1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/pseudo_fs.h> 35 #include <linux/slab.h> 36 #include <linux/srcu.h> 37 38 #include <drm/drm_client.h> 39 #include <drm/drm_color_mgmt.h> 40 #include <drm/drm_drv.h> 41 #include <drm/drm_file.h> 42 #include <drm/drm_managed.h> 43 #include <drm/drm_mode_object.h> 44 #include <drm/drm_print.h> 45 46 #include "drm_crtc_internal.h" 47 #include "drm_internal.h" 48 #include "drm_legacy.h" 49 50 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 51 MODULE_DESCRIPTION("DRM shared core routines"); 52 MODULE_LICENSE("GPL and additional rights"); 53 54 static DEFINE_SPINLOCK(drm_minor_lock); 55 static struct idr drm_minors_idr; 56 57 /* 58 * If the drm core fails to init for whatever reason, 59 * we should prevent any drivers from registering with it. 60 * It's best to check this at drm_dev_init(), as some drivers 61 * prefer to embed struct drm_device into their own device 62 * structure and call drm_dev_init() themselves. 63 */ 64 static bool drm_core_init_complete = false; 65 66 static struct dentry *drm_debugfs_root; 67 68 DEFINE_STATIC_SRCU(drm_unplug_srcu); 69 70 /* 71 * DRM Minors 72 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 73 * of them is represented by a drm_minor object. Depending on the capabilities 74 * of the device-driver, different interfaces are registered. 75 * 76 * Minors can be accessed via dev->$minor_name. This pointer is either 77 * NULL or a valid drm_minor pointer and stays valid as long as the device is 78 * valid. This means, DRM minors have the same life-time as the underlying 79 * device. However, this doesn't mean that the minor is active. Minors are 80 * registered and unregistered dynamically according to device-state. 81 */ 82 83 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 84 unsigned int type) 85 { 86 switch (type) { 87 case DRM_MINOR_PRIMARY: 88 return &dev->primary; 89 case DRM_MINOR_RENDER: 90 return &dev->render; 91 default: 92 BUG(); 93 } 94 } 95 96 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 97 { 98 struct drm_minor *minor = data; 99 unsigned long flags; 100 101 WARN_ON(dev != minor->dev); 102 103 put_device(minor->kdev); 104 105 spin_lock_irqsave(&drm_minor_lock, flags); 106 idr_remove(&drm_minors_idr, minor->index); 107 spin_unlock_irqrestore(&drm_minor_lock, flags); 108 } 109 110 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 111 { 112 struct drm_minor *minor; 113 unsigned long flags; 114 int r; 115 116 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 117 if (!minor) 118 return -ENOMEM; 119 120 minor->type = type; 121 minor->dev = dev; 122 123 idr_preload(GFP_KERNEL); 124 spin_lock_irqsave(&drm_minor_lock, flags); 125 r = idr_alloc(&drm_minors_idr, 126 NULL, 127 64 * type, 128 64 * (type + 1), 129 GFP_NOWAIT); 130 spin_unlock_irqrestore(&drm_minor_lock, flags); 131 idr_preload_end(); 132 133 if (r < 0) 134 return r; 135 136 minor->index = r; 137 138 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 139 if (r) 140 return r; 141 142 minor->kdev = drm_sysfs_minor_alloc(minor); 143 if (IS_ERR(minor->kdev)) 144 return PTR_ERR(minor->kdev); 145 146 *drm_minor_get_slot(dev, type) = minor; 147 return 0; 148 } 149 150 static int drm_minor_register(struct drm_device *dev, unsigned int type) 151 { 152 struct drm_minor *minor; 153 unsigned long flags; 154 int ret; 155 156 DRM_DEBUG("\n"); 157 158 minor = *drm_minor_get_slot(dev, type); 159 if (!minor) 160 return 0; 161 162 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 163 if (ret) { 164 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 165 goto err_debugfs; 166 } 167 168 ret = device_add(minor->kdev); 169 if (ret) 170 goto err_debugfs; 171 172 /* replace NULL with @minor so lookups will succeed from now on */ 173 spin_lock_irqsave(&drm_minor_lock, flags); 174 idr_replace(&drm_minors_idr, minor, minor->index); 175 spin_unlock_irqrestore(&drm_minor_lock, flags); 176 177 DRM_DEBUG("new minor registered %d\n", minor->index); 178 return 0; 179 180 err_debugfs: 181 drm_debugfs_cleanup(minor); 182 return ret; 183 } 184 185 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 186 { 187 struct drm_minor *minor; 188 unsigned long