1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_drv.h> 37 #include <drm/drmP.h> 38 39 #include "drm_crtc_internal.h" 40 #include "drm_legacy.h" 41 #include "drm_internal.h" 42 #include "drm_crtc_internal.h" 43 44 /* 45 * drm_debug: Enable debug output. 46 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details. 47 */ 48 unsigned int drm_debug = 0; 49 EXPORT_SYMBOL(drm_debug); 50 51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 52 MODULE_DESCRIPTION("DRM shared core routines"); 53 MODULE_LICENSE("GPL and additional rights"); 54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n" 61 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)"); 62 module_param_named(debug, drm_debug, int, 0600); 63 64 static DEFINE_SPINLOCK(drm_minor_lock); 65 static struct idr drm_minors_idr; 66 67 /* 68 * If the drm core fails to init for whatever reason, 69 * we should prevent any drivers from registering with it. 70 * It's best to check this at drm_dev_init(), as some drivers 71 * prefer to embed struct drm_device into their own device 72 * structure and call drm_dev_init() themselves. 73 */ 74 static bool drm_core_init_complete = false; 75 76 static struct dentry *drm_debugfs_root; 77 78 /* 79 * DRM Minors 80 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 81 * of them is represented by a drm_minor object. Depending on the capabilities 82 * of the device-driver, different interfaces are registered. 83 * 84 * Minors can be accessed via dev->$minor_name. This pointer is either 85 * NULL or a valid drm_minor pointer and stays valid as long as the device is 86 * valid. This means, DRM minors have the same life-time as the underlying 87 * device. However, this doesn't mean that the minor is active. Minors are 88 * registered and unregistered dynamically according to device-state. 89 */ 90 91 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 92 unsigned int type) 93 { 94 switch (type) { 95 case DRM_MINOR_PRIMARY: 96 return &dev->primary; 97 case DRM_MINOR_RENDER: 98 return &dev->render; 99 case DRM_MINOR_CONTROL: 100 return &dev->control; 101 default: 102 return NULL; 103 } 104 } 105 106 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 107 { 108 struct drm_minor *minor; 109 unsigned long flags; 110 int r; 111 112 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 113 if (!minor) 114 return -ENOMEM; 115 116 minor->type = type; 117 minor->dev = dev; 118 119 idr_preload(GFP_KERNEL); 120 spin_lock_irqsave(&drm_minor_lock, flags); 121 r = idr_alloc(&drm_minors_idr, 122 NULL, 123 64 * type, 124 64 * (type + 1), 125 GFP_NOWAIT); 126 spin_unlock_irqrestore(&drm_minor_lock, flags); 127 idr_preload_end(); 128 129 if (r < 0) 130 goto err_free; 131 132 minor->index = r; 133 134 minor->kdev = drm_sysfs_minor_alloc(minor); 135 if (IS_ERR(minor->kdev)) { 136 r = PTR_ERR(minor->kdev); 137 goto err_index; 138 } 139 140 *drm_minor_get_slot(dev, type) = minor; 141 return 0; 142 143 err_index: 144 spin_lock_irqsave(&drm_minor_lock, flags); 145 idr_remove(&drm_minors_idr, minor->index); 146 spin_unlock_irqrestore(&drm_minor_lock, flags); 147 err_free: 148 kfree(minor); 149 return r; 150 } 151 152 static void drm_minor_free(struct drm_device *dev, unsigned int type) 153 { 154 struct drm_minor **slot, *minor; 155 unsigned long flags; 156 157 slot = drm_minor_get_slot(dev, type); 158 minor = *slot; 159 if (!minor) 160 return; 161 162 put_device(minor->kdev); 163 164 spin_lock_irqsave(&drm_minor_lock, flags); 165 idr_remove(&drm_minors_idr, minor->index); 166 spin_unlock_irqrestore(&drm_minor_lock, flags); 167 168 kfree(minor); 169 *slot = NULL; 170 } 171 172 static int drm_minor_register(struct drm_device *dev, unsigned int type) 173 { 174 struct drm_minor *minor; 175 unsigned long flags; 176 int ret; 177 178 DRM_DEBUG("\n"); 179 180 minor = *drm_minor_get_slot(dev, type); 181 if (!minor) 182 return 0; 183 184 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 185 if (ret) { 186 