xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision 5b628549)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/srcu.h>
36 
37 #include <drm/drm_client.h>
38 #include <drm/drm_drv.h>
39 #include <drm/drmP.h>
40 
41 #include "drm_crtc_internal.h"
42 #include "drm_legacy.h"
43 #include "drm_internal.h"
44 
45 /*
46  * drm_debug: Enable debug output.
47  * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
48  */
49 unsigned int drm_debug = 0;
50 EXPORT_SYMBOL(drm_debug);
51 
52 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
53 MODULE_DESCRIPTION("DRM shared core routines");
54 MODULE_LICENSE("GPL and additional rights");
55 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
56 "\t\tBit 0 (0x01)  will enable CORE messages (drm core code)\n"
57 "\t\tBit 1 (0x02)  will enable DRIVER messages (drm controller code)\n"
58 "\t\tBit 2 (0x04)  will enable KMS messages (modesetting code)\n"
59 "\t\tBit 3 (0x08)  will enable PRIME messages (prime code)\n"
60 "\t\tBit 4 (0x10)  will enable ATOMIC messages (atomic code)\n"
61 "\t\tBit 5 (0x20)  will enable VBL messages (vblank code)\n"
62 "\t\tBit 7 (0x80)  will enable LEASE messages (leasing code)\n"
63 "\t\tBit 8 (0x100) will enable DP messages (displayport code)");
64 module_param_named(debug, drm_debug, int, 0600);
65 
66 static DEFINE_SPINLOCK(drm_minor_lock);
67 static struct idr drm_minors_idr;
68 
69 /*
70  * If the drm core fails to init for whatever reason,
71  * we should prevent any drivers from registering with it.
72  * It's best to check this at drm_dev_init(), as some drivers
73  * prefer to embed struct drm_device into their own device
74  * structure and call drm_dev_init() themselves.
75  */
76 static bool drm_core_init_complete = false;
77 
78 static struct dentry *drm_debugfs_root;
79 
80 DEFINE_STATIC_SRCU(drm_unplug_srcu);
81 
82 /*
83  * DRM Minors
84  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
85  * of them is represented by a drm_minor object. Depending on the capabilities
86  * of the device-driver, different interfaces are registered.
87  *
88  * Minors can be accessed via dev->$minor_name. This pointer is either
89  * NULL or a valid drm_minor pointer and stays valid as long as the device is
90  * valid. This means, DRM minors have the same life-time as the underlying
91  * device. However, this doesn't mean that the minor is active. Minors are
92  * registered and unregistered dynamically according to device-state.
93  */
94 
95 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
96 					     unsigned int type)
97 {
98 	switch (type) {
99 	case DRM_MINOR_PRIMARY:
100 		return &dev->primary;
101 	case DRM_MINOR_RENDER:
102 		return &dev->render;
103 	default:
104 		BUG();
105 	}
106 }
107 
108 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
109 {
110 	struct drm_minor *minor;
111 	unsigned long flags;
112 	int r;
113 
114 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
115 	if (!minor)
116 		return -ENOMEM;
117 
118 	minor->type = type;
119 	minor->dev = dev;
120 
121 	idr_preload(GFP_KERNEL);
122 	spin_lock_irqsave(&drm_minor_lock, flags);
123 	r = idr_alloc(&drm_minors_idr,
124 		      NULL,
125 		      64 * type,
126 		      64 * (type + 1),
127 		      GFP_NOWAIT);
128 	spin_unlock_irqrestore(&drm_minor_lock, flags);
129 	idr_preload_end();
130 
131 	if (r < 0)
132 		goto err_free;
133 
134 	minor->index = r;
135 
136 	minor->kdev = drm_sysfs_minor_alloc(minor);
137 	if (IS_ERR(minor->kdev)) {
138 		r = PTR_ERR(minor->kdev);
139 		goto err_index;
140 	}
141 
142 	*drm_minor_get_slot(dev, type) = minor;
143 	return 0;
144 
145 err_index:
146 	spin_lock_irqsave(&drm_minor_lock, flags);
147 	idr_remove(&drm_minors_idr, minor->index);
148 	spin_unlock_irqrestore(&drm_minor_lock, flags);
149 err_free:
150 	kfree(minor);
151 	return r;
152 }
153 
154 static void drm_minor_free(struct drm_device *dev, unsigned int type)
155 {
156 	struct drm_minor **slot, *minor;
157 	unsigned long flags;
158 
159 	slot = drm_minor_get_slot(dev, type);
160 	minor = *slot;
161 	if (!minor)
162 		return;
163 
164 	put_device(minor->kdev);
165 
166 	spin_lock_irqsave(&drm_minor_lock, flags);
167 	idr_remove(&drm_minors_idr, minor->index);
168 	spin_unlock_irqrestore(&drm_minor_lock, flags);
169 
170 	kfree(minor);
171 	*slot = NULL;
172 }
173 
174 static int drm_minor_register(struct drm_device *dev, unsigned int type)
175 {
176 	struct drm_minor *minor;
177 	unsigned long flags;
178 	int ret;
179 
180 	DRM_DEBUG("\n");
181 
182 	minor = *drm_minor_get_slot(dev, type);
183 	if (!minor)
184 		return 0;
185 
186 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
187 	if (ret) {
188 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
189 		goto err_debugfs;
190 	}
191 
192 	ret = device_add(minor->kdev);
193 	if (ret)
194 		goto err_debugfs;
195 
196 	/* replace NULL with @minor so lookups will succeed from now on */
197 	spin_lock_irqsave(&drm_minor_lock, flags);
198 	idr_replace(&drm_minors_idr, minor, minor->index);
199 	spin_unlock_irqrestore(&drm_minor_lock, flags);
200 
201 	DRM_DEBUG("new minor registered %d\n", minor->index);
202 	return 0;
203 
204 err_debugfs:
205 	drm_debugfs_cleanup(minor);
206 	return ret;
207 }
208 
209 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
210 {
211 	struct drm_minor *minor;
212 	unsigned long flags;
213 
214 	minor = *drm_minor_get_slot(dev, type);
215 	if (!minor || !device_is_registered(minor->kdev))
216 		return;
217 
218 	/* replace @minor with NULL so lookups will fail from now on */
219 	spin_lock_irqsave(&drm_minor_lock, flags);
220 	idr_replace(&drm_minors_idr, NULL, minor->index);
221 	spin_unlock_irqrestore(&drm_minor_lock, flags);
222 
223 	device_del(minor->kdev);
224 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
225 	drm_debugfs_cleanup(minor);
226 }
227 
228 /*
229  * Looks up the given minor-ID and returns the respective DRM-minor object. The
230  * refence-count of the underlying device is increased so you must release this
231  * object with drm_minor_release().
232  *
233  * As long as you hold this minor, it is guaranteed that the object and the
234  * minor->dev pointer will stay valid! However, the device may get unplugged and
235  * unregistered while you hold the minor.
236  */
237 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
238 {
239 	struct drm_minor *minor;
240 	unsigned long flags;
241 
242 	spin_lock_irqsave(&drm_minor_lock, flags);
243 	minor = idr_find(&drm_minors_idr, minor_id);
244 	if (minor)
245 		drm_dev_get(minor->dev);
246 	spin_unlock_irqrestore(&drm_minor_lock, flags);
247 
248 	if (!minor) {
249 		return ERR_PTR(-ENODEV);
250 	} else if (drm_dev_is_unplugged(minor->dev)) {
251 		drm_dev_put(minor->dev);
252 		return ERR_PTR(-ENODEV);
253 	}
254 
255 	return minor;
256 }
257 
258 void drm_minor_release(struct drm_minor *minor)
259 {
260 	drm_dev_put(minor->dev);
261 }
262 
263 /**
264  * DOC: driver instance overview
265  *
266  * A device instance for a drm driver is represented by &struct drm_device. This
267  * is initialized with drm_dev_init(), usually from bus-specific ->probe()
268  * callbacks implemented by the driver. The driver then needs to initialize all
269  * the various subsystems for the drm device like memory management, vblank
270  * handling, modesetting support and intial output configuration plus obviously
271  * initialize all the corresponding hardware bits. Finally when everything is up
272  * and running and ready for userspace the device instance can be published
273  * using drm_dev_register().
