xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision 5b4cb650)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/srcu.h>
36 
37 #include <drm/drm_client.h>
38 #include <drm/drm_drv.h>
39 #include <drm/drmP.h>
40 
41 #include "drm_crtc_internal.h"
42 #include "drm_legacy.h"
43 #include "drm_internal.h"
44 #include "drm_crtc_internal.h"
45 
46 /*
47  * drm_debug: Enable debug output.
48  * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
49  */
50 unsigned int drm_debug = 0;
51 EXPORT_SYMBOL(drm_debug);
52 
53 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
54 MODULE_DESCRIPTION("DRM shared core routines");
55 MODULE_LICENSE("GPL and additional rights");
56 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
57 "\t\tBit 0 (0x01)  will enable CORE messages (drm core code)\n"
58 "\t\tBit 1 (0x02)  will enable DRIVER messages (drm controller code)\n"
59 "\t\tBit 2 (0x04)  will enable KMS messages (modesetting code)\n"
60 "\t\tBit 3 (0x08)  will enable PRIME messages (prime code)\n"
61 "\t\tBit 4 (0x10)  will enable ATOMIC messages (atomic code)\n"
62 "\t\tBit 5 (0x20)  will enable VBL messages (vblank code)\n"
63 "\t\tBit 7 (0x80)  will enable LEASE messages (leasing code)\n"
64 "\t\tBit 8 (0x100) will enable DP messages (displayport code)");
65 module_param_named(debug, drm_debug, int, 0600);
66 
67 static DEFINE_SPINLOCK(drm_minor_lock);
68 static struct idr drm_minors_idr;
69 
70 /*
71  * If the drm core fails to init for whatever reason,
72  * we should prevent any drivers from registering with it.
73  * It's best to check this at drm_dev_init(), as some drivers
74  * prefer to embed struct drm_device into their own device
75  * structure and call drm_dev_init() themselves.
76  */
77 static bool drm_core_init_complete = false;
78 
79 static struct dentry *drm_debugfs_root;
80 
81 DEFINE_STATIC_SRCU(drm_unplug_srcu);
82 
83 /*
84  * DRM Minors
85  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
86  * of them is represented by a drm_minor object. Depending on the capabilities
87  * of the device-driver, different interfaces are registered.
88  *
89  * Minors can be accessed via dev->$minor_name. This pointer is either
90  * NULL or a valid drm_minor pointer and stays valid as long as the device is
91  * valid. This means, DRM minors have the same life-time as the underlying
92  * device. However, this doesn't mean that the minor is active. Minors are
93  * registered and unregistered dynamically according to device-state.
94  */
95 
96 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
97 					     unsigned int type)
98 {
99 	switch (type) {
100 	case DRM_MINOR_PRIMARY:
101 		return &dev->primary;
102 	case DRM_MINOR_RENDER:
103 		return &dev->render;
104 	default:
105 		BUG();
106 	}
107 }
108 
109 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
110 {
111 	struct drm_minor *minor;
112 	unsigned long flags;
113 	int r;
114 
115 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
116 	if (!minor)
117 		return -ENOMEM;
118 
119 	minor->type = type;
120 	minor->dev = dev;
121 
122 	idr_preload(GFP_KERNEL);
123 	spin_lock_irqsave(&drm_minor_lock, flags);
124 	r = idr_alloc(&drm_minors_idr,
125 		      NULL,
126 		      64 * type,
127 		      64 * (type + 1),
128 		      GFP_NOWAIT);
129 	spin_unlock_irqrestore(&drm_minor_lock, flags);
130 	idr_preload_end();
131 
132 	if (r < 0)
133 		goto err_free;
134 
135 	minor->index = r;
136 
137 	minor->kdev = drm_sysfs_minor_alloc(minor);
138 	if (IS_ERR(minor->kdev)) {
139 		r = PTR_ERR(minor->kdev);
140 		goto err_index;
141 	}
142 
143 	*drm_minor_get_slot(dev, type) = minor;
144 	return 0;
145 
146 err_index:
147 	spin_lock_irqsave(&drm_minor_lock, flags);
148 	idr_remove(&drm_minors_idr, minor->index);
149 	spin_unlock_irqrestore(&drm_minor_lock, flags);
150 err_free:
151 	kfree(minor);
152 	return r;
153 }
