xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision 680ef72a)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 
36 #include <drm/drm_drv.h>
37 #include <drm/drmP.h>
38 
39 #include "drm_crtc_internal.h"
40 #include "drm_legacy.h"
41 #include "drm_internal.h"
42 #include "drm_crtc_internal.h"
43 
44 /*
45  * drm_debug: Enable debug output.
46  * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
47  */
48 unsigned int drm_debug = 0;
49 EXPORT_SYMBOL(drm_debug);
50 
51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
52 MODULE_DESCRIPTION("DRM shared core routines");
53 MODULE_LICENSE("GPL and additional rights");
54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n"
61 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)");
62 module_param_named(debug, drm_debug, int, 0600);
63 
64 static DEFINE_SPINLOCK(drm_minor_lock);
65 static struct idr drm_minors_idr;
66 
67 /*
68  * If the drm core fails to init for whatever reason,
69  * we should prevent any drivers from registering with it.
70  * It's best to check this at drm_dev_init(), as some drivers
71  * prefer to embed struct drm_device into their own device
72  * structure and call drm_dev_init() themselves.
73  */
74 static bool drm_core_init_complete = false;
75 
76 static struct dentry *drm_debugfs_root;
77 
78 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV"
79 
80 void drm_dev_printk(const struct device *dev, const char *level,
81 		    unsigned int category, const char *function_name,
82 		    const char *prefix, const char *format, ...)
83 {
84 	struct va_format vaf;
85 	va_list args;
86 
87 	if (category != DRM_UT_NONE && !(drm_debug & category))
88 		return;
89 
90 	va_start(args, format);
91 	vaf.fmt = format;
92 	vaf.va = &args;
93 
94 	if (dev)
95 		dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix,
96 			   &vaf);
97 	else
98 		printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf);
99 
100 	va_end(args);
101 }
102 EXPORT_SYMBOL(drm_dev_printk);
103 
104 void drm_printk(const char *level, unsigned int category,
105 		const char *format, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (category != DRM_UT_NONE && !(drm_debug & category))
111 		return;
112 
113 	va_start(args, format);
114 	vaf.fmt = format;
115 	vaf.va = &args;
116 
117 	printk("%s" "[" DRM_NAME ":%ps]%s %pV",
118 	       level, __builtin_return_address(0),
119 	       strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf);
120 
121 	va_end(args);
122 }
123 EXPORT_SYMBOL(drm_printk);
124 
125 /*
126  * DRM Minors
127  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
128  * of them is represented by a drm_minor object. Depending on the capabilities
129  * of the device-driver, different interfaces are registered.
130  *
131  * Minors can be accessed via dev->$minor_name. This pointer is either
132  * NULL or a valid drm_minor pointer and stays valid as long as the device is
133  * valid. This means, DRM minors have the same life-time as the underlying
134  * device. However, this doesn't mean that the minor is active. Minors are
135  * registered and unregistered dynamically according to device-state.
