1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/pseudo_fs.h> 35 #include <linux/slab.h> 36 #include <linux/srcu.h> 37 38 #include <drm/drm_client.h> 39 #include <drm/drm_color_mgmt.h> 40 #include <drm/drm_drv.h> 41 #include <drm/drm_file.h> 42 #include <drm/drm_mode_object.h> 43 #include <drm/drm_print.h> 44 45 #include "drm_crtc_internal.h" 46 #include "drm_internal.h" 47 #include "drm_legacy.h" 48 49 /* 50 * drm_debug: Enable debug output. 51 * Bitmask of DRM_UT_x. See include/drm/drm_print.h for details. 52 */ 53 unsigned int drm_debug = 0; 54 EXPORT_SYMBOL(drm_debug); 55 56 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 57 MODULE_DESCRIPTION("DRM shared core routines"); 58 MODULE_LICENSE("GPL and additional rights"); 59 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 60 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 61 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 62 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 63 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 64 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 65 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n" 66 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)\n" 67 "\t\tBit 8 (0x100) will enable DP messages (displayport code)"); 68 module_param_named(debug, drm_debug, int, 0600); 69 70 static DEFINE_SPINLOCK(drm_minor_lock); 71 static struct idr drm_minors_idr; 72 73 /* 74 * If the drm core fails to init for whatever reason, 75 * we should prevent any drivers from registering with it. 76 * It's best to check this at drm_dev_init(), as some drivers 77 * prefer to embed struct drm_device into their own device 78 * structure and call drm_dev_init() themselves. 79 */ 80 static bool drm_core_init_complete = false; 81 82 static struct dentry *drm_debugfs_root; 83 84 DEFINE_STATIC_SRCU(drm_unplug_srcu); 85 86 /* 87 * DRM Minors 88 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 89 * of them is represented by a drm_minor object. Depending on the capabilities 90 * of the device-driver, different interfaces are registered. 91 * 92 * Minors can be accessed via dev->$minor_name. This pointer is either 93 * NULL or a valid drm_minor pointer and stays valid as long as the device is 94 * valid. This means, DRM minors have the same life-time as the underlying 95 * device. However, this doesn't mean that the minor is active. Minors are 96 * registered and unregistered dynamically according to device-state. 97 */ 98 99 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 100 unsigned int type) 101 { 102 switch (type) { 103 case DRM_MINOR_PRIMARY: 104 return &dev->primary; 105 case DRM_MINOR_RENDER: 106 return &dev->render; 107 default: 108 BUG(); 109 } 110 } 111 112 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 113 { 114 struct drm_minor *minor; 115 unsigned long flags; 116 int r; 117 118 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 119 if (!minor) 120 return -ENOMEM; 121 122 minor->type = type; 123 minor->dev = dev; 124 125 idr_preload(GFP_KERNEL); 126 spin_lock_irqsave(&drm_minor_lock, flags); 127 r = idr_alloc(&drm_minors_idr, 128 NULL, 129 64 * type, 130 64 * (type + 1), 131 GFP_NOWAIT); 132 spin_unlock_irqrestore(&drm_minor_lock, flags); 133 idr_preload_end(); 134 135 if (r < 0) 136 goto err_free; 137 138 minor->index = r; 139 140 minor->kdev = drm_sysfs_minor_alloc(minor); 141 if (IS_ERR(minor->kdev)) { 142 r = PTR_ERR(minor->kdev); 143 goto err_index; 144 } 145 146 *drm_minor_get_slot(dev, type) = minor; 147 return 0; 148 149 err_index: 150 spin_lock_irqsave(&drm_minor_lock, flags); 151 idr_remove(&drm_minors_idr, minor->index); 152 spin_unlock_irqrestore(&drm_minor_lock, flags); 153 err_free: 154 kfree(minor); 155 return r; 156 } 157 158 static void drm_minor_free(struct drm_device *dev, unsigned int type) 159 { 160 struct drm_minor **slot, *minor; 161 unsigned long flags; 162 163 slot = drm_minor_get_slot(dev, type); 164 minor = *slot; 165 if (!minor) 166 return; 167 168 put_device(minor->kdev); 169 170 spin_lock_irqsave(&drm_minor_lock, flags); 171 idr_remove(&drm_minors_idr, minor->index); 172 spin_unlock_irqrestore(&drm_minor_lock, flags); 173 174 kfree(minor); 175 *slot = NULL; 176 } 177 178 static int drm_minor_register(struct drm_device *dev, unsigned int type) 179 { 180 struct drm_minor *minor; 