154 
155 static void drm_minor_free(struct drm_device *dev, unsigned int type)
156 {
157 	struct drm_minor **slot, *minor;
158 	unsigned long flags;
159 
160 	slot = drm_minor_get_slot(dev, type);
161 	minor = *slot;
162 	if (!minor)
163 		return;
164 
165 	put_device(minor->kdev);
166 
167 	spin_lock_irqsave(&drm_minor_lock, flags);
168 	idr_remove(&drm_minors_idr, minor->index);
169 	spin_unlock_irqrestore(&drm_minor_lock, flags);
170 
171 	kfree(minor);
172 	*slot = NULL;
173 }
174 
175 static int drm_minor_register(struct drm_device *dev, unsigned int type)
176 {
177 	struct drm_minor *minor;
178 	unsigned long flags;
179 	int ret;
180 
181 	DRM_DEBUG("\n");
182 
183 	minor = *drm_minor_get_slot(dev, type);
184 	if (!minor)
185 		return 0;
186 
187 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
188 	if (ret) {
189 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
190 		goto err_debugfs;
191 	}
192 
193 	ret = device_add(minor->kdev);
194 	if (ret)
195 		goto err_debugfs;
196 
197 	/* replace NULL with @minor so lookups will succeed from now on */
198 	spin_lock_irqsave(&drm_minor_lock, flags);
199 	idr_replace(&drm_minors_idr, minor, minor->index);
200 	spin_unlock_irqrestore(&drm_minor_lock, flags);
201 
202 	DRM_DEBUG("new minor registered %d\n", minor->index);
203 	return 0;
204 
205 err_debugfs:
206 	drm_debugfs_cleanup(minor);
207 	return ret;
208 }
209 
210 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
211 {
212 	struct drm_minor *minor;
213 	unsigned long flags;
214 
215 	minor = *drm_minor_get_slot(dev, type);
216 	if (!minor || !device_is_registered(minor->kdev))
217 		return;
218 
219 	/* replace @minor with NULL so lookups will fail from now on */
220 	spin_lock_irqsave(&drm_minor_lock, flags);
221 	idr_replace(&drm_minors_idr, NULL, minor->index);
222 	spin_unlock_irqrestore(&drm_minor_lock, flags);
223 
224 	device_del(minor->kdev);
225 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
226 	drm_debugfs_cleanup(minor);
227 }
228 
229 /*
230  * Looks up the given minor-ID and returns the respective DRM-minor object. The
231  * refence-count of the underlying device is increased so you must release this
232  * object with drm_minor_release().
233  *
234  * As long as you hold this minor, it is guaranteed that the object and the
235  * minor->dev pointer will stay valid! However, the device may get unplugged and
236  * unregistered while you hold the minor.
237  */
238 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
239 {
240 	struct drm_minor *minor;
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(&drm_minor_lock, flags);
244 	minor = idr_find(&drm_minors_idr, minor_id);
245 	if (minor)
246 		drm_dev_get(minor->dev);
247 	spin_unlock_irqrestore(&drm_minor_lock, flags);
248 
249 	if (!minor) {
250 		return ERR_PTR(-ENODEV);
251 	} else if (drm_dev_is_unplugged(minor->dev)) {
252 		drm_dev_put(minor->dev);
253 		return ERR_PTR(-ENODEV);
254 	}
255 
256 	return minor;
257 }
258 
259 void drm_minor_release(struct drm_minor *minor)
260 {
261 	drm_dev_put(minor->dev);
262 }
263 
264 /**
265  * DOC: driver instance overview
266  *
267  * A device instance for a drm driver is represented by &struct drm_device. This
268  * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
269  * callbacks implemented by the driver. The driver then needs to initialize all
270  * the various subsystems for the drm device like memory management, vblank
271  * handling, modesetting support and intial output configuration plus obviously
272  * initialize all the corresponding hardware bits. An important part of this is
273  * also calling drm_dev_set_unique() to set the userspace-visible unique name of
274  * this device instance. Finally when everything is up and running and ready for
275  * userspace the device instance can be published using drm_dev_register().