136  */
137 
138 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
139 					     unsigned int type)
140 {
141 	switch (type) {
142 	case DRM_MINOR_PRIMARY:
143 		return &dev->primary;
144 	case DRM_MINOR_RENDER:
145 		return &dev->render;
146 	case DRM_MINOR_CONTROL:
147 		return &dev->control;
148 	default:
149 		return NULL;
150 	}
151 }
152 
153 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
154 {
155 	struct drm_minor *minor;
156 	unsigned long flags;
157 	int r;
158 
159 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
160 	if (!minor)
161 		return -ENOMEM;
162 
163 	minor->type = type;
164 	minor->dev = dev;
165 
166 	idr_preload(GFP_KERNEL);
167 	spin_lock_irqsave(&drm_minor_lock, flags);
168 	r = idr_alloc(&drm_minors_idr,
169 		      NULL,
170 		      64 * type,
171 		      64 * (type + 1),
172 		      GFP_NOWAIT);
173 	spin_unlock_irqrestore(&drm_minor_lock, flags);
174 	idr_preload_end();
175 
176 	if (r < 0)
177 		goto err_free;
178 
179 	minor->index = r;
180 
181 	minor->kdev = drm_sysfs_minor_alloc(minor);
182 	if (IS_ERR(minor->kdev)) {
183 		r = PTR_ERR(minor->kdev);
184 		goto err_index;
185 	}
186 
187 	*drm_minor_get_slot(dev, type) = minor;
188 	return 0;
189 
190 err_index:
191 	spin_lock_irqsave(&drm_minor_lock, flags);
192 	idr_remove(&drm_minors_idr, minor->index);
193 	spin_unlock_irqrestore(&drm_minor_lock, flags);
194 err_free:
195 	kfree(minor);
196 	return r;
197 }
198 
199 static void drm_minor_free(struct drm_device *dev, unsigned int type)
200 {
201 	struct drm_minor **slot, *minor;
202 	unsigned long flags;
203 
204 	slot = drm_minor_get_slot(dev, type);
205 	minor = *slot;
206 	if (!minor)
207 		return;
208 
209 	put_device(minor->kdev);
210 
211 	spin_lock_irqsave(&drm_minor_lock, flags);
212 	idr_remove(&drm_minors_idr, minor->index);
213 	spin_unlock_irqrestore(&drm_minor_lock, flags);
214 
215 	kfree(minor);
216 	*slot = NULL;
217 }
218 
219 static int drm_minor_register(struct drm_device *dev, unsigned int type)
220 {
221 	struct drm_minor *minor;
222 	unsigned long flags;
223 	int ret;
224 
225 	DRM_DEBUG("\n");
226 
227 	minor = *drm_minor_get_slot(dev, type);
228 	if (!minor)
229 		return 0;
230 
231 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
232 	if (ret) {
233 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
234 		goto err_debugfs;
235 	}
236 
237 	ret = device_add(minor->kdev);
238 	if (ret)
239 		goto err_debugfs;
240 
241 	/* replace NULL with @minor so lookups will succeed from now on */
242 	spin_lock_irqsave(&drm_minor_lock, flags);
243 	idr_replace(&drm_minors_idr, minor, minor->index);
244 	spin_unlock_irqrestore(&drm_minor_lock, flags);
245 
246 	DRM_DEBUG("new minor registered %d\n", minor->index);
247 	return 0;
248 
249 err_debugfs:
250 	drm_debugfs_cleanup(minor);
251 	return ret;
252 }
253 
254 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
255 {
256 	struct drm_minor *minor;
257 	unsigned long flags;
258 
259 	minor = *drm_minor_get_slot(dev, type);
260 	if (!minor || !device_is_registered(minor->kdev))
261 		return;
262 
263 	/* replace @minor with NULL so lookups will fail from now on */
264 	spin_lock_irqsave(&drm_minor_lock, flags);
265 	idr_replace(&drm_minors_idr, NULL, minor->index);
266 	spin_unlock_irqrestore(&drm_minor_lock, flags);
267 
268 	device_del(minor->kdev);
269 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
270 	drm_debugfs_cleanup(minor);
271 }
272 
273 /*
274  * Looks up the given minor-ID and returns the respective DRM-minor object. The
275  * refence-count of the underlying device is increased so you must release this
276  * object with drm_minor_release().
277  *
278  * As long as you hold this minor, it is guaranteed that the object and the
279  * minor->dev pointer will stay valid! However, the device may get unplugged and
280  * unregistered while you hold the minor.
