1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_drv.h> 37 #include <drm/drmP.h> 38 39 #include "drm_crtc_internal.h" 40 #include "drm_legacy.h" 41 #include "drm_internal.h" 42 #include "drm_crtc_internal.h" 43 44 /* 45 * drm_debug: Enable debug output. 46 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details. 47 */ 48 unsigned int drm_debug = 0; 49 EXPORT_SYMBOL(drm_debug); 50 51 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 52 MODULE_DESCRIPTION("DRM shared core routines"); 53 MODULE_LICENSE("GPL and additional rights"); 54 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 55 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 56 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 57 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 58 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 59 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 60 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n" 61 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)"); 62 module_param_named(debug, drm_debug, int, 0600); 63 64 static DEFINE_SPINLOCK(drm_minor_lock); 65 static struct idr drm_minors_idr; 66 67 /* 68 * If the drm core fails to init for whatever reason, 69 * we should prevent any drivers from registering with it. 70 * It's best to check this at drm_dev_init(), as some drivers 71 * prefer to embed struct drm_device into their own device 72 * structure and call drm_dev_init() themselves. 73 */ 74 static bool drm_core_init_complete = false; 75 76 static struct dentry *drm_debugfs_root; 77 78 #define DRM_PRINTK_FMT "[" DRM_NAME ":%s]%s %pV" 79 80 void drm_dev_printk(const struct device *dev, const char *level, 81 unsigned int category, const char *function_name, 82 const char *prefix, const char *format, ...) 83 { 84 struct va_format vaf; 85 va_list args; 86 87 if (category != DRM_UT_NONE && !(drm_debug & category)) 88 return; 89 90 va_start(args, format); 91 vaf.fmt = format; 92 vaf.va = &args; 93 94 if (dev) 95 dev_printk(level, dev, DRM_PRINTK_FMT, function_name, prefix, 96 &vaf); 97 else 98 printk("%s" DRM_PRINTK_FMT, level, function_name, prefix, &vaf); 99 100 va_end(args); 101 } 102 EXPORT_SYMBOL(drm_dev_printk); 103 104 void drm_printk(const char *level, unsigned int category, 105 const char *format, ...) 106 { 107 struct va_format vaf; 108 va_list args; 109 110 if (category != DRM_UT_NONE && !(drm_debug & category)) 111 return; 112 113 va_start(args, format); 114 vaf.fmt = format; 115 vaf.va = &args; 116 117 printk("%s" "[" DRM_NAME ":%ps]%s %pV", 118 level, __builtin_return_address(0), 119 strcmp(level, KERN_ERR) == 0 ? " *ERROR*" : "", &vaf); 120 121 va_end(args); 122 } 123 EXPORT_SYMBOL(drm_printk); 124 125 /* 126 * DRM Minors 127 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 128 * of them is represented by a drm_minor object. Depending on the capabilities 129 * of the device-driver, different interfaces are registered. 130 * 131 * Minors can be accessed via dev->$minor_name. This pointer is either 132 * NULL or a valid drm_minor pointer and stays valid as long as the device is 133 * valid. This means, DRM minors have the same life-time as the underlying 134 * device. However, this doesn't mean that the minor is active. Minors are 135 * registered and unregistered dynamically according to device-state. 136 */ 137 138 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 139 unsigned int type) 140 { 141 switch (type) { 142 case DRM_MINOR_PRIMARY: 143 return &dev->primary; 144 case DRM_MINOR_RENDER: 145 return &dev->render; 146 case DRM_MINOR_CONTROL: 147 return &dev->control; 148 default: 149 return NULL; 150 } 151 } 152 153 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 154 { 155 struct drm_minor *minor; 156 unsigned long flags; 157 int r; 158 159 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 160 if (!minor) 161 return -ENOMEM; 162 163 minor->type = type; 164 minor->dev = dev; 165 166 idr_preload(GFP_KERNEL); 167 spin_lock_irqsave(&drm_minor_lock, flags); 168 r = idr_alloc(&drm_minors_idr, 169 NULL, 170 64 * type, 171 64 * (type + 1), 172 GFP_NOWAIT); 173 spin_unlock_irqrestore(&drm_minor_lock, flags); 174 idr_preload_end(); 175 176 