xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision dfc66bef)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37 
38 #include <drm/drm_cache.h>
39 #include <drm/drm_client.h>
40 #include <drm/drm_color_mgmt.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_managed.h>
44 #include <drm/drm_mode_object.h>
45 #include <drm/drm_print.h>
46 
47 #include "drm_crtc_internal.h"
48 #include "drm_internal.h"
49 #include "drm_legacy.h"
50 
51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
52 MODULE_DESCRIPTION("DRM shared core routines");
53 MODULE_LICENSE("GPL and additional rights");
54 
55 static DEFINE_SPINLOCK(drm_minor_lock);
56 static struct idr drm_minors_idr;
57 
58 /*
59  * If the drm core fails to init for whatever reason,
60  * we should prevent any drivers from registering with it.
61  * It's best to check this at drm_dev_init(), as some drivers
62  * prefer to embed struct drm_device into their own device
63  * structure and call drm_dev_init() themselves.
64  */
65 static bool drm_core_init_complete;
66 
67 static struct dentry *drm_debugfs_root;
68 
69 DEFINE_STATIC_SRCU(drm_unplug_srcu);
70 
71 /*
72  * DRM Minors
73  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
74  * of them is represented by a drm_minor object. Depending on the capabilities
75  * of the device-driver, different interfaces are registered.
76  *
77  * Minors can be accessed via dev->$minor_name. This pointer is either
78  * NULL or a valid drm_minor pointer and stays valid as long as the device is
79  * valid. This means, DRM minors have the same life-time as the underlying
80  * device. However, this doesn't mean that the minor is active. Minors are
81  * registered and unregistered dynamically according to device-state.
82  */
83 
84 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
85 					     unsigned int type)
86 {
87 	switch (type) {
88 	case DRM_MINOR_PRIMARY:
89 		return &dev->primary;
90 	case DRM_MINOR_RENDER:
91 		return &dev->render;
92 	default:
93 		BUG();
94 	}
95 }
96 
97 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
98 {
99 	struct drm_minor *minor = data;
100 	unsigned long flags;
101 
102 	WARN_ON(dev != minor->dev);
103 
104 	put_device(minor->kdev);
105 
106 	spin_lock_irqsave(&drm_minor_lock, flags);
107 	idr_remove(&drm_minors_idr, minor->index);
108 	spin_unlock_irqrestore(&drm_minor_lock, flags);
109 }
110 
111 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
112 {
113 	struct drm_minor *minor;
114 	unsigned long flags;
115 	int r;
116 
117 	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
118 	if (!minor)
119 		return -ENOMEM;
120 
121 	minor->type = type;
122 	minor->dev = dev;
123 
124 	idr_preload(GFP_KERNEL);
125 	spin_lock_irqsave(&drm_minor_lock, flags);
126 	r = idr_alloc(&drm_minors_idr,
127 		      NULL,
128 		      64 * type,
129 		      64 * (type + 1),
130 		      GFP_NOWAIT);
131 	spin_unlock_irqrestore(&drm_minor_lock, flags);
132 	idr_preload_end();
133 
134 	if (r < 0)
135 		return r;
136 
137 	minor->index = r;
138 
139 	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
140 	if (r)
141 		return r;
142 
143 	minor->kdev = drm_sysfs_minor_alloc(minor);
144 	if (IS_ERR(minor->kdev))
145 		return PTR_ERR(minor->kdev);
146 
147 	*drm_minor_get_slot(dev, type) = minor;
148 	return 0;
149 }
150 
151 static int drm_minor_register(struct drm_device *dev, unsigned int type)
152 {
153 	struct drm_minor *minor;
154 	unsigned long flags;
155 	int ret;
156 
157 	DRM_DEBUG("\n");
158 
159 	minor = *drm_minor_get_slot(dev, type);
160 	if (!minor)
161 		return 0;
162 
163 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
164 	if (ret) {
165 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
166 		goto err_debugfs;
167 	}
168 
169 	ret = device_add(minor->kdev);
170 	if (ret)
171 		goto err_debugfs;
172 
173 	/* replace NULL with @minor so lookups will succeed from now on */
174 	spin_lock_irqsave(&drm_minor_lock, flags);
175 	idr_replace(&drm_minors_idr, minor, minor->index);
