xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision b78412b8)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 
36 #include <drm/drm_drv.h>
37 #include <drm/drmP.h>
38 
39 #include "drm_crtc_internal.h"
40 #include "drm_legacy.h"
41 #include "drm_internal.h"
42 #include "drm_crtc_internal.h"
43 
44 /*
45  * drm_debug: Enable debug output.
46  * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
47  */
48 unsigned int drm_debug = 0;
49 EXPORT_SYMBOL(drm_debug);
50 
51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
52 MODULE_DESCRIPTION("DRM shared core routines");
53 MODULE_LICENSE("GPL and additional rights");
54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)");
61 module_param_named(debug, drm_debug, int, 0600);
62 
63 static DEFINE_SPINLOCK(drm_minor_lock);
64 static struct idr drm_minors_idr;
65 
66 /*
67  * If the drm core fails to init for whatever reason,
68  * we should prevent any drivers from registering with it.
69  * It's best to check this at drm_dev_init(), as some drivers
70  * prefer to embed struct drm_device into their own device
71  * structure and call drm_dev_init() themselves.
72  */
73 static bool drm_core_init_complete = false;
74 
75 static struct dentry *drm_debugfs_root;
76 
77 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV"
78 
79 void drm_dev_printk(const struct device *dev, const char *level,
80 		    unsigned int category, const char *function_name,
81 		    const char *prefix, const char *format, ...)
82 {
83 	struct va_format vaf;
84 	va_list args;
85 
86 	if (category != DRM_UT_NONE && !(drm_debug & category))
87 		return;
88 
89 	va_start(args, format);
90 	vaf.fmt = format;
91 	vaf.va = &args;
92 
93 	if (dev)
94 		dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix,
95 			   &vaf);
96 	else
97 		printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
98 
99 	va_end(args);
100 }
101 EXPORT_SYMBOL(drm_dev_printk);
102 
103 void drm_printk(const char *level, unsigned int category,
104 		const char *format, ...)
105 {
106 	struct va_format vaf;
107 	va_list args;
108 
109 	if (category != DRM_UT_NONE && !(drm_debug & category))
110 		return;
111 
112 	va_start(args, format);
113 	vaf.fmt = format;
114 	vaf.va = &args;
115 
116 	printk("%s" "[" DRM_NAME ":%ps]%s %pV",
117 	       level, __builtin_return_address(0),
118 	       strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf);
119 
120 	va_end(args);
121 }
122 EXPORT_SYMBOL(drm_printk);
123 
124 /*
125  * DRM Minors
126  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
127  * of them is represented by a drm_minor object. Depending on the capabilities
128  * of the device-driver, different interfaces are registered.
129  *
130  * Minors can be accessed via dev->$minor_name. This pointer is either
131  * NULL or a valid drm_minor pointer and stays valid as long as the device is
132  * valid. This means, DRM minors have the same life-time as the underlying
133  * device. However, this doesn't mean that the minor is active. Minors are
134  * registered and unregistered dynamically according to device-state.
135  */
136 
137 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
138 					     unsigned int type)
139 {
140 	switch (type) {
141 	case DRM_MINOR_PRIMARY:
142 		return &dev->primary;
143 	case DRM_MINOR_RENDER:
144 		return &dev->render;
145 	case DRM_MINOR_CONTROL:
146 		return &dev->control;
147 	default:
148 		return NULL;
149 	}
150 }
151 
152 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
153 {
154 	struct drm_minor *minor;
155 	unsigned long flags;
156 	int r;
157 
158 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
159 	if (!minor)
160 		return -ENOMEM;
161 
162 	minor->type = type;
163 	minor->dev = dev;
164 
165 	idr_preload(GFP_KERNEL);
166 	spin_lock_irqsave(&drm_minor_lock, flags);
167 	r = idr_alloc(&drm_minors_idr,
168 		      NULL,
169 		      64 * type,
170 		      64 * (type + 1),
171 		      GFP_NOWAIT);
172 	spin_unlock_irqrestore(&drm_minor_lock, flags);
173 	idr_preload_end();
174 
175 	if (r < 0)
176 		goto err_free;
177 
178 	minor->index = r;
179 
180 	minor->kdev = drm_sysfs_minor_alloc(minor);
181 	if (IS_ERR(minor->kdev)) {
