1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 #include <linux/srcu.h> 36 37 #include <drm/drm_client.h> 38 #include <drm/drm_color_mgmt.h> 39 #include <drm/drm_drv.h> 40 #include <drm/drm_file.h> 41 #include <drm/drm_mode_object.h> 42 #include <drm/drm_print.h> 43 44 #include "drm_crtc_internal.h" 45 #include "drm_internal.h" 46 #include "drm_legacy.h" 47 48 /* 49 * drm_debug: Enable debug output. 50 * Bitmask of DRM_UT_x. See include/drm/drm_print.h for details. 51 */ 52 unsigned int drm_debug = 0; 53 EXPORT_SYMBOL(drm_debug); 54 55 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 56 MODULE_DESCRIPTION("DRM shared core routines"); 57 MODULE_LICENSE("GPL and additional rights"); 58 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 59 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 60 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 61 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 62 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 63 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 64 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n" 65 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)\n" 66 "\t\tBit 8 (0x100) will enable DP messages (displayport code)"); 67 module_param_named(debug, drm_debug, int, 0600); 68 69 static DEFINE_SPINLOCK(drm_minor_lock); 70 static struct idr drm_minors_idr; 71 72 /* 73 * If the drm core fails to init for whatever reason, 74 * we should prevent any drivers from registering with it. 75 * It's best to check this at drm_dev_init(), as some drivers 76 * prefer to embed struct drm_device into their own device 77 * structure and call drm_dev_init() themselves. 78 */ 79 static bool drm_core_init_complete = false; 80 81 static struct dentry *drm_debugfs_root; 82 83 DEFINE_STATIC_SRCU(drm_unplug_srcu); 84 85 /* 86 * DRM Minors 87 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 88 * of them is represented by a drm_minor object. Depending on the capabilities 89 * of the device-driver, different interfaces are registered. 90 * 91 * Minors can be accessed via dev->$minor_name. This pointer is either 92 * NULL or a valid drm_minor pointer and stays valid as long as the device is 93 * valid. This means, DRM minors have the same life-time as the underlying 94 * device. However, this doesn't mean that the minor is active. Minors are 95 * registered and unregistered dynamically according to device-state. 96 */ 97 98 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 99 unsigned int type) 100 { 101 switch (type) { 102 case DRM_MINOR_PRIMARY: 103 return &dev->primary; 104 case DRM_MINOR_RENDER: 105 return &dev->render; 106 default: 107 BUG(); 108 } 109 } 110 111 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 112 { 113 struct drm_minor *minor; 114 unsigned long flags; 115 int r; 116 117 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 118 if (!minor) 119 return -ENOMEM; 120 121 minor->type = type; 122 minor->dev = dev; 123 124 idr_preload(GFP_KERNEL); 125 spin_lock_irqsave(&drm_minor_lock, flags); 126 r = idr_alloc(&drm_minors_idr, 127 NULL, 128 64 * type, 129 64 * (type + 1), 130 GFP_NOWAIT); 131 spin_unlock_irqrestore(&drm_minor_lock, flags); 132 idr_preload_end(); 133 134 if (r < 0) 135 goto err_free; 136 137 minor->index = r; 138 139 minor->kdev = drm_sysfs_minor_alloc(minor); 140 if (IS_ERR(minor->kdev)) { 141 r = PTR_ERR(minor->kdev); 142 goto err_index; 143 } 144 145 *drm_minor_get_slot(dev, type) = minor; 146 return 0; 147 148 err_index: 149 spin_lock_irqsave(&drm_minor_lock, flags); 150 idr_remove(&drm_minors_idr, minor->index); 151 spin_unlock_irqrestore(&drm_minor_lock, flags); 152 err_free: 153 kfree(minor); 154 return r; 155 } 156 157 static void drm_minor_free(struct drm_device *dev, unsigned int type) 158 { 159 struct drm_minor **slot, *minor; 160 unsigned long flags; 161 162 slot = drm_minor_get_slot(dev, type); 163 minor = *slot; 164 if (!minor) 165 return; 166 167 put_device(minor->kdev); 168 169 spin_lock_irqsave(&drm_minor_lock, flags); 170 idr_remove(&drm_minors_idr, minor->index); 171 spin_unlock_irqrestore(&drm_minor_lock, flags); 172 173 kfree(minor); 174 *slot = NULL; 175 } 176 177 static int drm_minor_register(struct drm_device *dev, unsigned int type) 178 { 179 struct drm_minor *minor; 180 unsigned long flags; 181 int ret; 182 183 DRM_DEBUG("\n"); 184 185 