176 	spin_unlock_irqrestore(&drm_minor_lock, flags);
177 
178 	DRM_DEBUG("new minor registered %d\n", minor->index);
179 	return 0;
180 
181 err_debugfs:
182 	drm_debugfs_cleanup(minor);
183 	return ret;
184 }
185 
186 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
187 {
188 	struct drm_minor *minor;
189 	unsigned long flags;
190 
191 	minor = *drm_minor_get_slot(dev, type);
192 	if (!minor || !device_is_registered(minor->kdev))
193 		return;
194 
195 	/* replace @minor with NULL so lookups will fail from now on */
196 	spin_lock_irqsave(&drm_minor_lock, flags);
197 	idr_replace(&drm_minors_idr, NULL, minor->index);
198 	spin_unlock_irqrestore(&drm_minor_lock, flags);
199 
200 	device_del(minor->kdev);
201 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
202 	drm_debugfs_cleanup(minor);
203 }
204 
205 /*
206  * Looks up the given minor-ID and returns the respective DRM-minor object. The
207  * refence-count of the underlying device is increased so you must release this
208  * object with drm_minor_release().
209  *
210  * As long as you hold this minor, it is guaranteed that the object and the
211  * minor->dev pointer will stay valid! However, the device may get unplugged and
212  * unregistered while you hold the minor.
213  */
214 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
215 {
216 	struct drm_minor *minor;
217 	unsigned long flags;
218 
219 	spin_lock_irqsave(&drm_minor_lock, flags);
220 	minor = idr_find(&drm_minors_idr, minor_id);
221 	if (minor)
222 		drm_dev_get(minor->dev);
223 	spin_unlock_irqrestore(&drm_minor_lock, flags);
224 
225 	if (!minor) {
226 		return ERR_PTR(-ENODEV);
227 	} else if (drm_dev_is_unplugged(minor->dev)) {
228 		drm_dev_put(minor->dev);
229 		return ERR_PTR(-ENODEV);
230 	}
231 
232 	return minor;
233 }
234 
235 void drm_minor_release(struct drm_minor *minor)
236 {
237 	drm_dev_put(minor->dev);
238 }
239 
240 /**
241  * DOC: driver instance overview
242  *
243  * A device instance for a drm driver is represented by &struct drm_device. This
244  * is allocated and initialized with devm_drm_dev_alloc(), usually from
245  * bus-specific ->probe() callbacks implemented by the driver. The driver then
246  * needs to initialize all the various subsystems for the drm device like memory
247  * management, vblank handling, modesetting support and initial output
248  * configuration plus obviously initialize all the corresponding hardware bits.
249  * Finally when everything is up and running and ready for userspace the device
250  * instance can be published using drm_dev_register().
251  *
252  * There is also deprecated support for initializing device instances using
253  * bus-specific helpers and the &drm_driver.load callback. But due to
254  * backwards-compatibility needs the device instance have to be published too
255  * early, which requires unpretty global locking to make safe and is therefore
256  * only support for existing drivers not yet converted to the new scheme.
257  *
258  * When cleaning up a device instance everything needs to be done in reverse:
259  * First unpublish the device instance with drm_dev_unregister(). Then clean up
260  * any other resources allocated at device initialization and drop the driver's
261  * reference to &drm_device using drm_dev_put().
262  *
263  * Note that any allocation or resource which is visible to userspace must be
264  * released only when the final drm_dev_put() is called, and not when the
265  * driver is unbound from the underlying physical struct &device. Best to use
266  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
267  * related functions.
268  *
269  * devres managed resources like devm_kmalloc() can only be used for resources
270  * directly related to the underlying hardware device, and only used in code
271  * paths fully protected by drm_dev_enter() and drm_dev_exit().
272  *
273  * Display driver example
274  * ~~~~~~~~~~~~~~~~~~~~~~
275  *
276  * The following example shows a typical structure of a DRM display driver.