182 		r = PTR_ERR(minor->kdev);
183 		goto err_index;
184 	}
185 
186 	*drm_minor_get_slot(dev, type) = minor;
187 	return 0;
188 
189 err_index:
190 	spin_lock_irqsave(&drm_minor_lock, flags);
191 	idr_remove(&drm_minors_idr, minor->index);
192 	spin_unlock_irqrestore(&drm_minor_lock, flags);
193 err_free:
194 	kfree(minor);
195 	return r;
196 }
197 
198 static void drm_minor_free(struct drm_device *dev, unsigned int type)
199 {
200 	struct drm_minor **slot, *minor;
201 	unsigned long flags;
202 
203 	slot = drm_minor_get_slot(dev, type);
204 	minor = *slot;
205 	if (!minor)
206 		return;
207 
208 	put_device(minor->kdev);
209 
210 	spin_lock_irqsave(&drm_minor_lock, flags);
211 	idr_remove(&drm_minors_idr, minor->index);
212 	spin_unlock_irqrestore(&drm_minor_lock, flags);
213 
214 	kfree(minor);
215 	*slot = NULL;
216 }
217 
218 static int drm_minor_register(struct drm_device *dev, unsigned int type)
219 {
220 	struct drm_minor *minor;
221 	unsigned long flags;
222 	int ret;
223 
224 	DRM_DEBUG("\n");
225 
226 	minor = *drm_minor_get_slot(dev, type);
227 	if (!minor)
228 		return 0;
229 
230 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
231 	if (ret) {
232 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
233 		goto err_debugfs;
234 	}
235 
236 	ret = device_add(minor->kdev);
237 	if (ret)
238 		goto err_debugfs;
239 
240 	/* replace NULL with @minor so lookups will succeed from now on */
241 	spin_lock_irqsave(&drm_minor_lock, flags);
242 	idr_replace(&drm_minors_idr, minor, minor->index);
243 	spin_unlock_irqrestore(&drm_minor_lock, flags);
244 
245 	DRM_DEBUG("new minor registered %d\n", minor->index);
246 	return 0;
247 
248 err_debugfs:
249 	drm_debugfs_cleanup(minor);
250 	return ret;
251 }
252 
253 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
254 {
255 	struct drm_minor *minor;
256 	unsigned long flags;
257 
258 	minor = *drm_minor_get_slot(dev, type);
259 	if (!minor || !device_is_registered(minor->kdev))
260 		return;
261 
262 	/* replace @minor with NULL so lookups will fail from now on */
263 	spin_lock_irqsave(&drm_minor_lock, flags);
264 	idr_replace(&drm_minors_idr, NULL, minor->index);
265 	spin_unlock_irqrestore(&drm_minor_lock, flags);
266 
267 	device_del(minor->kdev);
268 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
269 	drm_debugfs_cleanup(minor);
270 }
271 
272 /*
273  * Looks up the given minor-ID and returns the respective DRM-minor object. The
274  * refence-count of the underlying device is increased so you must release this
275  * object with drm_minor_release().
276  *
277  * As long as you hold this minor, it is guaranteed that the object and the
278  * minor->dev pointer will stay valid! However, the device may get unplugged and
279  * unregistered while you hold the minor.
280  */
281 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
282 {
283 	struct drm_minor *minor;
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&drm_minor_lock, flags);
287 	minor = idr_find(&drm_minors_idr, minor_id);
288 	if (minor)
289 		drm_dev_ref(minor->dev);
290 	spin_unlock_irqrestore(&drm_minor_lock, flags);
291 
292 	if (!minor) {
293 		return ERR_PTR(-ENODEV);
294 	} else if (drm_dev_is_unplugged(minor->dev)) {
295 		drm_dev_unref(minor->dev);
296 		return ERR_PTR(-ENODEV);
297 	}
298 
299 	return minor;
300 }
301 
302 void drm_minor_release(struct drm_minor *minor)
303 {
304 	drm_dev_unref(minor->dev);
305 }
306 
307 /**
308  * DOC: driver instance overview
309  *
310  * A device instance for a drm driver is represented by &struct drm_device. This
311  * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
312  * callbacks implemented by the driver. The driver then needs to initialize all
313  * the various subsystems for the drm device like memory management, vblank
314  * handling, modesetting support and intial output configuration plus obviously
315  * initialize all the corresponding hardware bits. An important part of this is
316  * also calling drm_dev_set_unique() to set the userspace-visible unique name of
317  * this device instance. Finally when everything is up and running and ready for
318  * userspace the device instance can be published using drm_dev_register().
