xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision 8e8e69d6)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/srcu.h>
36 
37 #include <drm/drm_client.h>
38 #include <drm/drm_drv.h>
39 #include <drm/drmP.h>
40 
41 #include "drm_crtc_internal.h"
42 #include "drm_legacy.h"
43 #include "drm_internal.h"
44 
45 /*
46  * drm_debug: Enable debug output.
47  * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
48  */
49 unsigned int drm_debug = 0;
50 EXPORT_SYMBOL(drm_debug);
51 
52 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
53 MODULE_DESCRIPTION("DRM shared core routines");
54 MODULE_LICENSE("GPL and additional rights");
55 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
56 "\t\tBit 0 (0x01)  will enable CORE messages (drm core code)\n"
57 "\t\tBit 1 (0x02)  will enable DRIVER messages (drm controller code)\n"
58 "\t\tBit 2 (0x04)  will enable KMS messages (modesetting code)\n"
59 "\t\tBit 3 (0x08)  will enable PRIME messages (prime code)\n"
60 "\t\tBit 4 (0x10)  will enable ATOMIC messages (atomic code)\n"
61 "\t\tBit 5 (0x20)  will enable VBL messages (vblank code)\n"
62 "\t\tBit 7 (0x80)  will enable LEASE messages (leasing code)\n"
63 "\t\tBit 8 (0x100) will enable DP messages (displayport code)");
64 module_param_named(debug, drm_debug, int, 0600);
65 
66 static DEFINE_SPINLOCK(drm_minor_lock);
67 static struct idr drm_minors_idr;
68 
69 /*
70  * If the drm core fails to init for whatever reason,
71  * we should prevent any drivers from registering with it.
72  * It's best to check this at drm_dev_init(), as some drivers
73  * prefer to embed struct drm_device into their own device
74  * structure and call drm_dev_init() themselves.
75  */
76 static bool drm_core_init_complete = false;
77 
78 static struct dentry *drm_debugfs_root;
79 
80 DEFINE_STATIC_SRCU(drm_unplug_srcu);
81 
82 /*
83  * DRM Minors
84  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
85  * of them is represented by a drm_minor object. Depending on the capabilities
86  * of the device-driver, different interfaces are registered.
87  *
88  * Minors can be accessed via dev->$minor_name. This pointer is either
89  * NULL or a valid drm_minor pointer and stays valid as long as the device is
90  * valid. This means, DRM minors have the same life-time as the underlying
91  * device. However, this doesn't mean that the minor is active. Minors are
92  * registered and unregistered dynamically according to device-state.
93  */
94 
95 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
96 					     unsigned int type)
97 {
98 	switch (type) {
99 	case DRM_MINOR_PRIMARY:
100 		return &dev->primary;
101 	case DRM_MINOR_RENDER:
102 		return &dev->render;
103 	default:
104 		BUG();
105 	}
106 }
107 
108 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
109 {
110 	struct drm_minor *minor;
111 	unsigned long flags;
112 	int r;
113 
114 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
115 	if (!minor)
116 		return -ENOMEM;
117 
118 	minor->type = type;
119 	minor->dev = dev;
120 
121 	idr_preload(GFP_KERNEL);
122 	spin_lock_irqsave(&drm_minor_lock, flags);
123 	r = idr_alloc(&drm_minors_idr,
124 		      NULL,
125 		      64 * type,
126 		      64 * (type + 1),
127 		      GFP_NOWAIT);
128 	spin_unlock_irqrestore(&drm_minor_lock, flags);
129 	idr_preload_end();
130 
131 	if (r < 0)
132 		goto err_free;
133 
134 	minor->index = r;
135 
136 	minor->kdev = drm_sysfs_minor_alloc(minor);
137 	if (IS_ERR(minor->kdev)) {
138 		r = PTR_ERR(minor->kdev);
139 		goto err_index;
140 	}
141 
142 	*drm_minor_get_slot(dev, type) = minor;
143 	return 0;
144 
145 err_index:
146 	spin_lock_irqsave(&drm_minor_lock, flags);
147 	idr_remove(&drm_minors_idr, minor->index);
148 	spin_unlock_irqrestore(&drm_minor_lock, flags);
149 err_free:
150 	kfree(minor);
151 	return r;
152 }
153 
154 static void drm_minor_free(struct drm_device *dev, unsigned int type)
155 {
156 	struct drm_minor **slot, *minor;
157 	unsigned long flags;
158 
159 	slot = drm_minor_get_slot(dev, type);
160 	minor = *slot;
161 	if (!minor)
162 		return;
163 
164 	put_device(minor->kdev);
165 
166 	spin_lock_irqsave(&drm_minor_lock, flags);
167 	idr_remove(&drm_minors_idr, minor->index);
168 	spin_unlock_irqrestore(&drm_minor_lock, flags);
169 
170 	kfree(minor);
171 	*slot = NULL;
172 }
173 
174 static int drm_minor_register(struct drm_device *dev, unsigned int type)
175 {
176 	struct drm_minor *minor;
