xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision 55fd7e02)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37 
38 #include <drm/drm_client.h>
39 #include <drm/drm_color_mgmt.h>
40 #include <drm/drm_drv.h>
41 #include <drm/drm_file.h>
42 #include <drm/drm_managed.h>
43 #include <drm/drm_mode_object.h>
44 #include <drm/drm_print.h>
45 
46 #include "drm_crtc_internal.h"
47 #include "drm_internal.h"
48 #include "drm_legacy.h"
49 
50 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
51 MODULE_DESCRIPTION("DRM shared core routines");
52 MODULE_LICENSE("GPL and additional rights");
53 
54 static DEFINE_SPINLOCK(drm_minor_lock);
55 static struct idr drm_minors_idr;
56 
57 /*
58  * If the drm core fails to init for whatever reason,
59  * we should prevent any drivers from registering with it.
60  * It's best to check this at drm_dev_init(), as some drivers
61  * prefer to embed struct drm_device into their own device
62  * structure and call drm_dev_init() themselves.
63  */
64 static bool drm_core_init_complete = false;
65 
66 static struct dentry *drm_debugfs_root;
67 
68 DEFINE_STATIC_SRCU(drm_unplug_srcu);
69 
70 /*
71  * DRM Minors
72  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
73  * of them is represented by a drm_minor object. Depending on the capabilities
74  * of the device-driver, different interfaces are registered.
75  *
76  * Minors can be accessed via dev->$minor_name. This pointer is either
77  * NULL or a valid drm_minor pointer and stays valid as long as the device is
78  * valid. This means, DRM minors have the same life-time as the underlying
79  * device. However, this doesn't mean that the minor is active. Minors are
80  * registered and unregistered dynamically according to device-state.
81  */
82 
83 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
84 					     unsigned int type)
85 {
86 	switch (type) {
87 	case DRM_MINOR_PRIMARY:
88 		return &dev->primary;
89 	case DRM_MINOR_RENDER:
90 		return &dev->render;
91 	default:
92 		BUG();
93 	}
94 }
95 
96 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
97 {
98 	struct drm_minor *minor = data;
99 	unsigned long flags;
100 
101 	WARN_ON(dev != minor->dev);
102 
103 	put_device(minor->kdev);
104 
105 	spin_lock_irqsave(&drm_minor_lock, flags);
106 	idr_remove(&drm_minors_idr, minor->index);
107 	spin_unlock_irqrestore(&drm_minor_lock, flags);
108 }
109 
110 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
111 {
112 	struct drm_minor *minor;
113 	unsigned long flags;
114 	int r;
115 
116 	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
117 	if (!minor)
118 		return -ENOMEM;
119 
120 	minor->type = type;
121 	minor->dev = dev;
122 
123 	idr_preload(GFP_KERNEL);
124 	spin_lock_irqsave(&drm_minor_lock, flags);
125 	r = idr_alloc(&drm_minors_idr,
126 		      NULL,
127 		      64 * type,
128 		      64 * (type + 1),
129 		      GFP_NOWAIT);
130 	spin_unlock_irqrestore(&drm_minor_lock, flags);
131 	idr_preload_end();
132 
133 	if (r < 0)
134 		return r;
135 
136 	minor->index = r;
137 
138 	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
139 	if (r)
140 		return r;
141 
142 	minor->kdev = drm_sysfs_minor_alloc(minor);
143 	if (IS_ERR(minor->kdev))
144 		return PTR_ERR(minor->kdev);
145 
146 	*drm_minor_get_slot(dev, type) = minor;
147 	return 0;
148 }
149 
150 static int drm_minor_register(struct drm_device *dev, unsigned int type)
151 {
152 	struct drm_minor *minor;
153 	unsigned long flags;
154 	int ret;
155 
156 	DRM_DEBUG("\n");
157 
158 	minor = *drm_minor_get_slot(dev, type);
159 	if (!minor)
160 		return 0;
161 
162 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
163 	if (ret) {
164 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
165 		goto err_debugfs;
166 	}
167 
168 	ret = device_add(minor->kdev);
169 	if (ret)
170 		goto err_debugfs;
171 
172 	/* replace NULL with @minor so lookups will succeed from now on */
173 	spin_lock_irqsave(&drm_minor_lock, flags);
174 	idr_replace(&drm_minors_idr, minor, minor->index);
175 	spin_unlock_irqrestore(&drm_minor_lock, flags);
176 
177 	DRM_DEBUG("new minor registered %d\n", minor->index);
178 	return 0;
179 
180 err_debugfs:
181 	drm_debugfs_cleanup(minor);
182 	return ret;
183 }
184 
185 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
186 {
187 	struct drm_minor *minor;
188 	unsigned long flags;
189 
190 	minor = *drm_minor_get_slot(dev, type);
191 	if (!minor || !device_is_registered(minor->kdev))
192 		return;
193 
194 	/* replace @minor with NULL so lookups will fail from now on */
195 	spin_lock_irqsave(&drm_minor_lock, flags);
196 	idr_replace(&drm_minors_idr, NULL, minor->index);
197 	spin_unlock_irqrestore(&drm_minor_lock, flags);
198 
199 	device_del(minor->kdev);
200 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
201 	drm_debugfs_cleanup(minor);
202 }
203 
204 /*
205  * Looks up the given minor-ID and returns the respective DRM-minor object. The
206  * refence-count of the underlying device is increased so you must release this
207  * object with drm_minor_release().
