT_SYMBOL(drm_dev_unref); 649 650 static int create_compat_control_link(struct drm_device *dev) 651 { 652 struct drm_minor *minor; 653 char *name; 654 int ret; 655 656 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 657 return 0; 658 659 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 660 if (!minor) 661 return 0; 662 663 /* 664 * Some existing userspace out there uses the existing of the controlD* 665 * sysfs files to figure out whether it's a modeset driver. It only does 666 * readdir, hence a symlink is sufficient (and the least confusing 667 * option). Otherwise controlD* is entirely unused. 668 * 669 * Old controlD chardev have been allocated in the range 670 * 64-127. 671 */ 672 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 673 if (!name) 674 return -ENOMEM; 675 676 ret = sysfs_create_link(minor->kdev->kobj.parent, 677 &minor->kdev->kobj, 678 name); 679 680 kfree(name); 681 682 return ret; 683 } 684 685 static void remove_compat_control_link(struct drm_device *dev) 686 { 687 struct drm_minor *minor; 688 char *name; 689 690 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 691 return; 692 693 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 694 if (!minor) 695 return; 696 697 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index); 698 if (!name) 699 return; 700 701 sysfs_remove_link(minor->kdev->kobj.parent, name); 702 703 kfree(name); 704 } 705 706 /** 707 * drm_dev_register - Register DRM device 708 * @dev: Device to register 709 * @flags: Flags passed to the driver's .load() function 710 * 711 * Register the DRM device @dev with the system, advertise device to user-space 712 * and start normal device operation. @dev must be allocated via drm_dev_alloc() 713 * previously. 714 * 715 * Never call this twice on any device! 716 * 717 * NOTE: To ensure backward compatibility with existing drivers method this 718 * function calls the ->load() method after registering the device nodes, 719 * creating race conditions. Usage of the ->load() methods is therefore 720 * deprecated, drivers must perform all initialization before calling 721 * drm_dev_register(). 722 * 723 * RETURNS: 724 * 0 on success, negative error code on failure. 725 */ 726 int drm_dev_register(struct drm_device *dev, unsigned long flags) 727 { 728 int ret; 729 730 mutex_lock(&drm_global_mutex); 731 732 ret = drm_minor_register(dev, DRM_MINOR_CONTROL); 733 if (ret) 734 goto err_minors; 735 736 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 737 if (ret) 738 goto err_minors; 739 740 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 741 if (ret) 742 goto err_minors; 743 744 ret = create_compat_control_link(dev); 745 if (ret) 746 goto err_minors; 747 748 if (dev->driver->load) { 749 ret = dev->driver->load(dev, flags); 750 if (ret) 751 goto err_minors; 752 } 753 754 if (drm_core_check_feature(dev, DRIVER_MODESET)) 755 drm_modeset_register_all(dev); 756 757 ret = 0; 758 goto out_unlock; 759 760 err_minors: 761 remove_compat_control_link(dev); 762 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 763 drm_minor_unregister(dev, DRM_MINOR_RENDER); 764 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 765 out_unlock: 766 mutex_unlock(&drm_global_mutex); 767 return ret; 768 } 769 EXPORT_SYMBOL(drm_dev_register); 770 771 /** 772 * drm_dev_unregister - Unregister DRM device 773 * @dev: Device to unregister 774 * 775 * Unregister the DRM device from the system. This does the reverse of 776 * drm_dev_register() but does not deallocate the device. The caller must call 777 * drm_dev_unref() to drop their final reference. 