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 187 goto err_debugfs; 188 } 189 190 ret = device_add(minor->kdev); 191 if (ret) 192 goto err_debugfs; 193 194 /* replace NULL with @minor so lookups will succeed from now on */ 195 spin_lock_irqsave(&drm_minor_lock, flags); 196 idr_replace(&drm_minors_idr, minor, minor->index); 197 spin_unlock_irqrestore(&drm_minor_lock, flags); 198 199 DRM_DEBUG("new minor registered %d\n", minor->index); 200 return 0; 201 202 err_debugfs: 203 drm_debugfs_cleanup(minor); 204 return ret; 205 } 206 207 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 208 { 209 struct drm_minor *minor; 210 unsigned long flags; 211 212 minor = *drm_minor_get_slot(dev, type); 213 if (!minor || !device_is_registered(minor->kdev)) 214 return; 215 216 /* replace @minor with NULL so lookups will fail from now on */ 217 spin_lock_irqsave(&drm_minor_lock, flags); 218 idr_replace(&drm_minors_idr, NULL, minor->index); 219 spin_unlock_irqrestore(&drm_minor_lock, flags); 220 221 device_del(minor->kdev); 222 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 223 drm_debugfs_cleanup(minor); 224 } 225 226 /* 227 * Looks up the given minor-ID and returns the respective DRM-minor object. The 228 * refence-count of the underlying device is increased so you must release this 229 * object with drm_minor_release(). 230 * 231 * As long as you hold this minor, it is guaranteed that the object and the 232 * minor->dev pointer will stay valid! However, the device may get unplugged and 233 * unregistered while you hold the minor. 234 */ 235 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 236 { 237 struct drm_minor *minor; 238 unsigned long flags; 239 240 spin_lock_irqsave(&drm_minor_lock, flags); 241 minor = idr_find(&drm_minors_idr, minor_id); 242 if (minor) 243 drm_dev_get(minor->dev); 244 spin_unlock_irqrestore(&drm_minor_lock, flags); 245 246 if (!minor) { 247 return ERR_PTR(-ENODEV); 248 } else if (drm_dev_is_unplugged(minor->dev)) { 249 drm_dev_put(minor->dev); 250 return ERR_PTR(-ENODEV); 251 } 252 253 return minor; 254 } 255 256 void drm_minor_release(struct drm_minor *minor) 257 { 258 drm_dev_put(minor->dev); 259 } 260 261 /** 262 * DOC: driver instance overview 263 * 264 * A device instance for a drm driver is represented by &struct drm_device. This 265 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe() 266 * callbacks implemented by the driver. The driver then needs to initialize all 267 * the various subsystems for the drm device like memory management, vblank 268 * handling, modesetting support and intial output configuration plus obviously 269 * initialize all the corresponding hardware bits. An important part of this is 270 * also calling drm_dev_set_unique() to set the userspace-visible unique name of 271 * this device instance. Finally when everything is up and running and ready for 272 * userspace the device instance can be published using drm_dev_register(). 273 * 274 * There is also deprecated support for initalizing device instances using 275 * bus-specific helpers and the &drm_driver.load callback. But due to 276 * backwards-compatibility needs the device instance have to be published too 277 * early, which requires unpretty global locking to make safe and is therefore 278 * only support for existing drivers not yet converted to the new scheme. 279 * 280 * When cleaning up a device instance everything needs to be done in reverse: 281 * First unpublish the device instance with drm_dev_unregister(). Then clean up 282 * any other resources allocated at device initialization and drop the driver's 283 * reference to &drm_device using drm_dev_put(). 284 * 285 * Note that the lifetime rules for &drm_device instance has still a lot of 286 * historical baggage. Hence use the reference counting provided by 287 * drm_dev_get() and drm_dev_put() only carefully. 288 * 289 * It is recommended that drivers embed &struct drm_device into their own device 290 * structure, which is supported through drm_dev_init(). 