208  *
209  * As long as you hold this minor, it is guaranteed that the object and the
210  * minor->dev pointer will stay valid! However, the device may get unplugged and
211  * unregistered while you hold the minor.
212  */
213 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
214 {
215 	struct drm_minor *minor;
216 	unsigned long flags;
217 
218 	spin_lock_irqsave(&drm_minor_lock, flags);
219 	minor = idr_find(&drm_minors_idr, minor_id);
220 	if (minor)
221 		drm_dev_get(minor->dev);
222 	spin_unlock_irqrestore(&drm_minor_lock, flags);
223 
224 	if (!minor) {
225 		return ERR_PTR(-ENODEV);
226 	} else if (drm_dev_is_unplugged(minor->dev)) {
227 		drm_dev_put(minor->dev);
228 		return ERR_PTR(-ENODEV);
229 	}
230 
231 	return minor;
232 }
233 
234 void drm_minor_release(struct drm_minor *minor)
235 {
236 	drm_dev_put(minor->dev);
237 }
238 
239 /**
240  * DOC: driver instance overview
241  *
242  * A device instance for a drm driver is represented by &struct drm_device. This
243  * is initialized with drm_dev_init(), usually from bus-specific ->probe()
244  * callbacks implemented by the driver. The driver then needs to initialize all
245  * the various subsystems for the drm device like memory management, vblank
246  * handling, modesetting support and intial output configuration plus obviously
247  * initialize all the corresponding hardware bits. Finally when everything is up
248  * and running and ready for userspace the device instance can be published
249  * using drm_dev_register().
250  *
251  * There is also deprecated support for initalizing device instances using
252  * bus-specific helpers and the &drm_driver.load callback. But due to
253  * backwards-compatibility needs the device instance have to be published too
254  * early, which requires unpretty global locking to make safe and is therefore
255  * only support for existing drivers not yet converted to the new scheme.
256  *
257  * When cleaning up a device instance everything needs to be done in reverse:
258  * First unpublish the device instance with drm_dev_unregister(). Then clean up
259  * any other resources allocated at device initialization and drop the driver's
260  * reference to &drm_device using drm_dev_put().
261  *
262  * Note that any allocation or resource which is visible to userspace must be
263  * released only when the final drm_dev_put() is called, and not when the
264  * driver is unbound from the underlying physical struct &device. Best to use
265  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
266  * related functions.
267  *
268  * devres managed resources like devm_kmalloc() can only be used for resources
269  * directly related to the underlying hardware device, and only used in code
270  * paths fully protected by drm_dev_enter() and drm_dev_exit().
271  *
272  * Display driver example
273  * ~~~~~~~~~~~~~~~~~~~~~~
274  *
275  * The following example shows a typical structure of a DRM display driver.
276  * The example focus on the probe() function and the other functions that is
277  * almost always present and serves as a demonstration of devm_drm_dev_init().
278  *
279  * .. code-block:: c
280  *
281  *	struct driver_device {
282  *		struct drm_device drm;
283  *		void *userspace_facing;
284  *		struct clk *pclk;
285  *	};
286  *
287  *	static struct drm_driver driver_drm_driver = {
288  *		[...]
289  *	};
290  *
291  *	static int driver_probe(struct platform_device *pdev)
292  *	{
293  *		struct driver_device *priv;
294  *		struct drm_device *drm;
295  *		int ret;
296  *
297  *		// devm_kzalloc() can't be used here because the drm_device '
298  *		// lifetime can exceed the device lifetime if driver unbind
299  *		// happens when userspace still has open file descriptors.
