xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision b830f94f)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37 
38 #include <drm/drm_client.h>
39 #include <drm/drm_color_mgmt.h>
40 #include <drm/drm_drv.h>
41 #include <drm/drm_file.h>
42 #include <drm/drm_mode_object.h>
43 #include <drm/drm_print.h>
44 
45 #include "drm_crtc_internal.h"
46 #include "drm_internal.h"
47 #include "drm_legacy.h"
48 
49 /*
50  * drm_debug: Enable debug output.
51  * Bitmask of DRM_UT_x. See include/drm/drm_print.h for details.
52  */
53 unsigned int drm_debug = 0;
54 EXPORT_SYMBOL(drm_debug);
55 
56 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
57 MODULE_DESCRIPTION("DRM shared core routines");
58 MODULE_LICENSE("GPL and additional rights");
59 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
60 "\t\tBit 0 (0x01)  will enable CORE messages (drm core code)\n"
61 "\t\tBit 1 (0x02)  will enable DRIVER messages (drm controller code)\n"
62 "\t\tBit 2 (0x04)  will enable KMS messages (modesetting code)\n"
63 "\t\tBit 3 (0x08)  will enable PRIME messages (prime code)\n"
64 "\t\tBit 4 (0x10)  will enable ATOMIC messages (atomic code)\n"
65 "\t\tBit 5 (0x20)  will enable VBL messages (vblank code)\n"
66 "\t\tBit 7 (0x80)  will enable LEASE messages (leasing code)\n"
67 "\t\tBit 8 (0x100) will enable DP messages (displayport code)");
68 module_param_named(debug, drm_debug, int, 0600);
69 
70 static DEFINE_SPINLOCK(drm_minor_lock);
71 static struct idr drm_minors_idr;
72 
73 /*
74  * If the drm core fails to init for whatever reason,
75  * we should prevent any drivers from registering with it.
76  * It's best to check this at drm_dev_init(), as some drivers
77  * prefer to embed struct drm_device into their own device
78  * structure and call drm_dev_init() themselves.
79  */
80 static bool drm_core_init_complete = false;
81 
82 static struct dentry *drm_debugfs_root;
83 
84 DEFINE_STATIC_SRCU(drm_unplug_srcu);
85 
86 /*
87  * DRM Minors
88  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
89  * of them is represented by a drm_minor object. Depending on the capabilities
90  * of the device-driver, different interfaces are registered.
91  *
92  * Minors can be accessed via dev->$minor_name. This pointer is either
93  * NULL or a valid drm_minor pointer and stays valid as long as the device is
94  * valid. This means, DRM minors have the same life-time as the underlying
95  * device. However, this doesn't mean that the minor is active. Minors are
96  * registered and unregistered dynamically according to device-state.
97  */
98 
99 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
100 					     unsigned int type)
101 {
102 	switch (type) {
103 	case DRM_MINOR_PRIMARY:
104 		return &dev->primary;
105 	case DRM_MINOR_RENDER:
106 		return &dev->render;
107 	default:
108 		BUG();
109 	}
110 }
111 
112 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
113 {
114 	struct drm_minor *minor;
115 	unsigned long flags;
116 	int r;
117 
118 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
119 	if (!minor)
120 		return -ENOMEM;
121 
122 	minor->type = type;
123 	minor->dev = dev;
124 
125 	idr_preload(GFP_KERNEL);
126 	spin_lock_irqsave(&drm_minor_lock, flags);
127 	r = idr_alloc(&drm_minors_idr,
128 		      NULL,
129 		      64 * type,
130 		      64 * (type + 1),
131 		      GFP_NOWAIT);
132 	spin_unlock_irqrestore(&drm_minor_lock, flags);
133 	idr_preload_end();
134 
135 	if (r < 0)
136 		goto err_free;
137 
138 	minor->index = r;
139 
140 	minor->kdev = drm_sysfs_minor_alloc(minor);
141 	if (IS_ERR(minor->kdev)) {
142 		r = PTR_ERR(minor->kdev);
143 		goto err_index;
144 	}
145 
146 	*drm_minor_get_slot(dev, type) = minor;
147 	return 0;
148 
149 err_index:
150 	spin_lock_irqsave(&drm_minor_lock, flags);
151 	idr_remove(&drm_minors_idr, minor->index);
152 	spin_unlock_irqrestore(&drm_minor_lock, flags);
153 err_free:
154 	kfree(minor);
155 	return r;
156 }
157 
158 static void drm_minor_free(struct drm_device *dev, unsigned int type)
159 {
160 	struct drm_minor **slot, *minor;
161 	unsigned long flags;
162 
163 	slot = drm_minor_get_slot(dev, type);
164 	minor = *slot;
165 	if (!minor)
166 		return;
167 
168 	put_device(minor->kdev);
169 
170 	spin_lock_irqsave(&drm_minor_lock, flags);
171 	idr_remove(&drm_minors_idr, minor->index);