if (r < 0) 177 goto err_free; 178 179 minor->index = r; 180 181 minor->kdev = drm_sysfs_minor_alloc(minor); 182 if (IS_ERR(minor->kdev)) { 183 r = PTR_ERR(minor->kdev); 184 goto err_index; 185 } 186 187 *drm_minor_get_slot(dev, type) = minor; 188 return 0; 189 190 err_index: 191 spin_lock_irqsave(&drm_minor_lock, flags); 192 idr_remove(&drm_minors_idr, minor->index); 193 spin_unlock_irqrestore(&drm_minor_lock, flags); 194 err_free: 195 kfree(minor); 196 return r; 197 } 198 199 static void drm_minor_free(struct drm_device *dev, unsigned int type) 200 { 201 struct drm_minor **slot, *minor; 202 unsigned long flags; 203 204 slot = drm_minor_get_slot(dev, type); 205 minor = *slot; 206 if (!minor) 207 return; 208 209 put_device(minor->kdev); 210 211 spin_lock_irqsave(&drm_minor_lock, flags); 212 idr_remove(&drm_minors_idr, minor->index); 213 spin_unlock_irqrestore(&drm_minor_lock, flags); 214 215 kfree(minor); 216 *slot = NULL; 217 } 218 219 static int drm_minor_register(struct drm_device *dev, unsigned int type) 220 { 221 struct drm_minor *minor; 222 unsigned long flags; 223 int ret; 224 225 DRM_DEBUG("\n"); 226 227 minor = *drm_minor_get_slot(dev, type); 228 if (!minor) 229 return 0; 230 231 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 232 if (ret) { 233 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 234 goto err_debugfs; 235 } 236 237 ret = device_add(minor->kdev); 238 if (ret) 239 goto err_debugfs; 240 241 /* replace NULL with @minor so lookups will succeed from now on */ 242 spin_lock_irqsave(&drm_minor_lock, flags); 243 idr_replace(&drm_minors_idr, minor, minor->index); 244 spin_unlock_irqrestore(&drm_minor_lock, flags); 245 246 DRM_DEBUG("new minor registered %d\n", minor->index); 247 return 0; 248 249 err_debugfs: 250 drm_debugfs_cleanup(minor); 251 return ret; 252 } 253 254 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 255 { 256 struct drm_minor *minor; 257 unsigned long flags; 258 259 minor = *drm_minor_get_slot(dev, type); 260 if (!minor || !device_is_registered(minor->kdev)) 261 return; 262 263 /* replace @minor with NULL so lookups will fail from now on */ 264 spin_lock_irqsave(&drm_minor_lock, flags); 265 idr_replace(&drm_minors_idr, NULL, minor->index); 266 spin_unlock_irqrestore(&drm_minor_lock, flags); 267 268 device_del(minor->kdev); 269 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 270 drm_debugfs_cleanup(minor); 271 } 272 273 /* 274 * Looks up the given minor-ID and returns the respective DRM-minor object. The 275 * refence-count of the underlying device is increased so you must release this 276 * object with drm_minor_release(). 277 * 278 * As long as you hold this minor, it is guaranteed that the object and the 279 * minor->dev pointer will stay valid! However, the device may get unplugged and 280 * unregistered while you hold the minor. 281 */ 282 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 283 { 284 struct drm_minor *minor; 285 unsigned long flags; 286 287 spin_lock_irqsave(&drm_minor_lock, flags); 288 minor = idr_find(&drm_minors_idr, minor_id); 289 if (minor) 290 drm_dev_get(minor->dev); 291 spin_unlock_irqrestore(&drm_minor_lock, flags); 292 293 if (!minor) { 294 return ERR_PTR(-ENODEV); 295 } else if (drm_dev_is_unplugged(minor->dev)) { 296 drm_dev_put(minor->dev); 297 return ERR_PTR(-ENODEV); 298 } 299 300 return minor; 301 } 302 303 void drm_minor_release(struct drm_minor *minor) 304 { 305 drm_dev_put(minor->dev); 306 } 307 308 /** 309 * DOC: driver instance overview 310 * 311 * A device instance for a drm driver is represented by &struct drm_device. This 312 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe() 313 * callbacks implemented by the driver. The driver then needs to initialize all 314 * the various subsystems for the drm device like memory management, vblank 315 * handling, modesetting support and intial output configuration plus obviously 316 * initialize all the corresponding hardware bits. An important part of this is 317 * also calling drm_dev_set_unique() to set the userspace-visible unique name of 318 * this device instance. Finally when everything is up and running and ready for 319 * userspace the device instance can be published using drm_dev_register(). 