minor = *drm_minor_get_slot(dev, type); 186 if (!minor) 187 return 0; 188 189 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 190 if (ret) { 191 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 192 goto err_debugfs; 193 } 194 195 ret = device_add(minor->kdev); 196 if (ret) 197 goto err_debugfs; 198 199 /* replace NULL with @minor so lookups will succeed from now on */ 200 spin_lock_irqsave(&drm_minor_lock, flags); 201 idr_replace(&drm_minors_idr, minor, minor->index); 202 spin_unlock_irqrestore(&drm_minor_lock, flags); 203 204 DRM_DEBUG("new minor registered %d\n", minor->index); 205 return 0; 206 207 err_debugfs: 208 drm_debugfs_cleanup(minor); 209 return ret; 210 } 211 212 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 213 { 214 struct drm_minor *minor; 215 unsigned long flags; 216 217 minor = *drm_minor_get_slot(dev, type); 218 if (!minor || !device_is_registered(minor->kdev)) 219 return; 220 221 /* replace @minor with NULL so lookups will fail from now on */ 222 spin_lock_irqsave(&drm_minor_lock, flags); 223 idr_replace(&drm_minors_idr, NULL, minor->index); 224 spin_unlock_irqrestore(&drm_minor_lock, flags); 225 226 device_del(minor->kdev); 227 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 228 drm_debugfs_cleanup(minor); 229 } 230 231 /* 232 * Looks up the given minor-ID and returns the respective DRM-minor object. The 233 * refence-count of the underlying device is increased so you must release this 234 * object with drm_minor_release(). 235 * 236 * As long as you hold this minor, it is guaranteed that the object and the 237 * minor->dev pointer will stay valid! However, the device may get unplugged and 238 * unregistered while you hold the minor. 239 */ 240 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 241 { 242 struct drm_minor *minor; 243 unsigned long flags; 244 245 spin_lock_irqsave(&drm_minor_lock, flags); 246 minor = idr_find(&drm_minors_idr, minor_id); 247 if (minor) 248 drm_dev_get(minor->dev); 249 spin_unlock_irqrestore(&drm_minor_lock, flags); 250 251 if (!minor) { 252 return ERR_PTR(-ENODEV); 253 } else if (drm_dev_is_unplugged(minor->dev)) { 254 drm_dev_put(minor->dev); 255 return ERR_PTR(-ENODEV); 256 } 257 258 return minor; 259 } 260 261 void drm_minor_release(struct drm_minor *minor) 262 { 263 drm_dev_put(minor->dev); 264 } 265 266 /** 267 * DOC: driver instance overview 268 * 269 * A device instance for a drm driver is represented by &struct drm_device. This 270 * is initialized with drm_dev_init(), usually from bus-specific ->probe() 271 * callbacks implemented by the driver. The driver then needs to initialize all 272 * the various subsystems for the drm device like memory management, vblank 273 * handling, modesetting support and intial output configuration plus obviously 274 * initialize all the corresponding hardware bits. Finally when everything is up 275 * and running and ready for userspace the device instance can be published 276 * using drm_dev_register(). 277 * 278 * There is also deprecated support for initalizing device instances using 279 * bus-specific helpers and the &drm_driver.load callback. But due to 280 * backwards-compatibility needs the device instance have to be published too 281 * early, which requires unpretty global locking to make safe and is therefore 282 * only support for existing drivers not yet converted to the new scheme. 283 * 284 * When cleaning up a device instance everything needs to be done in reverse: 285 * First unpublish the device instance with drm_dev_unregister(). Then clean up 286 * any other resources allocated at device initialization and drop the driver's 287 * reference to &drm_device using drm_dev_put(). 288 * 289 * Note that the lifetime rules for &drm_device instance has still a lot of 290 * historical baggage. Hence use the reference counting provided by 291 * drm_dev_get() and drm_dev_put() only carefully. 292 * 293 * Display driver example 294 * ~~~~~~~~~~~~~~~~~~~~~~ 295 * 296 * The following example shows a typical structure of a DRM display driver. 297 * The example focus on the probe() function and the other functions that is 298 * almost always present and serves as a demonstration of devm_drm_dev_init() 299 * usage with its accompanying drm_driver->release callback. 