172 	spin_unlock_irqrestore(&drm_minor_lock, flags);
173 
174 	kfree(minor);
175 	*slot = NULL;
176 }
177 
178 static int drm_minor_register(struct drm_device *dev, unsigned int type)
179 {
180 	struct drm_minor *minor;
181 	unsigned long flags;
182 	int ret;
183 
184 	DRM_DEBUG("\n");
185 
186 	minor = *drm_minor_get_slot(dev, type);
187 	if (!minor)
188 		return 0;
189 
190 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
191 	if (ret) {
192 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
193 		goto err_debugfs;
194 	}
195 
196 	ret = device_add(minor->kdev);
197 	if (ret)
198 		goto err_debugfs;
199 
200 	/* replace NULL with @minor so lookups will succeed from now on */
201 	spin_lock_irqsave(&drm_minor_lock, flags);
202 	idr_replace(&drm_minors_idr, minor, minor->index);
203 	spin_unlock_irqrestore(&drm_minor_lock, flags);
204 
205 	DRM_DEBUG("new minor registered %d\n", minor->index);
206 	return 0;
207 
208 err_debugfs:
209 	drm_debugfs_cleanup(minor);
210 	return ret;
211 }
212 
213 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
214 {
215 	struct drm_minor *minor;
216 	unsigned long flags;
217 
218 	minor = *drm_minor_get_slot(dev, type);
219 	if (!minor || !device_is_registered(minor->kdev))
220 		return;
221 
222 	/* replace @minor with NULL so lookups will fail from now on */
223 	spin_lock_irqsave(&drm_minor_lock, flags);
224 	idr_replace(&drm_minors_idr, NULL, minor->index);
225 	spin_unlock_irqrestore(&drm_minor_lock, flags);
226 
227 	device_del(minor->kdev);
228 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
229 	drm_debugfs_cleanup(minor);
230 }
231 
232 /*
233  * Looks up the given minor-ID and returns the respective DRM-minor object. The
234  * refence-count of the underlying device is increased so you must release this
235  * object with drm_minor_release().
236  *
237  * As long as you hold this minor, it is guaranteed that the object and the
238  * minor->dev pointer will stay valid! However, the device may get unplugged and
239  * unregistered while you hold the minor.
240  */
241 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
242 {
243 	struct drm_minor *minor;
244 	unsigned long flags;
245 
246 	spin_lock_irqsave(&drm_minor_lock, flags);
247 	minor = idr_find(&drm_minors_idr, minor_id);
248 	if (minor)
249 		drm_dev_get(minor->dev);
250 	spin_unlock_irqrestore(&drm_minor_lock, flags);
251 
252 	if (!minor) {
253 		return ERR_PTR(-ENODEV);
254 	} else if (drm_dev_is_unplugged(minor->dev)) {
255 		drm_dev_put(minor->dev);
256 		return ERR_PTR(-ENODEV);
257 	}
258 
259 	return minor;
260 }
261 
262 void drm_minor_release(struct drm_minor *minor)
263 {
264 	drm_dev_put(minor->dev);
265 }
266 
267 /**
268  * DOC: driver instance overview
269  *
270  * A device instance for a drm driver is represented by &struct drm_device. This
271  * is initialized with drm_dev_init(), usually from bus-specific ->probe()
272  * callbacks implemented by the driver. The driver then needs to initialize all
273  * the various subsystems for the drm device like memory management, vblank
274  * handling, modesetting support and intial output configuration plus obviously
275  * initialize all the corresponding hardware bits. Finally when everything is up
276  * and running and ready for userspace the device instance can be published
277  * using drm_dev_register().
278  *
279  * There is also deprecated support for initalizing device instances using
280  * bus-specific helpers and the &drm_driver.load callback. But due to
281  * backwards-compatibility needs the device instance have to be published too
282  * early, which requires unpretty global locking to make safe and is therefore
283  * only support for existing drivers not yet converted to the new scheme.
284  *
285  * When cleaning up a device instance everything needs to be done in reverse:
286  * First unpublish the device instance with drm_dev_unregister(). Then clean up
287  * any other resources allocated at device initialization and drop the driver's
288  * reference to &drm_device using drm_dev_put().
289  *
290  * Note that the lifetime rules for &drm_device instance has still a lot of
291  * historical baggage. Hence use the reference counting provided by
292  * drm_dev_get() and drm_dev_put() only carefully.