300  *		priv = kzalloc(sizeof(*priv), GFP_KERNEL);
301  *		if (!priv)
302  *			return -ENOMEM;
303  *
304  *		drm = &priv->drm;
305  *
306  *		ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver);
307  *		if (ret) {
308  *			kfree(priv);
309  *			return ret;
310  *		}
311  *		drmm_add_final_kfree(drm, priv);
312  *
313  *		ret = drmm_mode_config_init(drm);
314  *		if (ret)
315  *			return ret;
316  *
317  *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
318  *		if (!priv->userspace_facing)
319  *			return -ENOMEM;
320  *
321  *		priv->pclk = devm_clk_get(dev, "PCLK");
322  *		if (IS_ERR(priv->pclk))
323  *			return PTR_ERR(priv->pclk);
324  *
325  *		// Further setup, display pipeline etc
326  *
327  *		platform_set_drvdata(pdev, drm);
328  *
329  *		drm_mode_config_reset(drm);
330  *
331  *		ret = drm_dev_register(drm);
332  *		if (ret)
333  *			return ret;
334  *
335  *		drm_fbdev_generic_setup(drm, 32);
336  *
337  *		return 0;
338  *	}
339  *
340  *	// This function is called before the devm_ resources are released
341  *	static int driver_remove(struct platform_device *pdev)
342  *	{
343  *		struct drm_device *drm = platform_get_drvdata(pdev);
344  *
345  *		drm_dev_unregister(drm);
346  *		drm_atomic_helper_shutdown(drm)
347  *
348  *		return 0;
349  *	}
350  *
351  *	// This function is called on kernel restart and shutdown
352  *	static void driver_shutdown(struct platform_device *pdev)
353  *	{
354  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
355  *	}
356  *
357  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
358  *	{
359  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
360  *	}
361  *
362  *	static int __maybe_unused driver_pm_resume(struct device *dev)
363  *	{
364  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
365  *
366  *		return 0;
367  *	}
368  *
369  *	static const struct dev_pm_ops driver_pm_ops = {
370  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
371  *	};
372  *
373  *	static struct platform_driver driver_driver = {
374  *		.driver = {
375  *			[...]
376  *			.pm = &driver_pm_ops,
377  *		},
378  *		.probe = driver_probe,
379  *		.remove = driver_remove,
380  *		.shutdown = driver_shutdown,
381  *	};
382  *	module_platform_driver(driver_driver);
383  *
384  * Drivers that want to support device unplugging (USB, DT overlay unload) should
385  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
386  * regions that is accessing device resources to prevent use after they're
387  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
388  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
389  * drm_atomic_helper_shutdown() is called. This means that if the disable code
390  * paths are protected, they will not run on regular driver module unload,
391  * possibily leaving the hardware enabled.
392  */
393 
394 /**
395  * drm_put_dev - Unregister and release a DRM device
396  * @dev: DRM device
397  *
398  * Called at module unload time or when a PCI device is unplugged.
399  *
400  * Cleans up all DRM device, calling drm_lastclose().
401  *
402  * Note: Use of this function is deprecated. It will eventually go away
403  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
404  * instead to make sure that the device isn't userspace accessible any more
405  * while teardown is in progress, ensuring that userspace can't access an
406  * inconsistent state.
407  */
408 void drm_put_dev(struct drm_device *dev)
409 {
410 	DRM_DEBUG("\n");
411 
412 	if (!dev) {
413 		DRM_ERROR("cleanup called no dev\n");
414 		return;
415 	}
416 
417 	drm_dev_unregister(dev);
418 	drm_dev_put(dev);
419 }
420 EXPORT_SYMBOL(drm_put_dev);
421 
422 /**
423  * drm_dev_enter - Enter device critical section
424  * @dev: DRM device
425  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
426  *
427  * This function marks and protects the beginning of a section that should not
428  * be entered after the device has been unplugged. The section end is marked
429  * with drm_dev_exit(). Calls to this function can be nested.
430  *
431  * Returns:
432  * True if it is OK to enter the section, false otherwise.
