xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision a8fe58ce)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_core.h>
37 #include "drm_legacy.h"
38 #include "drm_internal.h"
39 
40 unsigned int drm_debug = 0;	/* bitmask of DRM_UT_x */
41 EXPORT_SYMBOL(drm_debug);
42 
43 MODULE_AUTHOR(CORE_AUTHOR);
44 MODULE_DESCRIPTION(CORE_DESC);
45 MODULE_LICENSE("GPL and additional rights");
46 MODULE_PARM_DESC(debug, "Enable debug output");
47 module_param_named(debug, drm_debug, int, 0600);
48 
49 static DEFINE_SPINLOCK(drm_minor_lock);
50 static struct idr drm_minors_idr;
51 
52 static struct dentry *drm_debugfs_root;
53 
54 void drm_err(const char *format, ...)
55 {
56 	struct va_format vaf;
57 	va_list args;
58 
59 	va_start(args, format);
60 
61 	vaf.fmt = format;
62 	vaf.va = &args;
63 
64 	printk(KERN_ERR "[" DRM_NAME ":%ps] *ERROR* %pV",
65 	       __builtin_return_address(0), &vaf);
66 
67 	va_end(args);
68 }
69 EXPORT_SYMBOL(drm_err);
70 
71 void drm_ut_debug_printk(const char *function_name, const char *format, ...)
72 {
73 	struct va_format vaf;
74 	va_list args;
75 
76 	va_start(args, format);
77 	vaf.fmt = format;
78 	vaf.va = &args;
79 
80 	printk(KERN_DEBUG "[" DRM_NAME ":%s] %pV", function_name, &vaf);
81 
82 	va_end(args);
83 }
84 EXPORT_SYMBOL(drm_ut_debug_printk);
85 
86 struct drm_master *drm_master_create(struct drm_minor *minor)
87 {
88 	struct drm_master *master;
89 
90 	master = kzalloc(sizeof(*master), GFP_KERNEL);
91 	if (!master)
92 		return NULL;
93 
94 	kref_init(&master->refcount);
95 	spin_lock_init(&master->lock.spinlock);
96 	init_waitqueue_head(&master->lock.lock_queue);
97 	idr_init(&master->magic_map);
98 	master->minor = minor;
99 
100 	return master;
101 }
102 
103 struct drm_master *drm_master_get(struct drm_master *master)
104 {
105 	kref_get(&master->refcount);
106 	return master;
107 }
108 EXPORT_SYMBOL(drm_master_get);
109 
110 static void drm_master_destroy(struct kref *kref)
111 {
112 	struct drm_master *master = container_of(kref, struct drm_master, refcount);
113 	struct drm_device *dev = master->minor->dev;
114 	struct drm_map_list *r_list, *list_temp;
115 
116 	mutex_lock(&dev->struct_mutex);
117 	if (dev->driver->master_destroy)
118 		dev->driver->master_destroy(dev, master);
119 
120 	list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) {
121 		if (r_list->master == master) {
122 			drm_legacy_rmmap_locked(dev, r_list->map);
123 			r_list = NULL;
124 		}
125 	}
126 	mutex_unlock(&dev->struct_mutex);
127 
128 	idr_destroy(&master->magic_map);
129 	kfree(master->unique);
130 	kfree(master);
131 }
132 
133 void drm_master_put(struct drm_master **master)
134 {
135 	kref_put(&(*master)->refcount, drm_master_destroy);
136 	*master = NULL;
137 }
138 EXPORT_SYMBOL(drm_master_put);
139 
140 int drm_setmaster_ioctl(struct drm_device *dev, void *data,
141 			struct drm_file *file_priv)
142 {
143 	int ret = 0;
144 
145 	mutex_lock(&dev->master_mutex);
146 	if (file_priv->is_master)
147 		goto out_unlock;
148 
149 	if (file_priv->minor->master) {
150 		ret = -EINVAL;
151 		goto out_unlock;
152 	}
153 
154 	if (!file_priv->master) {
155 		ret = -EINVAL;
156 		goto out_unlock;
157 	}
158 
159 	if (!file_priv->allowed_master) {
160 		ret = drm_new_set_master(dev, file_priv);
161 		goto out_unlock;
162 	}
163 
164 	file_priv->minor->master = drm_master_get(file_priv->master);
165 	file_priv->is_master = 1;
166 	if (dev->driver->master_set) {
167 		ret = dev->driver->master_set(dev, file_priv, false);
168 		if (unlikely(ret != 0)) {
169 			file_priv->is_master = 0;
170 			drm_master_put(&file_priv->minor->master);
171 		}
172 	}
173 
174 out_unlock:
175 	mutex_unlock(&dev->master_mutex);
176 	return ret;
177 }
178 
179 int drm_dropmaster_ioctl(struct drm_device *dev, void *data,
180 			 struct drm_file *file_priv)
181 {
182 	int ret = -EINVAL;
183 
184 	mutex_lock(&dev->master_mutex);
185 	if (!file_priv->is_master)
186 		goto out_unlock;
187 
188 	if (!file_priv->minor->master)
189 		goto out_unlock;
190 
191 	ret = 0;
192 	if (dev->driver->master_drop)
193 		dev->driver->master_drop(dev, file_priv, false);
194 	drm_master_put(&file_priv->minor->master);
195 	file_priv->is_master = 0;
196 
197 out_unlock:
198 	mutex_unlock(&dev->master_mutex);
199 	return ret;
200 }
201 
202 /*
203  * DRM Minors
204  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
205  * of them is represented by a drm_minor object. Depending on the capabilities
206  * of the device-driver, different interfaces are registered.
207  *
208  * Minors can be accessed via dev->$minor_name. This pointer is either
209  * NULL or a valid drm_minor pointer and stays valid as long as the device is
210  * valid. This means, DRM minors have the same life-time as the underlying
211  * device. However, this doesn't mean that the minor is active. Minors are
212  * registered and unregistered dynamically according to device-state.
213  */
214 
215 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
216 					     unsigned int type)
217 {
218 	switch (type) {
219 	case DRM_MINOR_LEGACY:
220 		return &dev->primary;
221 	case DRM_MINOR_RENDER:
222 		return &dev->render;
223 	case DRM_MINOR_CONTROL:
224 		return &dev->control;
225 	default:
226 		return NULL;
227 	}
228 }
229 
230 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
231 {
232 	struct drm_minor *minor;
233 	unsigned long flags;
234 	int r;
235 
236 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
237 	if (!minor)
238 		return -ENOMEM;
239 
240 	minor->type = type;
241 	minor->dev = dev;
242 
243 	idr_preload(GFP_KERNEL);
244 	spin_lock_irqsave(&drm_minor_lock, flags);
245 	r = idr_alloc(&drm_minors_idr,
246 		      NULL,
247 		      64 * type,
248 		      64 * (type + 1),
249 		      GFP_NOWAIT);
250 	spin_unlock_irqrestore(&drm_minor_lock, flags);
251 	idr_preload_end();
252 
253 	if (r < 0)
254 		goto err_free;
255 
256 	minor->index = r;
257 
258 	minor->kdev = drm_sysfs_minor_alloc(minor);
259 	if (IS_ERR(minor->kdev)) {
260 		r = PTR_ERR(minor->kdev);
261 		goto err_index;
262 	}
263 
264 	*drm_minor_get_slot(dev, type) = minor;
265 	return 0;
266 
267 err_index:
268 	spin_lock_irqsave(&drm_minor_lock, flags);
269 	idr_remove(&drm_minors_idr, minor->index);
270 	spin_unlock_irqrestore(&drm_minor_lock, flags);
271 err_free:
272 	kfree(minor);
273 	return r;
274 }
275 
276 static void drm_minor_free(struct drm_device *dev, unsigned int type)
277 {
278 	struct drm_minor **slot, *minor;
279 	unsigned long flags;
280 
281 	slot = drm_minor_get_slot(dev, type);
282 	minor = *slot;
283 	if (!minor)
284 		return;
285 
286 	put_device(minor->kdev);
287 
288 	spin_lock_irqsave(&drm_minor_lock, flags);
289 	idr_remove(&drm_minors_idr, minor->index);
290 	spin_unlock_irqrestore(&drm_minor_lock, flags);
291 
292 	kfree(minor);
293 	*slot = NULL;
294 }
295 
296 static int drm_minor_register(struct drm_device *dev, unsigned int type)
297 {
298 	struct drm_minor *minor;
299 	unsigned long flags;
300 	int ret;
301 
302 	DRM_DEBUG("\n");
303 
304 	minor = *drm_minor_get_slot(dev, type);
305 	if (!minor)
306 		return 0;
307 
308 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
309 	if (ret) {
310 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
311 		return ret;
312 	}
313 
314 	ret = device_add(minor->kdev);
315 	if (ret)
316 		goto err_debugfs;
