xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision 4f727ece)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/srcu.h>
36 
37 #include <drm/drm_client.h>
38 #include <drm/drm_color_mgmt.h>
39 #include <drm/drm_drv.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_mode_object.h>
42 #include <drm/drm_print.h>
43 
44 #include "drm_crtc_internal.h"
45 #include "drm_internal.h"
46 #include "drm_legacy.h"
47 
48 /*
49  * drm_debug: Enable debug output.
50  * Bitmask of DRM_UT_x. See include/drm/drm_print.h for details.
51  */
52 unsigned int drm_debug = 0;
53 EXPORT_SYMBOL(drm_debug);
54 
55 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
56 MODULE_DESCRIPTION("DRM shared core routines");
57 MODULE_LICENSE("GPL and additional rights");
58 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
59 "\t\tBit 0 (0x01)  will enable CORE messages (drm core code)\n"
60 "\t\tBit 1 (0x02)  will enable DRIVER messages (drm controller code)\n"
61 "\t\tBit 2 (0x04)  will enable KMS messages (modesetting code)\n"
62 "\t\tBit 3 (0x08)  will enable PRIME messages (prime code)\n"
63 "\t\tBit 4 (0x10)  will enable ATOMIC messages (atomic code)\n"
64 "\t\tBit 5 (0x20)  will enable VBL messages (vblank code)\n"
65 "\t\tBit 7 (0x80)  will enable LEASE messages (leasing code)\n"
66 "\t\tBit 8 (0x100) will enable DP messages (displayport code)");
67 module_param_named(debug, drm_debug, int, 0600);
68 
69 static DEFINE_SPINLOCK(drm_minor_lock);
70 static struct idr drm_minors_idr;
71 
72 /*
73  * If the drm core fails to init for whatever reason,
74  * we should prevent any drivers from registering with it.
75  * It's best to check this at drm_dev_init(), as some drivers
76  * prefer to embed struct drm_device into their own device
77  * structure and call drm_dev_init() themselves.
78  */
79 static bool drm_core_init_complete = false;
80 
81 static struct dentry *drm_debugfs_root;
82 
83 DEFINE_STATIC_SRCU(drm_unplug_srcu);
84 
85 /*
86  * DRM Minors
87  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
88  * of them is represented by a drm_minor object. Depending on the capabilities
89  * of the device-driver, different interfaces are registered.
90  *
91  * Minors can be accessed via dev->$minor_name. This pointer is either
92  * NULL or a valid drm_minor pointer and stays valid as long as the device is
93  * valid. This means, DRM minors have the same life-time as the underlying
94  * device. However, this doesn't mean that the minor is active. Minors are
95  * registered and unregistered dynamically according to device-state.
96  */
97 
98 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
99 					     unsigned int type)
100 {
101 	switch (type) {
102 	case DRM_MINOR_PRIMARY:
103 		return &dev->primary;
104 	case DRM_MINOR_RENDER:
105 		return &dev->render;
106 	default:
107 		BUG();
108 	}
109 }
110 
111 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
112 {
113 	struct drm_minor *minor;
114 	unsigned long flags;
115 	int r;
116 
117 	minor = kzalloc(sizeof(*minor), GFP_KERNEL);
118 	if (!minor)
119 		return -ENOMEM;
120 
121 	minor->type = type;
122 	minor->dev = dev;
123 
124 	idr_preload(GFP_KERNEL);
125 	spin_lock_irqsave(&drm_minor_lock, flags);
126 	r = idr_alloc(&drm_minors_idr,
127 		      NULL,
128 		      64 * type,
129 		      64 * (type + 1),
130 		      GFP_NOWAIT);
131 	spin_unlock_irqrestore(&drm_minor_lock, flags);
132 	idr_preload_end();
133 
134 	if (r < 0)
135 		goto err_free;
136 
137 	minor->index = r;
138 
139 	minor->kdev = drm_sysfs_minor_alloc(minor);
140 	if (IS_ERR(minor->kdev)) {
141 		r = PTR_ERR(minor->kdev);
142 		goto err_index;
143 	}
144 
145 	*drm_minor_get_slot(dev, type) = minor;
146 	return 0;
147 
148 err_index:
149 	spin_lock_irqsave(&drm_minor_lock, flags);
150 	idr_remove(&drm_minors_idr, minor->index);
151 	spin_unlock_irqrestore(&drm_minor_lock, flags);
152 err_free:
153 	kfree(minor);
154 	return r;
155 }
156 
157 static void drm_minor_free(struct drm_device *dev, unsigned int type)
158 {
159 	struct drm_minor **slot, *minor;
160 	unsigned long flags;
161 
162 	slot = drm_minor_get_slot(dev, type);
163 	minor = *slot;
164 	if (!minor)
165 		return;
166 
167 	put_device(minor->kdev);
168 
169 	spin_lock_irqsave(&drm_minor_lock, flags);
170 	idr_remove(&drm_minors_idr, minor->index);