319  *
320  * There is also deprecated support for initalizing device instances using
321  * bus-specific helpers and the &drm_driver.load callback. But due to
322  * backwards-compatibility needs the device instance have to be published too
323  * early, which requires unpretty global locking to make safe and is therefore
324  * only support for existing drivers not yet converted to the new scheme.
325  *
326  * When cleaning up a device instance everything needs to be done in reverse:
327  * First unpublish the device instance with drm_dev_unregister(). Then clean up
328  * any other resources allocated at device initialization and drop the driver's
329  * reference to &drm_device using drm_dev_unref().
330  *
331  * Note that the lifetime rules for &drm_device instance has still a lot of
332  * historical baggage. Hence use the reference counting provided by
333  * drm_dev_ref() and drm_dev_unref() only carefully.
334  *
335  * It is recommended that drivers embed &struct drm_device into their own device
336  * structure, which is supported through drm_dev_init().
337  */
338 
339 /**
340  * drm_put_dev - Unregister and release a DRM device
341  * @dev: DRM device
342  *
343  * Called at module unload time or when a PCI device is unplugged.
344  *
345  * Cleans up all DRM device, calling drm_lastclose().
346  *
347  * Note: Use of this function is deprecated. It will eventually go away
348  * completely.  Please use drm_dev_unregister() and drm_dev_unref() explicitly
349  * instead to make sure that the device isn't userspace accessible any more
350  * while teardown is in progress, ensuring that userspace can't access an
351  * inconsistent state.
352  */
353 void drm_put_dev(struct drm_device *dev)
354 {
355 	DRM_DEBUG("\n");
356 
357 	if (!dev) {
358 		DRM_ERROR("cleanup called no dev\n");
359 		return;
360 	}
361 
362 	drm_dev_unregister(dev);
363 	drm_dev_unref(dev);
364 }
365 EXPORT_SYMBOL(drm_put_dev);
366 
367 static void drm_device_set_unplugged(struct drm_device *dev)
368 {
369 	smp_wmb();
370 	atomic_set(&dev->unplugged, 1);
371 }
372 
373 /**
374  * drm_dev_unplug - unplug a DRM device
375  * @dev: DRM device
376  *
377  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
378  * userspace operations. Entry-points can use drm_dev_is_unplugged(). This
379  * essentially unregisters the device like drm_dev_unregister(), but can be
380  * called while there are still open users of @dev.
381  */
382 void drm_dev_unplug(struct drm_device *dev)
383 {
384 	drm_dev_unregister(dev);
385 
386 	mutex_lock(&drm_global_mutex);
387 	drm_device_set_unplugged(dev);
388 	if (dev->open_count == 0)
389 		drm_dev_unref(dev);
390 	mutex_unlock(&drm_global_mutex);
391 }
392 EXPORT_SYMBOL(drm_dev_unplug);
393 
394 /*
395  * DRM internal mount
396  * We want to be able to allocate our own "struct address_space" to control
397  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
398  * stand-alone address_space objects, so we need an underlying inode. As there
399  * is no way to allocate an independent inode easily, we need a fake internal
400  * VFS mount-point.
401  *
402  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
403  * frees it again. You are allowed to use iget() and iput() to get references to
404  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
405  * drm_fs_inode_free() call (which does not have to be the last iput()).
406  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
407  * between multiple inode-users. You could, technically, call
408  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
409  * iput(), but this way you'd end up with a new vfsmount for each inode.
410  */
411 
412 static int drm_fs_cnt;
413 static struct vfsmount *drm_fs_mnt;
414 
415 static const struct dentry_operations drm_fs_dops = {
416 	.d_dname	= simple_dname,
417 };
418 
419 static const struct super_operations drm_fs_sops = {
420 	.statfs		= simple_statfs,
421 };
422 
423 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
424 				   const char *dev_name, void *data)
425 {
426 	return mount_pseudo(fs_type,
427 			    "drm:",
428 			    &drm_fs_sops,
429 			    &drm_fs_dops,
430 			    0x010203ff);
431 }
432 
433 static struct file_system_type drm_fs_type = {
434 	.name		= "drm",
435 	.owner		= THIS_MODULE,
436 	.mount		= drm_fs_mount,
437 	.kill_sb	= kill_anon_super,
438 };
439 
440 static struct inode *drm_fs_inode_new(void)
441 {
442 	struct inode *inode;
443 	int r;
444 
445 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
446 	if (r < 0) {
447 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
448 		return ERR_PTR(r);
449 	}
450 
451 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
452 	if (IS_ERR(inode))
453 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
454 
455 	return inode;
456 }
457 
458 static void drm_fs_inode_free(struct inode *inode)
459 {
460 	if (inode) {
461 		iput(inode);
462 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
463 	}
464 }
465 
466 /**
467  * drm_dev_init - Initialise new DRM device
468  * @dev: DRM device
469  * @driver: DRM driver
470  * @parent: Parent device object
471  *
472  * Initialize a new DRM device. No device registration is done.