293  *
294  * Display driver example
295  * ~~~~~~~~~~~~~~~~~~~~~~
296  *
297  * The following example shows a typical structure of a DRM display driver.
298  * The example focus on the probe() function and the other functions that is
299  * almost always present and serves as a demonstration of devm_drm_dev_init()
300  * usage with its accompanying drm_driver->release callback.
301  *
302  * .. code-block:: c
303  *
304  *	struct driver_device {
305  *		struct drm_device drm;
306  *		void *userspace_facing;
307  *		struct clk *pclk;
308  *	};
309  *
310  *	static void driver_drm_release(struct drm_device *drm)
311  *	{
312  *		struct driver_device *priv = container_of(...);
313  *
314  *		drm_mode_config_cleanup(drm);
315  *		drm_dev_fini(drm);
316  *		kfree(priv->userspace_facing);
317  *		kfree(priv);
318  *	}
319  *
320  *	static struct drm_driver driver_drm_driver = {
321  *		[...]
322  *		.release = driver_drm_release,
323  *	};
324  *
325  *	static int driver_probe(struct platform_device *pdev)
326  *	{
327  *		struct driver_device *priv;
328  *		struct drm_device *drm;
329  *		int ret;
330  *
331  *		[
332  *		  devm_kzalloc() can't be used here because the drm_device
333  *		  lifetime can exceed the device lifetime if driver unbind
334  *		  happens when userspace still has open file descriptors.
335  *		]
336  *		priv = kzalloc(sizeof(*priv), GFP_KERNEL);
337  *		if (!priv)
338  *			return -ENOMEM;
339  *
340  *		drm = &priv->drm;
341  *
342  *		ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver);
343  *		if (ret) {
344  *			kfree(drm);
345  *			return ret;
346  *		}
347  *
348  *		drm_mode_config_init(drm);
349  *
350  *		priv->userspace_facing = kzalloc(..., GFP_KERNEL);
351  *		if (!priv->userspace_facing)
352  *			return -ENOMEM;
353  *
354  *		priv->pclk = devm_clk_get(dev, "PCLK");
355  *		if (IS_ERR(priv->pclk))
356  *			return PTR_ERR(priv->pclk);
357  *
358  *		[ Further setup, display pipeline etc ]
359  *
360  *		platform_set_drvdata(pdev, drm);
361  *
362  *		drm_mode_config_reset(drm);
363  *
364  *		ret = drm_dev_register(drm);
365  *		if (ret)
366  *			return ret;
367  *
368  *		drm_fbdev_generic_setup(drm, 32);
369  *
370  *		return 0;
371  *	}
372  *
373  *	[ This function is called before the devm_ resources are released ]
374  *	static int driver_remove(struct platform_device *pdev)
375  *	{
376  *		struct drm_device *drm = platform_get_drvdata(pdev);
377  *
378  *		drm_dev_unregister(drm);
379  *		drm_atomic_helper_shutdown(drm)
380  *
381  *		return 0;
382  *	}
383  *
384  *	[ This function is called on kernel restart and shutdown ]
385  *	static void driver_shutdown(struct platform_device *pdev)
386  *	{
387  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
388  *	}
389  *
390  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
391  *	{
392  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
393  *	}
394  *
395  *	static int __maybe_unused driver_pm_resume(struct device *dev)
396  *	{
397  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
398  *
399  *		return 0;
400  *	}
401  *
402  *	static const struct dev_pm_ops driver_pm_ops = {
403  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
404  *	};
405  *
406  *	static struct platform_driver driver_driver = {
407  *		.driver = {
408  *			[...]
409  *			.pm = &driver_pm_ops,
410  *		},
411  *		.probe = driver_probe,
412  *		.remove = driver_remove,
413  *		.shutdown = driver_shutdown,
414  *	};
415  *	module_platform_driver(driver_driver);
416  *
417  * Drivers that want to support device unplugging (USB, DT overlay unload) should
418  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
419  * regions that is accessing device resources to prevent use after they're
420  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
421  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
422  * drm_atomic_helper_shutdown() is called. This means that if the disable code
423  * paths are protected, they will not run on regular driver module unload,
424  * possibily leaving the hardware enabled.
425  */
426 
427 /**
428  * drm_put_dev - Unregister and release a DRM device
429  * @dev: DRM device
430  *
431  * Called at module unload time or when a PCI device is unplugged.
432  *
433  * Cleans up all DRM device, calling drm_lastclose().
434  *
435  * Note: Use of this function is deprecated. It will eventually go away
436  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
437  * instead to make sure that the device isn't userspace accessible any more
438  * while teardown is in progress, ensuring that userspace can't access an
439  * inconsistent state.