281  */
282 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
283 {
284 	struct drm_minor *minor;
285 	unsigned long flags;
286 
287 	spin_lock_irqsave(&drm_minor_lock, flags);
288 	minor = idr_find(&drm_minors_idr, minor_id);
289 	if (minor)
290 		drm_dev_get(minor->dev);
291 	spin_unlock_irqrestore(&drm_minor_lock, flags);
292 
293 	if (!minor) {
294 		return ERR_PTR(-ENODEV);
295 	} else if (drm_dev_is_unplugged(minor->dev)) {
296 		drm_dev_put(minor->dev);
297 		return ERR_PTR(-ENODEV);
298 	}
299 
300 	return minor;
301 }
302 
303 void drm_minor_release(struct drm_minor *minor)
304 {
305 	drm_dev_put(minor->dev);
306 }
307 
308 /**
309  * DOC: driver instance overview
310  *
311  * A device instance for a drm driver is represented by &struct drm_device. This
312  * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
313  * callbacks implemented by the driver. The driver then needs to initialize all
314  * the various subsystems for the drm device like memory management, vblank
315  * handling, modesetting support and intial output configuration plus obviously
316  * initialize all the corresponding hardware bits. An important part of this is
317  * also calling drm_dev_set_unique() to set the userspace-visible unique name of
318  * this device instance. Finally when everything is up and running and ready for
319  * userspace the device instance can be published using drm_dev_register().
320  *
321  * There is also deprecated support for initalizing device instances using
322  * bus-specific helpers and the &drm_driver.load callback. But due to
323  * backwards-compatibility needs the device instance have to be published too
324  * early, which requires unpretty global locking to make safe and is therefore
325  * only support for existing drivers not yet converted to the new scheme.
326  *
327  * When cleaning up a device instance everything needs to be done in reverse:
328  * First unpublish the device instance with drm_dev_unregister(). Then clean up
329  * any other resources allocated at device initialization and drop the driver's
330  * reference to &drm_device using drm_dev_put().
331  *
332  * Note that the lifetime rules for &drm_device instance has still a lot of
333  * historical baggage. Hence use the reference counting provided by
334  * drm_dev_get() and drm_dev_put() only carefully.
335  *
336  * It is recommended that drivers embed &struct drm_device into their own device
337  * structure, which is supported through drm_dev_init().
338  */
339 
340 /**
341  * drm_put_dev - Unregister and release a DRM device
342  * @dev: DRM device
343  *
344  * Called at module unload time or when a PCI device is unplugged.
345  *
346  * Cleans up all DRM device, calling drm_lastclose().
347  *
348  * Note: Use of this function is deprecated. It will eventually go away
349  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
350  * instead to make sure that the device isn't userspace accessible any more
351  * while teardown is in progress, ensuring that userspace can't access an
352  * inconsistent state.
353  */
354 void drm_put_dev(struct drm_device *dev)
355 {
356 	DRM_DEBUG("\n");
357 
358 	if (!dev) {
359 		DRM_ERROR("cleanup called no dev\n");
360 		return;
361 	}
362 
363 	drm_dev_unregister(dev);
364 	drm_dev_put(dev);
365 }
366 EXPORT_SYMBOL(drm_put_dev);
367 
368 static void drm_device_set_unplugged(struct drm_device *dev)
369 {
370 	smp_wmb();
371 	atomic_set(&dev->unplugged, 1);
372 }
373 
374 /**
375  * drm_dev_unplug - unplug a DRM device
376  * @dev: DRM device
377  *
378  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
379  * userspace operations. Entry-points can use drm_dev_is_unplugged(). This
380  * essentially unregisters the device like drm_dev_unregister(), but can be
381  * called while there are still open users of @dev.
382  */
383 void drm_dev_unplug(struct drm_device *dev)
384 {
385 	drm_dev_unregister(dev);
386 
387 	mutex_lock(&drm_global_mutex);
388 	drm_device_set_unplugged(dev);
389 	if (dev->open_count == 0)
390 		drm_dev_put(dev);
391 	mutex_unlock(&drm_global_mutex);
392 }
393 EXPORT_SYMBOL(drm_dev_unplug);
394 
395 /*
396  * DRM internal mount
397  * We want to be able to allocate our own "struct address_space" to control
398  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
399  * stand-alone address_space objects, so we need an underlying inode. As there
400  * is no way to allocate an independent inode easily, we need a fake internal
401  * VFS mount-point.