flags; 189 190 minor = *drm_minor_get_slot(dev, type); 191 if (!minor || !device_is_registered(minor->kdev)) 192 return; 193 194 /* replace @minor with NULL so lookups will fail from now on */ 195 spin_lock_irqsave(&drm_minor_lock, flags); 196 idr_replace(&drm_minors_idr, NULL, minor->index); 197 spin_unlock_irqrestore(&drm_minor_lock, flags); 198 199 device_del(minor->kdev); 200 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 201 drm_debugfs_cleanup(minor); 202 } 203 204 /* 205 * Looks up the given minor-ID and returns the respective DRM-minor object. The 206 * refence-count of the underlying device is increased so you must release this 207 * object with drm_minor_release(). 208 * 209 * As long as you hold this minor, it is guaranteed that the object and the 210 * minor->dev pointer will stay valid! However, the device may get unplugged and 211 * unregistered while you hold the minor. 212 */ 213 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 214 { 215 struct drm_minor *minor; 216 unsigned long flags; 217 218 spin_lock_irqsave(&drm_minor_lock, flags); 219 minor = idr_find(&drm_minors_idr, minor_id); 220 if (minor) 221 drm_dev_get(minor->dev); 222 spin_unlock_irqrestore(&drm_minor_lock, flags); 223 224 if (!minor) { 225 return ERR_PTR(-ENODEV); 226 } else if (drm_dev_is_unplugged(minor->dev)) { 227 drm_dev_put(minor->dev); 228 return ERR_PTR(-ENODEV); 229 } 230 231 return minor; 232 } 233 234 void drm_minor_release(struct drm_minor *minor) 235 { 236 drm_dev_put(minor->dev); 237 } 238 239 /** 240 * DOC: driver instance overview 241 * 242 * A device instance for a drm driver is represented by &struct drm_device. This 243 * is initialized with drm_dev_init(), usually from bus-specific ->probe() 244 * callbacks implemented by the driver. The driver then needs to initialize all 245 * the various subsystems for the drm device like memory management, vblank 246 * handling, modesetting support and intial output configuration plus obviously 247 * initialize all the corresponding hardware bits. Finally when everything is up 248 * and running and ready for userspace the device instance can be published 249 * using drm_dev_register(). 250 * 251 * There is also deprecated support for initalizing device instances using 252 * bus-specific helpers and the &drm_driver.load callback. But due to 253 * backwards-compatibility needs the device instance have to be published too 254 * early, which requires unpretty global locking to make safe and is therefore 255 * only support for existing drivers not yet converted to the new scheme. 256 * 257 * When cleaning up a device instance everything needs to be done in reverse: 258 * First unpublish the device instance with drm_dev_unregister(). Then clean up 259 * any other resources allocated at device initialization and drop the driver's 260 * reference to &drm_device using drm_dev_put(). 261 * 262 * Note that any allocation or resource which is visible to userspace must be 263 * released only when the final drm_dev_put() is called, and not when the 264 * driver is unbound from the underlying physical struct &device. Best to use 265 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 266 * related functions. 267 * 268 * devres managed resources like devm_kmalloc() can only be used for resources 269 * directly related to the underlying hardware device, and only used in code 270 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 271 * 272 * Display driver example 273 * ~~~~~~~~~~~~~~~~~~~~~~ 274 * 275 * The following example shows a typical structure of a DRM display driver. 276 * The example focus on the probe() function and the other functions that is 277 * almost always present and serves as a demonstration of devm_drm_dev_init(). 278 * 279 * .. code-block:: c 280 * 281 * struct driver_device { 282 * struct drm_device drm; 283 * void *userspace_facing; 284 * struct clk *pclk; 285 * }; 286 * 287 * static struct drm_driver driver_drm_driver = { 288 * [...] 289 * }; 290 * 291 * static int driver_probe(struct platform_device *pdev) 292 * { 293 * struct driver_device *priv; 294 * struct drm_device *drm; 295 * int ret; 296 * 297 * // devm_kzalloc() can't be used here because the drm_device ' 298 * // lifetime can exceed the device lifetime if driver unbind 299 * // happens when userspace still has open file descriptors. 