440  */
441 void drm_put_dev(struct drm_device *dev)
442 {
443 	DRM_DEBUG("\n");
444 
445 	if (!dev) {
446 		DRM_ERROR("cleanup called no dev\n");
447 		return;
448 	}
449 
450 	drm_dev_unregister(dev);
451 	drm_dev_put(dev);
452 }
453 EXPORT_SYMBOL(drm_put_dev);
454 
455 /**
456  * drm_dev_enter - Enter device critical section
457  * @dev: DRM device
458  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
459  *
460  * This function marks and protects the beginning of a section that should not
461  * be entered after the device has been unplugged. The section end is marked
462  * with drm_dev_exit(). Calls to this function can be nested.
463  *
464  * Returns:
465  * True if it is OK to enter the section, false otherwise.
466  */
467 bool drm_dev_enter(struct drm_device *dev, int *idx)
468 {
469 	*idx = srcu_read_lock(&drm_unplug_srcu);
470 
471 	if (dev->unplugged) {
472 		srcu_read_unlock(&drm_unplug_srcu, *idx);
473 		return false;
474 	}
475 
476 	return true;
477 }
478 EXPORT_SYMBOL(drm_dev_enter);
479 
480 /**
481  * drm_dev_exit - Exit device critical section
482  * @idx: index returned from drm_dev_enter()
483  *
484  * This function marks the end of a section that should not be entered after
485  * the device has been unplugged.
486  */
487 void drm_dev_exit(int idx)
488 {
489 	srcu_read_unlock(&drm_unplug_srcu, idx);
490 }
491 EXPORT_SYMBOL(drm_dev_exit);
492 
493 /**
494  * drm_dev_unplug - unplug a DRM device
495  * @dev: DRM device
496  *
497  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
498  * userspace operations. Entry-points can use drm_dev_enter() and
499  * drm_dev_exit() to protect device resources in a race free manner. This
500  * essentially unregisters the device like drm_dev_unregister(), but can be
501  * called while there are still open users of @dev.
502  */
503 void drm_dev_unplug(struct drm_device *dev)
504 {
505 	/*
506 	 * After synchronizing any critical read section is guaranteed to see
507 	 * the new value of ->unplugged, and any critical section which might
508 	 * still have seen the old value of ->unplugged is guaranteed to have
509 	 * finished.
510 	 */
511 	dev->unplugged = true;
512 	synchronize_srcu(&drm_unplug_srcu);
513 
514 	drm_dev_unregister(dev);
515 }
516 EXPORT_SYMBOL(drm_dev_unplug);
517 
518 /*
519  * DRM internal mount
520  * We want to be able to allocate our own "struct address_space" to control
521  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
522  * stand-alone address_space objects, so we need an underlying inode. As there
523  * is no way to allocate an independent inode easily, we need a fake internal
524  * VFS mount-point.
525  *
526  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
527  * frees it again. You are allowed to use iget() and iput() to get references to
528  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
529  * drm_fs_inode_free() call (which does not have to be the last iput()).
530  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
531  * between multiple inode-users. You could, technically, call
532  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
533  * iput(), but this way you'd end up with a new vfsmount for each inode.
534  */
535 
536 static int drm_fs_cnt;
537 static struct vfsmount *drm_fs_mnt;
538 
539 static int drm_fs_init_fs_context(struct fs_context *fc)
540 {
541 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
542 }
543 
544 static struct file_system_type drm_fs_type = {
545 	.name		= "drm",
546 	.owner		= THIS_MODULE,
547 	.init_fs_context = drm_fs_init_fs_context,
548 	.kill_sb	= kill_anon_super,
549 };
550 
551 static struct inode *drm_fs_inode_new(void)
552 {
553 	struct inode *inode;
554 	int r;
555 
556 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
557 	if (r < 0) {
558 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
559 		return ERR_PTR(r);
560 	}
561 
562 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
563 	if (IS_ERR(inode))
564 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
565 
566 	return inode;
567 }
568 
569 static void drm_fs_inode_free(struct inode *inode)
570 {
571 	if (inode) {
572 		iput(inode);
573 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
574 	}
575 }
576 
577 /**
578  * DOC: component helper usage recommendations
579  *
580  * DRM drivers that drive hardware where a logical device consists of a pile of
581  * independent hardware blocks are recommended to use the :ref:`component helper
582  * library<component>`. For consistency and better options for code reuse the
583  * following guidelines apply:
584  *
585  *  - The entire device initialization procedure should be run from the
586  *    &component_master_ops.master_bind callback, starting with drm_dev_init(),
587  *    then binding all components with component_bind_all() and finishing with
588  *    drm_dev_register().