181 unsigned long flags; 182 int ret; 183 184 DRM_DEBUG("\n"); 185 186 minor = *drm_minor_get_slot(dev, type); 187 if (!minor) 188 return 0; 189 190 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 191 if (ret) { 192 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 193 goto err_debugfs; 194 } 195 196 ret = device_add(minor->kdev); 197 if (ret) 198 goto err_debugfs; 199 200 /* replace NULL with @minor so lookups will succeed from now on */ 201 spin_lock_irqsave(&drm_minor_lock, flags); 202 idr_replace(&drm_minors_idr, minor, minor->index); 203 spin_unlock_irqrestore(&drm_minor_lock, flags); 204 205 DRM_DEBUG("new minor registered %d\n", minor->index); 206 return 0; 207 208 err_debugfs: 209 drm_debugfs_cleanup(minor); 210 return ret; 211 } 212 213 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 214 { 215 struct drm_minor *minor; 216 unsigned long flags; 217 218 minor = *drm_minor_get_slot(dev, type); 219 if (!minor || !device_is_registered(minor->kdev)) 220 return; 221 222 /* replace @minor with NULL so lookups will fail from now on */ 223 spin_lock_irqsave(&drm_minor_lock, flags); 224 idr_replace(&drm_minors_idr, NULL, minor->index); 225 spin_unlock_irqrestore(&drm_minor_lock, flags); 226 227 device_del(minor->kdev); 228 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 229 drm_debugfs_cleanup(minor); 230 } 231 232 /* 233 * Looks up the given minor-ID and returns the respective DRM-minor object. The 234 * refence-count of the underlying device is increased so you must release this 235 * object with drm_minor_release(). 236 * 237 * As long as you hold this minor, it is guaranteed that the object and the 238 * minor->dev pointer will stay valid! However, the device may get unplugged and 239 * unregistered while you hold the minor. 240 */ 241 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 242 { 243 struct drm_minor *minor; 244 unsigned long flags; 245 246 spin_lock_irqsave(&drm_minor_lock, flags); 247 minor = idr_find(&drm_minors_idr, minor_id); 248 if (minor) 249 drm_dev_get(minor->dev); 250 spin_unlock_irqrestore(&drm_minor_lock, flags); 251 252 if (!minor) { 253 return ERR_PTR(-ENODEV); 254 } else if (drm_dev_is_unplugged(minor->dev)) { 255 drm_dev_put(minor->dev); 256 return ERR_PTR(-ENODEV); 257 } 258 259 return minor; 260 } 261 262 void drm_minor_release(struct drm_minor *minor) 263 { 264 drm_dev_put(minor->dev); 265 } 266 267 /** 268 * DOC: driver instance overview 269 * 270 * A device instance for a drm driver is represented by &struct drm_device. This 271 * is initialized with drm_dev_init(), usually from bus-specific ->probe() 272 * callbacks implemented by the driver. The driver then needs to initialize all 273 * the various subsystems for the drm device like memory management, vblank 274 * handling, modesetting support and intial output configuration plus obviously 275 * initialize all the corresponding hardware bits. Finally when everything is up 276 * and running and ready for userspace the device instance can be published 277 * using drm_dev_register(). 278 * 279 * There is also deprecated support for initalizing device instances using 280 * bus-specific helpers and the &drm_driver.load callback. But due to 281 * backwards-compatibility needs the device instance have to be published too 282 * early, which requires unpretty global locking to make safe and is therefore 283 * only support for existing drivers not yet converted to the new scheme. 284 * 285 * When cleaning up a device instance everything needs to be done in reverse: 286 * First unpublish the device instance with drm_dev_unregister(). Then clean up 287 * any other resources allocated at device initialization and drop the driver's 288 * reference to &drm_device using drm_dev_put(). 289 * 290 * Note that the lifetime rules for &drm_device instance has still a lot of 291 * historical baggage. Hence use the reference counting provided by 292 * drm_dev_get() and drm_dev_put() only carefully. 293 * 294 * Display driver example 295 * ~~~~~~~~~~~~~~~~~~~~~~ 296 * 297 * The following example shows a typical structure of a DRM display driver. 298 * The example focus on the probe() function and the other functions that is 299 * almost always present and serves as a demonstration of devm_drm_dev_init() 300 * usage with its accompanying drm_driver->release callback. 