300 * priv = kzalloc(sizeof(*priv), GFP_KERNEL); 301 * if (!priv) 302 * return -ENOMEM; 303 * 304 * drm = &priv->drm; 305 * 306 * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver); 307 * if (ret) { 308 * kfree(priv); 309 * return ret; 310 * } 311 * drmm_add_final_kfree(drm, priv); 312 * 313 * ret = drmm_mode_config_init(drm); 314 * if (ret) 315 * return ret; 316 * 317 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 318 * if (!priv->userspace_facing) 319 * return -ENOMEM; 320 * 321 * priv->pclk = devm_clk_get(dev, "PCLK"); 322 * if (IS_ERR(priv->pclk)) 323 * return PTR_ERR(priv->pclk); 324 * 325 * // Further setup, display pipeline etc 326 * 327 * platform_set_drvdata(pdev, drm); 328 * 329 * drm_mode_config_reset(drm); 330 * 331 * ret = drm_dev_register(drm); 332 * if (ret) 333 * return ret; 334 * 335 * drm_fbdev_generic_setup(drm, 32); 336 * 337 * return 0; 338 * } 339 * 340 * // This function is called before the devm_ resources are released 341 * static int driver_remove(struct platform_device *pdev) 342 * { 343 * struct drm_device *drm = platform_get_drvdata(pdev); 344 * 345 * drm_dev_unregister(drm); 346 * drm_atomic_helper_shutdown(drm) 347 * 348 * return 0; 349 * } 350 * 351 * // This function is called on kernel restart and shutdown 352 * static void driver_shutdown(struct platform_device *pdev) 353 * { 354 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 355 * } 356 * 357 * static int __maybe_unused driver_pm_suspend(struct device *dev) 358 * { 359 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 360 * } 361 * 362 * static int __maybe_unused driver_pm_resume(struct device *dev) 363 * { 364 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 365 * 366 * return 0; 367 * } 368 * 369 * static const struct dev_pm_ops driver_pm_ops = { 370 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 371 * }; 372 * 373 * static struct platform_driver driver_driver = { 374 * .driver = { 375 * [...] 376 * .pm = &driver_pm_ops, 377 * }, 378 * .probe = driver_probe, 379 * .remove = driver_remove, 380 * .shutdown = driver_shutdown, 381 * }; 382 * module_platform_driver(driver_driver); 383 * 384 * Drivers that want to support device unplugging (USB, DT overlay unload) should 385 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 386 * regions that is accessing device resources to prevent use after they're 387 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 388 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 389 * drm_atomic_helper_shutdown() is called. This means that if the disable code 390 * paths are protected, they will not run on regular driver module unload, 391 * possibily leaving the hardware enabled. 392 */ 393 394 /** 395 * drm_put_dev - Unregister and release a DRM device 396 * @dev: DRM device 397 * 398 * Called at module unload time or when a PCI device is unplugged. 399 * 400 * Cleans up all DRM device, calling drm_lastclose(). 401 * 402 * Note: Use of this function is deprecated. It will eventually go away 403 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 404 * instead to make sure that the device isn't userspace accessible any more 405 * while teardown is in progress, ensuring that userspace can't access an 406 * inconsistent state. 407 */ 408 void drm_put_dev(struct drm_device *dev) 409 { 410 DRM_DEBUG("\n"); 411 412 if (!dev) { 413 DRM_ERROR("cleanup called no dev\n"); 414 return; 415 } 416 417 drm_dev_unregister(dev); 418 drm_dev_put(dev); 419 } 420 EXPORT_SYMBOL(drm_put_dev); 421 422 /** 423 * drm_dev_enter - Enter device critical section 424 * @dev: DRM device 425 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 426 * 427 * This function marks and protects the beginning of a section that should not 428 * be entered after the device has been unplugged. The section end is marked 429 * with drm_dev_exit(). Calls to this function can be nested. 430 * 431 * Returns: 432 * True if it is OK to enter the section, false otherwise. 