589  *
590  *  - The opaque pointer passed to all components through component_bind_all()
591  *    should point at &struct drm_device of the device instance, not some driver
592  *    specific private structure.
593  *
594  *  - The component helper fills the niche where further standardization of
595  *    interfaces is not practical. When there already is, or will be, a
596  *    standardized interface like &drm_bridge or &drm_panel, providing its own
597  *    functions to find such components at driver load time, like
598  *    drm_of_find_panel_or_bridge(), then the component helper should not be
599  *    used.
600  */
601 
602 /**
603  * drm_dev_init - Initialise new DRM device
604  * @dev: DRM device
605  * @driver: DRM driver
606  * @parent: Parent device object
607  *
608  * Initialize a new DRM device. No device registration is done.
609  * Call drm_dev_register() to advertice the device to user space and register it
610  * with other core subsystems. This should be done last in the device
611  * initialization sequence to make sure userspace can't access an inconsistent
612  * state.
613  *
614  * The initial ref-count of the object is 1. Use drm_dev_get() and
615  * drm_dev_put() to take and drop further ref-counts.
616  *
617  * It is recommended that drivers embed &struct drm_device into their own device
618  * structure.
619  *
620  * Drivers that do not want to allocate their own device struct
621  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
622  * that do embed &struct drm_device it must be placed first in the overall
623  * structure, and the overall structure must be allocated using kmalloc(): The
624  * drm core's release function unconditionally calls kfree() on the @dev pointer
625  * when the final reference is released. To override this behaviour, and so
626  * allow embedding of the drm_device inside the driver's device struct at an
627  * arbitrary offset, you must supply a &drm_driver.release callback and control
628  * the finalization explicitly.
629  *
630  * RETURNS:
631  * 0 on success, or error code on failure.
632  */
633 int drm_dev_init(struct drm_device *dev,
634 		 struct drm_driver *driver,
635 		 struct device *parent)
636 {
637 	int ret;
638 
639 	if (!drm_core_init_complete) {
640 		DRM_ERROR("DRM core is not initialized\n");
641 		return -ENODEV;
642 	}
643 
644 	BUG_ON(!parent);
645 
646 	kref_init(&dev->ref);
647 	dev->dev = get_device(parent);
648 	dev->driver = driver;
649 
650 	/* no per-device feature limits by default */
651 	dev->driver_features = ~0u;
652 
653 	drm_legacy_init_members(dev);
654 	INIT_LIST_HEAD(&dev->filelist);
655 	INIT_LIST_HEAD(&dev->filelist_internal);
656 	INIT_LIST_HEAD(&dev->clientlist);
657 	INIT_LIST_HEAD(&dev->vblank_event_list);
658 
659 	spin_lock_init(&dev->event_lock);
660 	mutex_init(&dev->struct_mutex);
661 	mutex_init(&dev->filelist_mutex);
662 	mutex_init(&dev->clientlist_mutex);
663 	mutex_init(&dev->master_mutex);
664 
665 	dev->anon_inode = drm_fs_inode_new();
666 	if (IS_ERR(dev->anon_inode)) {
667 		ret = PTR_ERR(dev->anon_inode);
668 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
669 		goto err_free;
670 	}
671 
672 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
673 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
674 		if (ret)
675 			goto err_minors;
676 	}
677 
678 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
679 	if (ret)
680 		goto err_minors;
681 
682 	ret = drm_legacy_create_map_hash(dev);
683 	if (ret)
684 		goto err_minors;
685 
686 	drm_legacy_ctxbitmap_init(dev);
687 
688 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
689 		ret = drm_gem_init(dev);
690 		if (ret) {
691 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
692 			goto err_ctxbitmap;
693 		}
694 	}
695 
696 	ret = drm_dev_set_unique(dev, dev_name(parent));
697 	if (ret)
698 		goto err_setunique;
699 
700 	return 0;
701 
702 err_setunique:
703 	if (drm_core_check_feature(dev, DRIVER_GEM))
704 		drm_gem_destroy(dev);
705 err_ctxbitmap:
706 	drm_legacy_ctxbitmap_cleanup(dev);
707 	drm_legacy_remove_map_hash(dev);
708 err_minors:
709 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
710 	drm_minor_free(dev, DRM_MINOR_RENDER);
711 	drm_fs_inode_free(dev->anon_inode);
712 err_free:
713 	put_device(dev->dev);
714 	mutex_destroy(&dev->master_mutex);
715 	mutex_destroy(&dev->clientlist_mutex);
716 	mutex_destroy(&dev->filelist_mutex);
717 	mutex_destroy(&dev->struct_mutex);
718 	drm_legacy_destroy_members(dev);
719 	return ret;
720 }
721 EXPORT_SYMBOL(drm_dev_init);
722 
723 static void devm_drm_dev_init_release(void *data)
724 {
725 	drm_dev_put(data);
726 }
727 
728 /**
729  * devm_drm_dev_init - Resource managed drm_dev_init()
730  * @parent: Parent device object
731  * @dev: DRM device
732  * @driver: DRM driver
733  *
734  * Managed drm_dev_init(). The DRM device initialized with this function is
735  * automatically put on driver detach using drm_dev_put(). You must supply a
736  * &drm_driver.release callback to control the finalization explicitly.