300 * 301 * .. code-block:: c 302 * 303 * struct driver_device { 304 * struct drm_device drm; 305 * void *userspace_facing; 306 * struct clk *pclk; 307 * }; 308 * 309 * static void driver_drm_release(struct drm_device *drm) 310 * { 311 * struct driver_device *priv = container_of(...); 312 * 313 * drm_mode_config_cleanup(drm); 314 * drm_dev_fini(drm); 315 * kfree(priv->userspace_facing); 316 * kfree(priv); 317 * } 318 * 319 * static struct drm_driver driver_drm_driver = { 320 * [...] 321 * .release = driver_drm_release, 322 * }; 323 * 324 * static int driver_probe(struct platform_device *pdev) 325 * { 326 * struct driver_device *priv; 327 * struct drm_device *drm; 328 * int ret; 329 * 330 * [ 331 * devm_kzalloc() can't be used here because the drm_device 332 * lifetime can exceed the device lifetime if driver unbind 333 * happens when userspace still has open file descriptors. 334 * ] 335 * priv = kzalloc(sizeof(*priv), GFP_KERNEL); 336 * if (!priv) 337 * return -ENOMEM; 338 * 339 * drm = &priv->drm; 340 * 341 * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver); 342 * if (ret) { 343 * kfree(drm); 344 * return ret; 345 * } 346 * 347 * drm_mode_config_init(drm); 348 * 349 * priv->userspace_facing = kzalloc(..., GFP_KERNEL); 350 * if (!priv->userspace_facing) 351 * return -ENOMEM; 352 * 353 * priv->pclk = devm_clk_get(dev, "PCLK"); 354 * if (IS_ERR(priv->pclk)) 355 * return PTR_ERR(priv->pclk); 356 * 357 * [ Further setup, display pipeline etc ] 358 * 359 * platform_set_drvdata(pdev, drm); 360 * 361 * drm_mode_config_reset(drm); 362 * 363 * ret = drm_dev_register(drm); 364 * if (ret) 365 * return ret; 366 * 367 * drm_fbdev_generic_setup(drm, 32); 368 * 369 * return 0; 370 * } 371 * 372 * [ This function is called before the devm_ resources are released ] 373 * static int driver_remove(struct platform_device *pdev) 374 * { 375 * struct drm_device *drm = platform_get_drvdata(pdev); 376 * 377 * drm_dev_unregister(drm); 378 * drm_atomic_helper_shutdown(drm) 379 * 380 * return 0; 381 * } 382 * 383 * [ This function is called on kernel restart and shutdown ] 384 * static void driver_shutdown(struct platform_device *pdev) 385 * { 386 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 387 * } 388 * 389 * static int __maybe_unused driver_pm_suspend(struct device *dev) 390 * { 391 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 392 * } 393 * 394 * static int __maybe_unused driver_pm_resume(struct device *dev) 395 * { 396 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 397 * 398 * return 0; 399 * } 400 * 401 * static const struct dev_pm_ops driver_pm_ops = { 402 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 403 * }; 404 * 405 * static struct platform_driver driver_driver = { 406 * .driver = { 407 * [...] 408 * .pm = &driver_pm_ops, 409 * }, 410 * .probe = driver_probe, 411 * .remove = driver_remove, 412 * .shutdown = driver_shutdown, 413 * }; 414 * module_platform_driver(driver_driver); 415 * 416 * Drivers that want to support device unplugging (USB, DT overlay unload) should 417 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 418 * regions that is accessing device resources to prevent use after they're 419 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 420 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 421 * drm_atomic_helper_shutdown() is called. This means that if the disable code 422 * paths are protected, they will not run on regular driver module unload, 423 * possibily leaving the hardware enabled. 424 */ 425 426 /** 427 * drm_put_dev - Unregister and release a DRM device 428 * @dev: DRM device 429 * 430 * Called at module unload time or when a PCI device is unplugged. 431 * 432 * Cleans up all DRM device, calling drm_lastclose(). 433 * 434 * Note: Use of this function is deprecated. It will eventually go away 435 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 436 * instead to make sure that the device isn't userspace accessible any more 437 * while teardown is in progress, ensuring that userspace can't access an 438 * inconsistent state. 439 */ 440 void drm_put_dev(struct drm_device *dev) 441 { 442 DRM_DEBUG("\n"); 443 444 if (!dev) { 445 DRM_ERROR("cleanup called no dev\n"); 446 return; 447 } 448 449 drm_dev_unregister(dev); 450 drm_dev_put(dev); 451 } 452 EXPORT_SYMBOL(drm_put_dev); 453 454 /** 455 * drm_dev_enter - Enter device critical section 456 * @dev: DRM device 457 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 458 * 459 * This function marks and protects the beginning of a section that should not 460 * be entered after the device has been unplugged. The section end is marked 461 * with drm_dev_exit(). Calls to this function can be nested. 