177 	unsigned long flags;
178 	int ret;
179 
180 	DRM_DEBUG("\n");
181 
182 	minor = *drm_minor_get_slot(dev, type);
183 	if (!minor)
184 		return 0;
185 
186 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
187 	if (ret) {
188 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
189 		goto err_debugfs;
190 	}
191 
192 	ret = device_add(minor->kdev);
193 	if (ret)
194 		goto err_debugfs;
195 
196 	/* replace NULL with @minor so lookups will succeed from now on */
197 	spin_lock_irqsave(&drm_minor_lock, flags);
198 	idr_replace(&drm_minors_idr, minor, minor->index);
199 	spin_unlock_irqrestore(&drm_minor_lock, flags);
200 
201 	DRM_DEBUG("new minor registered %d\n", minor->index);
202 	return 0;
203 
204 err_debugfs:
205 	drm_debugfs_cleanup(minor);
206 	return ret;
207 }
208 
209 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
210 {
211 	struct drm_minor *minor;
212 	unsigned long flags;
213 
214 	minor = *drm_minor_get_slot(dev, type);
215 	if (!minor || !device_is_registered(minor->kdev))
216 		return;
217 
218 	/* replace @minor with NULL so lookups will fail from now on */
219 	spin_lock_irqsave(&drm_minor_lock, flags);
220 	idr_replace(&drm_minors_idr, NULL, minor->index);
221 	spin_unlock_irqrestore(&drm_minor_lock, flags);
222 
223 	device_del(minor->kdev);
224 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
225 	drm_debugfs_cleanup(minor);
226 }
227 
228 /*
229  * Looks up the given minor-ID and returns the respective DRM-minor object. The
230  * refence-count of the underlying device is increased so you must release this
231  * object with drm_minor_release().
232  *
233  * As long as you hold this minor, it is guaranteed that the object and the
234  * minor->dev pointer will stay valid! However, the device may get unplugged and
235  * unregistered while you hold the minor.
236  */
237 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
238 {
239 	struct drm_minor *minor;
240 	unsigned long flags;
241 
242 	spin_lock_irqsave(&drm_minor_lock, flags);
243 	minor = idr_find(&drm_minors_idr, minor_id);
244 	if (minor)
245 		drm_dev_get(minor->dev);
246 	spin_unlock_irqrestore(&drm_minor_lock, flags);
247 
248 	if (!minor) {
249 		return ERR_PTR(-ENODEV);
250 	} else if (drm_dev_is_unplugged(minor->dev)) {
251 		drm_dev_put(minor->dev);
252 		return ERR_PTR(-ENODEV);
253 	}
254 
255 	return minor;
256 }
257 
258 void drm_minor_release(struct drm_minor *minor)
259 {
260 	drm_dev_put(minor->dev);
261 }
262 
263 /**
264  * DOC: driver instance overview
265  *
266  * A device instance for a drm driver is represented by &struct drm_device. This
267  * is initialized with drm_dev_init(), usually from bus-specific ->probe()
268  * callbacks implemented by the driver. The driver then needs to initialize all
269  * the various subsystems for the drm device like memory management, vblank
270  * handling, modesetting support and intial output configuration plus obviously
271  * initialize all the corresponding hardware bits. Finally when everything is up
272  * and running and ready for userspace the device instance can be published
273  * using drm_dev_register().
274  *
275  * There is also deprecated support for initalizing device instances using
276  * bus-specific helpers and the &drm_driver.load callback. But due to
277  * backwards-compatibility needs the device instance have to be published too
278  * early, which requires unpretty global locking to make safe and is therefore
279  * only support for existing drivers not yet converted to the new scheme.
280  *
281  * When cleaning up a device instance everything needs to be done in reverse:
282  * First unpublish the device instance with drm_dev_unregister(). Then clean up
283  * any other resources allocated at device initialization and drop the driver's
284  * reference to &drm_device using drm_dev_put().
285  *
286  * Note that the lifetime rules for &drm_device instance has still a lot of
287  * historical baggage. Hence use the reference counting provided by
288  * drm_dev_get() and drm_dev_put() only carefully.
289  *
290  * Display driver example
291  * ~~~~~~~~~~~~~~~~~~~~~~
292  *
293  * The following example shows a typical structure of a DRM display driver.
294  * The example focus on the probe() function and the other functions that is
295  * almost always present and serves as a demonstration of devm_drm_dev_init()
296  * usage with its accompanying drm_driver->release callback.