291 */ 292 293 /** 294 * drm_put_dev - Unregister and release a DRM device 295 * @dev: DRM device 296 * 297 * Called at module unload time or when a PCI device is unplugged. 298 * 299 * Cleans up all DRM device, calling drm_lastclose(). 300 * 301 * Note: Use of this function is deprecated. It will eventually go away 302 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 303 * instead to make sure that the device isn't userspace accessible any more 304 * while teardown is in progress, ensuring that userspace can't access an 305 * inconsistent state. 306 */ 307 void drm_put_dev(struct drm_device *dev) 308 { 309 DRM_DEBUG("\n"); 310 311 if (!dev) { 312 DRM_ERROR("cleanup called no dev\n"); 313 return; 314 } 315 316 drm_dev_unregister(dev); 317 drm_dev_put(dev); 318 } 319 EXPORT_SYMBOL(drm_put_dev); 320 321 static void drm_device_set_unplugged(struct drm_device *dev) 322 { 323 smp_wmb(); 324 atomic_set(&dev->unplugged, 1); 325 } 326 327 /** 328 * drm_dev_unplug - unplug a DRM device 329 * @dev: DRM device 330 * 331 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 332 * userspace operations. Entry-points can use drm_dev_is_unplugged(). This 333 * essentially unregisters the device like drm_dev_unregister(), but can be 334 * called while there are still open users of @dev. 335 */ 336 void drm_dev_unplug(struct drm_device *dev) 337 { 338 drm_dev_unregister(dev); 339 340 mutex_lock(&drm_global_mutex); 341 drm_device_set_unplugged(dev); 342 if (dev->open_count == 0) 343 drm_dev_put(dev); 344 mutex_unlock(&drm_global_mutex); 345 } 346 EXPORT_SYMBOL(drm_dev_unplug); 347 348 /* 349 * DRM internal mount 350 * We want to be able to allocate our own "struct address_space" to control 351 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 352 * stand-alone address_space objects, so we need an underlying inode. As there 353 * is no way to allocate an independent inode easily, we need a fake internal 354 * VFS mount-point. 355 * 356 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 357 * frees it again. You are allowed to use iget() and iput() to get references to 358 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 359 * drm_fs_inode_free() call (which does not have to be the last iput()). 360 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 361 * between multiple inode-users. You could, technically, call 362 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 363 * iput(), but this way you'd end up with a new vfsmount for each inode. 364 */ 365 366 static int drm_fs_cnt; 367 static struct vfsmount *drm_fs_mnt; 368 369 static const struct dentry_operations drm_fs_dops = { 370 .d_dname = simple_dname, 371 }; 372 373 static const struct super_operations drm_fs_sops = { 374 .statfs = simple_statfs, 375 }; 376 377 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 378 const char *dev_name, void *data) 379 { 380 return mount_pseudo(fs_type, 381 "drm:", 382 &drm_fs_sops, 383 &drm_fs_dops, 384 0x010203ff); 385 } 386 387 static struct file_system_type drm_fs_type = { 388 .name = "drm", 389 .owner = THIS_MODULE, 390 .mount = drm_fs_mount, 391 .kill_sb = kill_anon_super, 392 }; 393 394 static struct inode *drm_fs_inode_new(void) 395 { 396 struct inode *inode; 397 int r; 398 399 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 400 if (r < 0) { 401 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 402 return ERR_PTR(r); 403 } 404 405 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 406 if (IS_ERR(inode)) 407 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 408 409 return inode; 410 } 411 412 static void drm_fs_inode_free(struct inode *inode) 413 { 414 if (inode) { 415 iput(inode); 416 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 417 } 418 } 419 420 /** 421 * drm_dev_init - Initialise new DRM device 422 * @dev: DRM device 423 * @driver: DRM driver 424 * @parent: Parent device object 425 * 426 * Initialize a new DRM device. No device registration is done. 427 * Call drm_dev_register() to advertice the device to user space and register it 428 * with other core subsystems. This should be done last in the device 429 * initialization sequence to make sure userspace can't access an inconsistent 430 * state. 