277  * The example focus on the probe() function and the other functions that is
278  * almost always present and serves as a demonstration of devm_drm_dev_alloc().
279  *
280  * .. code-block:: c
281  *
282  *	struct driver_device {
283  *		struct drm_device drm;
284  *		void *userspace_facing;
285  *		struct clk *pclk;
286  *	};
287  *
288  *	static const struct drm_driver driver_drm_driver = {
289  *		[...]
290  *	};
291  *
292  *	static int driver_probe(struct platform_device *pdev)
293  *	{
294  *		struct driver_device *priv;
295  *		struct drm_device *drm;
296  *		int ret;
297  *
298  *		priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
299  *					  struct driver_device, drm);
300  *		if (IS_ERR(priv))
301  *			return PTR_ERR(priv);
302  *		drm = &priv->drm;
303  *
304  *		ret = drmm_mode_config_init(drm);
305  *		if (ret)
306  *			return ret;
307  *
308  *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
309  *		if (!priv->userspace_facing)
310  *			return -ENOMEM;
311  *
312  *		priv->pclk = devm_clk_get(dev, "PCLK");
313  *		if (IS_ERR(priv->pclk))
314  *			return PTR_ERR(priv->pclk);
315  *
316  *		// Further setup, display pipeline etc
317  *
318  *		platform_set_drvdata(pdev, drm);
319  *
320  *		drm_mode_config_reset(drm);
321  *
322  *		ret = drm_dev_register(drm);
323  *		if (ret)
324  *			return ret;
325  *
326  *		drm_fbdev_generic_setup(drm, 32);
327  *
328  *		return 0;
329  *	}
330  *
331  *	// This function is called before the devm_ resources are released
332  *	static int driver_remove(struct platform_device *pdev)
333  *	{
334  *		struct drm_device *drm = platform_get_drvdata(pdev);
335  *
336  *		drm_dev_unregister(drm);
337  *		drm_atomic_helper_shutdown(drm)
338  *
339  *		return 0;
340  *	}
341  *
342  *	// This function is called on kernel restart and shutdown
343  *	static void driver_shutdown(struct platform_device *pdev)
344  *	{
345  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
346  *	}
347  *
348  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
349  *	{
350  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
351  *	}
352  *
353  *	static int __maybe_unused driver_pm_resume(struct device *dev)
354  *	{
355  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
356  *
357  *		return 0;
358  *	}
359  *
360  *	static const struct dev_pm_ops driver_pm_ops = {
361  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
362  *	};
363  *
364  *	static struct platform_driver driver_driver = {
365  *		.driver = {
366  *			[...]
367  *			.pm = &driver_pm_ops,
368  *		},
369  *		.probe = driver_probe,
370  *		.remove = driver_remove,
371  *		.shutdown = driver_shutdown,
372  *	};
373  *	module_platform_driver(driver_driver);
374  *
375  * Drivers that want to support device unplugging (USB, DT overlay unload) should
376  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
377  * regions that is accessing device resources to prevent use after they're
378  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
379  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
380  * drm_atomic_helper_shutdown() is called. This means that if the disable code
381  * paths are protected, they will not run on regular driver module unload,
382  * possibly leaving the hardware enabled.
383  */
384 
385 /**
386  * drm_put_dev - Unregister and release a DRM device
387  * @dev: DRM device
388  *
389  * Called at module unload time or when a PCI device is unplugged.
390  *
391  * Cleans up all DRM device, calling drm_lastclose().
392  *
393  * Note: Use of this function is deprecated. It will eventually go away
394  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
395  * instead to make sure that the device isn't userspace accessible any more
396  * while teardown is in progress, ensuring that userspace can't access an
397  * inconsistent state.