301 * 302 * .. code-block:: c 303 * 304 * struct driver_device { 305 * struct drm_device drm; 306 * void *userspace_facing; 307 * struct clk *pclk; 308 * }; 309 * 310 * static void driver_drm_release(struct drm_device *drm) 311 * { 312 * struct driver_device *priv = container_of(...); 313 * 314 * drm_mode_config_cleanup(drm); 315 * drm_dev_fini(drm); 316 * kfree(priv->userspace_facing); 317 * kfree(priv); 318 * } 319 * 320 * static struct drm_driver driver_drm_driver = { 321 * [...] 322 * .release = driver_drm_release, 323 * }; 324 * 325 * static int driver_probe(struct platform_device *pdev) 326 * { 327 * struct driver_device *priv; 328 * struct drm_device *drm; 329 * int ret; 330 * 331 * // devm_kzalloc() can't be used here because the drm_device ' 332 * // lifetime can exceed the device lifetime if driver unbind 333 * // happens when userspace still has open file descriptors. 334 * priv = kzalloc(sizeof(*priv), GFP_KERNEL); 335 * if (!priv) 336 * return -ENOMEM; 337 * 338 * drm = &priv->drm; 339 * 340 * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver); 341 * if (ret) { 342 * kfree(drm); 343 * return ret; 344 * } 345 * 346 * drm_mode_config_init(drm); 347 * 348 * priv->userspace_facing = kzalloc(..., GFP_KERNEL); 349 * if (!priv->userspace_facing) 350 * return -ENOMEM; 351 * 352 * priv->pclk = devm_clk_get(dev, "PCLK"); 353 * if (IS_ERR(priv->pclk)) 354 * return PTR_ERR(priv->pclk); 355 * 356 * // Further setup, display pipeline etc 357 * 358 * platform_set_drvdata(pdev, drm); 359 * 360 * drm_mode_config_reset(drm); 361 * 362 * ret = drm_dev_register(drm); 363 * if (ret) 364 * return ret; 365 * 366 * drm_fbdev_generic_setup(drm, 32); 367 * 368 * return 0; 369 * } 370 * 371 * // This function is called before the devm_ resources are released 372 * static int driver_remove(struct platform_device *pdev) 373 * { 374 * struct drm_device *drm = platform_get_drvdata(pdev); 375 * 376 * drm_dev_unregister(drm); 377 * drm_atomic_helper_shutdown(drm) 378 * 379 * return 0; 380 * } 381 * 382 * // This function is called on kernel restart and shutdown 383 * static void driver_shutdown(struct platform_device *pdev) 384 * { 385 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 386 * } 387 * 388 * static int __maybe_unused driver_pm_suspend(struct device *dev) 389 * { 390 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 391 * } 392 * 393 * static int __maybe_unused driver_pm_resume(struct device *dev) 394 * { 395 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 396 * 397 * return 0; 398 * } 399 * 400 * static const struct dev_pm_ops driver_pm_ops = { 401 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 402 * }; 403 * 404 * static struct platform_driver driver_driver = { 405 * .driver = { 406 * [...] 407 * .pm = &driver_pm_ops, 408 * }, 409 * .probe = driver_probe, 410 * .remove = driver_remove, 411 * .shutdown = driver_shutdown, 412 * }; 413 * module_platform_driver(driver_driver); 414 * 415 * Drivers that want to support device unplugging (USB, DT overlay unload) should 416 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 417 * regions that is accessing device resources to prevent use after they're 418 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 419 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 420 * drm_atomic_helper_shutdown() is called. This means that if the disable code 421 * paths are protected, they will not run on regular driver module unload, 422 * possibily leaving the hardware enabled. 423 */ 424 425 /** 426 * drm_put_dev - Unregister and release a DRM device 427 * @dev: DRM device 428 * 429 * Called at module unload time or when a PCI device is unplugged. 430 * 431 * Cleans up all DRM device, calling drm_lastclose(). 432 * 433 * Note: Use of this function is deprecated. It will eventually go away 434 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 435 * instead to make sure that the device isn't userspace accessible any more 436 * while teardown is in progress, ensuring that userspace can't access an 437 * inconsistent state. 