171 	spin_unlock_irqrestore(&drm_minor_lock, flags);
172 
173 	kfree(minor);
174 	*slot = NULL;
175 }
176 
177 static int drm_minor_register(struct drm_device *dev, unsigned int type)
178 {
179 	struct drm_minor *minor;
180 	unsigned long flags;
181 	int ret;
182 
183 	DRM_DEBUG("\n");
184 
185 	minor = *drm_minor_get_slot(dev, type);
186 	if (!minor)
187 		return 0;
188 
189 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
190 	if (ret) {
191 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
192 		goto err_debugfs;
193 	}
194 
195 	ret = device_add(minor->kdev);
196 	if (ret)
197 		goto err_debugfs;
198 
199 	/* replace NULL with @minor so lookups will succeed from now on */
200 	spin_lock_irqsave(&drm_minor_lock, flags);
201 	idr_replace(&drm_minors_idr, minor, minor->index);
202 	spin_unlock_irqrestore(&drm_minor_lock, flags);
203 
204 	DRM_DEBUG("new minor registered %d\n", minor->index);
205 	return 0;
206 
207 err_debugfs:
208 	drm_debugfs_cleanup(minor);
209 	return ret;
210 }
211 
212 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
213 {
214 	struct drm_minor *minor;
215 	unsigned long flags;
216 
217 	minor = *drm_minor_get_slot(dev, type);
218 	if (!minor || !device_is_registered(minor->kdev))
219 		return;
220 
221 	/* replace @minor with NULL so lookups will fail from now on */
222 	spin_lock_irqsave(&drm_minor_lock, flags);
223 	idr_replace(&drm_minors_idr, NULL, minor->index);
224 	spin_unlock_irqrestore(&drm_minor_lock, flags);
225 
226 	device_del(minor->kdev);
227 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
228 	drm_debugfs_cleanup(minor);
229 }
230 
231 /*
232  * Looks up the given minor-ID and returns the respective DRM-minor object. The
233  * refence-count of the underlying device is increased so you must release this
234  * object with drm_minor_release().
235  *
236  * As long as you hold this minor, it is guaranteed that the object and the
237  * minor->dev pointer will stay valid! However, the device may get unplugged and
238  * unregistered while you hold the minor.
239  */
240 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
241 {
242 	struct drm_minor *minor;
243 	unsigned long flags;
244 
245 	spin_lock_irqsave(&drm_minor_lock, flags);
246 	minor = idr_find(&drm_minors_idr, minor_id);
247 	if (minor)
248 		drm_dev_get(minor->dev);
249 	spin_unlock_irqrestore(&drm_minor_lock, flags);
250 
251 	if (!minor) {
252 		return ERR_PTR(-ENODEV);
253 	} else if (drm_dev_is_unplugged(minor->dev)) {
254 		drm_dev_put(minor->dev);
255 		return ERR_PTR(-ENODEV);
256 	}
257 
258 	return minor;
259 }
260 
261 void drm_minor_release(struct drm_minor *minor)
262 {
263 	drm_dev_put(minor->dev);
264 }
265 
266 /**
267  * DOC: driver instance overview
268  *
269  * A device instance for a drm driver is represented by &struct drm_device. This
270  * is initialized with drm_dev_init(), usually from bus-specific ->probe()
271  * callbacks implemented by the driver. The driver then needs to initialize all
272  * the various subsystems for the drm device like memory management, vblank
273  * handling, modesetting support and intial output configuration plus obviously
274  * initialize all the corresponding hardware bits. Finally when everything is up
275  * and running and ready for userspace the device instance can be published
276  * using drm_dev_register().
277  *
278  * There is also deprecated support for initalizing device instances using
279  * bus-specific helpers and the &drm_driver.load callback. But due to
280  * backwards-compatibility needs the device instance have to be published too
281  * early, which requires unpretty global locking to make safe and is therefore
282  * only support for existing drivers not yet converted to the new scheme.
283  *
284  * When cleaning up a device instance everything needs to be done in reverse:
285  * First unpublish the device instance with drm_dev_unregister(). Then clean up
286  * any other resources allocated at device initialization and drop the driver's
287  * reference to &drm_device using drm_dev_put().
288  *
289  * Note that the lifetime rules for &drm_device instance has still a lot of
290  * historical baggage. Hence use the reference counting provided by
291  * drm_dev_get() and drm_dev_put() only carefully.