398  */
399 void drm_put_dev(struct drm_device *dev)
400 {
401 	DRM_DEBUG("\n");
402 
403 	if (!dev) {
404 		DRM_ERROR("cleanup called no dev\n");
405 		return;
406 	}
407 
408 	drm_dev_unregister(dev);
409 	drm_dev_put(dev);
410 }
411 EXPORT_SYMBOL(drm_put_dev);
412 
413 /**
414  * drm_dev_enter - Enter device critical section
415  * @dev: DRM device
416  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
417  *
418  * This function marks and protects the beginning of a section that should not
419  * be entered after the device has been unplugged. The section end is marked
420  * with drm_dev_exit(). Calls to this function can be nested.
421  *
422  * Returns:
423  * True if it is OK to enter the section, false otherwise.
424  */
425 bool drm_dev_enter(struct drm_device *dev, int *idx)
426 {
427 	*idx = srcu_read_lock(&drm_unplug_srcu);
428 
429 	if (dev->unplugged) {
430 		srcu_read_unlock(&drm_unplug_srcu, *idx);
431 		return false;
432 	}
433 
434 	return true;
435 }
436 EXPORT_SYMBOL(drm_dev_enter);
437 
438 /**
439  * drm_dev_exit - Exit device critical section
440  * @idx: index returned from drm_dev_enter()
441  *
442  * This function marks the end of a section that should not be entered after
443  * the device has been unplugged.
444  */
445 void drm_dev_exit(int idx)
446 {
447 	srcu_read_unlock(&drm_unplug_srcu, idx);
448 }
449 EXPORT_SYMBOL(drm_dev_exit);
450 
451 /**
452  * drm_dev_unplug - unplug a DRM device
453  * @dev: DRM device
454  *
455  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
456  * userspace operations. Entry-points can use drm_dev_enter() and
457  * drm_dev_exit() to protect device resources in a race free manner. This
458  * essentially unregisters the device like drm_dev_unregister(), but can be
459  * called while there are still open users of @dev.
460  */
461 void drm_dev_unplug(struct drm_device *dev)
462 {
463 	/*
464 	 * After synchronizing any critical read section is guaranteed to see
465 	 * the new value of ->unplugged, and any critical section which might
466 	 * still have seen the old value of ->unplugged is guaranteed to have
467 	 * finished.
468 	 */
469 	dev->unplugged = true;
470 	synchronize_srcu(&drm_unplug_srcu);
471 
472 	drm_dev_unregister(dev);
473 
474 	/* Clear all CPU mappings pointing to this device */
475 	unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
476 }
477 EXPORT_SYMBOL(drm_dev_unplug);
478 
479 /*
480  * DRM internal mount
481  * We want to be able to allocate our own "struct address_space" to control
482  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
483  * stand-alone address_space objects, so we need an underlying inode. As there
484  * is no way to allocate an independent inode easily, we need a fake internal
485  * VFS mount-point.
486  *
487  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
488  * frees it again. You are allowed to use iget() and iput() to get references to
489  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
490  * drm_fs_inode_free() call (which does not have to be the last iput()).
491  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
492  * between multiple inode-users. You could, technically, call
493  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
494  * iput(), but this way you'd end up with a new vfsmount for each inode.
495  */
496 
497 static int drm_fs_cnt;
498 static struct vfsmount *drm_fs_mnt;
499 
500 static int drm_fs_init_fs_context(struct fs_context *fc)
501 {
502 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
503 }
504 
505 static struct file_system_type drm_fs_type = {
506 	.name		= "drm",
507 	.owner		= THIS_MODULE,
508 	.init_fs_context = drm_fs_init_fs_context,
509 	.kill_sb	= kill_anon_super,
510 };
511 
512 static struct inode *drm_fs_inode_new(void)
513 {
514 	struct inode *inode;
515 	int r;
516 
517 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
518 	if (r < 0) {
519 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
520 		return ERR_PTR(r);
521 	}
522 
523 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
524 	if (IS_ERR(inode))
525 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
526 
527 	return inode;
528 }
529 
530 static void drm_fs_inode_free(struct inode *inode)
531 {
532 	if (inode) {
533 		iput(inode);
534 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
535 	}
536 }
537 
538 /**
539  * DOC: component helper usage recommendations
540  *
541  * DRM drivers that drive hardware where a logical device consists of a pile of
542  * independent hardware blocks are recommended to use the :ref:`component helper
543  * library<component>`. For consistency and better options for code reuse the
544  * following guidelines apply:
545  *
546  *  - The entire device initialization procedure should be run from the
547  *    &component_master_ops.master_bind callback, starting with
548  *    devm_drm_dev_alloc(), then binding all components with
549  *    component_bind_all() and finishing with drm_dev_register().