462 * 463 * Returns: 464 * True if it is OK to enter the section, false otherwise. 465 */ 466 bool drm_dev_enter(struct drm_device *dev, int *idx) 467 { 468 *idx = srcu_read_lock(&drm_unplug_srcu); 469 470 if (dev->unplugged) { 471 srcu_read_unlock(&drm_unplug_srcu, *idx); 472 return false; 473 } 474 475 return true; 476 } 477 EXPORT_SYMBOL(drm_dev_enter); 478 479 /** 480 * drm_dev_exit - Exit device critical section 481 * @idx: index returned from drm_dev_enter() 482 * 483 * This function marks the end of a section that should not be entered after 484 * the device has been unplugged. 485 */ 486 void drm_dev_exit(int idx) 487 { 488 srcu_read_unlock(&drm_unplug_srcu, idx); 489 } 490 EXPORT_SYMBOL(drm_dev_exit); 491 492 /** 493 * drm_dev_unplug - unplug a DRM device 494 * @dev: DRM device 495 * 496 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 497 * userspace operations. Entry-points can use drm_dev_enter() and 498 * drm_dev_exit() to protect device resources in a race free manner. This 499 * essentially unregisters the device like drm_dev_unregister(), but can be 500 * called while there are still open users of @dev. 501 */ 502 void drm_dev_unplug(struct drm_device *dev) 503 { 504 /* 505 * After synchronizing any critical read section is guaranteed to see 506 * the new value of ->unplugged, and any critical section which might 507 * still have seen the old value of ->unplugged is guaranteed to have 508 * finished. 509 */ 510 dev->unplugged = true; 511 synchronize_srcu(&drm_unplug_srcu); 512 513 drm_dev_unregister(dev); 514 } 515 EXPORT_SYMBOL(drm_dev_unplug); 516 517 /* 518 * DRM internal mount 519 * We want to be able to allocate our own "struct address_space" to control 520 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 521 * stand-alone address_space objects, so we need an underlying inode. As there 522 * is no way to allocate an independent inode easily, we need a fake internal 523 * VFS mount-point. 524 * 525 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 526 * frees it again. You are allowed to use iget() and iput() to get references to 527 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 528 * drm_fs_inode_free() call (which does not have to be the last iput()). 529 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 530 * between multiple inode-users. You could, technically, call 531 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 532 * iput(), but this way you'd end up with a new vfsmount for each inode. 533 */ 534 535 static int drm_fs_cnt; 536 static struct vfsmount *drm_fs_mnt; 537 538 static const struct dentry_operations drm_fs_dops = { 539 .d_dname = simple_dname, 540 }; 541 542 static const struct super_operations drm_fs_sops = { 543 .statfs = simple_statfs, 544 }; 545 546 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 547 const char *dev_name, void *data) 548 { 549 return mount_pseudo(fs_type, 550 "drm:", 551 &drm_fs_sops, 552 &drm_fs_dops, 553 0x010203ff); 554 } 555 556 static struct file_system_type drm_fs_type = { 557 .name = "drm", 558 .owner = THIS_MODULE, 559 .mount = drm_fs_mount, 560 .kill_sb = kill_anon_super, 561 }; 562 563 static struct inode *drm_fs_inode_new(void) 564 { 565 struct inode *inode; 566 int r; 567 568 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 569 if (r < 0) { 570 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 571 return ERR_PTR(r); 572 } 573 574 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 575 if (IS_ERR(inode)) 576 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 577 578 return inode; 579 } 580 581 static void drm_fs_inode_free(struct inode *inode) 582 { 583 if (inode) { 584 iput(inode); 585 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 586 } 587 } 588 589 /** 590 * DOC: component helper usage recommendations 591 * 592 * DRM drivers that drive hardware where a logical device consists of a pile of 593 * independent hardware blocks are recommended to use the :ref:`component helper 594 * library<component>`. For consistency and better options for code reuse the 595 * following guidelines apply: 596 * 597 * - The entire device initialization procedure should be run from the 598 * &component_master_ops.master_bind callback, starting with drm_dev_init(), 599 * then binding all components with component_bind_all() and finishing with 600 * drm_dev_register(). 