433  */
434 bool drm_dev_enter(struct drm_device *dev, int *idx)
435 {
436 	*idx = srcu_read_lock(&drm_unplug_srcu);
437 
438 	if (dev->unplugged) {
439 		srcu_read_unlock(&drm_unplug_srcu, *idx);
440 		return false;
441 	}
442 
443 	return true;
444 }
445 EXPORT_SYMBOL(drm_dev_enter);
446 
447 /**
448  * drm_dev_exit - Exit device critical section
449  * @idx: index returned from drm_dev_enter()
450  *
451  * This function marks the end of a section that should not be entered after
452  * the device has been unplugged.
453  */
454 void drm_dev_exit(int idx)
455 {
456 	srcu_read_unlock(&drm_unplug_srcu, idx);
457 }
458 EXPORT_SYMBOL(drm_dev_exit);
459 
460 /**
461  * drm_dev_unplug - unplug a DRM device
462  * @dev: DRM device
463  *
464  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
465  * userspace operations. Entry-points can use drm_dev_enter() and
466  * drm_dev_exit() to protect device resources in a race free manner. This
467  * essentially unregisters the device like drm_dev_unregister(), but can be
468  * called while there are still open users of @dev.
469  */
470 void drm_dev_unplug(struct drm_device *dev)
471 {
472 	/*
473 	 * After synchronizing any critical read section is guaranteed to see
474 	 * the new value of ->unplugged, and any critical section which might
475 	 * still have seen the old value of ->unplugged is guaranteed to have
476 	 * finished.
477 	 */
478 	dev->unplugged = true;
479 	synchronize_srcu(&drm_unplug_srcu);
480 
481 	drm_dev_unregister(dev);
482 }
483 EXPORT_SYMBOL(drm_dev_unplug);
484 
485 /*
486  * DRM internal mount
487  * We want to be able to allocate our own "struct address_space" to control
488  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
489  * stand-alone address_space objects, so we need an underlying inode. As there
490  * is no way to allocate an independent inode easily, we need a fake internal
491  * VFS mount-point.
492  *
493  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
494  * frees it again. You are allowed to use iget() and iput() to get references to
495  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
496  * drm_fs_inode_free() call (which does not have to be the last iput()).
497  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
498  * between multiple inode-users. You could, technically, call
499  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
500  * iput(), but this way you'd end up with a new vfsmount for each inode.
501  */
502 
503 static int drm_fs_cnt;
504 static struct vfsmount *drm_fs_mnt;
505 
506 static int drm_fs_init_fs_context(struct fs_context *fc)
507 {
508 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
509 }
510 
511 static struct file_system_type drm_fs_type = {
512 	.name		= "drm",
513 	.owner		= THIS_MODULE,
514 	.init_fs_context = drm_fs_init_fs_context,
515 	.kill_sb	= kill_anon_super,
516 };
517 
518 static struct inode *drm_fs_inode_new(void)
519 {
520 	struct inode *inode;
521 	int r;
522 
523 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
524 	if (r < 0) {
525 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
526 		return ERR_PTR(r);
527 	}
528 
529 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
530 	if (IS_ERR(inode))
531 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
532 
533 	return inode;
534 }
535 
536 static void drm_fs_inode_free(struct inode *inode)
537 {
538 	if (inode) {
539 		iput(inode);
540 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
541 	}
542 }
543 
544 /**
545  * DOC: component helper usage recommendations
546  *
547  * DRM drivers that drive hardware where a logical device consists of a pile of
548  * independent hardware blocks are recommended to use the :ref:`component helper
549  * library<component>`. For consistency and better options for code reuse the
550  * following guidelines apply:
551  *
552  *  - The entire device initialization procedure should be run from the
553  *    &component_master_ops.master_bind callback, starting with drm_dev_init(),
554  *    then binding all components with component_bind_all() and finishing with
555  *    drm_dev_register().
556  *
557  *  - The opaque pointer passed to all components through component_bind_all()
558  *    should point at &struct drm_device of the device instance, not some driver
559  *    specific private structure.
560  *
561  *  - The component helper fills the niche where further standardization of
562  *    interfaces is not practical. When there already is, or will be, a
563  *    standardized interface like &drm_bridge or &drm_panel, providing its own
564  *    functions to find such components at driver load time, like
565  *    drm_of_find_panel_or_bridge(), then the component helper should not be
566  *    used.