431 * 432 * The initial ref-count of the object is 1. Use drm_dev_get() and 433 * drm_dev_put() to take and drop further ref-counts. 434 * 435 * Note that for purely virtual devices @parent can be NULL. 436 * 437 * Drivers that do not want to allocate their own device struct 438 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 439 * that do embed &struct drm_device it must be placed first in the overall 440 * structure, and the overall structure must be allocated using kmalloc(): The 441 * drm core's release function unconditionally calls kfree() on the @dev pointer 442 * when the final reference is released. To override this behaviour, and so 443 * allow embedding of the drm_device inside the driver's device struct at an 444 * arbitrary offset, you must supply a &drm_driver.release callback and control 445 * the finalization explicitly. 446 * 447 * RETURNS: 448 * 0 on success, or error code on failure. 449 */ 450 int drm_dev_init(struct drm_device *dev, 451 struct drm_driver *driver, 452 struct device *parent) 453 { 454 int ret; 455 456 if (!drm_core_init_complete) { 457 DRM_ERROR("DRM core is not initialized\n"); 458 return -ENODEV; 459 } 460 461 kref_init(&dev->ref); 462 dev->dev = parent; 463 dev->driver = driver; 464 465 INIT_LIST_HEAD(&dev->filelist); 466 INIT_LIST_HEAD(&dev->ctxlist); 467 INIT_LIST_HEAD(&dev->vmalist); 468 INIT_LIST_HEAD(&dev->maplist); 469 INIT_LIST_HEAD(&dev->vblank_event_list); 470 471 spin_lock_init(&dev->buf_lock); 472 spin_lock_init(&dev->event_lock); 473 mutex_init(&dev->struct_mutex); 474 mutex_init(&dev->filelist_mutex); 475 mutex_init(&dev->ctxlist_mutex); 476 mutex_init(&dev->master_mutex); 477 478 dev->anon_inode = drm_fs_inode_new(); 479 if (IS_ERR(dev->anon_inode)) { 480 ret = PTR_ERR(dev->anon_inode); 481 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 482 goto err_free; 483 } 484 485 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 486 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 487 if (ret) 488 goto err_minors; 489 } 490 491 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 492 if (ret) 493 goto err_minors; 494 495 ret = drm_ht_create(&dev->map_hash, 12); 496 if (ret) 497 goto err_minors; 498 499 drm_legacy_ctxbitmap_init(dev); 500 501 if (drm_core_check_feature(dev, DRIVER_GEM)) { 502 ret = drm_gem_init(dev); 503 if (ret) { 504 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 505 goto err_ctxbitmap; 506 } 507 } 508 509 /* Use the parent device name as DRM device unique identifier, but fall 510 * back to the driver name for virtual devices like vgem. */ 511 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name); 512 if (ret) 513 goto err_setunique; 514 515 return 0; 516 517 err_setunique: 518 if (drm_core_check_feature(dev, DRIVER_GEM)) 519 drm_gem_destroy(dev); 520 err_ctxbitmap: 521 drm_legacy_ctxbitmap_cleanup(dev); 522 drm_ht_remove(&dev->map_hash); 523 err_minors: 524 drm_minor_free(dev, DRM_MINOR_PRIMARY); 525 drm_minor_free(dev, DRM_MINOR_RENDER); 526 drm_minor_free(dev, DRM_MINOR_CONTROL); 527 drm_fs_inode_free(dev->anon_inode); 528 err_free: 529 mutex_destroy(&dev->master_mutex); 530 mutex_destroy(&dev->ctxlist_mutex); 531 mutex_destroy(&dev->filelist_mutex); 532 mutex_destroy(&dev->struct_mutex); 533 return ret; 534 } 535 EXPORT_SYMBOL(drm_dev_init); 536 537 /** 538 * drm_dev_fini - Finalize a dead DRM device 539 * @dev: DRM device 540 * 541 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 542 * frees up all data allocated by it. All driver private data should be 543 * finalized first. Note that this function does not free the @dev, that is 544 * left to the caller. 545 * 546 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 547 * from a &drm_driver.release callback. 