438 */ 439 void drm_put_dev(struct drm_device *dev) 440 { 441 DRM_DEBUG("\n"); 442 443 if (!dev) { 444 DRM_ERROR("cleanup called no dev\n"); 445 return; 446 } 447 448 drm_dev_unregister(dev); 449 drm_dev_put(dev); 450 } 451 EXPORT_SYMBOL(drm_put_dev); 452 453 /** 454 * drm_dev_enter - Enter device critical section 455 * @dev: DRM device 456 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 457 * 458 * This function marks and protects the beginning of a section that should not 459 * be entered after the device has been unplugged. The section end is marked 460 * with drm_dev_exit(). Calls to this function can be nested. 461 * 462 * Returns: 463 * True if it is OK to enter the section, false otherwise. 464 */ 465 bool drm_dev_enter(struct drm_device *dev, int *idx) 466 { 467 *idx = srcu_read_lock(&drm_unplug_srcu); 468 469 if (dev->unplugged) { 470 srcu_read_unlock(&drm_unplug_srcu, *idx); 471 return false; 472 } 473 474 return true; 475 } 476 EXPORT_SYMBOL(drm_dev_enter); 477 478 /** 479 * drm_dev_exit - Exit device critical section 480 * @idx: index returned from drm_dev_enter() 481 * 482 * This function marks the end of a section that should not be entered after 483 * the device has been unplugged. 484 */ 485 void drm_dev_exit(int idx) 486 { 487 srcu_read_unlock(&drm_unplug_srcu, idx); 488 } 489 EXPORT_SYMBOL(drm_dev_exit); 490 491 /** 492 * drm_dev_unplug - unplug a DRM device 493 * @dev: DRM device 494 * 495 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 496 * userspace operations. Entry-points can use drm_dev_enter() and 497 * drm_dev_exit() to protect device resources in a race free manner. This 498 * essentially unregisters the device like drm_dev_unregister(), but can be 499 * called while there are still open users of @dev. 500 */ 501 void drm_dev_unplug(struct drm_device *dev) 502 { 503 /* 504 * After synchronizing any critical read section is guaranteed to see 505 * the new value of ->unplugged, and any critical section which might 506 * still have seen the old value of ->unplugged is guaranteed to have 507 * finished. 508 */ 509 dev->unplugged = true; 510 synchronize_srcu(&drm_unplug_srcu); 511 512 drm_dev_unregister(dev); 513 } 514 EXPORT_SYMBOL(drm_dev_unplug); 515 516 /* 517 * DRM internal mount 518 * We want to be able to allocate our own "struct address_space" to control 519 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 520 * stand-alone address_space objects, so we need an underlying inode. As there 521 * is no way to allocate an independent inode easily, we need a fake internal 522 * VFS mount-point. 523 * 524 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 525 * frees it again. You are allowed to use iget() and iput() to get references to 526 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 527 * drm_fs_inode_free() call (which does not have to be the last iput()). 528 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 529 * between multiple inode-users. You could, technically, call 530 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 531 * iput(), but this way you'd end up with a new vfsmount for each inode. 532 */ 533 534 static int drm_fs_cnt; 535 static struct vfsmount *drm_fs_mnt; 536 537 static int drm_fs_init_fs_context(struct fs_context *fc) 538 { 539 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 540 } 541 542 static struct file_system_type drm_fs_type = { 543 .name = "drm", 544 .owner = THIS_MODULE, 545 .init_fs_context = drm_fs_init_fs_context, 546 .kill_sb = kill_anon_super, 547 }; 548 549 static struct inode *drm_fs_inode_new(void) 550 { 551 struct inode *inode; 552 int r; 553 554 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 555 if (r < 0) { 556 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 557 return ERR_PTR(r); 558 } 559 560 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 561 if (IS_ERR(inode)) 562 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 563 564 return inode; 565 } 566 567 static void drm_fs_inode_free(struct inode *inode) 568 { 569 if (inode) { 570 iput(inode); 571 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 572 } 573 } 574 575 /** 576 * DOC: component helper usage recommendations 577 * 578 * DRM drivers that drive hardware where a logical device consists of a pile of 579 * independent hardware blocks are recommended to use the :ref:`component helper 580 * library<component>`. For consistency and better options for code reuse the 581 * following guidelines apply: 582 * 583 * - The entire device initialization procedure should be run from the 584 * &component_master_ops.master_bind callback, starting with drm_dev_init(), 585 * then binding all components with component_bind_all() and finishing with 586 * drm_dev_register(). 