317 
318 	/* replace NULL with @minor so lookups will succeed from now on */
319 	spin_lock_irqsave(&drm_minor_lock, flags);
320 	idr_replace(&drm_minors_idr, minor, minor->index);
321 	spin_unlock_irqrestore(&drm_minor_lock, flags);
322 
323 	DRM_DEBUG("new minor registered %d\n", minor->index);
324 	return 0;
325 
326 err_debugfs:
327 	drm_debugfs_cleanup(minor);
328 	return ret;
329 }
330 
331 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
332 {
333 	struct drm_minor *minor;
334 	unsigned long flags;
335 
336 	minor = *drm_minor_get_slot(dev, type);
337 	if (!minor || !device_is_registered(minor->kdev))
338 		return;
339 
340 	/* replace @minor with NULL so lookups will fail from now on */
341 	spin_lock_irqsave(&drm_minor_lock, flags);
342 	idr_replace(&drm_minors_idr, NULL, minor->index);
343 	spin_unlock_irqrestore(&drm_minor_lock, flags);
344 
345 	device_del(minor->kdev);
346 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
347 	drm_debugfs_cleanup(minor);
348 }
349 
350 /**
351  * drm_minor_acquire - Acquire a DRM minor
352  * @minor_id: Minor ID of the DRM-minor
353  *
354  * Looks up the given minor-ID and returns the respective DRM-minor object. The
355  * refence-count of the underlying device is increased so you must release this
356  * object with drm_minor_release().
357  *
358  * As long as you hold this minor, it is guaranteed that the object and the
359  * minor->dev pointer will stay valid! However, the device may get unplugged and
360  * unregistered while you hold the minor.
361  *
362  * Returns:
363  * Pointer to minor-object with increased device-refcount, or PTR_ERR on
364  * failure.
365  */
366 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
367 {
368 	struct drm_minor *minor;
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(&drm_minor_lock, flags);
372 	minor = idr_find(&drm_minors_idr, minor_id);
373 	if (minor)
374 		drm_dev_ref(minor->dev);
375 	spin_unlock_irqrestore(&drm_minor_lock, flags);
376 
377 	if (!minor) {
378 		return ERR_PTR(-ENODEV);
379 	} else if (drm_device_is_unplugged(minor->dev)) {
380 		drm_dev_unref(minor->dev);
381 		return ERR_PTR(-ENODEV);
382 	}
383 
384 	return minor;
385 }
386 
387 /**
388  * drm_minor_release - Release DRM minor
389  * @minor: Pointer to DRM minor object
390  *
391  * Release a minor that was previously acquired via drm_minor_acquire().
392  */
393 void drm_minor_release(struct drm_minor *minor)
394 {
395 	drm_dev_unref(minor->dev);
396 }
397 
398 /**
399  * DOC: driver instance overview
400  *
401  * A device instance for a drm driver is represented by struct &drm_device. This
402  * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
403  * callbacks implemented by the driver. The driver then needs to initialize all
404  * the various subsystems for the drm device like memory management, vblank
405  * handling, modesetting support and intial output configuration plus obviously
406  * initialize all the corresponding hardware bits. An important part of this is
407  * also calling drm_dev_set_unique() to set the userspace-visible unique name of
408  * this device instance. Finally when everything is up and running and ready for
409  * userspace the device instance can be published using drm_dev_register().
410  *
411  * There is also deprecated support for initalizing device instances using
412  * bus-specific helpers and the ->load() callback. But due to
413  * backwards-compatibility needs the device instance have to be published too
414  * early, which requires unpretty global locking to make safe and is therefore
415  * only support for existing drivers not yet converted to the new scheme.