550  *
551  *  - The opaque pointer passed to all components through component_bind_all()
552  *    should point at &struct drm_device of the device instance, not some driver
553  *    specific private structure.
554  *
555  *  - The component helper fills the niche where further standardization of
556  *    interfaces is not practical. When there already is, or will be, a
557  *    standardized interface like &drm_bridge or &drm_panel, providing its own
558  *    functions to find such components at driver load time, like
559  *    drm_of_find_panel_or_bridge(), then the component helper should not be
560  *    used.
561  */
562 
563 static void drm_dev_init_release(struct drm_device *dev, void *res)
564 {
565 	drm_legacy_ctxbitmap_cleanup(dev);
566 	drm_legacy_remove_map_hash(dev);
567 	drm_fs_inode_free(dev->anon_inode);
568 
569 	put_device(dev->dev);
570 	/* Prevent use-after-free in drm_managed_release when debugging is
571 	 * enabled. Slightly awkward, but can't really be helped. */
572 	dev->dev = NULL;
573 	mutex_destroy(&dev->master_mutex);
574 	mutex_destroy(&dev->clientlist_mutex);
575 	mutex_destroy(&dev->filelist_mutex);
576 	mutex_destroy(&dev->struct_mutex);
577 	drm_legacy_destroy_members(dev);
578 }
579 
580 static int drm_dev_init(struct drm_device *dev,
581 			const struct drm_driver *driver,
582 			struct device *parent)
583 {
584 	int ret;
585 
586 	if (!drm_core_init_complete) {
587 		DRM_ERROR("DRM core is not initialized\n");
588 		return -ENODEV;
589 	}
590 
591 	if (WARN_ON(!parent))
592 		return -EINVAL;
593 
594 	kref_init(&dev->ref);
595 	dev->dev = get_device(parent);
596 	dev->driver = driver;
597 
598 	INIT_LIST_HEAD(&dev->managed.resources);
599 	spin_lock_init(&dev->managed.lock);
600 
601 	/* no per-device feature limits by default */
602 	dev->driver_features = ~0u;
603 
604 	drm_legacy_init_members(dev);
605 	INIT_LIST_HEAD(&dev->filelist);
606 	INIT_LIST_HEAD(&dev->filelist_internal);
607 	INIT_LIST_HEAD(&dev->clientlist);
608 	INIT_LIST_HEAD(&dev->vblank_event_list);
609 
610 	spin_lock_init(&dev->event_lock);
611 	mutex_init(&dev->struct_mutex);
612 	mutex_init(&dev->filelist_mutex);
613 	mutex_init(&dev->clientlist_mutex);
614 	mutex_init(&dev->master_mutex);
615 
616 	ret = drmm_add_action(dev, drm_dev_init_release, NULL);
617 	if (ret)
618 		return ret;
619 
620 	dev->anon_inode = drm_fs_inode_new();
621 	if (IS_ERR(dev->anon_inode)) {
622 		ret = PTR_ERR(dev->anon_inode);
623 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
624 		goto err;
625 	}
626 
627 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
628 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
629 		if (ret)
630 			goto err;
631 	}
632 
633 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
634 	if (ret)
635 		goto err;
636 
637 	ret = drm_legacy_create_map_hash(dev);
638 	if (ret)
639 		goto err;
640 
641 	drm_legacy_ctxbitmap_init(dev);
642 
643 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
644 		ret = drm_gem_init(dev);
645 		if (ret) {
646 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
647 			goto err;
648 		}
649 	}
650 
651 	ret = drm_dev_set_unique(dev, dev_name(parent));
652 	if (ret)
653 		goto err;
654 
655 	return 0;
656 
657 err:
658 	drm_managed_release(dev);
659 
660 	return ret;
661 }
662 
663 static void devm_drm_dev_init_release(void *data)
664 {
665 	drm_dev_put(data);
666 }
667 
668 static int devm_drm_dev_init(struct device *parent,
669 			     struct drm_device *dev,
670 			     const struct drm_driver *driver)
671 {
672 	int ret;
673 
674 	ret = drm_dev_init(dev, driver, parent);