402  *
403  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
404  * frees it again. You are allowed to use iget() and iput() to get references to
405  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
406  * drm_fs_inode_free() call (which does not have to be the last iput()).
407  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
408  * between multiple inode-users. You could, technically, call
409  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
410  * iput(), but this way you'd end up with a new vfsmount for each inode.
411  */
412 
413 static int drm_fs_cnt;
414 static struct vfsmount *drm_fs_mnt;
415 
416 static const struct dentry_operations drm_fs_dops = {
417 	.d_dname	= simple_dname,
418 };
419 
420 static const struct super_operations drm_fs_sops = {
421 	.statfs		= simple_statfs,
422 };
423 
424 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
425 				   const char *dev_name, void *data)
426 {
427 	return mount_pseudo(fs_type,
428 			    "drm:",
429 			    &drm_fs_sops,
430 			    &drm_fs_dops,
431 			    0x010203ff);
432 }
433 
434 static struct file_system_type drm_fs_type = {
435 	.name		= "drm",
436 	.owner		= THIS_MODULE,
437 	.mount		= drm_fs_mount,
438 	.kill_sb	= kill_anon_super,
439 };
440 
441 static struct inode *drm_fs_inode_new(void)
442 {
443 	struct inode *inode;
444 	int r;
445 
446 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
447 	if (r < 0) {
448 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
449 		return ERR_PTR(r);
450 	}
451 
452 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
453 	if (IS_ERR(inode))
454 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
455 
456 	return inode;
457 }
458 
459 static void drm_fs_inode_free(struct inode *inode)
460 {
461 	if (inode) {
462 		iput(inode);
463 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
464 	}
465 }
466 
467 /**
468  * drm_dev_init - Initialise new DRM device
469  * @dev: DRM device
470  * @driver: DRM driver
471  * @parent: Parent device object
472  *
473  * Initialize a new DRM device. No device registration is done.
474  * Call drm_dev_register() to advertice the device to user space and register it
475  * with other core subsystems. This should be done last in the device
476  * initialization sequence to make sure userspace can't access an inconsistent
477  * state.
478  *
479  * The initial ref-count of the object is 1. Use drm_dev_get() and
480  * drm_dev_put() to take and drop further ref-counts.
481  *
482  * Note that for purely virtual devices @parent can be NULL.
483  *
484  * Drivers that do not want to allocate their own device struct
485  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
486  * that do embed &struct drm_device it must be placed first in the overall
487  * structure, and the overall structure must be allocated using kmalloc(): The
488  * drm core's release function unconditionally calls kfree() on the @dev pointer
489  * when the final reference is released. To override this behaviour, and so
490  * allow embedding of the drm_device inside the driver's device struct at an
491  * arbitrary offset, you must supply a &drm_driver.release callback and control
492  * the finalization explicitly.
493  *
494  * RETURNS:
495  * 0 on success, or error code on failure.