297  *
298  * .. code-block:: c
299  *
300  *	struct driver_device {
301  *		struct drm_device drm;
302  *		void *userspace_facing;
303  *		struct clk *pclk;
304  *	};
305  *
306  *	static void driver_drm_release(struct drm_device *drm)
307  *	{
308  *		struct driver_device *priv = container_of(...);
309  *
310  *		drm_mode_config_cleanup(drm);
311  *		drm_dev_fini(drm);
312  *		kfree(priv->userspace_facing);
313  *		kfree(priv);
314  *	}
315  *
316  *	static struct drm_driver driver_drm_driver = {
317  *		[...]
318  *		.release = driver_drm_release,
319  *	};
320  *
321  *	static int driver_probe(struct platform_device *pdev)
322  *	{
323  *		struct driver_device *priv;
324  *		struct drm_device *drm;
325  *		int ret;
326  *
327  *		[
328  *		  devm_kzalloc() can't be used here because the drm_device
329  *		  lifetime can exceed the device lifetime if driver unbind
330  *		  happens when userspace still has open file descriptors.
331  *		]
332  *		priv = kzalloc(sizeof(*priv), GFP_KERNEL);
333  *		if (!priv)
334  *			return -ENOMEM;
335  *
336  *		drm = &priv->drm;
337  *
338  *		ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver);
339  *		if (ret) {
340  *			kfree(drm);
341  *			return ret;
342  *		}
343  *
344  *		drm_mode_config_init(drm);
345  *
346  *		priv->userspace_facing = kzalloc(..., GFP_KERNEL);
347  *		if (!priv->userspace_facing)
348  *			return -ENOMEM;
349  *
350  *		priv->pclk = devm_clk_get(dev, "PCLK");
351  *		if (IS_ERR(priv->pclk))
352  *			return PTR_ERR(priv->pclk);
353  *
354  *		[ Further setup, display pipeline etc ]
355  *
356  *		platform_set_drvdata(pdev, drm);
357  *
358  *		drm_mode_config_reset(drm);
359  *
360  *		ret = drm_dev_register(drm);
361  *		if (ret)
362  *			return ret;
363  *
364  *		drm_fbdev_generic_setup(drm, 32);
365  *
366  *		return 0;
367  *	}
368  *
369  *	[ This function is called before the devm_ resources are released ]
370  *	static int driver_remove(struct platform_device *pdev)
371  *	{
372  *		struct drm_device *drm = platform_get_drvdata(pdev);
373  *
374  *		drm_dev_unregister(drm);
375  *		drm_atomic_helper_shutdown(drm)
376  *
377  *		return 0;
378  *	}
379  *
380  *	[ This function is called on kernel restart and shutdown ]
381  *	static void driver_shutdown(struct platform_device *pdev)
382  *	{
383  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
384  *	}
385  *
386  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
387  *	{
388  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
389  *	}
390  *
391  *	static int __maybe_unused driver_pm_resume(struct device *dev)
392  *	{
393  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
394  *
395  *		return 0;
396  *	}
397  *
398  *	static const struct dev_pm_ops driver_pm_ops = {
399  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
400  *	};
401  *
402  *	static struct platform_driver driver_driver = {
403  *		.driver = {
404  *			[...]
405  *			.pm = &driver_pm_ops,
406  *		},
407  *		.probe = driver_probe,
408  *		.remove = driver_remove,
409  *		.shutdown = driver_shutdown,
410  *	};
411  *	module_platform_driver(driver_driver);
412  *
413  * Drivers that want to support device unplugging (USB, DT overlay unload) should
414  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
415  * regions that is accessing device resources to prevent use after they're
416  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
417  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
418  * drm_atomic_helper_shutdown() is called. This means that if the disable code
419  * paths are protected, they will not run on regular driver module unload,
420  * possibily leaving the hardware enabled.
421  */
422 
423 /**
424  * drm_put_dev - Unregister and release a DRM device
425  * @dev: DRM device
426  *
427  * Called at module unload time or when a PCI device is unplugged.
428  *
429  * Cleans up all DRM device, calling drm_lastclose().
430  *
431  * Note: Use of this function is deprecated. It will eventually go away
432  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
433  * instead to make sure that the device isn't userspace accessible any more
434  * while teardown is in progress, ensuring that userspace can't access an
435  * inconsistent state.