675 	if (ret)
676 		return ret;
677 
678 	return devm_add_action_or_reset(parent,
679 					devm_drm_dev_init_release, dev);
680 }
681 
682 void *__devm_drm_dev_alloc(struct device *parent,
683 			   const struct drm_driver *driver,
684 			   size_t size, size_t offset)
685 {
686 	void *container;
687 	struct drm_device *drm;
688 	int ret;
689 
690 	container = kzalloc(size, GFP_KERNEL);
691 	if (!container)
692 		return ERR_PTR(-ENOMEM);
693 
694 	drm = container + offset;
695 	ret = devm_drm_dev_init(parent, drm, driver);
696 	if (ret) {
697 		kfree(container);
698 		return ERR_PTR(ret);
699 	}
700 	drmm_add_final_kfree(drm, container);
701 
702 	return container;
703 }
704 EXPORT_SYMBOL(__devm_drm_dev_alloc);
705 
706 /**
707  * drm_dev_alloc - Allocate new DRM device
708  * @driver: DRM driver to allocate device for
709  * @parent: Parent device object
710  *
711  * This is the deprecated version of devm_drm_dev_alloc(), which does not support
712  * subclassing through embedding the struct &drm_device in a driver private
713  * structure, and which does not support automatic cleanup through devres.
714  *
715  * RETURNS:
716  * Pointer to new DRM device, or ERR_PTR on failure.
717  */
718 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
719 				 struct device *parent)
720 {
721 	struct drm_device *dev;
722 	int ret;
723 
724 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
725 	if (!dev)
726 		return ERR_PTR(-ENOMEM);
727 
728 	ret = drm_dev_init(dev, driver, parent);
729 	if (ret) {
730 		kfree(dev);
731 		return ERR_PTR(ret);
732 	}
733 
734 	drmm_add_final_kfree(dev, dev);
735 
736 	return dev;
737 }
738 EXPORT_SYMBOL(drm_dev_alloc);
739 
740 static void drm_dev_release(struct kref *ref)
741 {
742 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
743 
744 	if (dev->driver->release)
745 		dev->driver->release(dev);
746 
747 	drm_managed_release(dev);
748 
749 	kfree(dev->managed.final_kfree);
750 }
751 
752 /**
753  * drm_dev_get - Take reference of a DRM device
754  * @dev: device to take reference of or NULL
755  *
756  * This increases the ref-count of @dev by one. You *must* already own a
757  * reference when calling this. Use drm_dev_put() to drop this reference
758  * again.
759  *
760  * This function never fails. However, this function does not provide *any*
761  * guarantee whether the device is alive or running. It only provides a
762  * reference to the object and the memory associated with it.
763  */
764 void drm_dev_get(struct drm_device *dev)
765 {
766 	if (dev)
767 		kref_get(&dev->ref);
768 }
769 EXPORT_SYMBOL(drm_dev_get);
770 
771 /**
772  * drm_dev_put - Drop reference of a DRM device
773  * @dev: device to drop reference of or NULL
774  *
775  * This decreases the ref-count of @dev by one. The device is destroyed if the
776  * ref-count drops to zero.
777  */
778 void drm_dev_put(struct drm_device *dev)
779 {
780 	if (dev)
781 		kref_put(&dev->ref, drm_dev_release);
782 }
783 EXPORT_SYMBOL(drm_dev_put);
784 
785 static int create_compat_control_link(struct drm_device *dev)
786 {
787 	struct drm_minor *minor;
788 	char *name;
789 	int ret;
790 
791 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
792 		return 0;
793 
794 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
795 	if (!minor)
796 		return 0;
797 
798 	/*
799 	 * Some existing userspace out there uses the existing of the controlD*
800 	 * sysfs files to figure out whether it's a modeset driver. It only does
801 	 * readdir, hence a symlink is sufficient (and the least confusing
802 	 * option). Otherwise controlD* is entirely unused.