567  */
568 
569 static void drm_dev_init_release(struct drm_device *dev, void *res)
570 {
571 	drm_legacy_ctxbitmap_cleanup(dev);
572 	drm_legacy_remove_map_hash(dev);
573 	drm_fs_inode_free(dev->anon_inode);
574 
575 	put_device(dev->dev);
576 	/* Prevent use-after-free in drm_managed_release when debugging is
577 	 * enabled. Slightly awkward, but can't really be helped. */
578 	dev->dev = NULL;
579 	mutex_destroy(&dev->master_mutex);
580 	mutex_destroy(&dev->clientlist_mutex);
581 	mutex_destroy(&dev->filelist_mutex);
582 	mutex_destroy(&dev->struct_mutex);
583 	drm_legacy_destroy_members(dev);
584 }
585 
586 /**
587  * drm_dev_init - Initialise new DRM device
588  * @dev: DRM device
589  * @driver: DRM driver
590  * @parent: Parent device object
591  *
592  * Initialize a new DRM device. No device registration is done.
593  * Call drm_dev_register() to advertice the device to user space and register it
594  * with other core subsystems. This should be done last in the device
595  * initialization sequence to make sure userspace can't access an inconsistent
596  * state.
597  *
598  * The initial ref-count of the object is 1. Use drm_dev_get() and
599  * drm_dev_put() to take and drop further ref-counts.
600  *
601  * It is recommended that drivers embed &struct drm_device into their own device
602  * structure.
603  *
604  * Drivers that do not want to allocate their own device struct
605  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
606  * that do embed &struct drm_device it must be placed first in the overall
607  * structure, and the overall structure must be allocated using kmalloc(): The
608  * drm core's release function unconditionally calls kfree() on the @dev pointer
609  * when the final reference is released. To override this behaviour, and so
610  * allow embedding of the drm_device inside the driver's device struct at an
611  * arbitrary offset, you must supply a &drm_driver.release callback and control
612  * the finalization explicitly.
613  *
614  * Note that drivers must call drmm_add_final_kfree() after this function has
615  * completed successfully.
616  *
617  * RETURNS:
618  * 0 on success, or error code on failure.
619  */
620 int drm_dev_init(struct drm_device *dev,
621 		 struct drm_driver *driver,
622 		 struct device *parent)
623 {
624 	int ret;
625 
626 	if (!drm_core_init_complete) {
627 		DRM_ERROR("DRM core is not initialized\n");
628 		return -ENODEV;
629 	}
630 
631 	if (WARN_ON(!parent))
632 		return -EINVAL;
633 
634 	kref_init(&dev->ref);
635 	dev->dev = get_device(parent);
636 	dev->driver = driver;
637 
638 	INIT_LIST_HEAD(&dev->managed.resources);
639 	spin_lock_init(&dev->managed.lock);
640 
641 	/* no per-device feature limits by default */
642 	dev->driver_features = ~0u;
643 
644 	drm_legacy_init_members(dev);
645 	INIT_LIST_HEAD(&dev->filelist);
646 	INIT_LIST_HEAD(&dev->filelist_internal);
647 	INIT_LIST_HEAD(&dev->clientlist);
648 	INIT_LIST_HEAD(&dev->vblank_event_list);
649 
650 	spin_lock_init(&dev->event_lock);
651 	mutex_init(&dev->struct_mutex);
652 	mutex_init(&dev->filelist_mutex);
653 	mutex_init(&dev->clientlist_mutex);
654 	mutex_init(&dev->master_mutex);
655 
656 	ret = drmm_add_action(dev, drm_dev_init_release, NULL);
657 	if (ret)
658 		return ret;
659 
660 	dev->anon_inode = drm_fs_inode_new();
661 	if (IS_ERR(dev->anon_inode)) {
662 		ret = PTR_ERR(dev->anon_inode);
663 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
664 		goto err;
665 	}
666 
667 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
668 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
669 		if (ret)
670 			goto err;
671 	}
672 
673 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
674 	if (ret)
675 		goto err;
676 
677 	ret = drm_legacy_create_map_hash(dev);
678 	if (ret)
679 		goto err;
680 
681 	drm_legacy_ctxbitmap_init(dev);
682 
683 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
684 		ret = drm_gem_init(dev);
685 		if (ret) {
686 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
687 			goto err;
688 		}
689 	}
690 
691 	ret = drm_dev_set_unique(dev, dev_name(parent));
692 	if (ret)
693 		goto err;
694 
695 	return 0;
696 
697 err:
698 	drm_managed_release(dev);
699 
700 	return ret;
701 }
702 EXPORT_SYMBOL(drm_dev_init);
703 
704 static void devm_drm_dev_init_release(void *data)
705 {
706 	drm_dev_put(data);
707 }
708 
709 /**
710  * devm_drm_dev_init - Resource managed drm_dev_init()
711  * @parent: Parent device object
712  * @dev: DRM device
713  * @driver: DRM driver
714  *
715  * Managed drm_dev_init(). The DRM device initialized with this function is
716  * automatically put on driver detach using drm_dev_put().