436  */
437 void drm_put_dev(struct drm_device *dev)
438 {
439 	DRM_DEBUG("\n");
440 
441 	if (!dev) {
442 		DRM_ERROR("cleanup called no dev\n");
443 		return;
444 	}
445 
446 	drm_dev_unregister(dev);
447 	drm_dev_put(dev);
448 }
449 EXPORT_SYMBOL(drm_put_dev);
450 
451 /**
452  * drm_dev_enter - Enter device critical section
453  * @dev: DRM device
454  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
455  *
456  * This function marks and protects the beginning of a section that should not
457  * be entered after the device has been unplugged. The section end is marked
458  * with drm_dev_exit(). Calls to this function can be nested.
459  *
460  * Returns:
461  * True if it is OK to enter the section, false otherwise.
462  */
463 bool drm_dev_enter(struct drm_device *dev, int *idx)
464 {
465 	*idx = srcu_read_lock(&drm_unplug_srcu);
466 
467 	if (dev->unplugged) {
468 		srcu_read_unlock(&drm_unplug_srcu, *idx);
469 		return false;
470 	}
471 
472 	return true;
473 }
474 EXPORT_SYMBOL(drm_dev_enter);
475 
476 /**
477  * drm_dev_exit - Exit device critical section
478  * @idx: index returned from drm_dev_enter()
479  *
480  * This function marks the end of a section that should not be entered after
481  * the device has been unplugged.
482  */
483 void drm_dev_exit(int idx)
484 {
485 	srcu_read_unlock(&drm_unplug_srcu, idx);
486 }
487 EXPORT_SYMBOL(drm_dev_exit);
488 
489 /**
490  * drm_dev_unplug - unplug a DRM device
491  * @dev: DRM device
492  *
493  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
494  * userspace operations. Entry-points can use drm_dev_enter() and
495  * drm_dev_exit() to protect device resources in a race free manner. This
496  * essentially unregisters the device like drm_dev_unregister(), but can be
497  * called while there are still open users of @dev.
498  */
499 void drm_dev_unplug(struct drm_device *dev)
500 {
501 	/*
502 	 * After synchronizing any critical read section is guaranteed to see
503 	 * the new value of ->unplugged, and any critical section which might
504 	 * still have seen the old value of ->unplugged is guaranteed to have
505 	 * finished.
506 	 */
507 	dev->unplugged = true;
508 	synchronize_srcu(&drm_unplug_srcu);
509 
510 	drm_dev_unregister(dev);
511 }
512 EXPORT_SYMBOL(drm_dev_unplug);
513 
514 /*
515  * DRM internal mount
516  * We want to be able to allocate our own "struct address_space" to control
517  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
518  * stand-alone address_space objects, so we need an underlying inode. As there
519  * is no way to allocate an independent inode easily, we need a fake internal
520  * VFS mount-point.
521  *
522  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
523  * frees it again. You are allowed to use iget() and iput() to get references to
524  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
525  * drm_fs_inode_free() call (which does not have to be the last iput()).
526  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
527  * between multiple inode-users. You could, technically, call
528  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
529  * iput(), but this way you'd end up with a new vfsmount for each inode.
530  */
531 
532 static int drm_fs_cnt;
533 static struct vfsmount *drm_fs_mnt;
534 
535 static const struct dentry_operations drm_fs_dops = {
536 	.d_dname	= simple_dname,
537 };
538 
539 static const struct super_operations drm_fs_sops = {
540 	.statfs		= simple_statfs,
541 };
542 
543 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
544 				   const char *dev_name, void *data)
545 {
546 	return mount_pseudo(fs_type,
547 			    "drm:",
548 			    &drm_fs_sops,
549 			    &drm_fs_dops,
550 			    0x010203ff);
551 }
552 
553 static struct file_system_type drm_fs_type = {
554 	.name		= "drm",
555 	.owner		= THIS_MODULE,
556 	.mount		= drm_fs_mount,
557 	.kill_sb	= kill_anon_super,
558 };
559 
560 static struct inode *drm_fs_inode_new(void)
561 {
562 	struct inode *inode;
563 	int r;
564 
565 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
566 	if (r < 0) {
567 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
568 		return ERR_PTR(r);
569 	}
570 
571 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
572 	if (IS_ERR(inode))
573 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
574 
575 	return inode;
576 }
577 
578 static void drm_fs_inode_free(struct inode *inode)
579 {
580 	if (inode) {
581 		iput(inode);
582 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
583 	}
584 }
585 
586 /**
587  * DOC: component helper usage recommendations
588  *
589  * DRM drivers that drive hardware where a logical device consists of a pile of
590  * independent hardware blocks are recommended to use the :ref:`component helper
591  * library<component>`. For consistency and better options for code reuse the
592  * following guidelines apply:
593  *
594  *  - The entire device initialization procedure should be run from the
595  *    &component_master_ops.master_bind callback, starting with drm_dev_init(),
596  *    then binding all components with component_bind_all() and finishing with
597  *    drm_dev_register().