548 */ 549 void drm_dev_fini(struct drm_device *dev) 550 { 551 drm_vblank_cleanup(dev); 552 553 if (drm_core_check_feature(dev, DRIVER_GEM)) 554 drm_gem_destroy(dev); 555 556 drm_legacy_ctxbitmap_cleanup(dev); 557 drm_ht_remove(&dev->map_hash); 558 drm_fs_inode_free(dev->anon_inode); 559 560 drm_minor_free(dev, DRM_MINOR_PRIMARY); 561 drm_minor_free(dev, DRM_MINOR_RENDER); 562 drm_minor_free(dev, DRM_MINOR_CONTROL); 563 564 mutex_destroy(&dev->master_mutex); 565 mutex_destroy(&dev->ctxlist_mutex); 566 mutex_destroy(&dev->filelist_mutex); 567 mutex_destroy(&dev->struct_mutex); 568 kfree(dev->unique); 569 } 570 EXPORT_SYMBOL(drm_dev_fini); 571 572 /** 573 * drm_dev_alloc - Allocate new DRM device 574 * @driver: DRM driver to allocate device for 575 * @parent: Parent device object 576 * 577 * Allocate and initialize a new DRM device. No device registration is done. 578 * Call drm_dev_register() to advertice the device to user space and register it 579 * with other core subsystems. This should be done last in the device 580 * initialization sequence to make sure userspace can't access an inconsistent 581 * state. 582 * 583 * The initial ref-count of the object is 1. Use drm_dev_get() and 584 * drm_dev_put() to take and drop further ref-counts. 585 * 586 * Note that for purely virtual devices @parent can be NULL. 587 * 588 * Drivers that wish to subclass or embed &struct drm_device into their 589 * own struct should look at using drm_dev_init() instead. 590 * 591 * RETURNS: 592 * Pointer to new DRM device, or ERR_PTR on failure. 593 */ 594 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 595 struct device *parent) 596 { 597 struct drm_device *dev; 598 int ret; 599 600 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 601 if (!dev) 602 return ERR_PTR(-ENOMEM); 603 604 ret = drm_dev_init(dev, driver, parent); 605 if (ret) { 606 kfree(dev); 607 return ERR_PTR(ret); 608 } 609 610 return dev; 611 } 612 EXPORT_SYMBOL(drm_dev_alloc); 613 614 static void drm_dev_release(struct kref *ref) 615 { 616 struct drm_device *dev = container_of(ref, struct drm_device, ref); 617 618 if (dev->driver->release) { 619 dev->driver->release(dev); 620 } else { 621 drm_dev_fini(dev); 622 kfree(dev); 623 } 624 } 625 626 /** 627 * drm_dev_get - Take reference of a DRM device 628 * @dev: device to take reference of or NULL 629 * 630 * This increases the ref-count of @dev by one. You *must* already own a 631 * reference when calling this. Use drm_dev_put() to drop this reference 632 * again. 633 * 634 * This function never fails. However, this function does not provide *any* 635 * guarantee whether the device is alive or running. It only provides a 636 * reference to the object and the memory associated with it. 637 */ 638 void drm_dev_get(struct drm_device *dev) 639 { 640 if (dev) 641 kref_get(&dev->ref); 642 } 643 EXPORT_SYMBOL(drm_dev_get); 644 645 /** 646 * drm_dev_put - Drop reference of a DRM device 647 * @dev: device to drop reference of or NULL 648 * 649 * This decreases the ref-count of @dev by one. The device is destroyed if the 650 * ref-count drops to zero. 651 */ 652 void drm_dev_put(struct drm_device *dev) 653 { 654 if (dev) 655 kref_put(&dev->ref, drm_dev_release); 656 } 657 EXPORT_SYMBOL(drm_dev_put); 658 659 /** 660 * drm_dev_unref - Drop reference of a DRM device 661 * @dev: device to drop reference of or NULL 662 * 663 * This is a compatibility alias for drm_dev_put() and should not be used by new 664 * code. 665 */ 666 void drm_dev_unref(struct drm_device *dev) 667 { 668 drm_dev_put(dev); 669 } 670 EXPORT_SYMBOL(drm_dev_unref); 671 672 static int create_compat_control_link(struct drm_device *dev) 673 { 674 struct drm_minor *minor; 675 char *name; 676 int ret; 677 678 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 679 return 0; 680 681 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 682 if (!minor) 683 return 0; 684 685 /* 686 * Some existing userspace out there uses the existing of the controlD* 687 * sysfs files to figure out whether it's a modeset driver. It only does 688 * readdir, hence a symlink is sufficient (and the least confusing 689 * option). Otherwise controlD* is entirely unused. 