737  *
738  * RETURNS:
739  * 0 on success, or error code on failure.
740  */
741 int devm_drm_dev_init(struct device *parent,
742 		      struct drm_device *dev,
743 		      struct drm_driver *driver)
744 {
745 	int ret;
746 
747 	if (WARN_ON(!parent || !driver->release))
748 		return -EINVAL;
749 
750 	ret = drm_dev_init(dev, driver, parent);
751 	if (ret)
752 		return ret;
753 
754 	ret = devm_add_action(parent, devm_drm_dev_init_release, dev);
755 	if (ret)
756 		devm_drm_dev_init_release(dev);
757 
758 	return ret;
759 }
760 EXPORT_SYMBOL(devm_drm_dev_init);
761 
762 /**
763  * drm_dev_fini - Finalize a dead DRM device
764  * @dev: DRM device
765  *
766  * Finalize a dead DRM device. This is the converse to drm_dev_init() and
767  * frees up all data allocated by it. All driver private data should be
768  * finalized first. Note that this function does not free the @dev, that is
769  * left to the caller.
770  *
771  * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
772  * from a &drm_driver.release callback.
773  */
774 void drm_dev_fini(struct drm_device *dev)
775 {
776 	drm_vblank_cleanup(dev);
777 
778 	if (drm_core_check_feature(dev, DRIVER_GEM))
779 		drm_gem_destroy(dev);
780 
781 	drm_legacy_ctxbitmap_cleanup(dev);
782 	drm_legacy_remove_map_hash(dev);
783 	drm_fs_inode_free(dev->anon_inode);
784 
785 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
786 	drm_minor_free(dev, DRM_MINOR_RENDER);
787 
788 	put_device(dev->dev);
789 
790 	mutex_destroy(&dev->master_mutex);
791 	mutex_destroy(&dev->clientlist_mutex);
792 	mutex_destroy(&dev->filelist_mutex);
793 	mutex_destroy(&dev->struct_mutex);
794 	drm_legacy_destroy_members(dev);
795 	kfree(dev->unique);
796 }
797 EXPORT_SYMBOL(drm_dev_fini);
798 
799 /**
800  * drm_dev_alloc - Allocate new DRM device
801  * @driver: DRM driver to allocate device for
802  * @parent: Parent device object
803  *
804  * Allocate and initialize a new DRM device. No device registration is done.
805  * Call drm_dev_register() to advertice the device to user space and register it
806  * with other core subsystems. This should be done last in the device
807  * initialization sequence to make sure userspace can't access an inconsistent
808  * state.
809  *
810  * The initial ref-count of the object is 1. Use drm_dev_get() and
811  * drm_dev_put() to take and drop further ref-counts.
812  *
813  * Note that for purely virtual devices @parent can be NULL.
814  *
815  * Drivers that wish to subclass or embed &struct drm_device into their
816  * own struct should look at using drm_dev_init() instead.
817  *
818  * RETURNS:
819  * Pointer to new DRM device, or ERR_PTR on failure.
820  */
821 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
822 				 struct device *parent)
823 {
824 	struct drm_device *dev;
825 	int ret;
826 
827 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
828 	if (!dev)
829 		return ERR_PTR(-ENOMEM);
830 
831 	ret = drm_dev_init(dev, driver, parent);
832 	if (ret) {
833 		kfree(dev);
834 		return ERR_PTR(ret);
835 	}
836 
837 	return dev;
838 }
839 EXPORT_SYMBOL(drm_dev_alloc);
840 
841 static void drm_dev_release(struct kref *ref)
842 {
843 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
844 
845 	if (dev->driver->release) {
846 		dev->driver->release(dev);
847 	} else {
848 		drm_dev_fini(dev);
849 		kfree(dev);
850 	}
851 }
852 
853 /**
854  * drm_dev_get - Take reference of a DRM device
855  * @dev: device to take reference of or NULL
856  *
857  * This increases the ref-count of @dev by one. You *must* already own a
858  * reference when calling this. Use drm_dev_put() to drop this reference
859  * again.