274  *
275  * There is also deprecated support for initalizing device instances using
276  * bus-specific helpers and the &drm_driver.load callback. But due to
277  * backwards-compatibility needs the device instance have to be published too
278  * early, which requires unpretty global locking to make safe and is therefore
279  * only support for existing drivers not yet converted to the new scheme.
280  *
281  * When cleaning up a device instance everything needs to be done in reverse:
282  * First unpublish the device instance with drm_dev_unregister(). Then clean up
283  * any other resources allocated at device initialization and drop the driver's
284  * reference to &drm_device using drm_dev_put().
285  *
286  * Note that the lifetime rules for &drm_device instance has still a lot of
287  * historical baggage. Hence use the reference counting provided by
288  * drm_dev_get() and drm_dev_put() only carefully.
289  */
290 
291 /**
292  * drm_put_dev - Unregister and release a DRM device
293  * @dev: DRM device
294  *
295  * Called at module unload time or when a PCI device is unplugged.
296  *
297  * Cleans up all DRM device, calling drm_lastclose().
298  *
299  * Note: Use of this function is deprecated. It will eventually go away
300  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
301  * instead to make sure that the device isn't userspace accessible any more
302  * while teardown is in progress, ensuring that userspace can't access an
303  * inconsistent state.
304  */
305 void drm_put_dev(struct drm_device *dev)
306 {
307 	DRM_DEBUG("\n");
308 
309 	if (!dev) {
310 		DRM_ERROR("cleanup called no dev\n");
311 		return;
312 	}
313 
314 	drm_dev_unregister(dev);
315 	drm_dev_put(dev);
316 }
317 EXPORT_SYMBOL(drm_put_dev);
318 
319 /**
320  * drm_dev_enter - Enter device critical section
321  * @dev: DRM device
322  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
323  *
324  * This function marks and protects the beginning of a section that should not
325  * be entered after the device has been unplugged. The section end is marked
326  * with drm_dev_exit(). Calls to this function can be nested.
327  *
328  * Returns:
329  * True if it is OK to enter the section, false otherwise.
330  */
331 bool drm_dev_enter(struct drm_device *dev, int *idx)
332 {
333 	*idx = srcu_read_lock(&drm_unplug_srcu);
334 
335 	if (dev->unplugged) {
336 		srcu_read_unlock(&drm_unplug_srcu, *idx);
337 		return false;
338 	}
339 
340 	return true;
341 }
342 EXPORT_SYMBOL(drm_dev_enter);
343 
344 /**
345  * drm_dev_exit - Exit device critical section
346  * @idx: index returned from drm_dev_enter()
347  *
348  * This function marks the end of a section that should not be entered after
349  * the device has been unplugged.
350  */
351 void drm_dev_exit(int idx)
352 {
353 	srcu_read_unlock(&drm_unplug_srcu, idx);
354 }
355 EXPORT_SYMBOL(drm_dev_exit);
356 
357 /**
358  * drm_dev_unplug - unplug a DRM device
359  * @dev: DRM device
360  *
361  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
362  * userspace operations. Entry-points can use drm_dev_enter() and
363  * drm_dev_exit() to protect device resources in a race free manner. This
364  * essentially unregisters the device like drm_dev_unregister(), but can be
365  * called while there are still open users of @dev.