587 * 588 * - The opaque pointer passed to all components through component_bind_all() 589 * should point at &struct drm_device of the device instance, not some driver 590 * specific private structure. 591 * 592 * - The component helper fills the niche where further standardization of 593 * interfaces is not practical. When there already is, or will be, a 594 * standardized interface like &drm_bridge or &drm_panel, providing its own 595 * functions to find such components at driver load time, like 596 * drm_of_find_panel_or_bridge(), then the component helper should not be 597 * used. 598 */ 599 600 /** 601 * drm_dev_init - Initialise new DRM device 602 * @dev: DRM device 603 * @driver: DRM driver 604 * @parent: Parent device object 605 * 606 * Initialize a new DRM device. No device registration is done. 607 * Call drm_dev_register() to advertice the device to user space and register it 608 * with other core subsystems. This should be done last in the device 609 * initialization sequence to make sure userspace can't access an inconsistent 610 * state. 611 * 612 * The initial ref-count of the object is 1. Use drm_dev_get() and 613 * drm_dev_put() to take and drop further ref-counts. 614 * 615 * It is recommended that drivers embed &struct drm_device into their own device 616 * structure. 617 * 618 * Drivers that do not want to allocate their own device struct 619 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 620 * that do embed &struct drm_device it must be placed first in the overall 621 * structure, and the overall structure must be allocated using kmalloc(): The 622 * drm core's release function unconditionally calls kfree() on the @dev pointer 623 * when the final reference is released. To override this behaviour, and so 624 * allow embedding of the drm_device inside the driver's device struct at an 625 * arbitrary offset, you must supply a &drm_driver.release callback and control 626 * the finalization explicitly. 627 * 628 * RETURNS: 629 * 0 on success, or error code on failure. 630 */ 631 int drm_dev_init(struct drm_device *dev, 632 struct drm_driver *driver, 633 struct device *parent) 634 { 635 int ret; 636 637 if (!drm_core_init_complete) { 638 DRM_ERROR("DRM core is not initialized\n"); 639 return -ENODEV; 640 } 641 642 BUG_ON(!parent); 643 644 kref_init(&dev->ref); 645 dev->dev = get_device(parent); 646 dev->driver = driver; 647 648 /* no per-device feature limits by default */ 649 dev->driver_features = ~0u; 650 651 drm_legacy_init_members(dev); 652 INIT_LIST_HEAD(&dev->filelist); 653 INIT_LIST_HEAD(&dev->filelist_internal); 654 INIT_LIST_HEAD(&dev->clientlist); 655 INIT_LIST_HEAD(&dev->vblank_event_list); 656 657 spin_lock_init(&dev->event_lock); 658 mutex_init(&dev->struct_mutex); 659 mutex_init(&dev->filelist_mutex); 660 mutex_init(&dev->clientlist_mutex); 661 mutex_init(&dev->master_mutex); 662 663 dev->anon_inode = drm_fs_inode_new(); 664 if (IS_ERR(dev->anon_inode)) { 665 ret = PTR_ERR(dev->anon_inode); 666 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 667 goto err_free; 668 } 669 670 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 671 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 672 if (ret) 673 goto err_minors; 674 } 675 676 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 677 if (ret) 678 goto err_minors; 679 680 ret = drm_legacy_create_map_hash(dev); 681 if (ret) 682 goto err_minors; 683 684 drm_legacy_ctxbitmap_init(dev); 685 686 if (drm_core_check_feature(dev, DRIVER_GEM)) { 687 ret = drm_gem_init(dev); 688 if (ret) { 689 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 690 goto err_ctxbitmap; 691 } 692 } 693 694 ret = drm_dev_set_unique(dev, dev_name(parent)); 695 if (ret) 696 goto err_setunique; 697 698 return 0; 699 700 err_setunique: 701 if (drm_core_check_feature(dev, DRIVER_GEM)) 702 drm_gem_destroy(dev); 703 err_ctxbitmap: 704 drm_legacy_ctxbitmap_cleanup(dev); 705 drm_legacy_remove_map_hash(dev); 706 err_minors: 707 drm_minor_free(dev, DRM_MINOR_PRIMARY); 708 drm_minor_free(dev, DRM_MINOR_RENDER); 709 drm_fs_inode_free(dev->anon_inode); 710 err_free: 711 put_device(dev->dev); 712 mutex_destroy(&dev->master_mutex); 