690 * 691 * Old controlD chardev have been allocated in the range 692 * 64-127. 693 */ 694 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 695 if (!name) 696 return -ENOMEM; 697 698 ret = sysfs_create_link(minor->kdev->kobj.parent, 699 &minor->kdev->kobj, 700 name); 701 702 kfree(name); 703 704 return ret; 705 } 706 707 static void remove_compat_control_link(struct drm_device *dev) 708 { 709 struct drm_minor *minor; 710 char *name; 711 712 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 713 return; 714 715 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 716 if (!minor) 717 return; 718 719 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index); 720 if (!name) 721 return; 722 723 sysfs_remove_link(minor->kdev->kobj.parent, name); 724 725 kfree(name); 726 } 727 728 /** 729 * drm_dev_register - Register DRM device 730 * @dev: Device to register 731 * @flags: Flags passed to the driver's .load() function 732 * 733 * Register the DRM device @dev with the system, advertise device to user-space 734 * and start normal device operation. @dev must be allocated via drm_dev_alloc() 735 * previously. 736 * 737 * Never call this twice on any device! 738 * 739 * NOTE: To ensure backward compatibility with existing drivers method this 740 * function calls the &drm_driver.load method after registering the device 741 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 742 * therefore deprecated, drivers must perform all initialization before calling 743 * drm_dev_register(). 744 * 745 * RETURNS: 746 * 0 on success, negative error code on failure. 747 */ 748 int drm_dev_register(struct drm_device *dev, unsigned long flags) 749 { 750 struct drm_driver *driver = dev->driver; 751 int ret; 752 753 mutex_lock(&drm_global_mutex); 754 755 ret = drm_minor_register(dev, DRM_MINOR_CONTROL); 756 if (ret) 757 goto err_minors; 758 759 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 760 if (ret) 761 goto err_minors; 762 763 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 764 if (ret) 765 goto err_minors; 766 767 ret = create_compat_control_link(dev); 768 if (ret) 769 goto err_minors; 770 771 dev->registered = true; 772 773 if (dev->driver->load) { 774 ret = dev->driver->load(dev, flags); 775 if (ret) 776 goto err_minors; 777 } 778 779 if (drm_core_check_feature(dev, DRIVER_MODESET)) 780 drm_modeset_register_all(dev); 781 782 ret = 0; 783 784 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 785 driver->name, driver->major, driver->minor, 786 driver->patchlevel, driver->date, 787 dev->dev ? dev_name(dev->dev) : "virtual device", 788 dev->primary->index); 789 790 goto out_unlock; 791 792 err_minors: 793 remove_compat_control_link(dev); 794 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 795 drm_minor_unregister(dev, DRM_MINOR_RENDER); 796 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 797 out_unlock: 798 mutex_unlock(&drm_global_mutex); 799 return ret; 800 } 801 EXPORT_SYMBOL(drm_dev_register); 802 803 /** 804 * drm_dev_unregister - Unregister DRM device 805 * @dev: Device to unregister 806 * 807 * Unregister the DRM device from the system. This does the reverse of 808 * drm_dev_register() but does not deallocate the device. The caller must call 809 * drm_dev_put() to drop their final reference. 