366  */
367 void drm_dev_unplug(struct drm_device *dev)
368 {
369 	/*
370 	 * After synchronizing any critical read section is guaranteed to see
371 	 * the new value of ->unplugged, and any critical section which might
372 	 * still have seen the old value of ->unplugged is guaranteed to have
373 	 * finished.
374 	 */
375 	dev->unplugged = true;
376 	synchronize_srcu(&drm_unplug_srcu);
377 
378 	drm_dev_unregister(dev);
379 
380 	mutex_lock(&drm_global_mutex);
381 	if (dev->open_count == 0)
382 		drm_dev_put(dev);
383 	mutex_unlock(&drm_global_mutex);
384 }
385 EXPORT_SYMBOL(drm_dev_unplug);
386 
387 /*
388  * DRM internal mount
389  * We want to be able to allocate our own "struct address_space" to control
390  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
391  * stand-alone address_space objects, so we need an underlying inode. As there
392  * is no way to allocate an independent inode easily, we need a fake internal
393  * VFS mount-point.
394  *
395  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
396  * frees it again. You are allowed to use iget() and iput() to get references to
397  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
398  * drm_fs_inode_free() call (which does not have to be the last iput()).
399  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
400  * between multiple inode-users. You could, technically, call
401  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
402  * iput(), but this way you'd end up with a new vfsmount for each inode.
403  */
404 
405 static int drm_fs_cnt;
406 static struct vfsmount *drm_fs_mnt;
407 
408 static const struct dentry_operations drm_fs_dops = {
409 	.d_dname	= simple_dname,
410 };
411 
412 static const struct super_operations drm_fs_sops = {
413 	.statfs		= simple_statfs,
414 };
415 
416 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
417 				   const char *dev_name, void *data)
418 {
419 	return mount_pseudo(fs_type,
420 			    "drm:",
421 			    &drm_fs_sops,
422 			    &drm_fs_dops,
423 			    0x010203ff);
424 }
425 
426 static struct file_system_type drm_fs_type = {
427 	.name		= "drm",
428 	.owner		= THIS_MODULE,
429 	.mount		= drm_fs_mount,
430 	.kill_sb	= kill_anon_super,
431 };
432 
433 static struct inode *drm_fs_inode_new(void)
434 {
435 	struct inode *inode;
436 	int r;
437 
438 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
439 	if (r < 0) {
440 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
441 		return ERR_PTR(r);
442 	}
443 
444 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
445 	if (IS_ERR(inode))
446 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
447 
448 	return inode;
449 }
450 
451 static void drm_fs_inode_free(struct inode *inode)
452 {
453 	if (inode) {
454 		iput(inode);
455 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
456 	}
457 }
458 
459 /**
460  * drm_dev_init - Initialise new DRM device
461  * @dev: DRM device
462  * @driver: DRM driver
463  * @parent: Parent device object
464  *
465  * Initialize a new DRM device. No device registration is done.
466  * Call drm_dev_register() to advertice the device to user space and register it
467  * with other core subsystems. This should be done last in the device
468  * initialization sequence to make sure userspace can't access an inconsistent
469  * state.
470  *
471  * The initial ref-count of the object is 1. Use drm_dev_get() and
472  * drm_dev_put() to take and drop further ref-counts.
473  *
474  * It is recommended that drivers embed &struct drm_device into their own device
475  * structure.
476  *
477  * Drivers that do not want to allocate their own device struct
478  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
479  * that do embed &struct drm_device it must be placed first in the overall
480  * structure, and the overall structure must be allocated using kmalloc(): The
481  * drm core's release function unconditionally calls kfree() on the @dev pointer
482  * when the final reference is released. To override this behaviour, and so
483  * allow embedding of the drm_device inside the driver's device struct at an
484  * arbitrary offset, you must supply a &drm_driver.release callback and control
485  * the finalization explicitly.
486  *
487  * RETURNS:
488  * 0 on success, or error code on failure.