496  */
497 int drm_dev_init(struct drm_device *dev,
498 		 struct drm_driver *driver,
499 		 struct device *parent)
500 {
501 	int ret;
502 
503 	if (!drm_core_init_complete) {
504 		DRM_ERROR("DRM core is not initialized\n");
505 		return -ENODEV;
506 	}
507 
508 	kref_init(&dev->ref);
509 	dev->dev = parent;
510 	dev->driver = driver;
511 
512 	INIT_LIST_HEAD(&dev->filelist);
513 	INIT_LIST_HEAD(&dev->ctxlist);
514 	INIT_LIST_HEAD(&dev->vmalist);
515 	INIT_LIST_HEAD(&dev->maplist);
516 	INIT_LIST_HEAD(&dev->vblank_event_list);
517 
518 	spin_lock_init(&dev->buf_lock);
519 	spin_lock_init(&dev->event_lock);
520 	mutex_init(&dev->struct_mutex);
521 	mutex_init(&dev->filelist_mutex);
522 	mutex_init(&dev->ctxlist_mutex);
523 	mutex_init(&dev->master_mutex);
524 
525 	dev->anon_inode = drm_fs_inode_new();
526 	if (IS_ERR(dev->anon_inode)) {
527 		ret = PTR_ERR(dev->anon_inode);
528 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
529 		goto err_free;
530 	}
531 
532 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
533 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
534 		if (ret)
535 			goto err_minors;
536 	}
537 
538 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
539 	if (ret)
540 		goto err_minors;
541 
542 	ret = drm_ht_create(&dev->map_hash, 12);
543 	if (ret)
544 		goto err_minors;
545 
546 	drm_legacy_ctxbitmap_init(dev);
547 
548 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
549 		ret = drm_gem_init(dev);
550 		if (ret) {
551 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
552 			goto err_ctxbitmap;
553 		}
554 	}
555 
556 	/* Use the parent device name as DRM device unique identifier, but fall
557 	 * back to the driver name for virtual devices like vgem. */
558 	ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name);
559 	if (ret)
560 		goto err_setunique;
561 
562 	return 0;
563 
564 err_setunique:
565 	if (drm_core_check_feature(dev, DRIVER_GEM))
566 		drm_gem_destroy(dev);
567 err_ctxbitmap:
568 	drm_legacy_ctxbitmap_cleanup(dev);
569 	drm_ht_remove(&dev->map_hash);
570 err_minors:
571 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
572 	drm_minor_free(dev, DRM_MINOR_RENDER);
573 	drm_minor_free(dev, DRM_MINOR_CONTROL);
574 	drm_fs_inode_free(dev->anon_inode);
575 err_free:
576 	mutex_destroy(&dev->master_mutex);
577 	mutex_destroy(&dev->ctxlist_mutex);
578 	mutex_destroy(&dev->filelist_mutex);
579 	mutex_destroy(&dev->struct_mutex);
580 	return ret;
581 }
582 EXPORT_SYMBOL(drm_dev_init);
583 
584 /**
585  * drm_dev_fini - Finalize a dead DRM device
586  * @dev: DRM device
587  *
588  * Finalize a dead DRM device. This is the converse to drm_dev_init() and
589  * frees up all data allocated by it. All driver private data should be
590  * finalized first. Note that this function does not free the @dev, that is
591  * left to the caller.
592  *
593  * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
594  * from a &drm_driver.release callback.
595  */
596 void drm_dev_fini(struct drm_device *dev)
597 {
598 	drm_vblank_cleanup(dev);
599 
600 	if (drm_core_check_feature(dev, DRIVER_GEM))
601 		drm_gem_destroy(dev);
602 
603 	drm_legacy_ctxbitmap_cleanup(dev);
604 	drm_ht_remove(&dev->map_hash);
605 	drm_fs_inode_free(dev->anon_inode);
606 
607 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
608 	drm_minor_free(dev, DRM_MINOR_RENDER);
609 	drm_minor_free(dev, DRM_MINOR_CONTROL);
610 
611 	mutex_destroy(&dev->master_mutex);
612 	mutex_destroy(&dev->ctxlist_mutex);
613 	mutex_destroy(&dev->filelist_mutex);
614 	mutex_destroy(&dev->struct_mutex);
615 	kfree(dev->unique);
616 }
617 EXPORT_SYMBOL(drm_dev_fini);
618 
619 /**
620  * drm_dev_alloc - Allocate new DRM device
621  * @driver: DRM driver to allocate device for
622  * @parent: Parent device object
623  *
624  * Allocate and initialize a new DRM device. No device registration is done.