292  *
293  * Display driver example
294  * ~~~~~~~~~~~~~~~~~~~~~~
295  *
296  * The following example shows a typical structure of a DRM display driver.
297  * The example focus on the probe() function and the other functions that is
298  * almost always present and serves as a demonstration of devm_drm_dev_init()
299  * usage with its accompanying drm_driver->release callback.
300  *
301  * .. code-block:: c
302  *
303  *	struct driver_device {
304  *		struct drm_device drm;
305  *		void *userspace_facing;
306  *		struct clk *pclk;
307  *	};
308  *
309  *	static void driver_drm_release(struct drm_device *drm)
310  *	{
311  *		struct driver_device *priv = container_of(...);
312  *
313  *		drm_mode_config_cleanup(drm);
314  *		drm_dev_fini(drm);
315  *		kfree(priv->userspace_facing);
316  *		kfree(priv);
317  *	}
318  *
319  *	static struct drm_driver driver_drm_driver = {
320  *		[...]
321  *		.release = driver_drm_release,
322  *	};
323  *
324  *	static int driver_probe(struct platform_device *pdev)
325  *	{
326  *		struct driver_device *priv;
327  *		struct drm_device *drm;
328  *		int ret;
329  *
330  *		[
331  *		  devm_kzalloc() can't be used here because the drm_device
332  *		  lifetime can exceed the device lifetime if driver unbind
333  *		  happens when userspace still has open file descriptors.
334  *		]
335  *		priv = kzalloc(sizeof(*priv), GFP_KERNEL);
336  *		if (!priv)
337  *			return -ENOMEM;
338  *
339  *		drm = &priv->drm;
340  *
341  *		ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver);
342  *		if (ret) {
343  *			kfree(drm);
344  *			return ret;
345  *		}
346  *
347  *		drm_mode_config_init(drm);
348  *
349  *		priv->userspace_facing = kzalloc(..., GFP_KERNEL);
350  *		if (!priv->userspace_facing)
351  *			return -ENOMEM;
352  *
353  *		priv->pclk = devm_clk_get(dev, "PCLK");
354  *		if (IS_ERR(priv->pclk))
355  *			return PTR_ERR(priv->pclk);
356  *
357  *		[ Further setup, display pipeline etc ]
358  *
359  *		platform_set_drvdata(pdev, drm);
360  *
361  *		drm_mode_config_reset(drm);
362  *
363  *		ret = drm_dev_register(drm);
364  *		if (ret)
365  *			return ret;
366  *
367  *		drm_fbdev_generic_setup(drm, 32);
368  *
369  *		return 0;
370  *	}
371  *
372  *	[ This function is called before the devm_ resources are released ]
373  *	static int driver_remove(struct platform_device *pdev)
374  *	{
375  *		struct drm_device *drm = platform_get_drvdata(pdev);
376  *
377  *		drm_dev_unregister(drm);
378  *		drm_atomic_helper_shutdown(drm)
379  *
380  *		return 0;
381  *	}
382  *
383  *	[ This function is called on kernel restart and shutdown ]
384  *	static void driver_shutdown(struct platform_device *pdev)
385  *	{
386  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
387  *	}
388  *
389  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
390  *	{
391  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
392  *	}
393  *
394  *	static int __maybe_unused driver_pm_resume(struct device *dev)
395  *	{
396  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
397  *
398  *		return 0;
399  *	}
400  *
401  *	static const struct dev_pm_ops driver_pm_ops = {
402  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
403  *	};
404  *
405  *	static struct platform_driver driver_driver = {
406  *		.driver = {
407  *			[...]
408  *			.pm = &driver_pm_ops,
409  *		},
410  *		.probe = driver_probe,
411  *		.remove = driver_remove,
412  *		.shutdown = driver_shutdown,
413  *	};
414  *	module_platform_driver(driver_driver);
415  *
416  * Drivers that want to support device unplugging (USB, DT overlay unload) should
417  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
418  * regions that is accessing device resources to prevent use after they're
419  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
420  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
421  * drm_atomic_helper_shutdown() is called. This means that if the disable code
422  * paths are protected, they will not run on regular driver module unload,
423  * possibily leaving the hardware enabled.
424  */
425 
426 /**
427  * drm_put_dev - Unregister and release a DRM device
428  * @dev: DRM device
429  *
430  * Called at module unload time or when a PCI device is unplugged.
431  *
432  * Cleans up all DRM device, calling drm_lastclose().
433  *
434  * Note: Use of this function is deprecated. It will eventually go away
435  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
436  * instead to make sure that the device isn't userspace accessible any more
437  * while teardown is in progress, ensuring that userspace can't access an
438  * inconsistent state.