717  *
718  * Note that drivers must call drmm_add_final_kfree() after this function has
719  * completed successfully.
720  *
721  * RETURNS:
722  * 0 on success, or error code on failure.
723  */
724 int devm_drm_dev_init(struct device *parent,
725 		      struct drm_device *dev,
726 		      struct drm_driver *driver)
727 {
728 	int ret;
729 
730 	ret = drm_dev_init(dev, driver, parent);
731 	if (ret)
732 		return ret;
733 
734 	ret = devm_add_action(parent, devm_drm_dev_init_release, dev);
735 	if (ret)
736 		devm_drm_dev_init_release(dev);
737 
738 	return ret;
739 }
740 EXPORT_SYMBOL(devm_drm_dev_init);
741 
742 void *__devm_drm_dev_alloc(struct device *parent, struct drm_driver *driver,
743 			   size_t size, size_t offset)
744 {
745 	void *container;
746 	struct drm_device *drm;
747 	int ret;
748 
749 	container = kzalloc(size, GFP_KERNEL);
750 	if (!container)
751 		return ERR_PTR(-ENOMEM);
752 
753 	drm = container + offset;
754 	ret = devm_drm_dev_init(parent, drm, driver);
755 	if (ret) {
756 		kfree(container);
757 		return ERR_PTR(ret);
758 	}
759 	drmm_add_final_kfree(drm, container);
760 
761 	return container;
762 }
763 EXPORT_SYMBOL(__devm_drm_dev_alloc);
764 
765 /**
766  * drm_dev_alloc - Allocate new DRM device
767  * @driver: DRM driver to allocate device for
768  * @parent: Parent device object
769  *
770  * Allocate and initialize a new DRM device. No device registration is done.
771  * Call drm_dev_register() to advertice the device to user space and register it
772  * with other core subsystems. This should be done last in the device
773  * initialization sequence to make sure userspace can't access an inconsistent
774  * state.
775  *
776  * The initial ref-count of the object is 1. Use drm_dev_get() and
777  * drm_dev_put() to take and drop further ref-counts.
778  *
779  * Note that for purely virtual devices @parent can be NULL.
780  *
781  * Drivers that wish to subclass or embed &struct drm_device into their
782  * own struct should look at using drm_dev_init() instead.
783  *
784  * RETURNS:
785  * Pointer to new DRM device, or ERR_PTR on failure.
786  */
787 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
788 				 struct device *parent)
789 {
790 	struct drm_device *dev;
791 	int ret;
792 
793 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
794 	if (!dev)
795 		return ERR_PTR(-ENOMEM);
796 
797 	ret = drm_dev_init(dev, driver, parent);
798 	if (ret) {
799 		kfree(dev);
800 		return ERR_PTR(ret);
801 	}
802 
803 	drmm_add_final_kfree(dev, dev);
804 
805 	return dev;
806 }
807 EXPORT_SYMBOL(drm_dev_alloc);
808 
809 static void drm_dev_release(struct kref *ref)
810 {
811 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
812 
813 	if (dev->driver->release)
814 		dev->driver->release(dev);
815 
816 	drm_managed_release(dev);
817 
818 	if (dev->managed.final_kfree)
819 		kfree(dev->managed.final_kfree);
820 }
821 
822 /**
823  * drm_dev_get - Take reference of a DRM device
824  * @dev: device to take reference of or NULL
825  *
826  * This increases the ref-count of @dev by one. You *must* already own a
827  * reference when calling this. Use drm_dev_put() to drop this reference
828  * again.
829  *
830  * This function never fails. However, this function does not provide *any*
831  * guarantee whether the device is alive or running. It only provides a
832  * reference to the object and the memory associated with it.
833  */
834 void drm_dev_get(struct drm_device *dev)
835 {
836 	if (dev)
837 		kref_get(&dev->ref);
838 }
839 EXPORT_SYMBOL(drm_dev_get);
840 
841 /**
842  * drm_dev_put - Drop reference of a DRM device
843  * @dev: device to drop reference of or NULL
844  *
845  * This decreases the ref-count of @dev by one. The device is destroyed if the
846  * ref-count drops to zero.