489  */
490 int drm_dev_init(struct drm_device *dev,
491 		 struct drm_driver *driver,
492 		 struct device *parent)
493 {
494 	int ret;
495 
496 	if (!drm_core_init_complete) {
497 		DRM_ERROR("DRM core is not initialized\n");
498 		return -ENODEV;
499 	}
500 
501 	BUG_ON(!parent);
502 
503 	kref_init(&dev->ref);
504 	dev->dev = parent;
505 	dev->driver = driver;
506 
507 	/* no per-device feature limits by default */
508 	dev->driver_features = ~0u;
509 
510 	INIT_LIST_HEAD(&dev->filelist);
511 	INIT_LIST_HEAD(&dev->filelist_internal);
512 	INIT_LIST_HEAD(&dev->clientlist);
513 	INIT_LIST_HEAD(&dev->ctxlist);
514 	INIT_LIST_HEAD(&dev->vmalist);
515 	INIT_LIST_HEAD(&dev->maplist);
516 	INIT_LIST_HEAD(&dev->vblank_event_list);
517 
518 	spin_lock_init(&dev->buf_lock);
519 	spin_lock_init(&dev->event_lock);
520 	mutex_init(&dev->struct_mutex);
521 	mutex_init(&dev->filelist_mutex);
522 	mutex_init(&dev->clientlist_mutex);
523 	mutex_init(&dev->ctxlist_mutex);
524 	mutex_init(&dev->master_mutex);
525 
526 	dev->anon_inode = drm_fs_inode_new();
527 	if (IS_ERR(dev->anon_inode)) {
528 		ret = PTR_ERR(dev->anon_inode);
529 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
530 		goto err_free;
531 	}
532 
533 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
534 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
535 		if (ret)
536 			goto err_minors;
537 	}
538 
539 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
540 	if (ret)
541 		goto err_minors;
542 
543 	ret = drm_ht_create(&dev->map_hash, 12);
544 	if (ret)
545 		goto err_minors;
546 
547 	drm_legacy_ctxbitmap_init(dev);
548 
549 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
550 		ret = drm_gem_init(dev);
551 		if (ret) {
552 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
553 			goto err_ctxbitmap;
554 		}
555 	}
556 
557 	ret = drm_dev_set_unique(dev, dev_name(parent));
558 	if (ret)
559 		goto err_setunique;
560 
561 	return 0;
562 
563 err_setunique:
564 	if (drm_core_check_feature(dev, DRIVER_GEM))
565 		drm_gem_destroy(dev);
566 err_ctxbitmap:
567 	drm_legacy_ctxbitmap_cleanup(dev);
568 	drm_ht_remove(&dev->map_hash);
569 err_minors:
570 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
571 	drm_minor_free(dev, DRM_MINOR_RENDER);
572 	drm_fs_inode_free(dev->anon_inode);
573 err_free:
574 	mutex_destroy(&dev->master_mutex);
575 	mutex_destroy(&dev->ctxlist_mutex);
576 	mutex_destroy(&dev->clientlist_mutex);
577 	mutex_destroy(&dev->filelist_mutex);
578 	mutex_destroy(&dev->struct_mutex);
579 	return ret;
580 }
581 EXPORT_SYMBOL(drm_dev_init);
582 
583 /**
584  * drm_dev_fini - Finalize a dead DRM device
585  * @dev: DRM device
586  *
587  * Finalize a dead DRM device. This is the converse to drm_dev_init() and
588  * frees up all data allocated by it. All driver private data should be
589  * finalized first. Note that this function does not free the @dev, that is
590  * left to the caller.
591  *
592  * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
593  * from a &drm_driver.release callback.