320 * 321 * There is also deprecated support for initalizing device instances using 322 * bus-specific helpers and the &drm_driver.load callback. But due to 323 * backwards-compatibility needs the device instance have to be published too 324 * early, which requires unpretty global locking to make safe and is therefore 325 * only support for existing drivers not yet converted to the new scheme. 326 * 327 * When cleaning up a device instance everything needs to be done in reverse: 328 * First unpublish the device instance with drm_dev_unregister(). Then clean up 329 * any other resources allocated at device initialization and drop the driver's 330 * reference to &drm_device using drm_dev_put(). 331 * 332 * Note that the lifetime rules for &drm_device instance has still a lot of 333 * historical baggage. Hence use the reference counting provided by 334 * drm_dev_get() and drm_dev_put() only carefully. 335 * 336 * It is recommended that drivers embed &struct drm_device into their own device 337 * structure, which is supported through drm_dev_init(). 338 */ 339 340 /** 341 * drm_put_dev - Unregister and release a DRM device 342 * @dev: DRM device 343 * 344 * Called at module unload time or when a PCI device is unplugged. 345 * 346 * Cleans up all DRM device, calling drm_lastclose(). 347 * 348 * Note: Use of this function is deprecated. It will eventually go away 349 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 350 * instead to make sure that the device isn't userspace accessible any more 351 * while teardown is in progress, ensuring that userspace can't access an 352 * inconsistent state. 353 */ 354 void drm_put_dev(struct drm_device *dev) 355 { 356 DRM_DEBUG("\n"); 357 358 if (!dev) { 359 DRM_ERROR("cleanup called no dev\n"); 360 return; 361 } 362 363 drm_dev_unregister(dev); 364 drm_dev_put(dev); 365 } 366 EXPORT_SYMBOL(drm_put_dev); 367 368 static void drm_device_set_unplugged(struct drm_device *dev) 369 { 370 smp_wmb(); 371 atomic_set(&dev->unplugged, 1); 372 } 373 374 /** 375 * drm_dev_unplug - unplug a DRM device 376 * @dev: DRM device 377 * 378 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 379 * userspace operations. Entry-points can use drm_dev_is_unplugged(). This 380 * essentially unregisters the device like drm_dev_unregister(), but can be 381 * called while there are still open users of @dev. 382 */ 383 void drm_dev_unplug(struct drm_device *dev) 384 { 385 drm_dev_unregister(dev); 386 387 mutex_lock(&drm_global_mutex); 388 drm_device_set_unplugged(dev); 389 if (dev->open_count == 0) 390 drm_dev_put(dev); 391 mutex_unlock(&drm_global_mutex); 392 } 393 EXPORT_SYMBOL(drm_dev_unplug); 394 395 /* 396 * DRM internal mount 397 * We want to be able to allocate our own "struct address_space" to control 398 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 399 * stand-alone address_space objects, so we need an underlying inode. As there 400 * is no way to allocate an independent inode easily, we need a fake internal 401 * VFS mount-point. 402 * 403 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 404 * frees it again. You are allowed to use iget() and iput() to get references to 405 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 406 * drm_fs_inode_free() call (which does not have to be the last iput()). 407 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 408 * between multiple inode-users. You could, technically, call 409 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 410 * iput(), but this way you'd end up with a new vfsmount for each inode. 