433 */ 434 bool drm_dev_enter(struct drm_device *dev, int *idx) 435 { 436 *idx = srcu_read_lock(&drm_unplug_srcu); 437 438 if (dev->unplugged) { 439 srcu_read_unlock(&drm_unplug_srcu, *idx); 440 return false; 441 } 442 443 return true; 444 } 445 EXPORT_SYMBOL(drm_dev_enter); 446 447 /** 448 * drm_dev_exit - Exit device critical section 449 * @idx: index returned from drm_dev_enter() 450 * 451 * This function marks the end of a section that should not be entered after 452 * the device has been unplugged. 453 */ 454 void drm_dev_exit(int idx) 455 { 456 srcu_read_unlock(&drm_unplug_srcu, idx); 457 } 458 EXPORT_SYMBOL(drm_dev_exit); 459 460 /** 461 * drm_dev_unplug - unplug a DRM device 462 * @dev: DRM device 463 * 464 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 465 * userspace operations. Entry-points can use drm_dev_enter() and 466 * drm_dev_exit() to protect device resources in a race free manner. This 467 * essentially unregisters the device like drm_dev_unregister(), but can be 468 * called while there are still open users of @dev. 469 */ 470 void drm_dev_unplug(struct drm_device *dev) 471 { 472 /* 473 * After synchronizing any critical read section is guaranteed to see 474 * the new value of ->unplugged, and any critical section which might 475 * still have seen the old value of ->unplugged is guaranteed to have 476 * finished. 477 */ 478 dev->unplugged = true; 479 synchronize_srcu(&drm_unplug_srcu); 480 481 drm_dev_unregister(dev); 482 } 483 EXPORT_SYMBOL(drm_dev_unplug); 484 485 /* 486 * DRM internal mount 487 * We want to be able to allocate our own "struct address_space" to control 488 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 489 * stand-alone address_space objects, so we need an underlying inode. As there 490 * is no way to allocate an independent inode easily, we need a fake internal 491 * VFS mount-point. 492 * 493 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 494 * frees it again. You are allowed to use iget() and iput() to get references to 495 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 496 * drm_fs_inode_free() call (which does not have to be the last iput()). 497 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 498 * between multiple inode-users. You could, technically, call 499 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 500 * iput(), but this way you'd end up with a new vfsmount for each inode. 501 */ 502 503 static int drm_fs_cnt; 504 static struct vfsmount *drm_fs_mnt; 505 506 static int drm_fs_init_fs_context(struct fs_context *fc) 507 { 508 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 509 } 510 511 static struct file_system_type drm_fs_type = { 512 .name = "drm", 513 .owner = THIS_MODULE, 514 .init_fs_context = drm_fs_init_fs_context, 515 .kill_sb = kill_anon_super, 516 }; 517 518 static struct inode *drm_fs_inode_new(void) 519 { 520 struct inode *inode; 521 int r; 522 523 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 524 if (r < 0) { 525 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 526 return ERR_PTR(r); 527 } 528 529 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 530 if (IS_ERR(inode)) 531 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 532 533 return inode; 534 } 535 536 static void drm_fs_inode_free(struct inode *inode) 537 { 538 if (inode) { 539 iput(inode); 540 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 541 } 542 } 543 544 /** 545 * DOC: component helper usage recommendations 546 * 547 * DRM drivers that drive hardware where a logical device consists of a pile of 548 * independent hardware blocks are recommended to use the :ref:`component helper 549 * library<component>`. For consistency and better options for code reuse the 550 * following guidelines apply: 551 * 552 * - The entire device initialization procedure should be run from the 553 * &component_master_ops.master_bind callback, starting with drm_dev_init(), 554 * then binding all components with component_bind_all() and finishing with 555 * drm_dev_register(). 556 * 557 * - The opaque pointer passed to all components through component_bind_all() 558 * should point at &struct drm_device of the device instance, not some driver 559 * specific private structure. 