473  * Call drm_dev_register() to advertice the device to user space and register it
474  * with other core subsystems. This should be done last in the device
475  * initialization sequence to make sure userspace can't access an inconsistent
476  * state.
477  *
478  * The initial ref-count of the object is 1. Use drm_dev_ref() and
479  * drm_dev_unref() to take and drop further ref-counts.
480  *
481  * Note that for purely virtual devices @parent can be NULL.
482  *
483  * Drivers that do not want to allocate their own device struct
484  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
485  * that do embed &struct drm_device it must be placed first in the overall
486  * structure, and the overall structure must be allocated using kmalloc(): The
487  * drm core's release function unconditionally calls kfree() on the @dev pointer
488  * when the final reference is released. To override this behaviour, and so
489  * allow embedding of the drm_device inside the driver's device struct at an
490  * arbitrary offset, you must supply a &drm_driver.release callback and control
491  * the finalization explicitly.
492  *
493  * RETURNS:
494  * 0 on success, or error code on failure.
495  */
496 int drm_dev_init(struct drm_device *dev,
497 		 struct drm_driver *driver,
498 		 struct device *parent)
499 {
500 	int ret;
501 
502 	if (!drm_core_init_complete) {
503 		DRM_ERROR("DRM core is not initialized\n");
504 		return -ENODEV;
505 	}
506 
507 	kref_init(&dev->ref);
508 	dev->dev = parent;
509 	dev->driver = driver;
510 
511 	INIT_LIST_HEAD(&dev->filelist);
512 	INIT_LIST_HEAD(&dev->ctxlist);
513 	INIT_LIST_HEAD(&dev->vmalist);
514 	INIT_LIST_HEAD(&dev->maplist);
515 	INIT_LIST_HEAD(&dev->vblank_event_list);
516 
517 	spin_lock_init(&dev->buf_lock);
518 	spin_lock_init(&dev->event_lock);
519 	mutex_init(&dev->struct_mutex);
520 	mutex_init(&dev->filelist_mutex);
521 	mutex_init(&dev->ctxlist_mutex);
522 	mutex_init(&dev->master_mutex);
523 
524 	dev->anon_inode = drm_fs_inode_new();
525 	if (IS_ERR(dev->anon_inode)) {
526 		ret = PTR_ERR(dev->anon_inode);
527 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
528 		goto err_free;
529 	}
530 
531 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
532 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
533 		if (ret)
534 			goto err_minors;
535 	}
536 
537 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
538 	if (ret)
539 		goto err_minors;
540 
541 	ret = drm_ht_create(&dev->map_hash, 12);
542 	if (ret)
543 		goto err_minors;
544 
545 	drm_legacy_ctxbitmap_init(dev);
546 
547 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
548 		ret = drm_gem_init(dev);
549 		if (ret) {
550 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
551 			goto err_ctxbitmap;
552 		}
553 	}
554 
555 	/* Use the parent device name as DRM device unique identifier, but fall
556 	 * back to the driver name for virtual devices like vgem. */
557 	ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name);
558 	if (ret)
559 		goto err_setunique;
560 
561 	return 0;
562 
563 err_setunique:
564 	if (drm_core_check_feature(dev, DRIVER_GEM))
565 		drm_gem_destroy(dev);
566 err_ctxbitmap:
567 	drm_legacy_ctxbitmap_cleanup(dev);
568 	drm_ht_remove(&dev->map_hash);
569 err_minors:
570 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
571 	drm_minor_free(dev, DRM_MINOR_RENDER);
572 	drm_minor_free(dev, DRM_MINOR_CONTROL);
573 	drm_fs_inode_free(dev->anon_inode);
574 err_free:
575 	mutex_destroy(&dev->master_mutex);
576 	mutex_destroy(&dev->ctxlist_mutex);
577 	mutex_destroy(&dev->filelist_mutex);
578 	mutex_destroy(&dev->struct_mutex);
579 	return ret;
580 }
581 EXPORT_SYMBOL(drm_dev_init);
582 
583 /**
584  * drm_dev_fini - Finalize a dead DRM device
585  * @dev: DRM device
586  *
587  * Finalize a dead DRM device. This is the converse to drm_dev_init() and
588  * frees up all data allocated by it. All driver private data should be
589  * finalized first. Note that this function does not free the @dev, that is
590  * left to the caller.