847  */
848 void drm_dev_put(struct drm_device *dev)
849 {
850 	if (dev)
851 		kref_put(&dev->ref, drm_dev_release);
852 }
853 EXPORT_SYMBOL(drm_dev_put);
854 
855 static int create_compat_control_link(struct drm_device *dev)
856 {
857 	struct drm_minor *minor;
858 	char *name;
859 	int ret;
860 
861 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
862 		return 0;
863 
864 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
865 	if (!minor)
866 		return 0;
867 
868 	/*
869 	 * Some existing userspace out there uses the existing of the controlD*
870 	 * sysfs files to figure out whether it's a modeset driver. It only does
871 	 * readdir, hence a symlink is sufficient (and the least confusing
872 	 * option). Otherwise controlD* is entirely unused.
873 	 *
874 	 * Old controlD chardev have been allocated in the range
875 	 * 64-127.
876 	 */
877 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
878 	if (!name)
879 		return -ENOMEM;
880 
881 	ret = sysfs_create_link(minor->kdev->kobj.parent,
882 				&minor->kdev->kobj,
883 				name);
884 
885 	kfree(name);
886 
887 	return ret;
888 }
889 
890 static void remove_compat_control_link(struct drm_device *dev)
891 {
892 	struct drm_minor *minor;
893 	char *name;
894 
895 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
896 		return;
897 
898 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
899 	if (!minor)
900 		return;
901 
902 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
903 	if (!name)
904 		return;
905 
906 	sysfs_remove_link(minor->kdev->kobj.parent, name);
907 
908 	kfree(name);
909 }
910 
911 /**
912  * drm_dev_register - Register DRM device
913  * @dev: Device to register
914  * @flags: Flags passed to the driver's .load() function
915  *
916  * Register the DRM device @dev with the system, advertise device to user-space
917  * and start normal device operation. @dev must be initialized via drm_dev_init()
918  * previously.
919  *
920  * Never call this twice on any device!
921  *
922  * NOTE: To ensure backward compatibility with existing drivers method this
923  * function calls the &drm_driver.load method after registering the device
924  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
925  * therefore deprecated, drivers must perform all initialization before calling
926  * drm_dev_register().
927  *
928  * RETURNS:
929  * 0 on success, negative error code on failure.
930  */
931 int drm_dev_register(struct drm_device *dev, unsigned long flags)
932 {
933 	struct drm_driver *driver = dev->driver;
934 	int ret;
935 
936 	if (!driver->load)
937 		drm_mode_config_validate(dev);
938 
939 	WARN_ON(!dev->managed.final_kfree);
940 
941 	if (drm_dev_needs_global_mutex(dev))
942 		mutex_lock(&drm_global_mutex);
943 
944 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
945 	if (ret)
946 		goto err_minors;
947 
948 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
949 	if (ret)
950 		goto err_minors;
951 
952 	ret = create_compat_control_link(dev);
953 	if (ret)
954 		goto err_minors;
955 
956 	dev->registered = true;
957 
958 	if (dev->driver->load) {
959 		ret = dev->driver->load(dev, flags);
960 		if (ret)
961 			goto err_minors;
962 	}
963 
964 	if (drm_core_check_feature(dev, DRIVER_MODESET))
965 		drm_modeset_register_all(dev);
966 
967 	ret = 0;
968 
969 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
970 		 driver->name, driver->major, driver->minor,
971 		 driver->patchlevel, driver->date,
972 		 dev->dev ? dev_name(dev->dev) : "virtual device",
973 		 dev->primary->index);
974 
975 	goto out_unlock;
976 
977 err_minors:
978 	remove_compat_control_link(dev);
979 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
980 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
981 out_unlock:
982 	if (drm_dev_needs_global_mutex(dev))
983 		mutex_unlock(&drm_global_mutex);
984 	return ret;
985 }
986 EXPORT_SYMBOL(drm_dev_register);
987 
988 /**
989  * drm_dev_unregister - Unregister DRM device
990  * @dev: Device to unregister
991  *
992  * Unregister the DRM device from the system. This does the reverse of
993  * drm_dev_register() but does not deallocate the device. The caller must call
994  * drm_dev_put() to drop their final reference.
995  *
996  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
997  * which can be called while there are still open users of @dev.
998  *
999  * This should be called first in the device teardown code to make sure
1000  * userspace can't access the device instance any more.