713 mutex_destroy(&dev->clientlist_mutex); 714 mutex_destroy(&dev->filelist_mutex); 715 mutex_destroy(&dev->struct_mutex); 716 drm_legacy_destroy_members(dev); 717 return ret; 718 } 719 EXPORT_SYMBOL(drm_dev_init); 720 721 static void devm_drm_dev_init_release(void *data) 722 { 723 drm_dev_put(data); 724 } 725 726 /** 727 * devm_drm_dev_init - Resource managed drm_dev_init() 728 * @parent: Parent device object 729 * @dev: DRM device 730 * @driver: DRM driver 731 * 732 * Managed drm_dev_init(). The DRM device initialized with this function is 733 * automatically put on driver detach using drm_dev_put(). You must supply a 734 * &drm_driver.release callback to control the finalization explicitly. 735 * 736 * RETURNS: 737 * 0 on success, or error code on failure. 738 */ 739 int devm_drm_dev_init(struct device *parent, 740 struct drm_device *dev, 741 struct drm_driver *driver) 742 { 743 int ret; 744 745 if (WARN_ON(!parent || !driver->release)) 746 return -EINVAL; 747 748 ret = drm_dev_init(dev, driver, parent); 749 if (ret) 750 return ret; 751 752 ret = devm_add_action(parent, devm_drm_dev_init_release, dev); 753 if (ret) 754 devm_drm_dev_init_release(dev); 755 756 return ret; 757 } 758 EXPORT_SYMBOL(devm_drm_dev_init); 759 760 /** 761 * drm_dev_fini - Finalize a dead DRM device 762 * @dev: DRM device 763 * 764 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 765 * frees up all data allocated by it. All driver private data should be 766 * finalized first. Note that this function does not free the @dev, that is 767 * left to the caller. 768 * 769 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 770 * from a &drm_driver.release callback. 771 */ 772 void drm_dev_fini(struct drm_device *dev) 773 { 774 drm_vblank_cleanup(dev); 775 776 if (drm_core_check_feature(dev, DRIVER_GEM)) 777 drm_gem_destroy(dev); 778 779 drm_legacy_ctxbitmap_cleanup(dev); 780 drm_legacy_remove_map_hash(dev); 781 drm_fs_inode_free(dev->anon_inode); 782 783 drm_minor_free(dev, DRM_MINOR_PRIMARY); 784 drm_minor_free(dev, DRM_MINOR_RENDER); 785 786 put_device(dev->dev); 787 788 mutex_destroy(&dev->master_mutex); 789 mutex_destroy(&dev->clientlist_mutex); 790 mutex_destroy(&dev->filelist_mutex); 791 mutex_destroy(&dev->struct_mutex); 792 drm_legacy_destroy_members(dev); 793 kfree(dev->unique); 794 } 795 EXPORT_SYMBOL(drm_dev_fini); 796 797 /** 798 * drm_dev_alloc - Allocate new DRM device 799 * @driver: DRM driver to allocate device for 800 * @parent: Parent device object 801 * 802 * Allocate and initialize a new DRM device. No device registration is done. 803 * Call drm_dev_register() to advertice the device to user space and register it 804 * with other core subsystems. This should be done last in the device 805 * initialization sequence to make sure userspace can't access an inconsistent 806 * state. 807 * 808 * The initial ref-count of the object is 1. Use drm_dev_get() and 809 * drm_dev_put() to take and drop further ref-counts. 810 * 811 * Note that for purely virtual devices @parent can be NULL. 812 * 813 * Drivers that wish to subclass or embed &struct drm_device into their 814 * own struct should look at using drm_dev_init() instead. 815 * 816 * RETURNS: 817 * Pointer to new DRM device, or ERR_PTR on failure. 818 */ 819 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 820 struct device *parent) 821 { 822 struct drm_device *dev; 823 int ret; 824 825 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 826 if (!dev) 827 return ERR_PTR(-ENOMEM); 828 829 ret = drm_dev_init(dev, driver, parent); 830 if (ret) { 831 kfree(dev); 832 return ERR_PTR(ret); 833 } 834 835 return dev; 836 } 837 EXPORT_SYMBOL(drm_dev_alloc); 838 839 static void drm_dev_release(struct kref *ref) 840 { 841 struct drm_device *dev = container_of(ref, struct drm_device, ref); 842 843 if (dev->driver->release) { 844 dev->driver->release(dev); 845 } else { 846 drm_dev_fini(dev); 847 kfree(dev); 848 } 849 } 850 851 /** 852 * drm_dev_get - Take reference of a DRM device 853 * @dev: device to take reference of or NULL 854 * 855 * This increases the ref-count of @dev by one. You *must* already own a 856 * reference when calling this. Use drm_dev_put() to drop this reference 857 * again. 