411 */ 412 413 static int drm_fs_cnt; 414 static struct vfsmount *drm_fs_mnt; 415 416 static const struct dentry_operations drm_fs_dops = { 417 .d_dname = simple_dname, 418 }; 419 420 static const struct super_operations drm_fs_sops = { 421 .statfs = simple_statfs, 422 }; 423 424 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 425 const char *dev_name, void *data) 426 { 427 return mount_pseudo(fs_type, 428 "drm:", 429 &drm_fs_sops, 430 &drm_fs_dops, 431 0x010203ff); 432 } 433 434 static struct file_system_type drm_fs_type = { 435 .name = "drm", 436 .owner = THIS_MODULE, 437 .mount = drm_fs_mount, 438 .kill_sb = kill_anon_super, 439 }; 440 441 static struct inode *drm_fs_inode_new(void) 442 { 443 struct inode *inode; 444 int r; 445 446 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 447 if (r < 0) { 448 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 449 return ERR_PTR(r); 450 } 451 452 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 453 if (IS_ERR(inode)) 454 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 455 456 return inode; 457 } 458 459 static void drm_fs_inode_free(struct inode *inode) 460 { 461 if (inode) { 462 iput(inode); 463 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 464 } 465 } 466 467 /** 468 * drm_dev_init - Initialise new DRM device 469 * @dev: DRM device 470 * @driver: DRM driver 471 * @parent: Parent device object 472 * 473 * Initialize a new DRM device. No device registration is done. 474 * Call drm_dev_register() to advertice the device to user space and register it 475 * with other core subsystems. This should be done last in the device 476 * initialization sequence to make sure userspace can't access an inconsistent 477 * state. 478 * 479 * The initial ref-count of the object is 1. Use drm_dev_get() and 480 * drm_dev_put() to take and drop further ref-counts. 481 * 482 * Note that for purely virtual devices @parent can be NULL. 483 * 484 * Drivers that do not want to allocate their own device struct 485 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 486 * that do embed &struct drm_device it must be placed first in the overall 487 * structure, and the overall structure must be allocated using kmalloc(): The 488 * drm core's release function unconditionally calls kfree() on the @dev pointer 489 * when the final reference is released. To override this behaviour, and so 490 * allow embedding of the drm_device inside the driver's device struct at an 491 * arbitrary offset, you must supply a &drm_driver.release callback and control 492 * the finalization explicitly. 493 * 494 * RETURNS: 495 * 0 on success, or error code on failure. 496 */ 497 int drm_dev_init(struct drm_device *dev, 498 struct drm_driver *driver, 499 struct device *parent) 500 { 501 int ret; 502 503 if (!drm_core_init_complete) { 504 DRM_ERROR("DRM core is not initialized\n"); 505 return -ENODEV; 506 } 507 508 kref_init(&dev->ref); 509 dev->dev = parent; 510 dev->driver = driver; 511 512 INIT_LIST_HEAD(&dev->filelist); 513 INIT_LIST_HEAD(&dev->ctxlist); 514 INIT_LIST_HEAD(&dev->vmalist); 515 INIT_LIST_HEAD(&dev->maplist); 516 INIT_LIST_HEAD(&dev->vblank_event_list); 517 518 spin_lock_init(&dev->buf_lock); 519 spin_lock_init(&dev->event_lock); 520 mutex_init(&dev->struct_mutex); 521 mutex_init(&dev->filelist_mutex); 522 mutex_init(&dev->ctxlist_mutex); 523 mutex_init(&dev->master_mutex); 524 525 dev->anon_inode = drm_fs_inode_new(); 526 if (IS_ERR(dev->anon_inode)) { 527 ret = PTR_ERR(dev->anon_inode); 528 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 529 goto err_free; 530 } 531 532 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 533 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 534 if (ret) 535 goto err_minors; 536 } 537 538 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 539 if (ret) 540 goto err_minors; 541 542 ret = drm_ht_create(&dev->map_hash, 12); 543 if (ret) 544 goto err_minors; 545 546 drm_legacy_ctxbitmap_init(dev); 547 548 if (drm_core_check_feature(dev, DRIVER_GEM)) { 549 ret = drm_gem_init(dev); 550 if (ret) { 551 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 552 goto err_ctxbitmap; 553 } 554 } 555 556 /* Use the parent device name as DRM device unique identifier, but fall 557 * back to the driver name for virtual devices like vgem. */ 558 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name); 559 if (ret) 560 goto err_setunique; 561 562 return 0; 563 564 err_setunique: 565 if (drm_core_check_feature(dev, DRIVER_GEM)) 566 drm_gem_destroy(dev); 567 err_ctxbitmap: 568 drm_legacy_ctxbitmap_cleanup(dev); 569 drm_ht_remove(&dev->map_hash); 570 err_minors: 571 drm_minor_free(dev, DRM_MINOR_PRIMARY); 572 drm_minor_free(dev, DRM_MINOR_RENDER); 573 drm_minor_free(dev, DRM_MINOR_CONTROL); 574 drm_fs_inode_free(dev->anon_inode); 575 err_free: 576 mutex_destroy(&dev->master_mutex); 577 mutex_destroy(&dev->ctxlist_mutex); 578 mutex_destroy(&dev->filelist_mutex); 579 mutex_destroy(&dev->struct_mutex); 580 return ret; 581 } 582 EXPORT_SYMBOL(drm_dev_init); 583 584 /** 585 * drm_dev_fini - Finalize a dead DRM device 586 * @dev: DRM device 587 * 588 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 589 * frees up all data allocated by it. All driver private data should be 590 * finalized first. Note that this function does not free the @dev, that is 591 * left to the caller. 