625  * Call drm_dev_register() to advertice the device to user space and register it
626  * with other core subsystems. This should be done last in the device
627  * initialization sequence to make sure userspace can't access an inconsistent
628  * state.
629  *
630  * The initial ref-count of the object is 1. Use drm_dev_get() and
631  * drm_dev_put() to take and drop further ref-counts.
632  *
633  * Note that for purely virtual devices @parent can be NULL.
634  *
635  * Drivers that wish to subclass or embed &struct drm_device into their
636  * own struct should look at using drm_dev_init() instead.
637  *
638  * RETURNS:
639  * Pointer to new DRM device, or ERR_PTR on failure.
640  */
641 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
642 				 struct device *parent)
643 {
644 	struct drm_device *dev;
645 	int ret;
646 
647 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
648 	if (!dev)
649 		return ERR_PTR(-ENOMEM);
650 
651 	ret = drm_dev_init(dev, driver, parent);
652 	if (ret) {
653 		kfree(dev);
654 		return ERR_PTR(ret);
655 	}
656 
657 	return dev;
658 }
659 EXPORT_SYMBOL(drm_dev_alloc);
660 
661 static void drm_dev_release(struct kref *ref)
662 {
663 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
664 
665 	if (dev->driver->release) {
666 		dev->driver->release(dev);
667 	} else {
668 		drm_dev_fini(dev);
669 		kfree(dev);
670 	}
671 }
672 
673 /**
674  * drm_dev_get - Take reference of a DRM device
675  * @dev: device to take reference of or NULL
676  *
677  * This increases the ref-count of @dev by one. You *must* already own a
678  * reference when calling this. Use drm_dev_put() to drop this reference
679  * again.
680  *
681  * This function never fails. However, this function does not provide *any*
682  * guarantee whether the device is alive or running. It only provides a
683  * reference to the object and the memory associated with it.
684  */
685 void drm_dev_get(struct drm_device *dev)
686 {
687 	if (dev)
688 		kref_get(&dev->ref);
689 }
690 EXPORT_SYMBOL(drm_dev_get);
691 
692 /**
693  * drm_dev_put - Drop reference of a DRM device
694  * @dev: device to drop reference of or NULL
695  *
696  * This decreases the ref-count of @dev by one. The device is destroyed if the
697  * ref-count drops to zero.
698  */
699 void drm_dev_put(struct drm_device *dev)
700 {
701 	if (dev)
702 		kref_put(&dev->ref, drm_dev_release);
703 }
704 EXPORT_SYMBOL(drm_dev_put);
705 
706 /**
707  * drm_dev_unref - Drop reference of a DRM device
708  * @dev: device to drop reference of or NULL
709  *
710  * This is a compatibility alias for drm_dev_put() and should not be used by new
711  * code.
712  */
713 void drm_dev_unref(struct drm_device *dev)
714 {
715 	drm_dev_put(dev);
716 }
717 EXPORT_SYMBOL(drm_dev_unref);
718 
719 static int create_compat_control_link(struct drm_device *dev)
720 {
721 	struct drm_minor *minor;
722 	char *name;
723 	int ret;
724 
725 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
726 		return 0;
727 
728 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
729 	if (!minor)
730 		return 0;
731 
732 	/*
733 	 * Some existing userspace out there uses the existing of the controlD*
734 	 * sysfs files to figure out whether it's a modeset driver. It only does
735 	 * readdir, hence a symlink is sufficient (and the least confusing
736 	 * option). Otherwise controlD* is entirely unused.
737 	 *
738 	 * Old controlD chardev have been allocated in the range
739 	 * 64-127.