594  */
595 void drm_dev_fini(struct drm_device *dev)
596 {
597 	drm_vblank_cleanup(dev);
598 
599 	if (drm_core_check_feature(dev, DRIVER_GEM))
600 		drm_gem_destroy(dev);
601 
602 	drm_legacy_ctxbitmap_cleanup(dev);
603 	drm_ht_remove(&dev->map_hash);
604 	drm_fs_inode_free(dev->anon_inode);
605 
606 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
607 	drm_minor_free(dev, DRM_MINOR_RENDER);
608 
609 	mutex_destroy(&dev->master_mutex);
610 	mutex_destroy(&dev->ctxlist_mutex);
611 	mutex_destroy(&dev->clientlist_mutex);
612 	mutex_destroy(&dev->filelist_mutex);
613 	mutex_destroy(&dev->struct_mutex);
614 	kfree(dev->unique);
615 }
616 EXPORT_SYMBOL(drm_dev_fini);
617 
618 /**
619  * drm_dev_alloc - Allocate new DRM device
620  * @driver: DRM driver to allocate device for
621  * @parent: Parent device object
622  *
623  * Allocate and initialize a new DRM device. No device registration is done.
624  * Call drm_dev_register() to advertice the device to user space and register it
625  * with other core subsystems. This should be done last in the device
626  * initialization sequence to make sure userspace can't access an inconsistent
627  * state.
628  *
629  * The initial ref-count of the object is 1. Use drm_dev_get() and
630  * drm_dev_put() to take and drop further ref-counts.
631  *
632  * Note that for purely virtual devices @parent can be NULL.
633  *
634  * Drivers that wish to subclass or embed &struct drm_device into their
635  * own struct should look at using drm_dev_init() instead.
636  *
637  * RETURNS:
638  * Pointer to new DRM device, or ERR_PTR on failure.
639  */
640 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
641 				 struct device *parent)
642 {
643 	struct drm_device *dev;
644 	int ret;
645 
646 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
647 	if (!dev)
648 		return ERR_PTR(-ENOMEM);
649 
650 	ret = drm_dev_init(dev, driver, parent);
651 	if (ret) {
652 		kfree(dev);
653 		return ERR_PTR(ret);
654 	}
655 
656 	return dev;
657 }
658 EXPORT_SYMBOL(drm_dev_alloc);
659 
660 static void drm_dev_release(struct kref *ref)
661 {
662 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
663 
664 	if (dev->driver->release) {
665 		dev->driver->release(dev);
666 	} else {
667 		drm_dev_fini(dev);
668 		kfree(dev);
669 	}
670 }
671 
672 /**
673  * drm_dev_get - Take reference of a DRM device
674  * @dev: device to take reference of or NULL
675  *
676  * This increases the ref-count of @dev by one. You *must* already own a
677  * reference when calling this. Use drm_dev_put() to drop this reference
678  * again.
679  *
680  * This function never fails. However, this function does not provide *any*
681  * guarantee whether the device is alive or running. It only provides a
682  * reference to the object and the memory associated with it.
683  */
684 void drm_dev_get(struct drm_device *dev)
685 {
686 	if (dev)
687 		kref_get(&dev->ref);
688 }
689 EXPORT_SYMBOL(drm_dev_get);
690 
691 /**
692  * drm_dev_put - Drop reference of a DRM device
693  * @dev: device to drop reference of or NULL
694  *
695  * This decreases the ref-count of @dev by one. The device is destroyed if the
696  * ref-count drops to zero.
697  */
698 void drm_dev_put(struct drm_device *dev)
699 {
700 	if (dev)
701 		kref_put(&dev->ref, drm_dev_release);
702 }
703 EXPORT_SYMBOL(drm_dev_put);
704 
705 static int create_compat_control_link(struct drm_device *dev)
706 {
707 	struct drm_minor *minor;
708 	char *name;
709 	int ret;
710 
711 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
712 		return 0;
713 
714 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
715 	if (!minor)
716 		return 0;
717 
718 	/*
719 	 * Some existing userspace out there uses the existing of the controlD*
720 	 * sysfs files to figure out whether it's a modeset driver. It only does
721 	 * readdir, hence a symlink is sufficient (and the least confusing
722 	 * option). Otherwise controlD* is entirely unused.
723 	 *
724 	 * Old controlD chardev have been allocated in the range
725 	 * 64-127.