858 * 859 * This function never fails. However, this function does not provide *any* 860 * guarantee whether the device is alive or running. It only provides a 861 * reference to the object and the memory associated with it. 862 */ 863 void drm_dev_get(struct drm_device *dev) 864 { 865 if (dev) 866 kref_get(&dev->ref); 867 } 868 EXPORT_SYMBOL(drm_dev_get); 869 870 /** 871 * drm_dev_put - Drop reference of a DRM device 872 * @dev: device to drop reference of or NULL 873 * 874 * This decreases the ref-count of @dev by one. The device is destroyed if the 875 * ref-count drops to zero. 876 */ 877 void drm_dev_put(struct drm_device *dev) 878 { 879 if (dev) 880 kref_put(&dev->ref, drm_dev_release); 881 } 882 EXPORT_SYMBOL(drm_dev_put); 883 884 static int create_compat_control_link(struct drm_device *dev) 885 { 886 struct drm_minor *minor; 887 char *name; 888 int ret; 889 890 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 891 return 0; 892 893 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 894 if (!minor) 895 return 0; 896 897 /* 898 * Some existing userspace out there uses the existing of the controlD* 899 * sysfs files to figure out whether it's a modeset driver. It only does 900 * readdir, hence a symlink is sufficient (and the least confusing 901 * option). Otherwise controlD* is entirely unused. 902 * 903 * Old controlD chardev have been allocated in the range 904 * 64-127. 905 */ 906 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 907 if (!name) 908 return -ENOMEM; 909 910 ret = sysfs_create_link(minor->kdev->kobj.parent, 911 &minor->kdev->kobj, 912 name); 913 914 kfree(name); 915 916 return ret; 917 } 918 919 static void remove_compat_control_link(struct drm_device *dev) 920 { 921 struct drm_minor *minor; 922 char *name; 923 924 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 925 return; 926 927 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 928 if (!minor) 929 return; 930 931 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 932 if (!name) 933 return; 934 935 sysfs_remove_link(minor->kdev->kobj.parent, name); 936 937 kfree(name); 938 } 939 940 /** 941 * drm_dev_register - Register DRM device 942 * @dev: Device to register 943 * @flags: Flags passed to the driver's .load() function 944 * 945 * Register the DRM device @dev with the system, advertise device to user-space 946 * and start normal device operation. @dev must be initialized via drm_dev_init() 947 * previously. 948 * 949 * Never call this twice on any device! 950 * 951 * NOTE: To ensure backward compatibility with existing drivers method this 952 * function calls the &drm_driver.load method after registering the device 953 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 954 * therefore deprecated, drivers must perform all initialization before calling 955 * drm_dev_register(). 956 * 957 * RETURNS: 958 * 0 on success, negative error code on failure. 959 */ 960 int drm_dev_register(struct drm_device *dev, unsigned long flags) 961 { 962 struct drm_driver *driver = dev->driver; 963 int ret; 964 965 mutex_lock(&drm_global_mutex); 966 967 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 968 if (ret) 969 goto err_minors; 970 971 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 972 if (ret) 973 goto err_minors; 974 975 ret = create_compat_control_link(dev); 976 if (ret) 977 goto err_minors; 978 979 if (dev->driver->load) { 980 ret = dev->driver->load(dev, flags); 981 if (ret) 982 goto err_minors; 983 } 984 985 dev->registered = true; 986 987 if (drm_core_check_feature(dev, DRIVER_MODESET)) 988 drm_modeset_register_all(dev); 989 990 ret = 0; 991 992 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 993 driver->name, driver->major, driver->minor, 994 driver->patchlevel, driver->date, 995 dev->dev ? dev_name(dev->dev) : "virtual device", 996 dev->primary->index); 997 998 goto out_unlock; 999 1000 err_minors: 1001 remove_compat_control_link(dev); 1002 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1003 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1004 out_unlock: 1005 mutex_unlock(&drm_global_mutex); 1006 return ret; 1007 } 1008 EXPORT_SYMBOL(drm_dev_register); 1009 1010 /** 1011 * drm_dev_unregister - Unregister DRM device 1012 * @dev: Device to unregister 1013 * 1014 * Unregister the DRM device from the system. This does the reverse of 1015 * drm_dev_register() but does not deallocate the device. The caller must call 1016 * drm_dev_put() to drop their final reference. 