598  *
599  *  - The opaque pointer passed to all components through component_bind_all()
600  *    should point at &struct drm_device of the device instance, not some driver
601  *    specific private structure.
602  *
603  *  - The component helper fills the niche where further standardization of
604  *    interfaces is not practical. When there already is, or will be, a
605  *    standardized interface like &drm_bridge or &drm_panel, providing its own
606  *    functions to find such components at driver load time, like
607  *    drm_of_find_panel_or_bridge(), then the component helper should not be
608  *    used.
609  */
610 
611 /**
612  * drm_dev_init - Initialise new DRM device
613  * @dev: DRM device
614  * @driver: DRM driver
615  * @parent: Parent device object
616  *
617  * Initialize a new DRM device. No device registration is done.
618  * Call drm_dev_register() to advertice the device to user space and register it
619  * with other core subsystems. This should be done last in the device
620  * initialization sequence to make sure userspace can't access an inconsistent
621  * state.
622  *
623  * The initial ref-count of the object is 1. Use drm_dev_get() and
624  * drm_dev_put() to take and drop further ref-counts.
625  *
626  * It is recommended that drivers embed &struct drm_device into their own device
627  * structure.
628  *
629  * Drivers that do not want to allocate their own device struct
630  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
631  * that do embed &struct drm_device it must be placed first in the overall
632  * structure, and the overall structure must be allocated using kmalloc(): The
633  * drm core's release function unconditionally calls kfree() on the @dev pointer
634  * when the final reference is released. To override this behaviour, and so
635  * allow embedding of the drm_device inside the driver's device struct at an
636  * arbitrary offset, you must supply a &drm_driver.release callback and control
637  * the finalization explicitly.
638  *
639  * RETURNS:
640  * 0 on success, or error code on failure.
641  */
642 int drm_dev_init(struct drm_device *dev,
643 		 struct drm_driver *driver,
644 		 struct device *parent)
645 {
646 	int ret;
647 
648 	if (!drm_core_init_complete) {
649 		DRM_ERROR("DRM core is not initialized\n");
650 		return -ENODEV;
651 	}
652 
653 	BUG_ON(!parent);
654 
655 	kref_init(&dev->ref);
656 	dev->dev = get_device(parent);
657 	dev->driver = driver;
658 
659 	/* no per-device feature limits by default */
660 	dev->driver_features = ~0u;
661 
662 	drm_legacy_init_members(dev);
663 	INIT_LIST_HEAD(&dev->filelist);
664 	INIT_LIST_HEAD(&dev->filelist_internal);
665 	INIT_LIST_HEAD(&dev->clientlist);
666 	INIT_LIST_HEAD(&dev->vblank_event_list);
667 
668 	spin_lock_init(&dev->event_lock);
669 	mutex_init(&dev->struct_mutex);
670 	mutex_init(&dev->filelist_mutex);
671 	mutex_init(&dev->clientlist_mutex);
672 	mutex_init(&dev->master_mutex);
673 
674 	dev->anon_inode = drm_fs_inode_new();
675 	if (IS_ERR(dev->anon_inode)) {
676 		ret = PTR_ERR(dev->anon_inode);
677 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
678 		goto err_free;
679 	}
680 
681 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
682 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
683 		if (ret)
684 			goto err_minors;
685 	}
686 
687 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
688 	if (ret)
689 		goto err_minors;
690 
691 	ret = drm_legacy_create_map_hash(dev);
692 	if (ret)
693 		goto err_minors;
694 
695 	drm_legacy_ctxbitmap_init(dev);
696 
697 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
698 		ret = drm_gem_init(dev);
699 		if (ret) {
700 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
701 			goto err_ctxbitmap;
702 		}
703 	}
704 
705 	ret = drm_dev_set_unique(dev, dev_name(parent));
706 	if (ret)
707 		goto err_setunique;
708 
709 	return 0;
710 
711 err_setunique:
712 	if (drm_core_check_feature(dev, DRIVER_GEM))
713 		drm_gem_destroy(dev);
714 err_ctxbitmap:
715 	drm_legacy_ctxbitmap_cleanup(dev);
716 	drm_legacy_remove_map_hash(dev);
717 err_minors:
718 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
719 	drm_minor_free(dev, DRM_MINOR_RENDER);
720 	drm_fs_inode_free(dev->anon_inode);
721 err_free:
722 	put_device(dev->dev);
723 	mutex_destroy(&dev->master_mutex);
724 	mutex_destroy(&dev->clientlist_mutex);
725 	mutex_destroy(&dev->filelist_mutex);
726 	mutex_destroy(&dev->struct_mutex);
727 	drm_legacy_destroy_members(dev);
728 	return ret;
729 }
730 EXPORT_SYMBOL(drm_dev_init);
731 
732 static void devm_drm_dev_init_release(void *data)
733 {
734 	drm_dev_put(data);
735 }
736 
737 /**
738  * devm_drm_dev_init - Resource managed drm_dev_init()
739  * @parent: Parent device object
740  * @dev: DRM device
741  * @driver: DRM driver
742  *
743  * Managed drm_dev_init(). The DRM device initialized with this function is
744  * automatically put on driver detach using drm_dev_put(). You must supply a
745  * &drm_driver.release callback to control the finalization explicitly.