592 * 593 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 594 * from a &drm_driver.release callback. 595 */ 596 void drm_dev_fini(struct drm_device *dev) 597 { 598 drm_vblank_cleanup(dev); 599 600 if (drm_core_check_feature(dev, DRIVER_GEM)) 601 drm_gem_destroy(dev); 602 603 drm_legacy_ctxbitmap_cleanup(dev); 604 drm_ht_remove(&dev->map_hash); 605 drm_fs_inode_free(dev->anon_inode); 606 607 drm_minor_free(dev, DRM_MINOR_PRIMARY); 608 drm_minor_free(dev, DRM_MINOR_RENDER); 609 drm_minor_free(dev, DRM_MINOR_CONTROL); 610 611 mutex_destroy(&dev->master_mutex); 612 mutex_destroy(&dev->ctxlist_mutex); 613 mutex_destroy(&dev->filelist_mutex); 614 mutex_destroy(&dev->struct_mutex); 615 kfree(dev->unique); 616 } 617 EXPORT_SYMBOL(drm_dev_fini); 618 619 /** 620 * drm_dev_alloc - Allocate new DRM device 621 * @driver: DRM driver to allocate device for 622 * @parent: Parent device object 623 * 624 * Allocate and initialize a new DRM device. No device registration is done. 625 * Call drm_dev_register() to advertice the device to user space and register it 626 * with other core subsystems. This should be done last in the device 627 * initialization sequence to make sure userspace can't access an inconsistent 628 * state. 629 * 630 * The initial ref-count of the object is 1. Use drm_dev_get() and 631 * drm_dev_put() to take and drop further ref-counts. 632 * 633 * Note that for purely virtual devices @parent can be NULL. 634 * 635 * Drivers that wish to subclass or embed &struct drm_device into their 636 * own struct should look at using drm_dev_init() instead. 637 * 638 * RETURNS: 639 * Pointer to new DRM device, or ERR_PTR on failure. 640 */ 641 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 642 struct device *parent) 643 { 644 struct drm_device *dev; 645 int ret; 646 647 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 648 if (!dev) 649 return ERR_PTR(-ENOMEM); 650 651 ret = drm_dev_init(dev, driver, parent); 652 if (ret) { 653 kfree(dev); 654 return ERR_PTR(ret); 655 } 656 657 return dev; 658 } 659 EXPORT_SYMBOL(drm_dev_alloc); 660 661 static void drm_dev_release(struct kref *ref) 662 { 663 struct drm_device *dev = container_of(ref, struct drm_device, ref); 664 665 if (dev->driver->release) { 666 dev->driver->release(dev); 667 } else { 668 drm_dev_fini(dev); 669 kfree(dev); 670 } 671 } 672 673 /** 674 * drm_dev_get - Take reference of a DRM device 675 * @dev: device to take reference of or NULL 676 * 677 * This increases the ref-count of @dev by one. You *must* already own a 678 * reference when calling this. Use drm_dev_put() to drop this reference 679 * again. 680 * 681 * This function never fails. However, this function does not provide *any* 682 * guarantee whether the device is alive or running. It only provides a 683 * reference to the object and the memory associated with it. 684 */ 685 void drm_dev_get(struct drm_device *dev) 686 { 687 if (dev) 688 kref_get(&dev->ref); 689 } 690 EXPORT_SYMBOL(drm_dev_get); 691 692 /** 693 * drm_dev_put - Drop reference of a DRM device 694 * @dev: device to drop reference of or NULL 695 * 696 * This decreases the ref-count of @dev by one. The device is destroyed if the 697 * ref-count drops to zero. 698 */ 699 void drm_dev_put(struct drm_device *dev) 700 { 701 if (dev) 702 kref_put(&dev->ref, drm_dev_release); 703 } 704 EXPORT_SYMBOL(drm_dev_put); 705 706 /** 707 * drm_dev_unref - Drop reference of a DRM device 708 * @dev: device to drop reference of or NULL 709 * 710 * This is a compatibility alias for drm_dev_put() and should not be used by new 711 * code. 712 */ 713 void drm_dev_unref(struct