740 	 */
741 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
742 	if (!name)
743 		return -ENOMEM;
744 
745 	ret = sysfs_create_link(minor->kdev->kobj.parent,
746 				&minor->kdev->kobj,
747 				name);
748 
749 	kfree(name);
750 
751 	return ret;
752 }
753 
754 static void remove_compat_control_link(struct drm_device *dev)
755 {
756 	struct drm_minor *minor;
757 	char *name;
758 
759 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
760 		return;
761 
762 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
763 	if (!minor)
764 		return;
765 
766 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index);
767 	if (!name)
768 		return;
769 
770 	sysfs_remove_link(minor->kdev->kobj.parent, name);
771 
772 	kfree(name);
773 }
774 
775 /**
776  * drm_dev_register - Register DRM device
777  * @dev: Device to register
778  * @flags: Flags passed to the driver's .load() function
779  *
780  * Register the DRM device @dev with the system, advertise device to user-space
781  * and start normal device operation. @dev must be allocated via drm_dev_alloc()
782  * previously.
783  *
784  * Never call this twice on any device!
785  *
786  * NOTE: To ensure backward compatibility with existing drivers method this
787  * function calls the &drm_driver.load method after registering the device
788  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
789  * therefore deprecated, drivers must perform all initialization before calling
790  * drm_dev_register().
791  *
792  * RETURNS:
793  * 0 on success, negative error code on failure.
794  */
795 int drm_dev_register(struct drm_device *dev, unsigned long flags)
796 {
797 	struct drm_driver *driver = dev->driver;
798 	int ret;
799 
800 	mutex_lock(&drm_global_mutex);
801 
802 	ret = drm_minor_register(dev, DRM_MINOR_CONTROL);
803 	if (ret)
804 		goto err_minors;
805 
806 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
807 	if (ret)
808 		goto err_minors;
809 
810 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
811 	if (ret)
812 		goto err_minors;
813 
814 	ret = create_compat_control_link(dev);
815 	if (ret)
816 		goto err_minors;
817 
818 	dev->registered = true;
819 
820 	if (dev->driver->load) {
821 		ret = dev->driver->load(dev, flags);
822 		if (ret)
823 			goto err_minors;
824 	}
825 
826 	if (drm_core_check_feature(dev, DRIVER_MODESET))
827 		drm_modeset_register_all(dev);
828 
829 	ret = 0;
830 
831 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
832 		 driver->name, driver->major, driver->minor,
833 		 driver->patchlevel, driver->date,
834 		 dev->dev ? dev_name(dev->dev) : "virtual device",
835 		 dev->primary->index);
836 
837 	goto out_unlock;
838 
839 err_minors:
840 	remove_compat_control_link(dev);
841 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
842 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
843 	drm_minor_unregister(dev, DRM_MINOR_CONTROL);
844 out_unlock:
845 	mutex_unlock(&drm_global_mutex);
846 	return ret;
847 }
848 EXPORT_SYMBOL(drm_dev_register);
849 
850 /**
851  * drm_dev_unregister - Unregister DRM device
852  * @dev: Device to unregister
853  *
854  * Unregister the DRM device from the system. This does the reverse of
855  * drm_dev_register() but does not deallocate the device. The caller must call
856  * drm_dev_put() to drop their final reference.
857  *
858  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
859  * which can be called while there are still open users of @dev.
860  *
861  * This should be called first in the device teardown code to make sure
862  * userspace can't access the device instance any more.
863  */
864 void drm_dev_unregister(struct drm_device *dev)
865 {
866 	struct drm_map_list *r_list, *list_temp;
867 
868 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
869 		drm_lastclose(dev);
870 
871 	dev->registered = false;
872 
873 	if (drm_core_check_feature(dev, DRIVER_MODESET))
874 		drm_modeset_unregister_all(dev);
875 
876 	if (dev->driver->unload)
877 		dev->driver->unload(dev);
878 
879 	if (dev->agp)
880 		drm_pci_agp_destroy(dev);
881 
882 	list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
883 		drm_legacy_rmmap(dev, r_list->map);
884 
885 	remove_compat_control_link(dev);
886 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
887 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
888 	drm_minor_unregister(dev, DRM_MINOR_CONTROL);
889 }
890 EXPORT_SYMBOL(drm_dev_unregister);
891 
892 /**
893  * drm_dev_set_unique - Set the unique name of a DRM device
894  * @dev: device of which to set the unique name
895  * @name: unique name
896  *
897  * Sets the unique name of a DRM device using the specified string. Drivers
898  * can use this at driver probe time if the unique name of the devices they
899  * drive is static.