276  *
277  * There is also deprecated support for initalizing device instances using
278  * bus-specific helpers and the &drm_driver.load callback. But due to
279  * backwards-compatibility needs the device instance have to be published too
280  * early, which requires unpretty global locking to make safe and is therefore
281  * only support for existing drivers not yet converted to the new scheme.
282  *
283  * When cleaning up a device instance everything needs to be done in reverse:
284  * First unpublish the device instance with drm_dev_unregister(). Then clean up
285  * any other resources allocated at device initialization and drop the driver's
286  * reference to &drm_device using drm_dev_put().
287  *
288  * Note that the lifetime rules for &drm_device instance has still a lot of
289  * historical baggage. Hence use the reference counting provided by
290  * drm_dev_get() and drm_dev_put() only carefully.
291  *
292  * It is recommended that drivers embed &struct drm_device into their own device
293  * structure, which is supported through drm_dev_init().
294  */
295 
296 /**
297  * drm_put_dev - Unregister and release a DRM device
298  * @dev: DRM device
299  *
300  * Called at module unload time or when a PCI device is unplugged.
301  *
302  * Cleans up all DRM device, calling drm_lastclose().
303  *
304  * Note: Use of this function is deprecated. It will eventually go away
305  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
306  * instead to make sure that the device isn't userspace accessible any more
307  * while teardown is in progress, ensuring that userspace can't access an
308  * inconsistent state.
309  */
310 void drm_put_dev(struct drm_device *dev)
311 {
312 	DRM_DEBUG("\n");
313 
314 	if (!dev) {
315 		DRM_ERROR("cleanup called no dev\n");
316 		return;
317 	}
318 
319 	drm_dev_unregister(dev);
320 	drm_dev_put(dev);
321 }
322 EXPORT_SYMBOL(drm_put_dev);
323 
324 /**
325  * drm_dev_enter - Enter device critical section
326  * @dev: DRM device
327  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
328  *
329  * This function marks and protects the beginning of a section that should not
330  * be entered after the device has been unplugged. The section end is marked
331  * with drm_dev_exit(). Calls to this function can be nested.
332  *
333  * Returns:
334  * True if it is OK to enter the section, false otherwise.
335  */
336 bool drm_dev_enter(struct drm_device *dev, int *idx)
337 {
338 	*idx = srcu_read_lock(&drm_unplug_srcu);
339 
340 	if (dev->unplugged) {
341 		srcu_read_unlock(&drm_unplug_srcu, *idx);
342 		return false;
343 	}
344 
345 	return true;
346 }
347 EXPORT_SYMBOL(drm_dev_enter);
348 
349 /**
350  * drm_dev_exit - Exit device critical section
351  * @idx: index returned from drm_dev_enter()
352  *
353  * This function marks the end of a section that should not be entered after
354  * the device has been unplugged.
355  */
356 void drm_dev_exit(int idx)
357 {
358 	srcu_read_unlock(&drm_unplug_srcu, idx);
359 }
360 EXPORT_SYMBOL(drm_dev_exit);
361 
362 /**
363  * drm_dev_unplug - unplug a DRM device
364  * @dev: DRM device
365  *
366  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
367  * userspace operations. Entry-points can use drm_dev_enter() and
368  * drm_dev_exit() to protect device resources in a race free manner. This
369  * essentially unregisters the device like drm_dev_unregister(), but can be
370  * called while there are still open users of @dev.