803 	 *
804 	 * Old controlD chardev have been allocated in the range
805 	 * 64-127.
806 	 */
807 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
808 	if (!name)
809 		return -ENOMEM;
810 
811 	ret = sysfs_create_link(minor->kdev->kobj.parent,
812 				&minor->kdev->kobj,
813 				name);
814 
815 	kfree(name);
816 
817 	return ret;
818 }
819 
820 static void remove_compat_control_link(struct drm_device *dev)
821 {
822 	struct drm_minor *minor;
823 	char *name;
824 
825 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
826 		return;
827 
828 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
829 	if (!minor)
830 		return;
831 
832 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
833 	if (!name)
834 		return;
835 
836 	sysfs_remove_link(minor->kdev->kobj.parent, name);
837 
838 	kfree(name);
839 }
840 
841 /**
842  * drm_dev_register - Register DRM device
843  * @dev: Device to register
844  * @flags: Flags passed to the driver's .load() function
845  *
846  * Register the DRM device @dev with the system, advertise device to user-space
847  * and start normal device operation. @dev must be initialized via drm_dev_init()
848  * previously.
849  *
850  * Never call this twice on any device!
851  *
852  * NOTE: To ensure backward compatibility with existing drivers method this
853  * function calls the &drm_driver.load method after registering the device
854  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
855  * therefore deprecated, drivers must perform all initialization before calling
856  * drm_dev_register().
857  *
858  * RETURNS:
859  * 0 on success, negative error code on failure.
860  */
861 int drm_dev_register(struct drm_device *dev, unsigned long flags)
862 {
863 	const struct drm_driver *driver = dev->driver;
864 	int ret;
865 
866 	if (!driver->load)
867 		drm_mode_config_validate(dev);
868 
869 	WARN_ON(!dev->managed.final_kfree);
870 
871 	if (drm_dev_needs_global_mutex(dev))
872 		mutex_lock(&drm_global_mutex);
873 
874 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
875 	if (ret)
876 		goto err_minors;
877 
878 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
879 	if (ret)
880 		goto err_minors;
881 
882 	ret = create_compat_control_link(dev);
883 	if (ret)
884 		goto err_minors;
885 
886 	dev->registered = true;
887 
888 	if (dev->driver->load) {
889 		ret = dev->driver->load(dev, flags);
890 		if (ret)
891 			goto err_minors;
892 	}
893 
894 	if (drm_core_check_feature(dev, DRIVER_MODESET))
895 		drm_modeset_register_all(dev);
896 
897 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
898 		 driver->name, driver->major, driver->minor,
899 		 driver->patchlevel, driver->date,
900 		 dev->dev ? dev_name(dev->dev) : "virtual device",
901 		 dev->primary->index);
902 
903 	goto out_unlock;
904 
905 err_minors:
906 	remove_compat_control_link(dev);
907 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
908 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
909 out_unlock:
910 	if (drm_dev_needs_global_mutex(dev))
911 		mutex_unlock(&drm_global_mutex);
912 	return ret;
913 }
914 EXPORT_SYMBOL(drm_dev_register);
915 
916 /**
917  * drm_dev_unregister - Unregister DRM device
918  * @dev: Device to unregister
919  *
920  * Unregister the DRM device from the system. This does the reverse of
921  * drm_dev_register() but does not deallocate the device. The caller must call
922  * drm_dev_put() to drop their final reference.
923  *
924  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
925  * which can be called while there are still open users of @dev.
926  *
927  * This should be called first in the device teardown code to make sure
928  * userspace can't access the device instance any more.