416  *
417  * When cleaning up a device instance everything needs to be done in reverse:
418  * First unpublish the device instance with drm_dev_unregister(). Then clean up
419  * any other resources allocated at device initialization and drop the driver's
420  * reference to &drm_device using drm_dev_unref().
421  *
422  * Note that the lifetime rules for &drm_device instance has still a lot of
423  * historical baggage. Hence use the reference counting provided by
424  * drm_dev_ref() and drm_dev_unref() only carefully.
425  *
426  * Also note that embedding of &drm_device is currently not (yet) supported (but
427  * it would be easy to add). Drivers can store driver-private data in the
428  * dev_priv field of &drm_device.
429  */
430 
431 /**
432  * drm_put_dev - Unregister and release a DRM device
433  * @dev: DRM device
434  *
435  * Called at module unload time or when a PCI device is unplugged.
436  *
437  * Cleans up all DRM device, calling drm_lastclose().
438  *
439  * Note: Use of this function is deprecated. It will eventually go away
440  * completely.  Please use drm_dev_unregister() and drm_dev_unref() explicitly
441  * instead to make sure that the device isn't userspace accessible any more
442  * while teardown is in progress, ensuring that userspace can't access an
443  * inconsistent state.
444  */
445 void drm_put_dev(struct drm_device *dev)
446 {
447 	DRM_DEBUG("\n");
448 
449 	if (!dev) {
450 		DRM_ERROR("cleanup called no dev\n");
451 		return;
452 	}
453 
454 	drm_dev_unregister(dev);
455 	drm_dev_unref(dev);
456 }
457 EXPORT_SYMBOL(drm_put_dev);
458 
459 void drm_unplug_dev(struct drm_device *dev)
460 {
461 	/* for a USB device */
462 	drm_minor_unregister(dev, DRM_MINOR_LEGACY);
463 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
464 	drm_minor_unregister(dev, DRM_MINOR_CONTROL);
465 
466 	mutex_lock(&drm_global_mutex);
467 
468 	drm_device_set_unplugged(dev);
469 
470 	if (dev->open_count == 0) {
471 		drm_put_dev(dev);
472 	}
473 	mutex_unlock(&drm_global_mutex);
474 }
475 EXPORT_SYMBOL(drm_unplug_dev);
476 
477 /*
478  * DRM internal mount
479  * We want to be able to allocate our own "struct address_space" to control
480  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
481  * stand-alone address_space objects, so we need an underlying inode. As there
482  * is no way to allocate an independent inode easily, we need a fake internal
483  * VFS mount-point.
484  *
485  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
486  * frees it again. You are allowed to use iget() and iput() to get references to
487  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
488  * drm_fs_inode_free() call (which does not have to be the last iput()).
489  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
490  * between multiple inode-users. You could, technically, call
491  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
492  * iput(), but this way you'd end up with a new vfsmount for each inode.
493  */
494 
495 static int drm_fs_cnt;
496 static struct vfsmount *drm_fs_mnt;
497 
498 static const struct dentry_operations drm_fs_dops = {
499 	.d_dname	= simple_dname,
500 };
501 
502 static const struct super_operations drm_fs_sops = {
503 	.statfs		= simple_statfs,
504 };
505 
506 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
507 				   const char *dev_name, void *data)
508 {
509 	return mount_pseudo(fs_type,
510 			    "drm:",
511 			    &drm_fs_sops,
512 			    &drm_fs_dops,
513 			    0x010203ff);
514 }
515 
516 static struct file_system_type drm_fs_type = {
517 	.name		= "drm",
518 	.owner		= THIS_MODULE,
519 	.mount		= drm_fs_mount,
520 	.kill_sb	= kill_anon_super,
521 };
522 
523 static struct inode *drm_fs_inode_new(void)
524 {
525 	struct inode *inode;
526 	int r;
527 
528 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
529 	if (r < 0) {
530 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
531 		return ERR_PTR(r);
532 	}
533 
534 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
535 	if (IS_ERR(inode))
536 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
537 
538 	return inode;
539 }
540 
541 static void drm_fs_inode_free(struct inode *inode)
542 {
543 	if (inode) {
544 		iput(inode);
545 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
546 	}
547 }
548 
549 /**
550  * drm_dev_alloc - Allocate new DRM device
551  * @driver: DRM driver to allocate device for
552  * @parent: Parent device object
553  *
554  * Allocate and initialize a new DRM device. No device registration is done.