371  */
372 void drm_dev_unplug(struct drm_device *dev)
373 {
374 	/*
375 	 * After synchronizing any critical read section is guaranteed to see
376 	 * the new value of ->unplugged, and any critical section which might
377 	 * still have seen the old value of ->unplugged is guaranteed to have
378 	 * finished.
379 	 */
380 	dev->unplugged = true;
381 	synchronize_srcu(&drm_unplug_srcu);
382 
383 	drm_dev_unregister(dev);
384 
385 	mutex_lock(&drm_global_mutex);
386 	if (dev->open_count == 0)
387 		drm_dev_put(dev);
388 	mutex_unlock(&drm_global_mutex);
389 }
390 EXPORT_SYMBOL(drm_dev_unplug);
391 
392 /*
393  * DRM internal mount
394  * We want to be able to allocate our own "struct address_space" to control
395  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
396  * stand-alone address_space objects, so we need an underlying inode. As there
397  * is no way to allocate an independent inode easily, we need a fake internal
398  * VFS mount-point.
399  *
400  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
401  * frees it again. You are allowed to use iget() and iput() to get references to
402  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
403  * drm_fs_inode_free() call (which does not have to be the last iput()).
404  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
405  * between multiple inode-users. You could, technically, call
406  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
407  * iput(), but this way you'd end up with a new vfsmount for each inode.
408  */
409 
410 static int drm_fs_cnt;
411 static struct vfsmount *drm_fs_mnt;
412 
413 static const struct dentry_operations drm_fs_dops = {
414 	.d_dname	= simple_dname,
415 };
416 
417 static const struct super_operations drm_fs_sops = {
418 	.statfs		= simple_statfs,
419 };
420 
421 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
422 				   const char *dev_name, void *data)
423 {
424 	return mount_pseudo(fs_type,
425 			    "drm:",
426 			    &drm_fs_sops,
427 			    &drm_fs_dops,
428 			    0x010203ff);
429 }
430 
431 static struct file_system_type drm_fs_type = {
432 	.name		= "drm",
433 	.owner		= THIS_MODULE,
434 	.mount		= drm_fs_mount,
435 	.kill_sb	= kill_anon_super,
436 };
437 
438 static struct inode *drm_fs_inode_new(void)
439 {
440 	struct inode *inode;
441 	int r;
442 
443 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
444 	if (r < 0) {
445 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
446 		return ERR_PTR(r);
447 	}
448 
449 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
450 	if (IS_ERR(inode))
451 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
452 
453 	return inode;
454 }
455 
456 static void drm_fs_inode_free(struct inode *inode)
457 {
458 	if (inode) {
459 		iput(inode);
460 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
461 	}
462 }
463 
464 /**
465  * drm_dev_init - Initialise new DRM device
466  * @dev: DRM device
467  * @driver: DRM driver
468  * @parent: Parent device object
469  *
470  * Initialize a new DRM device. No device registration is done.
471  * Call drm_dev_register() to advertice the device to user space and register it
472  * with other core subsystems. This should be done last in the device
473  * initialization sequence to make sure userspace can't access an inconsistent
474  * state.
475  *
476  * The initial ref-count of the object is 1. Use drm_dev_get() and
477  * drm_dev_put() to take and drop further ref-counts.
478  *
479  * Drivers that do not want to allocate their own device struct
480  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
481  * that do embed &struct drm_device it must be placed first in the overall
482  * structure, and the overall structure must be allocated using kmalloc(): The
483  * drm core's release function unconditionally calls kfree() on the @dev pointer
484  * when the final reference is released. To override this behaviour, and so
485  * allow embedding of the drm_device inside the driver's device struct at an
486  * arbitrary offset, you must supply a &drm_driver.release callback and control
487  * the finalization explicitly.
488  *
489  * RETURNS:
490  * 0 on success, or error code on failure.