810 * 811 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 812 * which can be called while there are still open users of @dev. 813 * 814 * This should be called first in the device teardown code to make sure 815 * userspace can't access the device instance any more. 816 */ 817 void drm_dev_unregister(struct drm_device *dev) 818 { 819 struct drm_map_list *r_list, *list_temp; 820 821 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 822 drm_lastclose(dev); 823 824 dev->registered = false; 825 826 if (drm_core_check_feature(dev, DRIVER_MODESET)) 827 drm_modeset_unregister_all(dev); 828 829 if (dev->driver->unload) 830 dev->driver->unload(dev); 831 832 if (dev->agp) 833 drm_pci_agp_destroy(dev); 834 835 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) 836 drm_legacy_rmmap(dev, r_list->map); 837 838 remove_compat_control_link(dev); 839 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 840 drm_minor_unregister(dev, DRM_MINOR_RENDER); 841 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 842 } 843 EXPORT_SYMBOL(drm_dev_unregister); 844 845 /** 846 * drm_dev_set_unique - Set the unique name of a DRM device 847 * @dev: device of which to set the unique name 848 * @name: unique name 849 * 850 * Sets the unique name of a DRM device using the specified string. Drivers 851 * can use this at driver probe time if the unique name of the devices they 852 * drive is static. 853 * 854 * Return: 0 on success or a negative error code on failure. 855 */ 856 int drm_dev_set_unique(struct drm_device *dev, const char *name) 857 { 858 kfree(dev->unique); 859 dev->unique = kstrdup(name, GFP_KERNEL); 860 861 return dev->unique ? 0 : -ENOMEM; 862 } 863 EXPORT_SYMBOL(drm_dev_set_unique); 864 865 /* 866 * DRM Core 867 * The DRM core module initializes all global DRM objects and makes them 868 * available to drivers. Once setup, drivers can probe their respective 869 * devices. 870 * Currently, core management includes: 871 * - The "DRM-Global" key/value database 872 * - Global ID management for connectors 873 * - DRM major number allocation 874 * - DRM minor management 875 * - DRM sysfs class 876 * - DRM debugfs root 877 * 878 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 879 * interface registered on a DRM device, you can request minor numbers from DRM 880 * core. DRM core takes care of major-number management and char-dev 881 * registration. A stub ->open() callback forwards any open() requests to the 882 * registered minor. 883 */ 884 885 static int drm_stub_open(struct inode *inode, struct file *filp) 886 { 887 const struct file_operations *new_fops; 888 struct drm_minor *minor; 889 int err; 890 891 DRM_DEBUG("\n"); 892 893 mutex_lock(&drm_global_mutex); 894 minor = drm_minor_acquire(iminor(inode)); 895 if (IS_ERR(minor)) { 896 err = PTR_ERR(minor); 897 goto out_unlock; 898 } 899 900 new_fops = fops_get(minor->dev->driver->fops); 901 if (!new_fops) { 902 err = -ENODEV; 903 goto out_release; 904 } 905 906 replace_fops(filp, new_fops); 907 if (filp->f_op->open) 908 err = filp->f_op->open(inode, filp); 909 else 910 err = 0; 911 912 out_release: 913 drm_minor_release(minor); 914 out_unlock: 915 mutex_unlock(&drm_global_mutex); 916 return err; 917 } 918 919 static const struct file_operations drm_stub_fops = { 920 .owner = THIS_MODULE, 921 .open = drm_stub_open, 922 .llseek = noop_llseek, 923 }; 924 925 static void drm_core_exit(void) 926 { 927 unregister_chrdev(DRM_MAJOR, "drm"); 928 debugfs_remove(drm_debugfs_root); 929 drm_sysfs_destroy(); 930 idr_destroy(&drm_minors_idr); 931 drm_connector_ida_destroy(); 932 drm_global_release(); 933 } 934 935 static int __init drm_core_init(void) 936 { 937 int ret; 938 939 drm_global_init(); 940 drm_connector_ida_init(); 941 idr_init(&drm_minors_idr); 942 943 ret = drm_sysfs_init(); 944 if (ret < 0) { 945 DRM_ERROR("Cannot create DRM class: %d\n", ret); 946 goto error; 947 } 948 949 drm_debugfs_root = debugfs_create_dir("dri", NULL); 950 if (!drm_debugfs_root) { 951 ret = -ENOMEM; 952 DRM_ERROR("Cannot create debugfs-root: %d\n", ret); 953 goto error; 954 } 955 956 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 957 if (ret < 0) 958 goto error; 959 960 drm_core_init_complete = true; 961 962 DRM_DEBUG("Initialized\n"); 963 return 0; 964 965 error: 966 drm_core_exit(); 967 return ret; 968 } 969 970 module_init(drm_core_init); 971 module_exit(drm_core_exit); 972