746  *
747  * RETURNS:
748  * 0 on success, or error code on failure.
749  */
750 int devm_drm_dev_init(struct device *parent,
751 		      struct drm_device *dev,
752 		      struct drm_driver *driver)
753 {
754 	int ret;
755 
756 	if (WARN_ON(!parent || !driver->release))
757 		return -EINVAL;
758 
759 	ret = drm_dev_init(dev, driver, parent);
760 	if (ret)
761 		return ret;
762 
763 	ret = devm_add_action(parent, devm_drm_dev_init_release, dev);
764 	if (ret)
765 		devm_drm_dev_init_release(dev);
766 
767 	return ret;
768 }
769 EXPORT_SYMBOL(devm_drm_dev_init);
770 
771 /**
772  * drm_dev_fini - Finalize a dead DRM device
773  * @dev: DRM device
774  *
775  * Finalize a dead DRM device. This is the converse to drm_dev_init() and
776  * frees up all data allocated by it. All driver private data should be
777  * finalized first. Note that this function does not free the @dev, that is
778  * left to the caller.
779  *
780  * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
781  * from a &drm_driver.release callback.
782  */
783 void drm_dev_fini(struct drm_device *dev)
784 {
785 	drm_vblank_cleanup(dev);
786 
787 	if (drm_core_check_feature(dev, DRIVER_GEM))
788 		drm_gem_destroy(dev);
789 
790 	drm_legacy_ctxbitmap_cleanup(dev);
791 	drm_legacy_remove_map_hash(dev);
792 	drm_fs_inode_free(dev->anon_inode);
793 
794 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
795 	drm_minor_free(dev, DRM_MINOR_RENDER);
796 
797 	put_device(dev->dev);
798 
799 	mutex_destroy(&dev->master_mutex);
800 	mutex_destroy(&dev->clientlist_mutex);
801 	mutex_destroy(&dev->filelist_mutex);
802 	mutex_destroy(&dev->struct_mutex);
803 	drm_legacy_destroy_members(dev);
804 	kfree(dev->unique);
805 }
806 EXPORT_SYMBOL(drm_dev_fini);
807 
808 /**
809  * drm_dev_alloc - Allocate new DRM device
810  * @driver: DRM driver to allocate device for
811  * @parent: Parent device object
812  *
813  * Allocate and initialize a new DRM device. No device registration is done.
814  * Call drm_dev_register() to advertice the device to user space and register it
815  * with other core subsystems. This should be done last in the device
816  * initialization sequence to make sure userspace can't access an inconsistent
817  * state.
818  *
819  * The initial ref-count of the object is 1. Use drm_dev_get() and
820  * drm_dev_put() to take and drop further ref-counts.
821  *
822  * Note that for purely virtual devices @parent can be NULL.
823  *
824  * Drivers that wish to subclass or embed &struct drm_device into their
825  * own struct should look at using drm_dev_init() instead.
826  *
827  * RETURNS:
828  * Pointer to new DRM device, or ERR_PTR on failure.
829  */
830 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
831 				 struct device *parent)
832 {
833 	struct drm_device *dev;
834 	int ret;
835 
836 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
837 	if (!dev)
838 		return ERR_PTR(-ENOMEM);
839 
840 	ret = drm_dev_init(dev, driver, parent);
841 	if (ret) {
842 		kfree(dev);
843 		return ERR_PTR(ret);
844 	}
845 
846 	return dev;
847 }
848 EXPORT_SYMBOL(drm_dev_alloc);
849 
850 static void drm_dev_release(struct kref *ref)
851 {
852 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
853 
854 	if (dev->driver->release) {
855 		dev->driver->release(dev);
856 	} else {
857 		drm_dev_fini(dev);
858 		kfree(dev);
859 	}
860 }
861 
862 /**
863  * drm_dev_get - Take reference of a DRM device
864  * @dev: device to take reference of or NULL
865  *
866  * This increases the ref-count of @dev by one. You *must* already own a
867  * reference when calling this. Use drm_dev_put() to drop this reference
868  * again.
869  *
870  * This function never fails. However, this function does not provide *any*
871  * guarantee whether the device is alive or running. It only provides a
872  * reference to the object and the memory associated with it.