491  */
492 int drm_dev_init(struct drm_device *dev,
493 		 struct drm_driver *driver,
494 		 struct device *parent)
495 {
496 	int ret;
497 
498 	if (!drm_core_init_complete) {
499 		DRM_ERROR("DRM core is not initialized\n");
500 		return -ENODEV;
501 	}
502 
503 	BUG_ON(!parent);
504 
505 	kref_init(&dev->ref);
506 	dev->dev = parent;
507 	dev->driver = driver;
508 
509 	/* no per-device feature limits by default */
510 	dev->driver_features = ~0u;
511 
512 	INIT_LIST_HEAD(&dev->filelist);
513 	INIT_LIST_HEAD(&dev->filelist_internal);
514 	INIT_LIST_HEAD(&dev->clientlist);
515 	INIT_LIST_HEAD(&dev->ctxlist);
516 	INIT_LIST_HEAD(&dev->vmalist);
517 	INIT_LIST_HEAD(&dev->maplist);
518 	INIT_LIST_HEAD(&dev->vblank_event_list);
519 
520 	spin_lock_init(&dev->buf_lock);
521 	spin_lock_init(&dev->event_lock);
522 	mutex_init(&dev->struct_mutex);
523 	mutex_init(&dev->filelist_mutex);
524 	mutex_init(&dev->clientlist_mutex);
525 	mutex_init(&dev->ctxlist_mutex);
526 	mutex_init(&dev->master_mutex);
527 
528 	dev->anon_inode = drm_fs_inode_new();
529 	if (IS_ERR(dev->anon_inode)) {
530 		ret = PTR_ERR(dev->anon_inode);
531 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
532 		goto err_free;
533 	}
534 
535 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
536 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
537 		if (ret)
538 			goto err_minors;
539 	}
540 
541 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
542 	if (ret)
543 		goto err_minors;
544 
545 	ret = drm_ht_create(&dev->map_hash, 12);
546 	if (ret)
547 		goto err_minors;
548 
549 	drm_legacy_ctxbitmap_init(dev);
550 
551 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
552 		ret = drm_gem_init(dev);
553 		if (ret) {
554 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
555 			goto err_ctxbitmap;
556 		}
557 	}
558 
559 	ret = drm_dev_set_unique(dev, dev_name(parent));
560 	if (ret)
561 		goto err_setunique;
562 
563 	return 0;
564 
565 err_setunique:
566 	if (drm_core_check_feature(dev, DRIVER_GEM))
567 		drm_gem_destroy(dev);
568 err_ctxbitmap:
569 	drm_legacy_ctxbitmap_cleanup(dev);
570 	drm_ht_remove(&dev->map_hash);
571 err_minors:
572 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
573 	drm_minor_free(dev, DRM_MINOR_RENDER);
574 	drm_fs_inode_free(dev->anon_inode);
575 err_free:
576 	mutex_destroy(&dev->master_mutex);
577 	mutex_destroy(&dev->ctxlist_mutex);
578 	mutex_destroy(&dev->clientlist_mutex);
579 	mutex_destroy(&dev->filelist_mutex);
580 	mutex_destroy(&dev->struct_mutex);
581 	return ret;
582 }
583 EXPORT_SYMBOL(drm_dev_init);
584 
585 /**
586  * drm_dev_fini - Finalize a dead DRM device
587  * @dev: DRM device
588  *
589  * Finalize a dead DRM device. This is the converse to drm_dev_init() and
590  * frees up all data allocated by it. All driver private data should be
591  * finalized first. Note that this function does not free the @dev, that is
592  * left to the caller.
593  *
594  * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
595  * from a &drm_driver.release callback.