860  *
861  * This function never fails. However, this function does not provide *any*
862  * guarantee whether the device is alive or running. It only provides a
863  * reference to the object and the memory associated with it.
864  */
865 void drm_dev_get(struct drm_device *dev)
866 {
867 	if (dev)
868 		kref_get(&dev->ref);
869 }
870 EXPORT_SYMBOL(drm_dev_get);
871 
872 /**
873  * drm_dev_put - Drop reference of a DRM device
874  * @dev: device to drop reference of or NULL
875  *
876  * This decreases the ref-count of @dev by one. The device is destroyed if the
877  * ref-count drops to zero.
878  */
879 void drm_dev_put(struct drm_device *dev)
880 {
881 	if (dev)
882 		kref_put(&dev->ref, drm_dev_release);
883 }
884 EXPORT_SYMBOL(drm_dev_put);
885 
886 static int create_compat_control_link(struct drm_device *dev)
887 {
888 	struct drm_minor *minor;
889 	char *name;
890 	int ret;
891 
892 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
893 		return 0;
894 
895 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
896 	if (!minor)
897 		return 0;
898 
899 	/*
900 	 * Some existing userspace out there uses the existing of the controlD*
901 	 * sysfs files to figure out whether it's a modeset driver. It only does
902 	 * readdir, hence a symlink is sufficient (and the least confusing
903 	 * option). Otherwise controlD* is entirely unused.
904 	 *
905 	 * Old controlD chardev have been allocated in the range
906 	 * 64-127.
907 	 */
908 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
909 	if (!name)
910 		return -ENOMEM;
911 
912 	ret = sysfs_create_link(minor->kdev->kobj.parent,
913 				&minor->kdev->kobj,
914 				name);
915 
916 	kfree(name);
917 
918 	return ret;
919 }
920 
921 static void remove_compat_control_link(struct drm_device *dev)
922 {
923 	struct drm_minor *minor;
924 	char *name;
925 
926 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
927 		return;
928 
929 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
930 	if (!minor)
931 		return;
932 
933 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
934 	if (!name)
935 		return;
936 
937 	sysfs_remove_link(minor->kdev->kobj.parent, name);
938 
939 	kfree(name);
940 }
941 
942 /**
943  * drm_dev_register - Register DRM device
944  * @dev: Device to register
945  * @flags: Flags passed to the driver's .load() function
946  *
947  * Register the DRM device @dev with the system, advertise device to user-space
948  * and start normal device operation. @dev must be initialized via drm_dev_init()
949  * previously.
950  *
951  * Never call this twice on any device!
952  *
953  * NOTE: To ensure backward compatibility with existing drivers method this
954  * function calls the &drm_driver.load method after registering the device
955  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
956  * therefore deprecated, drivers must perform all initialization before calling
957  * drm_dev_register().
958  *
959  * RETURNS:
960  * 0 on success, negative error code on failure.
961  */
962 int drm_dev_register(struct drm_device *dev, unsigned long flags)
963 {
964 	struct drm_driver *driver = dev->driver;
965 	int ret;
966 
967 	mutex_lock(&drm_global_mutex);
968 
969 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
970 	if (ret)
971 		goto err_minors;
972 
973 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
974 	if (ret)
975 		goto err_minors;
976 
977 	ret = create_compat_control_link(dev);
978 	if (ret)
979 		goto err_minors;
980 
981 	dev->registered = true;
982 
983 	if (dev->driver->load) {
984 		ret = dev->driver->load(dev, flags);
985 		if (ret)
986 			goto err_minors;
987 	}
988 
989 	if (drm_core_check_feature(dev, DRIVER_MODESET))
990 		drm_modeset_register_all(dev);
991 
992 	ret = 0;
993 
994 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
995 		 driver->name, driver->major, driver->minor,
996 		 driver->patchlevel, driver->date,
997 		 dev->dev ? dev_name(dev->dev) : "virtual device",
998 		 dev->primary->index);
999 
1000 	goto out_unlock;
1001 
1002 err_minors:
1003 	remove_compat_control_link(dev);
1004 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1005 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1006 out_unlock:
1007 	mutex_unlock(&drm_global_mutex);
1008 	return ret;
1009 }
1010 EXPORT_SYMBOL(drm_dev_register);
1011 
1012 /**
1013  * drm_dev_unregister - Unregister DRM device
1014  * @dev: Device to unregister
1015  *
1016  * Unregister the DRM device from the system. This does the reverse of
1017  * drm_dev_register() but does not deallocate the device. The caller must call
1018  * drm_dev_put() to drop their final reference.
1019  *
1020  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1021  * which can be called while there are still open users of @dev.
1022  *
1023  * This should be called first in the device teardown code to make sure
1024  * userspace can't access the device instance any more.