560 * 561 * - The component helper fills the niche where further standardization of 562 * interfaces is not practical. When there already is, or will be, a 563 * standardized interface like &drm_bridge or &drm_panel, providing its own 564 * functions to find such components at driver load time, like 565 * drm_of_find_panel_or_bridge(), then the component helper should not be 566 * used. 567 */ 568 569 static void drm_dev_init_release(struct drm_device *dev, void *res) 570 { 571 drm_legacy_ctxbitmap_cleanup(dev); 572 drm_legacy_remove_map_hash(dev); 573 drm_fs_inode_free(dev->anon_inode); 574 575 put_device(dev->dev); 576 /* Prevent use-after-free in drm_managed_release when debugging is 577 * enabled. Slightly awkward, but can't really be helped. */ 578 dev->dev = NULL; 579 mutex_destroy(&dev->master_mutex); 580 mutex_destroy(&dev->clientlist_mutex); 581 mutex_destroy(&dev->filelist_mutex); 582 mutex_destroy(&dev->struct_mutex); 583 drm_legacy_destroy_members(dev); 584 } 585 586 /** 587 * drm_dev_init - Initialise new DRM device 588 * @dev: DRM device 589 * @driver: DRM driver 590 * @parent: Parent device object 591 * 592 * Initialize a new DRM device. No device registration is done. 593 * Call drm_dev_register() to advertice the device to user space and register it 594 * with other core subsystems. This should be done last in the device 595 * initialization sequence to make sure userspace can't access an inconsistent 596 * state. 597 * 598 * The initial ref-count of the object is 1. Use drm_dev_get() and 599 * drm_dev_put() to take and drop further ref-counts. 600 * 601 * It is recommended that drivers embed &struct drm_device into their own device 602 * structure. 603 * 604 * Drivers that do not want to allocate their own device struct 605 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 606 * that do embed &struct drm_device it must be placed first in the overall 607 * structure, and the overall structure must be allocated using kmalloc(): The 608 * drm core's release function unconditionally calls kfree() on the @dev pointer 609 * when the final reference is released. To override this behaviour, and so 610 * allow embedding of the drm_device inside the driver's device struct at an 611 * arbitrary offset, you must supply a &drm_driver.release callback and control 612 * the finalization explicitly. 613 * 614 * Note that drivers must call drmm_add_final_kfree() after this function has 615 * completed successfully. 616 * 617 * RETURNS: 618 * 0 on success, or error code on failure. 619 */ 620 int drm_dev_init(struct drm_device *dev, 621 struct drm_driver *driver, 622 struct device *parent) 623 { 624 int ret; 625 626 if (!drm_core_init_complete) { 627 DRM_ERROR("DRM core is not initialized\n"); 628 return -ENODEV; 629 } 630 631 if (WARN_ON(!parent)) 632 return -EINVAL; 633 634 kref_init(&dev->ref); 635 dev->dev = get_device(parent); 636 dev->driver = driver; 637 638 INIT_LIST_HEAD(&dev->managed.resources); 639 spin_lock_init(&dev->managed.lock); 640 641 /* no per-device feature limits by default */ 642 dev->driver_features = ~0u; 643 644 drm_legacy_init_members(dev); 645 INIT_LIST_HEAD(&dev->filelist); 646 INIT_LIST_HEAD(&dev->filelist_internal); 647 INIT_LIST_HEAD(&dev->clientlist); 648 INIT_LIST_HEAD(&dev->vblank_event_list); 649 650 spin_lock_init(&dev->event_lock); 651 mutex_init(&dev->struct_mutex); 652 mutex_init(&dev->filelist_mutex); 653 mutex_init(&dev->clientlist_mutex); 654 mutex_init(&dev->master_mutex); 655 656 ret = drmm_add_action(dev, drm_dev_init_release, NULL); 657 if (ret) 658 return ret; 659 660 dev->anon_inode = drm_fs_inode_new(); 661 if (IS_ERR(dev->anon_inode)) { 662 ret = PTR_ERR(dev->anon_inode); 663 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 664 goto err; 665 } 666 667 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 668 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 669 if (ret) 670 goto err; 671 } 672 673 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 674 if (ret) 675 goto err; 676 677 ret = drm_legacy_create_map_hash(dev); 678 if (ret) 679 goto err; 680 681 drm_legacy_ctxbitmap_init(dev); 682 683 if (drm_core_check_feature(dev, DRIVER_GEM)) { 684 ret = drm_gem_init(dev); 685 if (ret) { 686 