601 * 602 * - The opaque pointer passed to all components through component_bind_all() 603 * should point at &struct drm_device of the device instance, not some driver 604 * specific private structure. 605 * 606 * - The component helper fills the niche where further standardization of 607 * interfaces is not practical. When there already is, or will be, a 608 * standardized interface like &drm_bridge or &drm_panel, providing its own 609 * functions to find such components at driver load time, like 610 * drm_of_find_panel_or_bridge(), then the component helper should not be 611 * used. 612 */ 613 614 /** 615 * drm_dev_init - Initialise new DRM device 616 * @dev: DRM device 617 * @driver: DRM driver 618 * @parent: Parent device object 619 * 620 * Initialize a new DRM device. No device registration is done. 621 * Call drm_dev_register() to advertice the device to user space and register it 622 * with other core subsystems. This should be done last in the device 623 * initialization sequence to make sure userspace can't access an inconsistent 624 * state. 625 * 626 * The initial ref-count of the object is 1. Use drm_dev_get() and 627 * drm_dev_put() to take and drop further ref-counts. 628 * 629 * It is recommended that drivers embed &struct drm_device into their own device 630 * structure. 631 * 632 * Drivers that do not want to allocate their own device struct 633 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 634 * that do embed &struct drm_device it must be placed first in the overall 635 * structure, and the overall structure must be allocated using kmalloc(): The 636 * drm core's release function unconditionally calls kfree() on the @dev pointer 637 * when the final reference is released. To override this behaviour, and so 638 * allow embedding of the drm_device inside the driver's device struct at an 639 * arbitrary offset, you must supply a &drm_driver.release callback and control 640 * the finalization explicitly. 641 * 642 * RETURNS: 643 * 0 on success, or error code on failure. 644 */ 645 int drm_dev_init(struct drm_device *dev, 646 struct drm_driver *driver, 647 struct device *parent) 648 { 649 int ret; 650 651 if (!drm_core_init_complete) { 652 DRM_ERROR("DRM core is not initialized\n"); 653 return -ENODEV; 654 } 655 656 BUG_ON(!parent); 657 658 kref_init(&dev->ref); 659 dev->dev = get_device(parent); 660 dev->driver = driver; 661 662 /* no per-device feature limits by default */ 663 dev->driver_features = ~0u; 664 665 drm_legacy_init_members(dev); 666 INIT_LIST_HEAD(&dev->filelist); 667 INIT_LIST_HEAD(&dev->filelist_internal); 668 INIT_LIST_HEAD(&dev->clientlist); 669 INIT_LIST_HEAD(&dev->vblank_event_list); 670 671 spin_lock_init(&dev->event_lock); 672 mutex_init(&dev->struct_mutex); 673 mutex_init(&dev->filelist_mutex); 674 mutex_init(&dev->clientlist_mutex); 675 mutex_init(&dev->master_mutex); 676 677 dev->anon_inode = drm_fs_inode_new(); 678 if (IS_ERR(dev->anon_inode)) { 679 ret = PTR_ERR(dev->anon_inode); 680 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 681 goto err_free; 682 } 683 684 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 685 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 686 if (ret) 687 goto err_minors; 688 } 689 690 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 691 if (ret) 692 goto err_minors; 693 694 ret = drm_legacy_create_map_hash(dev); 695 if (ret) 696 goto err_minors; 697 698 drm_legacy_ctxbitmap_init(dev); 699 700 if (drm_core_check_feature(dev, DRIVER_GEM)) { 701 ret = drm_gem_init(dev); 702 if (ret) { 703 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 704 goto err_ctxbitmap; 705 } 706 } 707 708 ret = drm_dev_set_unique(dev, dev_name(parent)); 709 if (ret) 710 goto err_setunique; 711 712 return 0; 713 714 err_setunique: 715 if (drm_core_check_feature(dev, DRIVER_GEM)) 716 drm_gem_destroy(dev); 717 err_ctxbitmap: 718 drm_legacy_ctxbitmap_cleanup(dev); 719 drm_legacy_remove_map_hash(dev); 720 err_minors: 721 drm_minor_free(dev, DRM_MINOR_PRIMARY); 722 drm_minor_free(dev, DRM_MINOR_RENDER); 723 drm_fs_inode_free(dev->anon_inode); 