591  *
592  * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
593  * from a &drm_driver.release callback.
594  */
595 void drm_dev_fini(struct drm_device *dev)
596 {
597 	drm_vblank_cleanup(dev);
598 
599 	if (drm_core_check_feature(dev, DRIVER_GEM))
600 		drm_gem_destroy(dev);
601 
602 	drm_legacy_ctxbitmap_cleanup(dev);
603 	drm_ht_remove(&dev->map_hash);
604 	drm_fs_inode_free(dev->anon_inode);
605 
606 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
607 	drm_minor_free(dev, DRM_MINOR_RENDER);
608 	drm_minor_free(dev, DRM_MINOR_CONTROL);
609 
610 	mutex_destroy(&dev->master_mutex);
611 	mutex_destroy(&dev->ctxlist_mutex);
612 	mutex_destroy(&dev->filelist_mutex);
613 	mutex_destroy(&dev->struct_mutex);
614 	kfree(dev->unique);
615 }
616 EXPORT_SYMBOL(drm_dev_fini);
617 
618 /**
619  * drm_dev_alloc - Allocate new DRM device
620  * @driver: DRM driver to allocate device for
621  * @parent: Parent device object
622  *
623  * Allocate and initialize a new DRM device. No device registration is done.
624  * Call drm_dev_register() to advertice the device to user space and register it
625  * with other core subsystems. This should be done last in the device
626  * initialization sequence to make sure userspace can't access an inconsistent
627  * state.
628  *
629  * The initial ref-count of the object is 1. Use drm_dev_ref() and
630  * drm_dev_unref() to take and drop further ref-counts.
631  *
632  * Note that for purely virtual devices @parent can be NULL.
633  *
634  * Drivers that wish to subclass or embed &struct drm_device into their
635  * own struct should look at using drm_dev_init() instead.
636  *
637  * RETURNS:
638  * Pointer to new DRM device, or ERR_PTR on failure.
639  */
640 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
641 				 struct device *parent)
642 {
643 	struct drm_device *dev;
644 	int ret;
645 
646 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
647 	if (!dev)
648 		return ERR_PTR(-ENOMEM);
649 
650 	ret = drm_dev_init(dev, driver, parent);
651 	if (ret) {
652 		kfree(dev);
653 		return ERR_PTR(ret);
654 	}
655 
656 	return dev;
657 }
658 EXPORT_SYMBOL(drm_dev_alloc);
659 
660 static void drm_dev_release(struct kref *ref)
661 {
662 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
663 
664 	if (dev->driver->release) {
665 		dev->driver->release(dev);
666 	} else {
667 		drm_dev_fini(dev);
668 		kfree(dev);
669 	}
670 }
671 
672 /**
673  * drm_dev_ref - Take reference of a DRM device
674  * @dev: device to take reference of or NULL
675  *
676  * This increases the ref-count of @dev by one. You *must* already own a
677  * reference when calling this. Use drm_dev_unref() to drop this reference
678  * again.
679  *
680  * This function never fails. However, this function does not provide *any*
681  * guarantee whether the device is alive or running. It only provides a
682  * reference to the object and the memory associated with it.
683  */
684 void drm_dev_ref(struct drm_device *dev)
685 {
686 	if (dev)
687 		kref_get(&dev->ref);
688 }
689 EXPORT_SYMBOL(drm_dev_ref);
690 
691 /**
692  * drm_dev_unref - Drop reference of a DRM device
693  * @dev: device to drop reference of or NULL
694  *
695  * This decreases the ref-count of @dev by one. The device is destroyed if the
696  * ref-count drops to zero.