596  */
597 void drm_dev_fini(struct drm_device *dev)
598 {
599 	drm_vblank_cleanup(dev);
600 
601 	if (drm_core_check_feature(dev, DRIVER_GEM))
602 		drm_gem_destroy(dev);
603 
604 	drm_legacy_ctxbitmap_cleanup(dev);
605 	drm_ht_remove(&dev->map_hash);
606 	drm_fs_inode_free(dev->anon_inode);
607 
608 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
609 	drm_minor_free(dev, DRM_MINOR_RENDER);
610 
611 	mutex_destroy(&dev->master_mutex);
612 	mutex_destroy(&dev->ctxlist_mutex);
613 	mutex_destroy(&dev->clientlist_mutex);
614 	mutex_destroy(&dev->filelist_mutex);
615 	mutex_destroy(&dev->struct_mutex);
616 	kfree(dev->unique);
617 }
618 EXPORT_SYMBOL(drm_dev_fini);
619 
620 /**
621  * drm_dev_alloc - Allocate new DRM device
622  * @driver: DRM driver to allocate device for
623  * @parent: Parent device object
624  *
625  * Allocate and initialize a new DRM device. No device registration is done.
626  * Call drm_dev_register() to advertice the device to user space and register it
627  * with other core subsystems. This should be done last in the device
628  * initialization sequence to make sure userspace can't access an inconsistent
629  * state.
630  *
631  * The initial ref-count of the object is 1. Use drm_dev_get() and
632  * drm_dev_put() to take and drop further ref-counts.
633  *
634  * Note that for purely virtual devices @parent can be NULL.
635  *
636  * Drivers that wish to subclass or embed &struct drm_device into their
637  * own struct should look at using drm_dev_init() instead.
638  *
639  * RETURNS:
640  * Pointer to new DRM device, or ERR_PTR on failure.
641  */
642 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
643 				 struct device *parent)
644 {
645 	struct drm_device *dev;
646 	int ret;
647 
648 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
649 	if (!dev)
650 		return ERR_PTR(-ENOMEM);
651 
652 	ret = drm_dev_init(dev, driver, parent);
653 	if (ret) {
654 		kfree(dev);
655 		return ERR_PTR(ret);
656 	}
657 
658 	return dev;
659 }
660 EXPORT_SYMBOL(drm_dev_alloc);
661 
662 static void drm_dev_release(struct kref *ref)
663 {
664 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
665 
666 	if (dev->driver->release) {
667 		dev->driver->release(dev);
668 	} else {
669 		drm_dev_fini(dev);
670 		kfree(dev);
671 	}
672 }
673 
674 /**
675  * drm_dev_get - Take reference of a DRM device
676  * @dev: device to take reference of or NULL
677  *
678  * This increases the ref-count of @dev by one. You *must* already own a
679  * reference when calling this. Use drm_dev_put() to drop this reference
680  * again.
681  *
682  * This function never fails. However, this function does not provide *any*
683  * guarantee whether the device is alive or running. It only provides a
684  * reference to the object and the memory associated with it.
685  */
686 void drm_dev_get(struct drm_device *dev)
687 {
688 	if (dev)
689 		kref_get(&dev->ref);
690 }
691 EXPORT_SYMBOL(drm_dev_get);
692 
693 /**
694  * drm_dev_put - Drop reference of a DRM device
695  * @dev: device to drop reference of or NULL
696  *
697  * This decreases the ref-count of @dev by one. The device is destroyed if the
698  * ref-count drops to zero.
699  */
700 void drm_dev_put(struct drm_device *dev)
701 {
702 	if (dev)
703 		kref_put(&dev->ref, drm_dev_release);
704 }
705 EXPORT_SYMBOL(drm_dev_put);
706 
707 static int create_compat_control_link(struct drm_device *dev)
708 {
709 	struct drm_minor *minor;
710 	char *name;
711 	int ret;
712 
713 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
714 		return 0;
715 
716 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
717 	if (!minor)
718 		return 0;
719 
720 	/*
721 	 * Some existing userspace out there uses the existing of the controlD*
722 	 * sysfs files to figure out whether it's a modeset driver. It only does
723 	 * readdir, hence a symlink is sufficient (and the least confusing
724 	 * option). Otherwise controlD* is entirely unused.