724 err_free: 725 put_device(dev->dev); 726 mutex_destroy(&dev->master_mutex); 727 mutex_destroy(&dev->clientlist_mutex); 728 mutex_destroy(&dev->filelist_mutex); 729 mutex_destroy(&dev->struct_mutex); 730 drm_legacy_destroy_members(dev); 731 return ret; 732 } 733 EXPORT_SYMBOL(drm_dev_init); 734 735 static void devm_drm_dev_init_release(void *data) 736 { 737 drm_dev_put(data); 738 } 739 740 /** 741 * devm_drm_dev_init - Resource managed drm_dev_init() 742 * @parent: Parent device object 743 * @dev: DRM device 744 * @driver: DRM driver 745 * 746 * Managed drm_dev_init(). The DRM device initialized with this function is 747 * automatically put on driver detach using drm_dev_put(). You must supply a 748 * &drm_driver.release callback to control the finalization explicitly. 749 * 750 * RETURNS: 751 * 0 on success, or error code on failure. 752 */ 753 int devm_drm_dev_init(struct device *parent, 754 struct drm_device *dev, 755 struct drm_driver *driver) 756 { 757 int ret; 758 759 if (WARN_ON(!parent || !driver->release)) 760 return -EINVAL; 761 762 ret = drm_dev_init(dev, driver, parent); 763 if (ret) 764 return ret; 765 766 ret = devm_add_action(parent, devm_drm_dev_init_release, dev); 767 if (ret) 768 devm_drm_dev_init_release(dev); 769 770 return ret; 771 } 772 EXPORT_SYMBOL(devm_drm_dev_init); 773 774 /** 775 * drm_dev_fini - Finalize a dead DRM device 776 * @dev: DRM device 777 * 778 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 779 * frees up all data allocated by it. All driver private data should be 780 * finalized first. Note that this function does not free the @dev, that is 781 * left to the caller. 782 * 783 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 784 * from a &drm_driver.release callback. 785 */ 786 void drm_dev_fini(struct drm_device *dev) 787 { 788 drm_vblank_cleanup(dev); 789 790 if (drm_core_check_feature(dev, DRIVER_GEM)) 791 drm_gem_destroy(dev); 792 793 drm_legacy_ctxbitmap_cleanup(dev); 794 drm_legacy_remove_map_hash(dev); 795 drm_fs_inode_free(dev->anon_inode); 796 797 drm_minor_free(dev, DRM_MINOR_PRIMARY); 798 drm_minor_free(dev, DRM_MINOR_RENDER); 799 800 put_device(dev->dev); 801 802 mutex_destroy(&dev->master_mutex); 803 mutex_destroy(&dev->clientlist_mutex); 804 mutex_destroy(&dev->filelist_mutex); 805 mutex_destroy(&dev->struct_mutex); 806 drm_legacy_destroy_members(dev); 807 kfree(dev->unique); 808 } 809 EXPORT_SYMBOL(drm_dev_fini); 810 811 /** 812 * drm_dev_alloc - Allocate new DRM device 813 * @driver: DRM driver to allocate device for 814 * @parent: Parent device object 815 * 816 * Allocate and initialize a new DRM device. No device registration is done. 817 * Call drm_dev_register() to advertice the device to user space and register it 818 * with other core subsystems. This should be done last in the device 819 * initialization sequence to make sure userspace can't access an inconsistent 820 * state. 821 * 822 * The initial ref-count of the object is 1. Use drm_dev_get() and 823 * drm_dev_put() to take and drop further ref-counts. 824 * 825 * Note that for purely virtual devices @parent can be NULL. 826 * 827 * Drivers that wish to subclass or embed &struct drm_device into their 828 * own struct should look at using drm_dev_init() instead. 829 * 830 * RETURNS: 831 * Pointer to new DRM device, or ERR_PTR on failure. 832 */ 833 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 834 struct device *parent) 835 { 836 struct drm_device *dev; 837 int ret; 838 839 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 840 if (!dev) 841 return ERR_PTR(-ENOMEM); 842 843 ret = drm_dev_init(dev, driver, parent); 844 if (ret) { 845 kfree(dev); 846 return ERR_PTR(ret); 847 } 848 849 return dev; 850 } 851 EXPORT_SYMBOL(drm_dev_alloc); 852 853 static void drm_dev_release(struct kref *ref) 854 { 855 struct drm_device *dev = container_of(ref, struct drm_device, ref); 856 857 if (dev->driver->release) { 858 dev->driver->release(dev); 859 } else { 860 drm_dev_fini(dev); 861 kfree(dev); 862 } 863 } 864 865 /** 866 * drm_dev_get - Take reference of a DRM device 867 * @dev: device to take reference of or NULL 868 * 869 * This increases the ref-count of @dev by one. You *must* already own a 870 * reference when calling this. Use drm_dev_put() to drop this reference 871 * again. 