1001  */
1002 void drm_dev_unregister(struct drm_device *dev)
1003 {
1004 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
1005 		drm_lastclose(dev);
1006 
1007 	dev->registered = false;
1008 
1009 	drm_client_dev_unregister(dev);
1010 
1011 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1012 		drm_modeset_unregister_all(dev);
1013 
1014 	if (dev->driver->unload)
1015 		dev->driver->unload(dev);
1016 
1017 	if (dev->agp)
1018 		drm_pci_agp_destroy(dev);
1019 
1020 	drm_legacy_rmmaps(dev);
1021 
1022 	remove_compat_control_link(dev);
1023 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1024 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1025 }
1026 EXPORT_SYMBOL(drm_dev_unregister);
1027 
1028 /**
1029  * drm_dev_set_unique - Set the unique name of a DRM device
1030  * @dev: device of which to set the unique name
1031  * @name: unique name
1032  *
1033  * Sets the unique name of a DRM device using the specified string. This is
1034  * already done by drm_dev_init(), drivers should only override the default
1035  * unique name for backwards compatibility reasons.
1036  *
1037  * Return: 0 on success or a negative error code on failure.
1038  */
1039 int drm_dev_set_unique(struct drm_device *dev, const char *name)
1040 {
1041 	drmm_kfree(dev, dev->unique);
1042 	dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL);
1043 
1044 	return dev->unique ? 0 : -ENOMEM;
1045 }
1046 EXPORT_SYMBOL(drm_dev_set_unique);
1047 
1048 /*
1049  * DRM Core
1050  * The DRM core module initializes all global DRM objects and makes them
1051  * available to drivers. Once setup, drivers can probe their respective
1052  * devices.
1053  * Currently, core management includes:
1054  *  - The "DRM-Global" key/value database
1055  *  - Global ID management for connectors
1056  *  - DRM major number allocation
1057  *  - DRM minor management
1058  *  - DRM sysfs class
1059  *  - DRM debugfs root
1060  *
1061  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1062  * interface registered on a DRM device, you can request minor numbers from DRM
1063  * core. DRM core takes care of major-number management and char-dev
1064  * registration. A stub ->open() callback forwards any open() requests to the
1065  * registered minor.
1066  */
1067 
1068 static int drm_stub_open(struct inode *inode, struct file *filp)
1069 {
1070 	const struct file_operations *new_fops;
1071 	struct drm_minor *minor;
1072 	int err;
1073 
1074 	DRM_DEBUG("\n");
1075 
1076 	minor = drm_minor_acquire(iminor(inode));
1077 	if (IS_ERR(minor))
1078 		return PTR_ERR(minor);
1079 
1080 	new_fops = fops_get(minor->dev->driver->fops);
1081 	if (!new_fops) {
1082 		err = -ENODEV;
1083 		goto out;
1084 	}
1085 
1086 	replace_fops(filp, new_fops);
1087 	if (filp->f_op->open)
1088 		err = filp->f_op->open(inode, filp);
1089 	else
1090 		err = 0;
1091 
1092 out:
1093 	drm_minor_release(minor);
1094 
1095 	return err;
1096 }
1097 
1098 static const struct file_operations drm_stub_fops = {
1099 	.owner = THIS_MODULE,
1100 	.open = drm_stub_open,
1101 	.llseek = noop_llseek,
1102 };
1103 
1104 static void drm_core_exit(void)
1105 {
1106 	unregister_chrdev(DRM_MAJOR, "drm");
1107 	debugfs_remove(drm_debugfs_root);
1108 	drm_sysfs_destroy();
1109 	idr_destroy(&drm_minors_idr);
1110 	drm_connector_ida_destroy();
1111 }
1112 
1113 static int __init drm_core_init(void)
1114 {
1115 	int ret;
1116 
1117 	drm_connector_ida_init();
1118 	idr_init(&drm_minors_idr);
1119 
1120 	ret = drm_sysfs_init();
1121 	if (ret < 0) {
1122 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1123 		goto error;
1124 	}
1125 
1126 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1127 
1128 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1129 	if (ret < 0)
1130 		goto error;
1131 
1132 	drm_core_init_complete = true;
1133 
1134 	DRM_DEBUG("Initialized\n");
1135 	return 0;
1136 
1137 error:
1138 	drm_core_exit();
1139 	return ret;
1140 }
1141 
1142 module_init(drm_core_init);
1143 module_exit(drm_core_exit);
1144