1017 * 1018 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1019 * which can be called while there are still open users of @dev. 1020 * 1021 * This should be called first in the device teardown code to make sure 1022 * userspace can't access the device instance any more. 1023 */ 1024 void drm_dev_unregister(struct drm_device *dev) 1025 { 1026 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 1027 drm_lastclose(dev); 1028 1029 dev->registered = false; 1030 1031 drm_client_dev_unregister(dev); 1032 1033 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1034 drm_modeset_unregister_all(dev); 1035 1036 if (dev->driver->unload) 1037 dev->driver->unload(dev); 1038 1039 if (dev->agp) 1040 drm_pci_agp_destroy(dev); 1041 1042 drm_legacy_rmmaps(dev); 1043 1044 remove_compat_control_link(dev); 1045 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1046 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1047 } 1048 EXPORT_SYMBOL(drm_dev_unregister); 1049 1050 /** 1051 * drm_dev_set_unique - Set the unique name of a DRM device 1052 * @dev: device of which to set the unique name 1053 * @name: unique name 1054 * 1055 * Sets the unique name of a DRM device using the specified string. This is 1056 * already done by drm_dev_init(), drivers should only override the default 1057 * unique name for backwards compatibility reasons. 1058 * 1059 * Return: 0 on success or a negative error code on failure. 1060 */ 1061 int drm_dev_set_unique(struct drm_device *dev, const char *name) 1062 { 1063 kfree(dev->unique); 1064 dev->unique = kstrdup(name, GFP_KERNEL); 1065 1066 return dev->unique ? 0 : -ENOMEM; 1067 } 1068 EXPORT_SYMBOL(drm_dev_set_unique); 1069 1070 /* 1071 * DRM Core 1072 * The DRM core module initializes all global DRM objects and makes them 1073 * available to drivers. Once setup, drivers can probe their respective 1074 * devices. 1075 * Currently, core management includes: 1076 * - The "DRM-Global" key/value database 1077 * - Global ID management for connectors 1078 * - DRM major number allocation 1079 * - DRM minor management 1080 * - DRM sysfs class 1081 * - DRM debugfs root 1082 * 1083 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1084 * interface registered on a DRM device, you can request minor numbers from DRM 1085 * core. DRM core takes care of major-number management and char-dev 1086 * registration. A stub ->open() callback forwards any open() requests to the 1087 * registered minor. 1088 */ 1089 1090 static int drm_stub_open(struct inode *inode, struct file *filp) 1091 { 1092 const struct file_operations *new_fops; 1093 struct drm_minor *minor; 1094 int err; 1095 1096 DRM_DEBUG("\n"); 1097 1098 mutex_lock(&drm_global_mutex); 1099 minor = drm_minor_acquire(iminor(inode)); 1100 if (IS_ERR(minor)) { 1101 err = PTR_ERR(minor); 1102 goto out_unlock; 1103 } 1104 1105 new_fops = fops_get(minor->dev->driver->fops); 1106 if (!new_fops) { 1107 err = -ENODEV; 1108 goto out_release; 1109 } 1110 1111 replace_fops(filp, new_fops); 1112 if (filp->f_op->open) 1113 err = filp->f_op->open(inode, filp); 1114 else 1115 err = 0; 1116 1117 out_release: 1118 drm_minor_release(minor); 1119 out_unlock: 1120 mutex_unlock(&drm_global_mutex); 1121 return err; 1122 } 1123 1124 static const struct file_operations drm_stub_fops = { 1125 .owner = THIS_MODULE, 1126 .open = drm_stub_open, 1127 .llseek = noop_llseek, 1128 }; 1129 1130 static void drm_core_exit(void) 1131 { 1132 unregister_chrdev(DRM_MAJOR, "drm"); 1133 debugfs_remove(drm_debugfs_root); 1134 drm_sysfs_destroy(); 1135 idr_destroy(&drm_minors_idr); 1136 drm_connector_ida_destroy(); 1137 } 1138 1139 static int __init drm_core_init(void) 1140 { 1141 int ret; 1142 1143 drm_connector_ida_init(); 1144 idr_init(&drm_minors_idr); 1145 1146 ret = drm_sysfs_init(); 1147 if (ret < 0) { 1148 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1149 goto error; 1150 } 1151 1152 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1153 1154 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1155 if (ret < 0) 1156 goto error; 1157 1158 drm_core_init_complete = true; 1159 1160 DRM_DEBUG("Initialized\n"); 1161 return 0; 1162 1163 error: 1164 drm_core_exit(); 1165 return ret; 1166 } 1167 1168 module_init(drm_core_init); 1169 module_exit(drm_core_exit); 1170