778 * 779 * This should be called first in the device teardown code to make sure 780 * userspace can't access the device instance any more. 781 */ 782 void drm_dev_unregister(struct drm_device *dev) 783 { 784 struct drm_map_list *r_list, *list_temp; 785 786 drm_lastclose(dev); 787 788 if (drm_core_check_feature(dev, DRIVER_MODESET)) 789 drm_modeset_unregister_all(dev); 790 791 if (dev->driver->unload) 792 dev->driver->unload(dev); 793 794 if (dev->agp) 795 drm_pci_agp_destroy(dev); 796 797 drm_vblank_cleanup(dev); 798 799 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) 800 drm_legacy_rmmap(dev, r_list->map); 801 802 remove_compat_control_link(dev); 803 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 804 drm_minor_unregister(dev, DRM_MINOR_RENDER); 805 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 806 } 807 EXPORT_SYMBOL(drm_dev_unregister); 808 809 /** 810 * drm_dev_set_unique - Set the unique name of a DRM device 811 * @dev: device of which to set the unique name 812 * @name: unique name 813 * 814 * Sets the unique name of a DRM device using the specified string. Drivers 815 * can use this at driver probe time if the unique name of the devices they 816 * drive is static. 817 * 818 * Return: 0 on success or a negative error code on failure. 819 */ 820 int drm_dev_set_unique(struct drm_device *dev, const char *name) 821 { 822 kfree(dev->unique); 823 dev->unique = kstrdup(name, GFP_KERNEL); 824 825 return dev->unique ? 0 : -ENOMEM; 826 } 827 EXPORT_SYMBOL(drm_dev_set_unique); 828 829 /* 830 * DRM Core 831 * The DRM core module initializes all global DRM objects and makes them 832 * available to drivers. Once setup, drivers can probe their respective 833 * devices. 834 * Currently, core management includes: 835 * - The "DRM-Global" key/value database 836 * - Global ID management for connectors 837 * - DRM major number allocation 838 * - DRM minor management 839 * - DRM sysfs class 840 * - DRM debugfs root 841 * 842 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 843 * interface registered on a DRM device, you can request minor numbers from DRM 844 * core. DRM core takes care of major-number management and char-dev 845 * registration. A stub ->open() callback forwards any open() requests to the 846 * registered minor. 847 */ 848 849 static int drm_stub_open(struct inode *inode, struct file *filp) 850 { 851 const struct file_operations *new_fops; 852 struct drm_minor *minor; 853 int err; 854 855 DRM_DEBUG("\n"); 856 857 mutex_lock(&drm_global_mutex); 858 minor = drm_minor_acquire(iminor(inode)); 859 if (IS_ERR(minor)) { 860 err = PTR_ERR(minor); 861 goto out_unlock; 862 } 863 864 new_fops = fops_get(minor->dev->driver->fops); 865 if (!new_fops) { 866 err = -ENODEV; 867 goto out_release; 868 } 869 870 replace_fops(filp, new_fops); 871 if (filp->f_op->open) 872 err = filp->f_op->open(inode, filp); 873 else 874 err = 0; 875 876 out_release: 877 drm_minor_release(minor); 878 out_unlock: 879 mutex_unlock(&drm_global_mutex); 880 return err; 881 } 882 883 static const struct file_operations drm_stub_fops = { 884 .owner = THIS_MODULE, 885 .open = drm_stub_open, 886 .llseek = noop_llseek, 887 }; 888 889 static void drm_core_exit(void) 890 { 891 unregister_chrdev(DRM_MAJOR, "drm"); 892 debugfs_remove(drm_debugfs_root); 893 drm_sysfs_destroy(); 894 idr_destroy(&drm_minors_idr); 895 drm_connector_ida_destroy(); 896 drm_global_release(); 897 } 898 899 static int __init drm_core_init(void) 900 { 901 int ret; 902 903 drm_global_init(); 904 drm_connector_ida_init(); 905 idr_init(&drm_minors_idr); 906 907 ret = drm_sysfs_init(); 908 if (ret < 0) { 909 DRM_ERROR("Cannot create DRM class: %d\n", ret); 910 goto error; 911 } 912 913 drm_debugfs_root = debugfs_create_dir("dri", NULL); 914 if (!drm_debugfs_root) { 915 ret = -ENOMEM; 916 DRM_ERROR("Cannot create debugfs-root: %d\n", ret); 917 goto error; 918 } 919 920 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 921 if (ret < 0) 922 goto error; 923 924 DRM_INFO("Initialized\n"); 925 return 0; 926 927 error: 928 drm_core_exit(); 929 return ret; 930 } 931 932 module_init(drm_core_init); 933 module_exit(drm_core_exit); 934