900  *
901  * Return: 0 on success or a negative error code on failure.
902  */
903 int drm_dev_set_unique(struct drm_device *dev, const char *name)
904 {
905 	kfree(dev->unique);
906 	dev->unique = kstrdup(name, GFP_KERNEL);
907 
908 	return dev->unique ? 0 : -ENOMEM;
909 }
910 EXPORT_SYMBOL(drm_dev_set_unique);
911 
912 /*
913  * DRM Core
914  * The DRM core module initializes all global DRM objects and makes them
915  * available to drivers. Once setup, drivers can probe their respective
916  * devices.
917  * Currently, core management includes:
918  *  - The "DRM-Global" key/value database
919  *  - Global ID management for connectors
920  *  - DRM major number allocation
921  *  - DRM minor management
922  *  - DRM sysfs class
923  *  - DRM debugfs root
924  *
925  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
926  * interface registered on a DRM device, you can request minor numbers from DRM
927  * core. DRM core takes care of major-number management and char-dev
928  * registration. A stub ->open() callback forwards any open() requests to the
929  * registered minor.
930  */
931 
932 static int drm_stub_open(struct inode *inode, struct file *filp)
933 {
934 	const struct file_operations *new_fops;
935 	struct drm_minor *minor;
936 	int err;
937 
938 	DRM_DEBUG("\n");
939 
940 	mutex_lock(&drm_global_mutex);
941 	minor = drm_minor_acquire(iminor(inode));
942 	if (IS_ERR(minor)) {
943 		err = PTR_ERR(minor);
944 		goto out_unlock;
945 	}
946 
947 	new_fops = fops_get(minor->dev->driver->fops);
948 	if (!new_fops) {
949 		err = -ENODEV;
950 		goto out_release;
951 	}
952 
953 	replace_fops(filp, new_fops);
954 	if (filp->f_op->open)
955 		err = filp->f_op->open(inode, filp);
956 	else
957 		err = 0;
958 
959 out_release:
960 	drm_minor_release(minor);
961 out_unlock:
962 	mutex_unlock(&drm_global_mutex);
963 	return err;
964 }
965 
966 static const struct file_operations drm_stub_fops = {
967 	.owner = THIS_MODULE,
968 	.open = drm_stub_open,
969 	.llseek = noop_llseek,
970 };
971 
972 static void drm_core_exit(void)
973 {
974 	unregister_chrdev(DRM_MAJOR, "drm");
975 	debugfs_remove(drm_debugfs_root);
976 	drm_sysfs_destroy();
977 	idr_destroy(&drm_minors_idr);
978 	drm_connector_ida_destroy();
979 	drm_global_release();
980 }
981 
982 static int __init drm_core_init(void)
983 {
984 	int ret;
985 
986 	drm_global_init();
987 	drm_connector_ida_init();
988 	idr_init(&drm_minors_idr);
989 
990 	ret = drm_sysfs_init();
991 	if (ret < 0) {
992 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
993 		goto error;
994 	}
995 
996 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
997 	if (!drm_debugfs_root) {
998 		ret = -ENOMEM;
999 		DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
1000 		goto error;
1001 	}
1002 
1003 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1004 	if (ret < 0)
1005 		goto error;
1006 
1007 	drm_core_init_complete = true;
1008 
1009 	DRM_DEBUG("Initialized\n");
1010 	return 0;
1011 
1012 error:
1013 	drm_core_exit();
1014 	return ret;
1015 }
1016 
1017 module_init(drm_core_init);
1018 module_exit(drm_core_exit);
1019