555  * Call drm_dev_register() to advertice the device to user space and register it
556  * with other core subsystems. This should be done last in the device
557  * initialization sequence to make sure userspace can't access an inconsistent
558  * state.
559  *
560  * The initial ref-count of the object is 1. Use drm_dev_ref() and
561  * drm_dev_unref() to take and drop further ref-counts.
562  *
563  * Note that for purely virtual devices @parent can be NULL.
564  *
565  * RETURNS:
566  * Pointer to new DRM device, or NULL if out of memory.
567  */
568 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
569 				 struct device *parent)
570 {
571 	struct drm_device *dev;
572 	int ret;
573 
574 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
575 	if (!dev)
576 		return NULL;
577 
578 	kref_init(&dev->ref);
579 	dev->dev = parent;
580 	dev->driver = driver;
581 
582 	INIT_LIST_HEAD(&dev->filelist);
583 	INIT_LIST_HEAD(&dev->ctxlist);
584 	INIT_LIST_HEAD(&dev->vmalist);
585 	INIT_LIST_HEAD(&dev->maplist);
586 	INIT_LIST_HEAD(&dev->vblank_event_list);
587 
588 	spin_lock_init(&dev->buf_lock);
589 	spin_lock_init(&dev->event_lock);
590 	mutex_init(&dev->struct_mutex);
591 	mutex_init(&dev->ctxlist_mutex);
592 	mutex_init(&dev->master_mutex);
593 
594 	dev->anon_inode = drm_fs_inode_new();
595 	if (IS_ERR(dev->anon_inode)) {
596 		ret = PTR_ERR(dev->anon_inode);
597 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
598 		goto err_free;
599 	}
600 
601 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
602 		ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL);
603 		if (ret)
604 			goto err_minors;
605 
606 		WARN_ON(driver->suspend || driver->resume);
607 	}
608 
609 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
610 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
611 		if (ret)
612 			goto err_minors;
613 	}
614 
615 	ret = drm_minor_alloc(dev, DRM_MINOR_LEGACY);
616 	if (ret)
617 		goto err_minors;
618 
619 	if (drm_ht_create(&dev->map_hash, 12))
620 		goto err_minors;
621 
622 	drm_legacy_ctxbitmap_init(dev);
623 
624 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
625 		ret = drm_gem_init(dev);
626 		if (ret) {
627 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
628 			goto err_ctxbitmap;
629 		}
630 	}
631 
632 	if (parent) {
633 		ret = drm_dev_set_unique(dev, dev_name(parent));
634 		if (ret)
635 			goto err_setunique;
636 	}
637 
638 	return dev;
639 
640 err_setunique:
641 	if (drm_core_check_feature(dev, DRIVER_GEM))
642 		drm_gem_destroy(dev);
643 err_ctxbitmap:
644 	drm_legacy_ctxbitmap_cleanup(dev);
645 	drm_ht_remove(&dev->map_hash);
646 err_minors:
647 	drm_minor_free(dev, DRM_MINOR_LEGACY);
648 	drm_minor_free(dev, DRM_MINOR_RENDER);
649 	drm_minor_free(dev, DRM_MINOR_CONTROL);
650 	drm_fs_inode_free(dev->anon_inode);
651 err_free:
652 	mutex_destroy(&dev->master_mutex);
653 	kfree(dev);
654 	return NULL;
655 }
656 EXPORT_SYMBOL(drm_dev_alloc);
657 
658 static void drm_dev_release(struct kref *ref)
659 {
660 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
661 
662 	if (drm_core_check_feature(dev, DRIVER_GEM))
663 		drm_gem_destroy(dev);
664 
665 	drm_legacy_ctxbitmap_cleanup(dev);
666 	drm_ht_remove(&dev->map_hash);
667 	drm_fs_inode_free(dev->anon_inode);
668 
669 	drm_minor_free(dev, DRM_MINOR_LEGACY);
670 	drm_minor_free(dev, DRM_MINOR_RENDER);
671 	drm_minor_free(dev, DRM_MINOR_CONTROL);
672 
673 	mutex_destroy(&dev->master_mutex);
674 	kfree(dev->unique);
675 	kfree(dev);
676 }
677 
678 /**
679  * drm_dev_ref - Take reference of a DRM device
680  * @dev: device to take reference of or NULL
681  *
682  * This increases the ref-count of @dev by one. You *must* already own a
683  * reference when calling this. Use drm_dev_unref() to drop this reference
684  * again.