697  */
698 void drm_dev_unref(struct drm_device *dev)
699 {
700 	if (dev)
701 		kref_put(&dev->ref, drm_dev_release);
702 }
703 EXPORT_SYMBOL(drm_dev_unref);
704 
705 static int create_compat_control_link(struct drm_device *dev)
706 {
707 	struct drm_minor *minor;
708 	char *name;
709 	int ret;
710 
711 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
712 		return 0;
713 
714 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
715 	if (!minor)
716 		return 0;
717 
718 	/*
719 	 * Some existing userspace out there uses the existing of the controlD*
720 	 * sysfs files to figure out whether it's a modeset driver. It only does
721 	 * readdir, hence a symlink is sufficient (and the least confusing
722 	 * option). Otherwise controlD* is entirely unused.
723 	 *
724 	 * Old controlD chardev have been allocated in the range
725 	 * 64-127.
726 	 */
727 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
728 	if (!name)
729 		return -ENOMEM;
730 
731 	ret = sysfs_create_link(minor->kdev->kobj.parent,
732 				&minor->kdev->kobj,
733 				name);
734 
735 	kfree(name);
736 
737 	return ret;
738 }
739 
740 static void remove_compat_control_link(struct drm_device *dev)
741 {
742 	struct drm_minor *minor;
743 	char *name;
744 
745 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
746 		return;
747 
748 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
749 	if (!minor)
750 		return;
751 
752 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index);
753 	if (!name)
754 		return;
755 
756 	sysfs_remove_link(minor->kdev->kobj.parent, name);
757 
758 	kfree(name);
759 }
760 
761 /**
762  * drm_dev_register - Register DRM device
763  * @dev: Device to register
764  * @flags: Flags passed to the driver's .load() function
765  *
766  * Register the DRM device @dev with the system, advertise device to user-space
767  * and start normal device operation. @dev must be allocated via drm_dev_alloc()
768  * previously.
769  *
770  * Never call this twice on any device!
771  *
772  * NOTE: To ensure backward compatibility with existing drivers method this
773  * function calls the &drm_driver.load method after registering the device
774  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
775  * therefore deprecated, drivers must perform all initialization before calling
776  * drm_dev_register().
777  *
778  * RETURNS:
779  * 0 on success, negative error code on failure.
780  */
781 int drm_dev_register(struct drm_device *dev, unsigned long flags)
782 {
783 	struct drm_driver *driver = dev->driver;
784 	int ret;
785 
786 	mutex_lock(&drm_global_mutex);
787 
788 	ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
789 	if (ret)
790 		goto err_minors;
791 
792 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
793 	if (ret)
794 		goto err_minors;
795 
796 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
797 	if (ret)
798 		goto err_minors;
799 
800 	ret = create_compat_control_link(dev);
801 	if (ret)
802 		goto err_minors;
803 
804 	dev->registered = true;
805 
806 	if (dev->driver->load) {
807 		ret = dev->driver->load(dev, flags);
808 		if (ret)
809 			goto err_minors;
810 	}
811 
812 	if (drm_core_check_feature(dev, DRIVER_MODESET))
813 		drm_modeset_register_all(dev);
814 
815 	ret = 0;
816 
817 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
818 		 driver->name, driver->major, driver->minor,
819 		 driver->patchlevel, driver->date,
820 		 dev->dev ? dev_name(dev->dev) : "virtual device",
821 		 dev->primary->index);
822 
823 	goto out_unlock;
824 
825 err_minors:
826 	remove_compat_control_link(dev);
827 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
828 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
829 	drm_minor_unregister(dev, DRM_MINOR_CONTROL);
830 out_unlock:
831 	mutex_unlock(&drm_global_mutex);
832 	return ret;
833 }
834 EXPORT_SYMBOL(drm_dev_register);
835 
836 /**
837  * drm_dev_unregister - Unregister DRM device
838  * @dev: Device to unregister
839  *
840  * Unregister the DRM device from the system. This does the reverse of
841  * drm_dev_register() but does not deallocate the device. The caller must call
842  * drm_dev_unref() to drop their final reference.
843  *
844  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
845  * which can be called while there are still open users of @dev.
846  *
847  * This should be called first in the device teardown code to make sure
848  * userspace can't access the device instance any more.