873  */
874 void drm_dev_get(struct drm_device *dev)
875 {
876 	if (dev)
877 		kref_get(&dev->ref);
878 }
879 EXPORT_SYMBOL(drm_dev_get);
880 
881 /**
882  * drm_dev_put - Drop reference of a DRM device
883  * @dev: device to drop reference of or NULL
884  *
885  * This decreases the ref-count of @dev by one. The device is destroyed if the
886  * ref-count drops to zero.
887  */
888 void drm_dev_put(struct drm_device *dev)
889 {
890 	if (dev)
891 		kref_put(&dev->ref, drm_dev_release);
892 }
893 EXPORT_SYMBOL(drm_dev_put);
894 
895 static int create_compat_control_link(struct drm_device *dev)
896 {
897 	struct drm_minor *minor;
898 	char *name;
899 	int ret;
900 
901 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
902 		return 0;
903 
904 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
905 	if (!minor)
906 		return 0;
907 
908 	/*
909 	 * Some existing userspace out there uses the existing of the controlD*
910 	 * sysfs files to figure out whether it's a modeset driver. It only does
911 	 * readdir, hence a symlink is sufficient (and the least confusing
912 	 * option). Otherwise controlD* is entirely unused.
913 	 *
914 	 * Old controlD chardev have been allocated in the range
915 	 * 64-127.
916 	 */
917 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
918 	if (!name)
919 		return -ENOMEM;
920 
921 	ret = sysfs_create_link(minor->kdev->kobj.parent,
922 				&minor->kdev->kobj,
923 				name);
924 
925 	kfree(name);
926 
927 	return ret;
928 }
929 
930 static void remove_compat_control_link(struct drm_device *dev)
931 {
932 	struct drm_minor *minor;
933 	char *name;
934 
935 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
936 		return;
937 
938 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
939 	if (!minor)
940 		return;
941 
942 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
943 	if (!name)
944 		return;
945 
946 	sysfs_remove_link(minor->kdev->kobj.parent, name);
947 
948 	kfree(name);
949 }
950 
951 /**
952  * drm_dev_register - Register DRM device
953  * @dev: Device to register
954  * @flags: Flags passed to the driver's .load() function
955  *
956  * Register the DRM device @dev with the system, advertise device to user-space
957  * and start normal device operation. @dev must be initialized via drm_dev_init()
958  * previously.
959  *
960  * Never call this twice on any device!
961  *
962  * NOTE: To ensure backward compatibility with existing drivers method this
963  * function calls the &drm_driver.load method after registering the device
964  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
965  * therefore deprecated, drivers must perform all initialization before calling
966  * drm_dev_register().
967  *
968  * RETURNS:
969  * 0 on success, negative error code on failure.
970  */
971 int drm_dev_register(struct drm_device *dev, unsigned long flags)
972 {
973 	struct drm_driver *driver = dev->driver;
974 	int ret;
975 
976 	mutex_lock(&drm_global_mutex);
977 
978 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
979 	if (ret)
980 		goto err_minors;
981 
982 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
983 	if (ret)
984 		goto err_minors;
985 
986 	ret = create_compat_control_link(dev);
987 	if (ret)
988 		goto err_minors;
989 
990 	dev->registered = true;
991 
992 	if (dev->driver->load) {
993 		ret = dev->driver->load(dev, flags);
994 		if (ret)
995 			goto err_minors;
996 	}
997 
998 	if (drm_core_check_feature(dev, DRIVER_MODESET))
999 		drm_modeset_register_all(dev);
1000 
1001 	ret = 0;
1002 
1003 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1004 		 driver->name, driver->major, driver->minor,
1005 		 driver->patchlevel, driver->date,
1006 		 dev->dev ? dev_name(dev->dev) : "virtual device",
1007 		 dev->primary->index);
1008 
1009 	goto out_unlock;
1010 
1011 err_minors:
1012 	remove_compat_control_link(dev);
1013 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1014 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1015 out_unlock:
1016 	mutex_unlock(&drm_global_mutex);
1017 	return ret;
1018 }
1019 EXPORT_SYMBOL(drm_dev_register);
1020 
1021 /**
1022  * drm_dev_unregister - Unregister DRM device
1023  * @dev: Device to unregister
1024  *
1025  * Unregister the DRM device from the system. This does the reverse of
1026  * drm_dev_register() but does not deallocate the device. The caller must call
1027  * drm_dev_put() to drop their final reference.
1028  *
1029  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1030  * which can be called while there are still open users of @dev.
1031  *
1032  * This should be called first in the device teardown code to make sure
1033  * userspace can't access the device instance any more.