685  *
686  * This function never fails. However, this function does not provide *any*
687  * guarantee whether the device is alive or running. It only provides a
688  * reference to the object and the memory associated with it.
689  */
690 void drm_dev_ref(struct drm_device *dev)
691 {
692 	if (dev)
693 		kref_get(&dev->ref);
694 }
695 EXPORT_SYMBOL(drm_dev_ref);
696 
697 /**
698  * drm_dev_unref - Drop reference of a DRM device
699  * @dev: device to drop reference of or NULL
700  *
701  * This decreases the ref-count of @dev by one. The device is destroyed if the
702  * ref-count drops to zero.
703  */
704 void drm_dev_unref(struct drm_device *dev)
705 {
706 	if (dev)
707 		kref_put(&dev->ref, drm_dev_release);
708 }
709 EXPORT_SYMBOL(drm_dev_unref);
710 
711 /**
712  * drm_dev_register - Register DRM device
713  * @dev: Device to register
714  * @flags: Flags passed to the driver's .load() function
715  *
716  * Register the DRM device @dev with the system, advertise device to user-space
717  * and start normal device operation. @dev must be allocated via drm_dev_alloc()
718  * previously.
719  *
720  * Never call this twice on any device!
721  *
722  * NOTE: To ensure backward compatibility with existing drivers method this
723  * function calls the ->load() method after registering the device nodes,
724  * creating race conditions. Usage of the ->load() methods is therefore
725  * deprecated, drivers must perform all initialization before calling
726  * drm_dev_register().
727  *
728  * RETURNS:
729  * 0 on success, negative error code on failure.
730  */
731 int drm_dev_register(struct drm_device *dev, unsigned long flags)
732 {
733 	int ret;
734 
735 	mutex_lock(&drm_global_mutex);
736 
737 	ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
738 	if (ret)
739 		goto err_minors;
740 
741 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
742 	if (ret)
743 		goto err_minors;
744 
745 	ret = drm_minor_register(dev, DRM_MINOR_LEGACY);
746 	if (ret)
747 		goto err_minors;
748 
749 	if (dev->driver->load) {
750 		ret = dev->driver->load(dev, flags);
751 		if (ret)
752 			goto err_minors;
753 	}
754 
755 	ret = 0;
756 	goto out_unlock;
757 
758 err_minors:
759 	drm_minor_unregister(dev, DRM_MINOR_LEGACY);
760 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
761 	drm_minor_unregister(dev, DRM_MINOR_CONTROL);
762 out_unlock:
763 	mutex_unlock(&drm_global_mutex);
764 	return ret;
765 }
766 EXPORT_SYMBOL(drm_dev_register);
767 
768 /**
769  * drm_dev_unregister - Unregister DRM device
770  * @dev: Device to unregister
771  *
772  * Unregister the DRM device from the system. This does the reverse of
773  * drm_dev_register() but does not deallocate the device. The caller must call
774  * drm_dev_unref() to drop their final reference.
775  *
776  * This should be called first in the device teardown code to make sure
777  * userspace can't access the device instance any more.
778  */
779 void drm_dev_unregister(struct drm_device *dev)
780 {
781 	struct drm_map_list *r_list, *list_temp;
782 
783 	drm_lastclose(dev);
784 
785 	if (dev->driver->unload)
786 		dev->driver->unload(dev);
787 
788 	if (dev->agp)
789 		drm_pci_agp_destroy(dev);
790 
791 	drm_vblank_cleanup(dev);
792 
793 	list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
794 		drm_legacy_rmmap(dev, r_list->map);
795 
796 	drm_minor_unregister(dev, DRM_MINOR_LEGACY);
797 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
798 	drm_minor_unregister(dev, DRM_MINOR_CONTROL);
799 }
800 EXPORT_SYMBOL(drm_dev_unregister);
801 
802 /**
803  * drm_dev_set_unique - Set the unique name of a DRM device
804  * @dev: device of which to set the unique name
805  * @name: unique name
806  *
807  * Sets the unique name of a DRM device using the specified string. Drivers
808  * can use this at driver probe time if the unique name of the devices they
809  * drive is static.