725 	 *
726 	 * Old controlD chardev have been allocated in the range
727 	 * 64-127.
728 	 */
729 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
730 	if (!name)
731 		return -ENOMEM;
732 
733 	ret = sysfs_create_link(minor->kdev->kobj.parent,
734 				&minor->kdev->kobj,
735 				name);
736 
737 	kfree(name);
738 
739 	return ret;
740 }
741 
742 static void remove_compat_control_link(struct drm_device *dev)
743 {
744 	struct drm_minor *minor;
745 	char *name;
746 
747 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
748 		return;
749 
750 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
751 	if (!minor)
752 		return;
753 
754 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
755 	if (!name)
756 		return;
757 
758 	sysfs_remove_link(minor->kdev->kobj.parent, name);
759 
760 	kfree(name);
761 }
762 
763 /**
764  * drm_dev_register - Register DRM device
765  * @dev: Device to register
766  * @flags: Flags passed to the driver's .load() function
767  *
768  * Register the DRM device @dev with the system, advertise device to user-space
769  * and start normal device operation. @dev must be allocated via drm_dev_alloc()
770  * previously.
771  *
772  * Never call this twice on any device!
773  *
774  * NOTE: To ensure backward compatibility with existing drivers method this
775  * function calls the &drm_driver.load method after registering the device
776  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
777  * therefore deprecated, drivers must perform all initialization before calling
778  * drm_dev_register().
779  *
780  * RETURNS:
781  * 0 on success, negative error code on failure.
782  */
783 int drm_dev_register(struct drm_device *dev, unsigned long flags)
784 {
785 	struct drm_driver *driver = dev->driver;
786 	int ret;
787 
788 	mutex_lock(&drm_global_mutex);
789 
790 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
791 	if (ret)
792 		goto err_minors;
793 
794 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
795 	if (ret)
796 		goto err_minors;
797 
798 	ret = create_compat_control_link(dev);
799 	if (ret)
800 		goto err_minors;
801 
802 	dev->registered = true;
803 
804 	if (dev->driver->load) {
805 		ret = dev->driver->load(dev, flags);
806 		if (ret)
807 			goto err_minors;
808 	}
809 
810 	if (drm_core_check_feature(dev, DRIVER_MODESET))
811 		drm_modeset_register_all(dev);
812 
813 	ret = 0;
814 
815 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
816 		 driver->name, driver->major, driver->minor,
817 		 driver->patchlevel, driver->date,
818 		 dev->dev ? dev_name(dev->dev) : "virtual device",
819 		 dev->primary->index);
820 
821 	goto out_unlock;
822 
823 err_minors:
824 	remove_compat_control_link(dev);
825 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
826 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
827 out_unlock:
828 	mutex_unlock(&drm_global_mutex);
829 	return ret;
830 }
831 EXPORT_SYMBOL(drm_dev_register);
832 
833 /**
834  * drm_dev_unregister - Unregister DRM device
835  * @dev: Device to unregister
836  *
837  * Unregister the DRM device from the system. This does the reverse of
838  * drm_dev_register() but does not deallocate the device. The caller must call
839  * drm_dev_put() to drop their final reference.
840  *
841  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
842  * which can be called while there are still open users of @dev.
843  *
844  * This should be called first in the device teardown code to make sure
845  * userspace can't access the device instance any more.
846  */
847 void drm_dev_unregister(struct drm_device *dev)
848 {
849 	struct drm_map_list *r_list, *list_temp;
850 
851 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
852 		drm_lastclose(dev);
853 
854 	dev->registered = false;
855 
856 	drm_client_dev_unregister(dev);
857 
858 	if (drm_core_check_feature(dev, DRIVER_MODESET))
859 		drm_modeset_unregister_all(dev);
860 
861 	if (dev->driver->unload)
862 		dev->driver->unload(dev);
863 
864 	if (dev->agp)
865 		drm_pci_agp_destroy(dev);
866 
867 	list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
868 		drm_legacy_rmmap(dev, r_list->map);
869 
870 	remove_compat_control_link(dev);
871 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
872 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
873 }
874 EXPORT_SYMBOL(drm_dev_unregister);
875 
876 /**
877  * drm_dev_set_unique - Set the unique name of a DRM device
878  * @dev: device of which to set the unique name
879  * @name: unique name
880  *
881  * Sets the unique name of a DRM device using the specified string. Drivers
882  * can use this at driver probe time if the unique name of the devices they
883  * drive is static.