726 	 */
727 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
728 	if (!name)
729 		return -ENOMEM;
730 
731 	ret = sysfs_create_link(minor->kdev->kobj.parent,
732 				&minor->kdev->kobj,
733 				name);
734 
735 	kfree(name);
736 
737 	return ret;
738 }
739 
740 static void remove_compat_control_link(struct drm_device *dev)
741 {
742 	struct drm_minor *minor;
743 	char *name;
744 
745 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
746 		return;
747 
748 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
749 	if (!minor)
750 		return;
751 
752 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
753 	if (!name)
754 		return;
755 
756 	sysfs_remove_link(minor->kdev->kobj.parent, name);
757 
758 	kfree(name);
759 }
760 
761 /**
762  * drm_dev_register - Register DRM device
763  * @dev: Device to register
764  * @flags: Flags passed to the driver's .load() function
765  *
766  * Register the DRM device @dev with the system, advertise device to user-space
767  * and start normal device operation. @dev must be initialized via drm_dev_init()
768  * previously.
769  *
770  * Never call this twice on any device!
771  *
772  * NOTE: To ensure backward compatibility with existing drivers method this
773  * function calls the &drm_driver.load method after registering the device
774  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
775  * therefore deprecated, drivers must perform all initialization before calling
776  * drm_dev_register().
777  *
778  * RETURNS:
779  * 0 on success, negative error code on failure.
780  */
781 int drm_dev_register(struct drm_device *dev, unsigned long flags)
782 {
783 	struct drm_driver *driver = dev->driver;
784 	int ret;
785 
786 	mutex_lock(&drm_global_mutex);
787 
788 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
789 	if (ret)
790 		goto err_minors;
791 
792 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
793 	if (ret)
794 		goto err_minors;
795 
796 	ret = create_compat_control_link(dev);
797 	if (ret)
798 		goto err_minors;
799 
800 	dev->registered = true;
801 
802 	if (dev->driver->load) {
803 		ret = dev->driver->load(dev, flags);
804 		if (ret)
805 			goto err_minors;
806 	}
807 
808 	if (drm_core_check_feature(dev, DRIVER_MODESET))
809 		drm_modeset_register_all(dev);
810 
811 	ret = 0;
812 
813 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
814 		 driver->name, driver->major, driver->minor,
815 		 driver->patchlevel, driver->date,
816 		 dev->dev ? dev_name(dev->dev) : "virtual device",
817 		 dev->primary->index);
818 
819 	goto out_unlock;
820 
821 err_minors:
822 	remove_compat_control_link(dev);
823 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
824 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
825 out_unlock:
826 	mutex_unlock(&drm_global_mutex);
827 	return ret;
828 }
829 EXPORT_SYMBOL(drm_dev_register);
830 
831 /**
832  * drm_dev_unregister - Unregister DRM device
833  * @dev: Device to unregister
834  *
835  * Unregister the DRM device from the system. This does the reverse of
836  * drm_dev_register() but does not deallocate the device. The caller must call
837  * drm_dev_put() to drop their final reference.
838  *
839  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
840  * which can be called while there are still open users of @dev.
841  *
842  * This should be called first in the device teardown code to make sure
843  * userspace can't access the device instance any more.
844  */
845 void drm_dev_unregister(struct drm_device *dev)
846 {
847 	struct drm_map_list *r_list, *list_temp;
848 
849 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
850 		drm_lastclose(dev);
851 
852 	dev->registered = false;
853 
854 	drm_client_dev_unregister(dev);
855 
856 	if (drm_core_check_feature(dev, DRIVER_MODESET))
857 		drm_modeset_unregister_all(dev);
858 
859 	if (dev->driver->unload)
860 		dev->driver->unload(dev);
861 
862 	if (dev->agp)
863 		drm_pci_agp_destroy(dev);
864 
865 	list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
866 		drm_legacy_rmmap(dev, r_list->map);
867 
868 	remove_compat_control_link(dev);
869 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
870 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
871 }
872 EXPORT_SYMBOL(drm_dev_unregister);
873 
874 /**
875  * drm_dev_set_unique - Set the unique name of a DRM device
876  * @dev: device of which to set the unique name
877  * @name: unique name
878  *
879  * Sets the unique name of a DRM device using the specified string. This is
880  * already done by drm_dev_init(), drivers should only override the default
881  * unique name for backwards compatibility reasons.