810  *
811  * Return: 0 on success or a negative error code on failure.
812  */
813 int drm_dev_set_unique(struct drm_device *dev, const char *name)
814 {
815 	kfree(dev->unique);
816 	dev->unique = kstrdup(name, GFP_KERNEL);
817 
818 	return dev->unique ? 0 : -ENOMEM;
819 }
820 EXPORT_SYMBOL(drm_dev_set_unique);
821 
822 /*
823  * DRM Core
824  * The DRM core module initializes all global DRM objects and makes them
825  * available to drivers. Once setup, drivers can probe their respective
826  * devices.
827  * Currently, core management includes:
828  *  - The "DRM-Global" key/value database
829  *  - Global ID management for connectors
830  *  - DRM major number allocation
831  *  - DRM minor management
832  *  - DRM sysfs class
833  *  - DRM debugfs root
834  *
835  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
836  * interface registered on a DRM device, you can request minor numbers from DRM
837  * core. DRM core takes care of major-number management and char-dev
838  * registration. A stub ->open() callback forwards any open() requests to the
839  * registered minor.
840  */
841 
842 static int drm_stub_open(struct inode *inode, struct file *filp)
843 {
844 	const struct file_operations *new_fops;
845 	struct drm_minor *minor;
846 	int err;
847 
848 	DRM_DEBUG("\n");
849 
850 	mutex_lock(&drm_global_mutex);
851 	minor = drm_minor_acquire(iminor(inode));
852 	if (IS_ERR(minor)) {
853 		err = PTR_ERR(minor);
854 		goto out_unlock;
855 	}
856 
857 	new_fops = fops_get(minor->dev->driver->fops);
858 	if (!new_fops) {
859 		err = -ENODEV;
860 		goto out_release;
861 	}
862 
863 	replace_fops(filp, new_fops);
864 	if (filp->f_op->open)
865 		err = filp->f_op->open(inode, filp);
866 	else
867 		err = 0;
868 
869 out_release:
870 	drm_minor_release(minor);
871 out_unlock:
872 	mutex_unlock(&drm_global_mutex);
873 	return err;
874 }
875 
876 static const struct file_operations drm_stub_fops = {
877 	.owner = THIS_MODULE,
878 	.open = drm_stub_open,
879 	.llseek = noop_llseek,
880 };
881 
882 static int __init drm_core_init(void)
883 {
884 	int ret = -ENOMEM;
885 
886 	drm_global_init();
887 	drm_connector_ida_init();
888 	idr_init(&drm_minors_idr);
889 
890 	if (register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops))
891 		goto err_p1;
892 
893 	ret = drm_sysfs_init();
894 	if (ret < 0) {
895 		printk(KERN_ERR "DRM: Error creating drm class.\n");
896 		goto err_p2;
897 	}
898 
899 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
900 	if (!drm_debugfs_root) {
901 		DRM_ERROR("Cannot create /sys/kernel/debug/dri\n");
902 		ret = -1;
903 		goto err_p3;
904 	}
905 
906 	DRM_INFO("Initialized %s %d.%d.%d %s\n",
907 		 CORE_NAME, CORE_MAJOR, CORE_MINOR, CORE_PATCHLEVEL, CORE_DATE);
908 	return 0;
909 err_p3:
910 	drm_sysfs_destroy();
911 err_p2:
912 	unregister_chrdev(DRM_MAJOR, "drm");
913 
914 	idr_destroy(&drm_minors_idr);
915 err_p1:
916 	return ret;
917 }
918 
919 static void __exit drm_core_exit(void)
920 {
921 	debugfs_remove(drm_debugfs_root);
922 	drm_sysfs_destroy();
923 
924 	unregister_chrdev(DRM_MAJOR, "drm");
925 
926 	drm_connector_ida_destroy();
927 	idr_destroy(&drm_minors_idr);
928 }
929 
930 module_init(drm_core_init);
931 module_exit(drm_core_exit);
932