drm_device *dev) 714 { 715 drm_dev_put(dev); 716 } 717 EXPORT_SYMBOL(drm_dev_unref); 718 719 static int create_compat_control_link(struct drm_device *dev) 720 { 721 struct drm_minor *minor; 722 char *name; 723 int ret; 724 725 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 726 return 0; 727 728 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 729 if (!minor) 730 return 0; 731 732 /* 733 * Some existing userspace out there uses the existing of the controlD* 734 * sysfs files to figure out whether it's a modeset driver. It only does 735 * readdir, hence a symlink is sufficient (and the least confusing 736 * option). Otherwise controlD* is entirely unused. 737 * 738 * Old controlD chardev have been allocated in the range 739 * 64-127. 740 */ 741 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 742 if (!name) 743 return -ENOMEM; 744 745 ret = sysfs_create_link(minor->kdev->kobj.parent, 746 &minor->kdev->kobj, 747 name); 748 749 kfree(name); 750 751 return ret; 752 } 753 754 static void remove_compat_control_link(struct drm_device *dev) 755 { 756 struct drm_minor *minor; 757 char *name; 758 759 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 760 return; 761 762 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 763 if (!minor) 764 return; 765 766 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index); 767 if (!name) 768 return; 769 770 sysfs_remove_link(minor->kdev->kobj.parent, name); 771 772 kfree(name); 773 } 774 775 /** 776 * drm_dev_register - Register DRM device 777 * @dev: Device to register 778 * @flags: Flags passed to the driver's .load() function 779 * 780 * Register the DRM device @dev with the system, advertise device to user-space 781 * and start normal device operation. @dev must be allocated via drm_dev_alloc() 782 * previously. 783 * 784 * Never call this twice on any device! 785 * 786 * NOTE: To ensure backward compatibility with existing drivers method this 787 * function calls the &drm_driver.load method after registering the device 788 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 789 * therefore deprecated, drivers must perform all initialization before calling 790 * drm_dev_register(). 791 * 792 * RETURNS: 793 * 0 on success, negative error code on failure. 794 */ 795 int drm_dev_register(struct drm_device *dev, unsigned long flags) 796 { 797 struct drm_driver *driver = dev->driver; 798 int ret; 799 800 mutex_lock(&drm_global_mutex); 801 802 ret = drm_minor_register(dev, DRM_MINOR_CONTROL); 803 if (ret) 804 goto err_minors; 805 806 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 807 if (ret) 808 goto err_minors; 809 810 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 811 if (ret) 812 goto err_minors; 813 814 ret = create_compat_control_link(dev); 815 if (ret) 816 goto err_minors; 817 818 dev->registered = true; 819 820 if (dev->driver->load) { 821 ret = dev->driver->load(dev, flags); 822 if (ret) 823 goto err_minors; 824 } 825 826 if (drm_core_check_feature(dev, DRIVER_MODESET)) 827 drm_modeset_register_all(dev); 828 829 ret = 0; 830 831 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 832 driver->name, driver->major, driver->minor, 833 driver->patchlevel, driver->date, 834 dev->dev ? dev_name(dev->dev) : "virtual device", 835 dev->primary->index); 836 837 goto out_unlock; 838 839 err_minors: 840 remove_compat_control_link(dev); 841 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 842 drm_minor_unregister(dev, DRM_MINOR_RENDER); 843 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 844 out_unlock: 845 mutex_unlock(&drm_global_mutex); 846 return ret; 847 } 848 EXPORT_SYMBOL(drm_dev_register); 849 850 /** 851 * drm_dev_unregister - Unregister DRM device 852 * @dev: Device to unregister 853 * 854 * Unregister the DRM device from the system. This does the reverse of 855 * drm_dev_register() but does not deallocate the device. The caller must call 856 * drm_dev_put() to drop their final reference. 