882  *
883  * Return: 0 on success or a negative error code on failure.
884  */
885 int drm_dev_set_unique(struct drm_device *dev, const char *name)
886 {
887 	kfree(dev->unique);
888 	dev->unique = kstrdup(name, GFP_KERNEL);
889 
890 	return dev->unique ? 0 : -ENOMEM;
891 }
892 EXPORT_SYMBOL(drm_dev_set_unique);
893 
894 /*
895  * DRM Core
896  * The DRM core module initializes all global DRM objects and makes them
897  * available to drivers. Once setup, drivers can probe their respective
898  * devices.
899  * Currently, core management includes:
900  *  - The "DRM-Global" key/value database
901  *  - Global ID management for connectors
902  *  - DRM major number allocation
903  *  - DRM minor management
904  *  - DRM sysfs class
905  *  - DRM debugfs root
906  *
907  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
908  * interface registered on a DRM device, you can request minor numbers from DRM
909  * core. DRM core takes care of major-number management and char-dev
910  * registration. A stub ->open() callback forwards any open() requests to the
911  * registered minor.
912  */
913 
914 static int drm_stub_open(struct inode *inode, struct file *filp)
915 {
916 	const struct file_operations *new_fops;
917 	struct drm_minor *minor;
918 	int err;
919 
920 	DRM_DEBUG("\n");
921 
922 	mutex_lock(&drm_global_mutex);
923 	minor = drm_minor_acquire(iminor(inode));
924 	if (IS_ERR(minor)) {
925 		err = PTR_ERR(minor);
926 		goto out_unlock;
927 	}
928 
929 	new_fops = fops_get(minor->dev->driver->fops);
930 	if (!new_fops) {
931 		err = -ENODEV;
932 		goto out_release;
933 	}
934 
935 	replace_fops(filp, new_fops);
936 	if (filp->f_op->open)
937 		err = filp->f_op->open(inode, filp);
938 	else
939 		err = 0;
940 
941 out_release:
942 	drm_minor_release(minor);
943 out_unlock:
944 	mutex_unlock(&drm_global_mutex);
945 	return err;
946 }
947 
948 static const struct file_operations drm_stub_fops = {
949 	.owner = THIS_MODULE,
950 	.open = drm_stub_open,
951 	.llseek = noop_llseek,
952 };
953 
954 static void drm_core_exit(void)
955 {
956 	unregister_chrdev(DRM_MAJOR, "drm");
957 	debugfs_remove(drm_debugfs_root);
958 	drm_sysfs_destroy();
959 	idr_destroy(&drm_minors_idr);
960 	drm_connector_ida_destroy();
961 }
962 
963 static int __init drm_core_init(void)
964 {
965 	int ret;
966 
967 	drm_connector_ida_init();
968 	idr_init(&drm_minors_idr);
969 
970 	ret = drm_sysfs_init();
971 	if (ret < 0) {
972 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
973 		goto error;
974 	}
975 
976 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
977 	if (!drm_debugfs_root) {
978 		ret = -ENOMEM;
979 		DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
980 		goto error;
981 	}
982 
983 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
984 	if (ret < 0)
985 		goto error;
986 
987 	drm_core_init_complete = true;
988 
989 	DRM_DEBUG("Initialized\n");
990 	return 0;
991 
992 error:
993 	drm_core_exit();
994 	return ret;
995 }
996 
997 module_init(drm_core_init);
998 module_exit(drm_core_exit);
999