849  */
850 void drm_dev_unregister(struct drm_device *dev)
851 {
852 	struct drm_map_list *r_list, *list_temp;
853 
854 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
855 		drm_lastclose(dev);
856 
857 	dev->registered = false;
858 
859 	if (drm_core_check_feature(dev, DRIVER_MODESET))
860 		drm_modeset_unregister_all(dev);
861 
862 	if (dev->driver->unload)
863 		dev->driver->unload(dev);
864 
865 	if (dev->agp)
866 		drm_pci_agp_destroy(dev);
867 
868 	list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
869 		drm_legacy_rmmap(dev, r_list->map);
870 
871 	remove_compat_control_link(dev);
872 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
873 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
874 	drm_minor_unregister(dev, DRM_MINOR_CONTROL);
875 }
876 EXPORT_SYMBOL(drm_dev_unregister);
877 
878 /**
879  * drm_dev_set_unique - Set the unique name of a DRM device
880  * @dev: device of which to set the unique name
881  * @name: unique name
882  *
883  * Sets the unique name of a DRM device using the specified string. Drivers
884  * can use this at driver probe time if the unique name of the devices they
885  * drive is static.
886  *
887  * Return: 0 on success or a negative error code on failure.
888  */
889 int drm_dev_set_unique(struct drm_device *dev, const char *name)
890 {
891 	kfree(dev->unique);
892 	dev->unique = kstrdup(name, GFP_KERNEL);
893 
894 	return dev->unique ? 0 : -ENOMEM;
895 }
896 EXPORT_SYMBOL(drm_dev_set_unique);
897 
898 /*
899  * DRM Core
900  * The DRM core module initializes all global DRM objects and makes them
901  * available to drivers. Once setup, drivers can probe their respective
902  * devices.
903  * Currently, core management includes:
904  *  - The "DRM-Global" key/value database
905  *  - Global ID management for connectors
906  *  - DRM major number allocation
907  *  - DRM minor management
908  *  - DRM sysfs class
909  *  - DRM debugfs root
910  *
911  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
912  * interface registered on a DRM device, you can request minor numbers from DRM
913  * core. DRM core takes care of major-number management and char-dev
914  * registration. A stub ->open() callback forwards any open() requests to the
915  * registered minor.
916  */
917 
918 static int drm_stub_open(struct inode *inode, struct file *filp)
919 {
920 	const struct file_operations *new_fops;
921 	struct drm_minor *minor;
922 	int err;
923 
924 	DRM_DEBUG("\n");
925 
926 	mutex_lock(&drm_global_mutex);
927 	minor = drm_minor_acquire(iminor(inode));
928 	if (IS_ERR(minor)) {
929 		err = PTR_ERR(minor);
930 		goto out_unlock;
931 	}
932 
933 	new_fops = fops_get(minor->dev->driver->fops);
934 	if (!new_fops) {
935 		err = -ENODEV;
936 		goto out_release;
937 	}
938 
939 	replace_fops(filp, new_fops);
940 	if (filp->f_op->open)
941 		err = filp->f_op->open(inode, filp);
942 	else
943 		err = 0;
944 
945 out_release:
946 	drm_minor_release(minor);
947 out_unlock:
948 	mutex_unlock(&drm_global_mutex);
949 	return err;
950 }
951 
952 static const struct file_operations drm_stub_fops = {
953 	.owner = THIS_MODULE,
954 	.open = drm_stub_open,
955 	.llseek = noop_llseek,
956 };
957 
958 static void drm_core_exit(void)
959 {
960 	unregister_chrdev(DRM_MAJOR, "drm");
961 	debugfs_remove(drm_debugfs_root);
962 	drm_sysfs_destroy();
963 	idr_destroy(&drm_minors_idr);
964 	drm_connector_ida_destroy();
965 	drm_global_release();
966 }
967 
968 static int __init drm_core_init(void)
969 {
970 	int ret;
971 
972 	drm_global_init();
973 	drm_connector_ida_init();
974 	idr_init(&drm_minors_idr);
975 
976 	ret = drm_sysfs_init();
977 	if (ret < 0) {
978 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
979 		goto error;
980 	}
981 
982 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
983 	if (!drm_debugfs_root) {
984 		ret = -ENOMEM;
985 		DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
986 		goto error;
987 	}
988 
989 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
990 	if (ret < 0)
991 		goto error;
992 
993 	drm_core_init_complete = true;
994 
995 	DRM_DEBUG("Initialized\n");
996 	return 0;
997 
998 error:
999 	drm_core_exit();
1000 	return ret;
1001 }
1002 
1003 module_init(drm_core_init);
1004 module_exit(drm_core_exit);
1005