884  *
885  * Return: 0 on success or a negative error code on failure.
886  */
887 int drm_dev_set_unique(struct drm_device *dev, const char *name)
888 {
889 	kfree(dev->unique);
890 	dev->unique = kstrdup(name, GFP_KERNEL);
891 
892 	return dev->unique ? 0 : -ENOMEM;
893 }
894 EXPORT_SYMBOL(drm_dev_set_unique);
895 
896 /*
897  * DRM Core
898  * The DRM core module initializes all global DRM objects and makes them
899  * available to drivers. Once setup, drivers can probe their respective
900  * devices.
901  * Currently, core management includes:
902  *  - The "DRM-Global" key/value database
903  *  - Global ID management for connectors
904  *  - DRM major number allocation
905  *  - DRM minor management
906  *  - DRM sysfs class
907  *  - DRM debugfs root
908  *
909  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
910  * interface registered on a DRM device, you can request minor numbers from DRM
911  * core. DRM core takes care of major-number management and char-dev
912  * registration. A stub ->open() callback forwards any open() requests to the
913  * registered minor.
914  */
915 
916 static int drm_stub_open(struct inode *inode, struct file *filp)
917 {
918 	const struct file_operations *new_fops;
919 	struct drm_minor *minor;
920 	int err;
921 
922 	DRM_DEBUG("\n");
923 
924 	mutex_lock(&drm_global_mutex);
925 	minor = drm_minor_acquire(iminor(inode));
926 	if (IS_ERR(minor)) {
927 		err = PTR_ERR(minor);
928 		goto out_unlock;
929 	}
930 
931 	new_fops = fops_get(minor->dev->driver->fops);
932 	if (!new_fops) {
933 		err = -ENODEV;
934 		goto out_release;
935 	}
936 
937 	replace_fops(filp, new_fops);
938 	if (filp->f_op->open)
939 		err = filp->f_op->open(inode, filp);
940 	else
941 		err = 0;
942 
943 out_release:
944 	drm_minor_release(minor);
945 out_unlock:
946 	mutex_unlock(&drm_global_mutex);
947 	return err;
948 }
949 
950 static const struct file_operations drm_stub_fops = {
951 	.owner = THIS_MODULE,
952 	.open = drm_stub_open,
953 	.llseek = noop_llseek,
954 };
955 
956 static void drm_core_exit(void)
957 {
958 	unregister_chrdev(DRM_MAJOR, "drm");
959 	debugfs_remove(drm_debugfs_root);
960 	drm_sysfs_destroy();
961 	idr_destroy(&drm_minors_idr);
962 	drm_connector_ida_destroy();
963 }
964 
965 static int __init drm_core_init(void)
966 {
967 	int ret;
968 
969 	drm_connector_ida_init();
970 	idr_init(&drm_minors_idr);
971 
972 	ret = drm_sysfs_init();
973 	if (ret < 0) {
974 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
975 		goto error;
976 	}
977 
978 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
979 	if (!drm_debugfs_root) {
980 		ret = -ENOMEM;
981 		DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
982 		goto error;
983 	}
984 
985 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
986 	if (ret < 0)
987 		goto error;
988 
989 	drm_core_init_complete = true;
990 
991 	DRM_DEBUG("Initialized\n");
992 	return 0;
993 
994 error:
995 	drm_core_exit();
996 	return ret;
997 }
998 
999 module_init(drm_core_init);
1000 module_exit(drm_core_exit);
1001