1034  */
1035 void drm_dev_unregister(struct drm_device *dev)
1036 {
1037 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
1038 		drm_lastclose(dev);
1039 
1040 	dev->registered = false;
1041 
1042 	drm_client_dev_unregister(dev);
1043 
1044 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1045 		drm_modeset_unregister_all(dev);
1046 
1047 	if (dev->driver->unload)
1048 		dev->driver->unload(dev);
1049 
1050 	if (dev->agp)
1051 		drm_pci_agp_destroy(dev);
1052 
1053 	drm_legacy_rmmaps(dev);
1054 
1055 	remove_compat_control_link(dev);
1056 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1057 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1058 }
1059 EXPORT_SYMBOL(drm_dev_unregister);
1060 
1061 /**
1062  * drm_dev_set_unique - Set the unique name of a DRM device
1063  * @dev: device of which to set the unique name
1064  * @name: unique name
1065  *
1066  * Sets the unique name of a DRM device using the specified string. This is
1067  * already done by drm_dev_init(), drivers should only override the default
1068  * unique name for backwards compatibility reasons.
1069  *
1070  * Return: 0 on success or a negative error code on failure.
1071  */
1072 int drm_dev_set_unique(struct drm_device *dev, const char *name)
1073 {
1074 	kfree(dev->unique);
1075 	dev->unique = kstrdup(name, GFP_KERNEL);
1076 
1077 	return dev->unique ? 0 : -ENOMEM;
1078 }
1079 EXPORT_SYMBOL(drm_dev_set_unique);
1080 
1081 /*
1082  * DRM Core
1083  * The DRM core module initializes all global DRM objects and makes them
1084  * available to drivers. Once setup, drivers can probe their respective
1085  * devices.
1086  * Currently, core management includes:
1087  *  - The "DRM-Global" key/value database
1088  *  - Global ID management for connectors
1089  *  - DRM major number allocation
1090  *  - DRM minor management
1091  *  - DRM sysfs class
1092  *  - DRM debugfs root
1093  *
1094  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1095  * interface registered on a DRM device, you can request minor numbers from DRM
1096  * core. DRM core takes care of major-number management and char-dev
1097  * registration. A stub ->open() callback forwards any open() requests to the
1098  * registered minor.
1099  */
1100 
1101 static int drm_stub_open(struct inode *inode, struct file *filp)
1102 {
1103 	const struct file_operations *new_fops;
1104 	struct drm_minor *minor;
1105 	int err;
1106 
1107 	DRM_DEBUG("\n");
1108 
1109 	mutex_lock(&drm_global_mutex);
1110 	minor = drm_minor_acquire(iminor(inode));
1111 	if (IS_ERR(minor)) {
1112 		err = PTR_ERR(minor);
1113 		goto out_unlock;
1114 	}
1115 
1116 	new_fops = fops_get(minor->dev->driver->fops);
1117 	if (!new_fops) {
1118 		err = -ENODEV;
1119 		goto out_release;
1120 	}
1121 
1122 	replace_fops(filp, new_fops);
1123 	if (filp->f_op->open)
1124 		err = filp->f_op->open(inode, filp);
1125 	else
1126 		err = 0;
1127 
1128 out_release:
1129 	drm_minor_release(minor);
1130 out_unlock:
1131 	mutex_unlock(&drm_global_mutex);
1132 	return err;
1133 }
1134 
1135 static const struct file_operations drm_stub_fops = {
1136 	.owner = THIS_MODULE,
1137 	.open = drm_stub_open,
1138 	.llseek = noop_llseek,
1139 };
1140 
1141 static void drm_core_exit(void)
1142 {
1143 	unregister_chrdev(DRM_MAJOR, "drm");
1144 	debugfs_remove(drm_debugfs_root);
1145 	drm_sysfs_destroy();
1146 	idr_destroy(&drm_minors_idr);
1147 	drm_connector_ida_destroy();
1148 }
1149 
1150 static int __init drm_core_init(void)
1151 {
1152 	int ret;
1153 
1154 	drm_connector_ida_init();
1155 	idr_init(&drm_minors_idr);
1156 
1157 	ret = drm_sysfs_init();
1158 	if (ret < 0) {
1159 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1160 		goto error;
1161 	}
1162 
1163 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1164 	if (!drm_debugfs_root) {
1165 		ret = -ENOMEM;
1166 		DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
1167 		goto error;
1168 	}
1169 
1170 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1171 	if (ret < 0)
1172 		goto error;
1173 
1174 	drm_core_init_complete = true;
1175 
1176 	DRM_DEBUG("Initialized\n");
1177 	return 0;
1178 
1179 error:
1180 	drm_core_exit();
1181 	return ret;
1182 }
1183 
1184 module_init(drm_core_init);
1185 module_exit(drm_core_exit);
1186