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 687 goto err; 688 } 689 } 690 691 ret = drm_dev_set_unique(dev, dev_name(parent)); 692 if (ret) 693 goto err; 694 695 return 0; 696 697 err: 698 drm_managed_release(dev); 699 700 return ret; 701 } 702 EXPORT_SYMBOL(drm_dev_init); 703 704 static void devm_drm_dev_init_release(void *data) 705 { 706 drm_dev_put(data); 707 } 708 709 /** 710 * devm_drm_dev_init - Resource managed drm_dev_init() 711 * @parent: Parent device object 712 * @dev: DRM device 713 * @driver: DRM driver 714 * 715 * Managed drm_dev_init(). The DRM device initialized with this function is 716 * automatically put on driver detach using drm_dev_put(). 717 * 718 * Note that drivers must call drmm_add_final_kfree() after this function has 719 * completed successfully. 720 * 721 * RETURNS: 722 * 0 on success, or error code on failure. 723 */ 724 int devm_drm_dev_init(struct device *parent, 725 struct drm_device *dev, 726 struct drm_driver *driver) 727 { 728 int ret; 729 730 ret = drm_dev_init(dev, driver, parent); 731 if (ret) 732 return ret; 733 734 ret = devm_add_action(parent, devm_drm_dev_init_release, dev); 735 if (ret) 736 devm_drm_dev_init_release(dev); 737 738 return ret; 739 } 740 EXPORT_SYMBOL(devm_drm_dev_init); 741 742 void *__devm_drm_dev_alloc(struct device *parent, struct drm_driver *driver, 743 size_t size, size_t offset) 744 { 745 void *container; 746 struct drm_device *drm; 747 int ret; 748 749 container = kzalloc(size, GFP_KERNEL); 750 if (!container) 751 return ERR_PTR(-ENOMEM); 752 753 drm = container + offset; 754 ret = devm_drm_dev_init(parent, drm, driver); 755 if (ret) { 756 kfree(container); 757 return ERR_PTR(ret); 758 } 759 drmm_add_final_kfree(drm, container); 760 761 return container; 762 } 763 EXPORT_SYMBOL(__devm_drm_dev_alloc); 764 765 /** 766 * drm_dev_alloc - Allocate new DRM device 767 * @driver: DRM driver to allocate device for 768 * @parent: Parent device object 769 * 770 * Allocate and initialize a new DRM device. No device registration is done. 771 * Call drm_dev_register() to advertice the device to user space and register it 772 * with other core subsystems. This should be done last in the device 773 * initialization sequence to make sure userspace can't access an inconsistent 774 * state. 775 * 776 * The initial ref-count of the object is 1. Use drm_dev_get() and 777 * drm_dev_put() to take and drop further ref-counts. 778 * 779 * Note that for purely virtual devices @parent can be NULL. 780 * 781 * Drivers that wish to subclass or embed &struct drm_device into their 782 * own struct should look at using drm_dev_init() instead. 783 * 784 * RETURNS: 785 * Pointer to new DRM device, or ERR_PTR on failure. 786 */ 787 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 788 struct device *parent) 789 { 790 struct drm_device *dev; 791 int ret; 792 793 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 794 if (!dev) 795 return ERR_PTR(-ENOMEM); 796 797 ret = drm_dev_init(dev, driver, parent); 798 if (ret) { 799 kfree(dev); 800 return ERR_PTR(ret); 801 } 802 803 drmm_add_final_kfree(dev, dev); 804 805 return dev; 806 } 807 EXPORT_SYMBOL(drm_dev_alloc); 808 809 static void drm_dev_release(struct kref *ref) 810 { 811 struct drm_device *dev = container_of(ref, struct drm_device, ref); 812 813 if (dev->driver->release) 814 dev->driver->release(dev); 815 816 drm_managed_release(dev); 817 818 if (dev->managed.final_kfree) 819 kfree(dev->managed.final_kfree); 820 } 821 822 /** 823 * drm_dev_get - Take reference of a DRM device 824 * @dev: device to take reference of or NULL 825 * 826 * This increases the ref-count of @dev by one. You *must* already own a 827 * reference when calling this. Use drm_dev_put() to drop this reference 828 * again. 