872 * 873 * This function never fails. However, this function does not provide *any* 874 * guarantee whether the device is alive or running. It only provides a 875 * reference to the object and the memory associated with it. 876 */ 877 void drm_dev_get(struct drm_device *dev) 878 { 879 if (dev) 880 kref_get(&dev->ref); 881 } 882 EXPORT_SYMBOL(drm_dev_get); 883 884 /** 885 * drm_dev_put - Drop reference of a DRM device 886 * @dev: device to drop reference of or NULL 887 * 888 * This decreases the ref-count of @dev by one. The device is destroyed if the 889 * ref-count drops to zero. 890 */ 891 void drm_dev_put(struct drm_device *dev) 892 { 893 if (dev) 894 kref_put(&dev->ref, drm_dev_release); 895 } 896 EXPORT_SYMBOL(drm_dev_put); 897 898 static int create_compat_control_link(struct drm_device *dev) 899 { 900 struct drm_minor *minor; 901 char *name; 902 int ret; 903 904 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 905 return 0; 906 907 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 908 if (!minor) 909 return 0; 910 911 /* 912 * Some existing userspace out there uses the existing of the controlD* 913 * sysfs files to figure out whether it's a modeset driver. It only does 914 * readdir, hence a symlink is sufficient (and the least confusing 915 * option). Otherwise controlD* is entirely unused. 916 * 917 * Old controlD chardev have been allocated in the range 918 * 64-127. 919 */ 920 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 921 if (!name) 922 return -ENOMEM; 923 924 ret = sysfs_create_link(minor->kdev->kobj.parent, 925 &minor->kdev->kobj, 926 name); 927 928 kfree(name); 929 930 return ret; 931 } 932 933 static void remove_compat_control_link(struct drm_device *dev) 934 { 935 struct drm_minor *minor; 936 char *name; 937 938 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 939 return; 940 941 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 942 if (!minor) 943 return; 944 945 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 946 if (!name) 947 return; 948 949 sysfs_remove_link(minor->kdev->kobj.parent, name); 950 951 kfree(name); 952 } 953 954 /** 955 * drm_dev_register - Register DRM device 956 * @dev: Device to register 957 * @flags: Flags passed to the driver's .load() function 958 * 959 * Register the DRM device @dev with the system, advertise device to user-space 960 * and start normal device operation. @dev must be initialized via drm_dev_init() 961 * previously. 962 * 963 * Never call this twice on any device! 964 * 965 * NOTE: To ensure backward compatibility with existing drivers method this 966 * function calls the &drm_driver.load method after registering the device 967 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 968 * therefore deprecated, drivers must perform all initialization before calling 969 * drm_dev_register(). 970 * 971 * RETURNS: 972 * 0 on success, negative error code on failure. 973 */ 974 int drm_dev_register(struct drm_device *dev, unsigned long flags) 975 { 976 struct drm_driver *driver = dev->driver; 977 int ret; 978 979 mutex_lock(&drm_global_mutex); 980 981 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 982 if (ret) 983 goto err_minors; 984 985 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 986 if (ret) 987 goto err_minors; 988 989 ret = create_compat_control_link(dev); 990 if (ret) 991 goto err_minors; 992 993 dev->registered = true; 994 995 if (dev->driver->load) { 996 ret = dev->driver->load(dev, flags); 997 if (ret) 998 goto err_minors; 999 } 1000 1001 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1002 drm_modeset_register_all(dev); 1003 1004 ret = 0; 1005 1006 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 1007 driver->name, driver->major, driver->minor, 1008 driver->patchlevel, driver->date, 1009 dev->dev ? dev_name(dev->dev) : "virtual device", 1010 dev->primary->index); 1011 1012 goto out_unlock; 1013 1014 err_minors: 1015 remove_compat_control_link(dev); 1016 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1017 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1018 out_unlock: 1019 mutex_unlock(&drm_global_mutex); 1020 return ret; 1021 } 1022 EXPORT_SYMBOL(drm_dev_register); 1023 1024 /** 1025 * drm_dev_unregister - Unregister DRM device 1026 * @dev: Device to unregister 1027 * 1028 * Unregister the DRM device from the system. This does the reverse of 1029 * drm_dev_register() but does not deallocate the device. The caller must call 1030 * drm_dev_put() to drop their final reference. 