857 * 858 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 859 * which can be called while there are still open users of @dev. 860 * 861 * This should be called first in the device teardown code to make sure 862 * userspace can't access the device instance any more. 863 */ 864 void drm_dev_unregister(struct drm_device *dev) 865 { 866 struct drm_map_list *r_list, *list_temp; 867 868 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 869 drm_lastclose(dev); 870 871 dev->registered = false; 872 873 if (drm_core_check_feature(dev, DRIVER_MODESET)) 874 drm_modeset_unregister_all(dev); 875 876 if (dev->driver->unload) 877 dev->driver->unload(dev); 878 879 if (dev->agp) 880 drm_pci_agp_destroy(dev); 881 882 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) 883 drm_legacy_rmmap(dev, r_list->map); 884 885 remove_compat_control_link(dev); 886 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 887 drm_minor_unregister(dev, DRM_MINOR_RENDER); 888 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 889 } 890 EXPORT_SYMBOL(drm_dev_unregister); 891 892 /** 893 * drm_dev_set_unique - Set the unique name of a DRM device 894 * @dev: device of which to set the unique name 895 * @name: unique name 896 * 897 * Sets the unique name of a DRM device using the specified string. Drivers 898 * can use this at driver probe time if the unique name of the devices they 899 * drive is static. 900 * 901 * Return: 0 on success or a negative error code on failure. 902 */ 903 int drm_dev_set_unique(struct drm_device *dev, const char *name) 904 { 905 kfree(dev->unique); 906 dev->unique = kstrdup(name, GFP_KERNEL); 907 908 return dev->unique ? 0 : -ENOMEM; 909 } 910 EXPORT_SYMBOL(drm_dev_set_unique); 911 912 /* 913 * DRM Core 914 * The DRM core module initializes all global DRM objects and makes them 915 * available to drivers. Once setup, drivers can probe their respective 916 * devices. 917 * Currently, core management includes: 918 * - The "DRM-Global" key/value database 919 * - Global ID management for connectors 920 * - DRM major number allocation 921 * - DRM minor management 922 * - DRM sysfs class 923 * - DRM debugfs root 924 * 925 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 926 * interface registered on a DRM device, you can request minor numbers from DRM 927 * core. DRM core takes care of major-number management and char-dev 928 * registration. A stub ->open() callback forwards any open() requests to the 929 * registered minor. 930 */ 931 932 static int drm_stub_open(struct inode *inode, struct file *filp) 933 { 934 const struct file_operations *new_fops; 935 struct drm_minor *minor; 936 int err; 937 938 DRM_DEBUG("\n"); 939 940 mutex_lock(&drm_global_mutex); 941 minor = drm_minor_acquire(iminor(inode)); 942 if (IS_ERR(minor)) { 943 err = PTR_ERR(minor); 944 goto out_unlock; 945 } 946 947 new_fops = fops_get(minor->dev->driver->fops); 948 if (!new_fops) { 949 err = -ENODEV; 950 goto out_release; 951 } 952 953 replace_fops(filp, new_fops); 954 if (filp->f_op->open) 955 err = filp->f_op->open(inode, filp); 956 else 957 err = 0; 958 959 out_release: 960 drm_minor_release(minor); 961 out_unlock: 962 mutex_unlock(&drm_global_mutex); 963 return err; 964 } 965 966 static const struct file_operations drm_stub_fops = { 967 .owner = THIS_MODULE, 968 .open = drm_stub_open, 969 .llseek = noop_llseek, 970 }; 971 972 static void drm_core_exit(void) 973 { 974 unregister_chrdev(DRM_MAJOR, "drm"); 975 debugfs_remove(drm_debugfs_root); 976 drm_sysfs_destroy(); 977 idr_destroy(&drm_minors_idr); 978 drm_connector_ida_destroy(); 979 drm_global_release(); 980 } 981 982 static int __init drm_core_init(void) 983 { 984 int ret; 985 986 drm_global_init(); 987 drm_connector_ida_init(); 988 idr_init(&drm_minors_idr); 989 990 ret = drm_sysfs_init(); 991 if (ret < 0) { 992 DRM_ERROR("Cannot create DRM class: %d\n", ret); 993 goto error; 994 } 995 996 drm_debugfs_root = debugfs_create_dir("dri", NULL); 997 if (!drm_debugfs_root) { 998 ret = -ENOMEM; 999 DRM_ERROR("Cannot create debugfs-root: %d\n", ret); 1000 goto error; 1001 } 1002 1003 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1004 if (ret < 0) 1005 goto error; 1006 1007 drm_core_init_complete = true; 1008 1009 DRM_DEBUG("Initialized\n"); 1010 return 0; 1011 1012 error: 1013 drm_core_exit(); 1014 return ret; 1015 } 1016 1017 module_init(drm_core_init); 1018 module_exit(drm_core_exit); 1019