1025  */
1026 void drm_dev_unregister(struct drm_device *dev)
1027 {
1028 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
1029 		drm_lastclose(dev);
1030 
1031 	dev->registered = false;
1032 
1033 	drm_client_dev_unregister(dev);
1034 
1035 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1036 		drm_modeset_unregister_all(dev);
1037 
1038 	if (dev->driver->unload)
1039 		dev->driver->unload(dev);
1040 
1041 	if (dev->agp)
1042 		drm_pci_agp_destroy(dev);
1043 
1044 	drm_legacy_rmmaps(dev);
1045 
1046 	remove_compat_control_link(dev);
1047 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1048 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1049 }
1050 EXPORT_SYMBOL(drm_dev_unregister);
1051 
1052 /**
1053  * drm_dev_set_unique - Set the unique name of a DRM device
1054  * @dev: device of which to set the unique name
1055  * @name: unique name
1056  *
1057  * Sets the unique name of a DRM device using the specified string. This is
1058  * already done by drm_dev_init(), drivers should only override the default
1059  * unique name for backwards compatibility reasons.
1060  *
1061  * Return: 0 on success or a negative error code on failure.
1062  */
1063 int drm_dev_set_unique(struct drm_device *dev, const char *name)
1064 {
1065 	kfree(dev->unique);
1066 	dev->unique = kstrdup(name, GFP_KERNEL);
1067 
1068 	return dev->unique ? 0 : -ENOMEM;
1069 }
1070 EXPORT_SYMBOL(drm_dev_set_unique);
1071 
1072 /*
1073  * DRM Core
1074  * The DRM core module initializes all global DRM objects and makes them
1075  * available to drivers. Once setup, drivers can probe their respective
1076  * devices.
1077  * Currently, core management includes:
1078  *  - The "DRM-Global" key/value database
1079  *  - Global ID management for connectors
1080  *  - DRM major number allocation
1081  *  - DRM minor management
1082  *  - DRM sysfs class
1083  *  - DRM debugfs root
1084  *
1085  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1086  * interface registered on a DRM device, you can request minor numbers from DRM
1087  * core. DRM core takes care of major-number management and char-dev
1088  * registration. A stub ->open() callback forwards any open() requests to the
1089  * registered minor.
1090  */
1091 
1092 static int drm_stub_open(struct inode *inode, struct file *filp)
1093 {
1094 	const struct file_operations *new_fops;
1095 	struct drm_minor *minor;
1096 	int err;
1097 
1098 	DRM_DEBUG("\n");
1099 
1100 	mutex_lock(&drm_global_mutex);
1101 	minor = drm_minor_acquire(iminor(inode));
1102 	if (IS_ERR(minor)) {
1103 		err = PTR_ERR(minor);
1104 		goto out_unlock;
1105 	}
1106 
1107 	new_fops = fops_get(minor->dev->driver->fops);
1108 	if (!new_fops) {
1109 		err = -ENODEV;
1110 		goto out_release;
1111 	}
1112 
1113 	replace_fops(filp, new_fops);
1114 	if (filp->f_op->open)
1115 		err = filp->f_op->open(inode, filp);
1116 	else
1117 		err = 0;
1118 
1119 out_release:
1120 	drm_minor_release(minor);
1121 out_unlock:
1122 	mutex_unlock(&drm_global_mutex);
1123 	return err;
1124 }
1125 
1126 static const struct file_operations drm_stub_fops = {
1127 	.owner = THIS_MODULE,
1128 	.open = drm_stub_open,
1129 	.llseek = noop_llseek,
1130 };
1131 
1132 static void drm_core_exit(void)
1133 {
1134 	unregister_chrdev(DRM_MAJOR, "drm");
1135 	debugfs_remove(drm_debugfs_root);
1136 	drm_sysfs_destroy();
1137 	idr_destroy(&drm_minors_idr);
1138 	drm_connector_ida_destroy();
1139 }
1140 
1141 static int __init drm_core_init(void)
1142 {
1143 	int ret;
1144 
1145 	drm_connector_ida_init();
1146 	idr_init(&drm_minors_idr);
1147 
1148 	ret = drm_sysfs_init();
1149 	if (ret < 0) {
1150 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1151 		goto error;
1152 	}
1153 
1154 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1155 
1156 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1157 	if (ret < 0)
1158 		goto error;
1159 
1160 	drm_core_init_complete = true;
1161 
1162 	DRM_DEBUG("Initialized\n");
1163 	return 0;
1164 
1165 error:
1166 	drm_core_exit();
1167 	return ret;
1168 }
1169 
1170 module_init(drm_core_init);
1171 module_exit(drm_core_exit);
1172