929  */
930 void drm_dev_unregister(struct drm_device *dev)
931 {
932 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
933 		drm_lastclose(dev);
934 
935 	dev->registered = false;
936 
937 	drm_client_dev_unregister(dev);
938 
939 	if (drm_core_check_feature(dev, DRIVER_MODESET))
940 		drm_modeset_unregister_all(dev);
941 
942 	if (dev->driver->unload)
943 		dev->driver->unload(dev);
944 
945 	drm_legacy_pci_agp_destroy(dev);
946 	drm_legacy_rmmaps(dev);
947 
948 	remove_compat_control_link(dev);
949 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
950 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
951 }
952 EXPORT_SYMBOL(drm_dev_unregister);
953 
954 /**
955  * drm_dev_set_unique - Set the unique name of a DRM device
956  * @dev: device of which to set the unique name
957  * @name: unique name
958  *
959  * Sets the unique name of a DRM device using the specified string. This is
960  * already done by drm_dev_init(), drivers should only override the default
961  * unique name for backwards compatibility reasons.
962  *
963  * Return: 0 on success or a negative error code on failure.
964  */
965 int drm_dev_set_unique(struct drm_device *dev, const char *name)
966 {
967 	drmm_kfree(dev, dev->unique);
968 	dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL);
969 
970 	return dev->unique ? 0 : -ENOMEM;
971 }
972 EXPORT_SYMBOL(drm_dev_set_unique);
973 
974 /*
975  * DRM Core
976  * The DRM core module initializes all global DRM objects and makes them
977  * available to drivers. Once setup, drivers can probe their respective
978  * devices.
979  * Currently, core management includes:
980  *  - The "DRM-Global" key/value database
981  *  - Global ID management for connectors
982  *  - DRM major number allocation
983  *  - DRM minor management
984  *  - DRM sysfs class
985  *  - DRM debugfs root
986  *
987  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
988  * interface registered on a DRM device, you can request minor numbers from DRM
989  * core. DRM core takes care of major-number management and char-dev
990  * registration. A stub ->open() callback forwards any open() requests to the
991  * registered minor.
992  */
993 
994 static int drm_stub_open(struct inode *inode, struct file *filp)
995 {
996 	const struct file_operations *new_fops;
997 	struct drm_minor *minor;
998 	int err;
999 
1000 	DRM_DEBUG("\n");
1001 
1002 	minor = drm_minor_acquire(iminor(inode));
1003 	if (IS_ERR(minor))
1004 		return PTR_ERR(minor);
1005 
1006 	new_fops = fops_get(minor->dev->driver->fops);
1007 	if (!new_fops) {
1008 		err = -ENODEV;
1009 		goto out;
1010 	}
1011 
1012 	replace_fops(filp, new_fops);
1013 	if (filp->f_op->open)
1014 		err = filp->f_op->open(inode, filp);
1015 	else
1016 		err = 0;
1017 
1018 out:
1019 	drm_minor_release(minor);
1020 
1021 	return err;
1022 }
1023 
1024 static const struct file_operations drm_stub_fops = {
1025 	.owner = THIS_MODULE,
1026 	.open = drm_stub_open,
1027 	.llseek = noop_llseek,
1028 };
1029 
1030 static void drm_core_exit(void)
1031 {
1032 	unregister_chrdev(DRM_MAJOR, "drm");
1033 	debugfs_remove(drm_debugfs_root);
1034 	drm_sysfs_destroy();
1035 	idr_destroy(&drm_minors_idr);
1036 	drm_connector_ida_destroy();
1037 }
1038 
1039 static int __init drm_core_init(void)
1040 {
1041 	int ret;
1042 
1043 	drm_connector_ida_init();
1044 	idr_init(&drm_minors_idr);
1045 	drm_memcpy_init_early();
1046 
1047 	ret = drm_sysfs_init();
1048 	if (ret < 0) {
1049 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1050 		goto error;
1051 	}
1052 
1053 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1054 
1055 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1056 	if (ret < 0)
1057 		goto error;
1058 
1059 	drm_core_init_complete = true;
1060 
1061 	DRM_DEBUG("Initialized\n");
1062 	return 0;
1063 
1064 error:
1065 	drm_core_exit();
1066 	return ret;
1067 }
1068 
1069 module_init(drm_core_init);
1070 module_exit(drm_core_exit);
1071