829 * 830 * This function never fails. However, this function does not provide *any* 831 * guarantee whether the device is alive or running. It only provides a 832 * reference to the object and the memory associated with it. 833 */ 834 void drm_dev_get(struct drm_device *dev) 835 { 836 if (dev) 837 kref_get(&dev->ref); 838 } 839 EXPORT_SYMBOL(drm_dev_get); 840 841 /** 842 * drm_dev_put - Drop reference of a DRM device 843 * @dev: device to drop reference of or NULL 844 * 845 * This decreases the ref-count of @dev by one. The device is destroyed if the 846 * ref-count drops to zero. 847 */ 848 void drm_dev_put(struct drm_device *dev) 849 { 850 if (dev) 851 kref_put(&dev->ref, drm_dev_release); 852 } 853 EXPORT_SYMBOL(drm_dev_put); 854 855 static int create_compat_control_link(struct drm_device *dev) 856 { 857 struct drm_minor *minor; 858 char *name; 859 int ret; 860 861 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 862 return 0; 863 864 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 865 if (!minor) 866 return 0; 867 868 /* 869 * Some existing userspace out there uses the existing of the controlD* 870 * sysfs files to figure out whether it's a modeset driver. It only does 871 * readdir, hence a symlink is sufficient (and the least confusing 872 * option). Otherwise controlD* is entirely unused. 873 * 874 * Old controlD chardev have been allocated in the range 875 * 64-127. 876 */ 877 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 878 if (!name) 879 return -ENOMEM; 880 881 ret = sysfs_create_link(minor->kdev->kobj.parent, 882 &minor->kdev->kobj, 883 name); 884 885 kfree(name); 886 887 return ret; 888 } 889 890 static void remove_compat_control_link(struct drm_device *dev) 891 { 892 struct drm_minor *minor; 893 char *name; 894 895 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 896 return; 897 898 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 899 if (!minor) 900 return; 901 902 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 903 if (!name) 904 return; 905 906 sysfs_remove_link(minor->kdev->kobj.parent, name); 907 908 kfree(name); 909 } 910 911 /** 912 * drm_dev_register - Register DRM device 913 * @dev: Device to register 914 * @flags: Flags passed to the driver's .load() function 915 * 916 * Register the DRM device @dev with the system, advertise device to user-space 917 * and start normal device operation. @dev must be initialized via drm_dev_init() 918 * previously. 919 * 920 * Never call this twice on any device! 921 * 922 * NOTE: To ensure backward compatibility with existing drivers method this 923 * function calls the &drm_driver.load method after registering the device 924 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 925 * therefore deprecated, drivers must perform all initialization before calling 926 * drm_dev_register(). 927 * 928 * RETURNS: 929 * 0 on success, negative error code on failure. 930 */ 931 int drm_dev_register(struct drm_device *dev, unsigned long flags) 932 { 933 struct drm_driver *driver = dev->driver; 934 int ret; 935 936 if (!driver->load) 937 drm_mode_config_validate(dev); 938 939 WARN_ON(!dev->managed.final_kfree); 940 941 if (drm_dev_needs_global_mutex(dev)) 942 mutex_lock(&drm_global_mutex); 943 944 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 945 if (ret) 946 goto err_minors; 947 948 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 949 if (ret) 950 goto err_minors; 951 952 ret = create_compat_control_link(dev); 953 if (ret) 954 goto err_minors; 955 956 dev->registered = true; 957 958 if (dev->driver->load) { 959 ret = dev->driver->load(dev, flags); 960 if (ret) 961 goto err_minors; 962 } 963 964 if (drm_core_check_feature(dev, DRIVER_MODESET)) 965 drm_modeset_register_all(dev); 966 967 ret = 0; 968 969 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 970 driver->name, driver->major, driver->minor, 971 driver->patchlevel, driver->date, 972 dev->dev ? dev_name(dev->dev) : "virtual device", 973 dev->primary->index); 974 975 goto out_unlock; 976 977 err_minors: 978 remove_compat_control_link(dev); 979 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 980 drm_minor_unregister(dev, DRM_MINOR_RENDER); 981 out_unlock: 982 if (drm_dev_needs_global_mutex(dev)) 983 mutex_unlock(&drm_global_mutex); 984 return ret; 985 } 986 EXPORT_SYMBOL(drm_dev_register); 987 988 /** 989 * drm_dev_unregister - Unregister DRM device 990 * @dev: Device to unregister 991 * 992 * Unregister the DRM device from the system. This does the reverse of 993 * drm_dev_register() but does not deallocate the device. The caller must call 994 * drm_dev_put() to drop their final reference. 