1031 * 1032 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1033 * which can be called while there are still open users of @dev. 1034 * 1035 * This should be called first in the device teardown code to make sure 1036 * userspace can't access the device instance any more. 1037 */ 1038 void drm_dev_unregister(struct drm_device *dev) 1039 { 1040 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 1041 drm_lastclose(dev); 1042 1043 dev->registered = false; 1044 1045 drm_client_dev_unregister(dev); 1046 1047 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1048 drm_modeset_unregister_all(dev); 1049 1050 if (dev->driver->unload) 1051 dev->driver->unload(dev); 1052 1053 if (dev->agp) 1054 drm_pci_agp_destroy(dev); 1055 1056 drm_legacy_rmmaps(dev); 1057 1058 remove_compat_control_link(dev); 1059 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1060 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1061 } 1062 EXPORT_SYMBOL(drm_dev_unregister); 1063 1064 /** 1065 * drm_dev_set_unique - Set the unique name of a DRM device 1066 * @dev: device of which to set the unique name 1067 * @name: unique name 1068 * 1069 * Sets the unique name of a DRM device using the specified string. This is 1070 * already done by drm_dev_init(), drivers should only override the default 1071 * unique name for backwards compatibility reasons. 1072 * 1073 * Return: 0 on success or a negative error code on failure. 1074 */ 1075 int drm_dev_set_unique(struct drm_device *dev, const char *name) 1076 { 1077 kfree(dev->unique); 1078 dev->unique = kstrdup(name, GFP_KERNEL); 1079 1080 return dev->unique ? 0 : -ENOMEM; 1081 } 1082 EXPORT_SYMBOL(drm_dev_set_unique); 1083 1084 /* 1085 * DRM Core 1086 * The DRM core module initializes all global DRM objects and makes them 1087 * available to drivers. Once setup, drivers can probe their respective 1088 * devices. 1089 * Currently, core management includes: 1090 * - The "DRM-Global" key/value database 1091 * - Global ID management for connectors 1092 * - DRM major number allocation 1093 * - DRM minor management 1094 * - DRM sysfs class 1095 * - DRM debugfs root 1096 * 1097 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1098 * interface registered on a DRM device, you can request minor numbers from DRM 1099 * core. DRM core takes care of major-number management and char-dev 1100 * registration. A stub ->open() callback forwards any open() requests to the 1101 * registered minor. 1102 */ 1103 1104 static int drm_stub_open(struct inode *inode, struct file *filp) 1105 { 1106 const struct file_operations *new_fops; 1107 struct drm_minor *minor; 1108 int err; 1109 1110 DRM_DEBUG("\n"); 1111 1112 mutex_lock(&drm_global_mutex); 1113 minor = drm_minor_acquire(iminor(inode)); 1114 if (IS_ERR(minor)) { 1115 err = PTR_ERR(minor); 1116 goto out_unlock; 1117 } 1118 1119 new_fops = fops_get(minor->dev->driver->fops); 1120 if (!new_fops) { 1121 err = -ENODEV; 1122 goto out_release; 1123 } 1124 1125 replace_fops(filp, new_fops); 1126 if (filp->f_op->open) 1127 err = filp->f_op->open(inode, filp); 1128 else 1129 err = 0; 1130 1131 out_release: 1132 drm_minor_release(minor); 1133 out_unlock: 1134 mutex_unlock(&drm_global_mutex); 1135 return err; 1136 } 1137 1138 static const struct file_operations drm_stub_fops = { 1139 .owner = THIS_MODULE, 1140 .open = drm_stub_open, 1141 .llseek = noop_llseek, 1142 }; 1143 1144 static void drm_core_exit(void) 1145 { 1146 unregister_chrdev(DRM_MAJOR, "drm"); 1147 debugfs_remove(drm_debugfs_root); 1148 drm_sysfs_destroy(); 1149 idr_destroy(&drm_minors_idr); 1150 drm_connector_ida_destroy(); 1151 } 1152 1153 static int __init drm_core_init(void) 1154 { 1155 int ret; 1156 1157 drm_connector_ida_init(); 1158 idr_init(&drm_minors_idr); 1159 1160 ret = drm_sysfs_init(); 1161 if (ret < 0) { 1162 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1163 goto error; 1164 } 1165 1166 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1167 1168 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1169 if (ret < 0) 1170 goto error; 1171 1172 drm_core_init_complete = true; 1173 1174 DRM_DEBUG("Initialized\n"); 1175 return 0; 1176 1177 error: 1178 drm_core_exit(); 1179 return ret; 1180 } 1181 1182 module_init(drm_core_init); 1183 module_exit(drm_core_exit); 1184