995 * 996 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 997 * which can be called while there are still open users of @dev. 998 * 999 * This should be called first in the device teardown code to make sure 1000 * userspace can't access the device instance any more. 1001 */ 1002 void drm_dev_unregister(struct drm_device *dev) 1003 { 1004 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 1005 drm_lastclose(dev); 1006 1007 dev->registered = false; 1008 1009 drm_client_dev_unregister(dev); 1010 1011 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1012 drm_modeset_unregister_all(dev); 1013 1014 if (dev->driver->unload) 1015 dev->driver->unload(dev); 1016 1017 if (dev->agp) 1018 drm_pci_agp_destroy(dev); 1019 1020 drm_legacy_rmmaps(dev); 1021 1022 remove_compat_control_link(dev); 1023 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1024 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1025 } 1026 EXPORT_SYMBOL(drm_dev_unregister); 1027 1028 /** 1029 * drm_dev_set_unique - Set the unique name of a DRM device 1030 * @dev: device of which to set the unique name 1031 * @name: unique name 1032 * 1033 * Sets the unique name of a DRM device using the specified string. This is 1034 * already done by drm_dev_init(), drivers should only override the default 1035 * unique name for backwards compatibility reasons. 1036 * 1037 * Return: 0 on success or a negative error code on failure. 1038 */ 1039 int drm_dev_set_unique(struct drm_device *dev, const char *name) 1040 { 1041 drmm_kfree(dev, dev->unique); 1042 dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL); 1043 1044 return dev->unique ? 0 : -ENOMEM; 1045 } 1046 EXPORT_SYMBOL(drm_dev_set_unique); 1047 1048 /* 1049 * DRM Core 1050 * The DRM core module initializes all global DRM objects and makes them 1051 * available to drivers. Once setup, drivers can probe their respective 1052 * devices. 1053 * Currently, core management includes: 1054 * - The "DRM-Global" key/value database 1055 * - Global ID management for connectors 1056 * - DRM major number allocation 1057 * - DRM minor management 1058 * - DRM sysfs class 1059 * - DRM debugfs root 1060 * 1061 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1062 * interface registered on a DRM device, you can request minor numbers from DRM 1063 * core. DRM core takes care of major-number management and char-dev 1064 * registration. A stub ->open() callback forwards any open() requests to the 1065 * registered minor. 1066 */ 1067 1068 static int drm_stub_open(struct inode *inode, struct file *filp) 1069 { 1070 const struct file_operations *new_fops; 1071 struct drm_minor *minor; 1072 int err; 1073 1074 DRM_DEBUG("\n"); 1075 1076 minor = drm_minor_acquire(iminor(inode)); 1077 if (IS_ERR(minor)) 1078 return PTR_ERR(minor); 1079 1080 new_fops = fops_get(minor->dev->driver->fops); 1081 if (!new_fops) { 1082 err = -ENODEV; 1083 goto out; 1084 } 1085 1086 replace_fops(filp, new_fops); 1087 if (filp->f_op->open) 1088 err = filp->f_op->open(inode, filp); 1089 else 1090 err = 0; 1091 1092 out: 1093 drm_minor_release(minor); 1094 1095 return err; 1096 } 1097 1098 static const struct file_operations drm_stub_fops = { 1099 .owner = THIS_MODULE, 1100 .open = drm_stub_open, 1101 .llseek = noop_llseek, 1102 }; 1103 1104 static void drm_core_exit(void) 1105 { 1106 unregister_chrdev(DRM_MAJOR, "drm"); 1107 debugfs_remove(drm_debugfs_root); 1108 drm_sysfs_destroy(); 1109 idr_destroy(&drm_minors_idr); 1110 drm_connector_ida_destroy(); 1111 } 1112 1113 static int __init drm_core_init(void) 1114 { 1115 int ret; 1116 1117 drm_connector_ida_init(); 1118 idr_init(&drm_minors_idr); 1119 1120 ret = drm_sysfs_init(); 1121 if (ret < 0) { 1122 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1123 goto error; 1124 } 1125 1126 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1127 1128 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1129 if (ret < 0) 1130 goto error; 1131 1132 drm_core_init_complete = true; 1133 1134 DRM_DEBUG("Initialized\n"); 1135 return 0; 1136 1137 error: 1138 drm_core_exit(); 1139 return ret; 1140 } 1141 1142 module_init(drm_core_init); 1143 module_exit(drm_core_exit); 1144