439  */
440 void drm_put_dev(struct drm_device *dev)
441 {
442 	DRM_DEBUG("\n");
443 
444 	if (!dev) {
445 		DRM_ERROR("cleanup called no dev\n");
446 		return;
447 	}
448 
449 	drm_dev_unregister(dev);
450 	drm_dev_put(dev);
451 }
452 EXPORT_SYMBOL(drm_put_dev);
453 
454 /**
455  * drm_dev_enter - Enter device critical section
456  * @dev: DRM device
457  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
458  *
459  * This function marks and protects the beginning of a section that should not
460  * be entered after the device has been unplugged. The section end is marked
461  * with drm_dev_exit(). Calls to this function can be nested.
462  *
463  * Returns:
464  * True if it is OK to enter the section, false otherwise.
465  */
466 bool drm_dev_enter(struct drm_device *dev, int *idx)
467 {
468 	*idx = srcu_read_lock(&drm_unplug_srcu);
469 
470 	if (dev->unplugged) {
471 		srcu_read_unlock(&drm_unplug_srcu, *idx);
472 		return false;
473 	}
474 
475 	return true;
476 }
477 EXPORT_SYMBOL(drm_dev_enter);
478 
479 /**
480  * drm_dev_exit - Exit device critical section
481  * @idx: index returned from drm_dev_enter()
482  *
483  * This function marks the end of a section that should not be entered after
484  * the device has been unplugged.
485  */
486 void drm_dev_exit(int idx)
487 {
488 	srcu_read_unlock(&drm_unplug_srcu, idx);
489 }
490 EXPORT_SYMBOL(drm_dev_exit);
491 
492 /**
493  * drm_dev_unplug - unplug a DRM device
494  * @dev: DRM device
495  *
496  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
497  * userspace operations. Entry-points can use drm_dev_enter() and
498  * drm_dev_exit() to protect device resources in a race free manner. This
499  * essentially unregisters the device like drm_dev_unregister(), but can be
500  * called while there are still open users of @dev.
501  */
502 void drm_dev_unplug(struct drm_device *dev)
503 {
504 	/*
505 	 * After synchronizing any critical read section is guaranteed to see
506 	 * the new value of ->unplugged, and any critical section which might
507 	 * still have seen the old value of ->unplugged is guaranteed to have
508 	 * finished.
509 	 */
510 	dev->unplugged = true;
511 	synchronize_srcu(&drm_unplug_srcu);
512 
513 	drm_dev_unregister(dev);
514 }
515 EXPORT_SYMBOL(drm_dev_unplug);
516 
517 /*
518  * DRM internal mount
519  * We want to be able to allocate our own "struct address_space" to control
520  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
521  * stand-alone address_space objects, so we need an underlying inode. As there
522  * is no way to allocate an independent inode easily, we need a fake internal
523  * VFS mount-point.
524  *
525  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
526  * frees it again. You are allowed to use iget() and iput() to get references to
527  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
528  * drm_fs_inode_free() call (which does not have to be the last iput()).
529  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
530  * between multiple inode-users. You could, technically, call
531  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
532  * iput(), but this way you'd end up with a new vfsmount for each inode.
533  */
534 
535 static int drm_fs_cnt;
536 static struct vfsmount *drm_fs_mnt;
537 
538 static const struct dentry_operations drm_fs_dops = {
539 	.d_dname	= simple_dname,
540 };
541 
542 static const struct super_operations drm_fs_sops = {
543 	.statfs		= simple_statfs,
544 };
545 
546 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
547 				   const char *dev_name, void *data)
548 {
549 	return mount_pseudo(fs_type,
550 			    "drm:",
551 			    &drm_fs_sops,
552 			    &drm_fs_dops,
553 			    0x010203ff);
554 }
555 
556 static struct file_system_type drm_fs_type = {
557 	.name		= "drm",
558 	.owner		= THIS_MODULE,
559 	.mount		= drm_fs_mount,
560 	.kill_sb	= kill_anon_super,
561 };
562 
563 static struct inode *drm_fs_inode_new(void)
564 {
565 	struct inode *inode;
566 	int r;
567 
568 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
569 	if (r < 0) {
570 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
571 		return ERR_PTR(r);
572 	}
573 
574 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
575 	if (IS_ERR(inode))
576 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
577 
578 	return inode;
579 }
580 
581 static void drm_fs_inode_free(struct inode *inode)
582 {
583 	if (inode) {
584 		iput(inode);
585 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
586 	}
587 }
588 
589 /**
590  * DOC: component helper usage recommendations
591  *
592  * DRM drivers that drive hardware where a logical device consists of a pile of
593  * independent hardware blocks are recommended to use the :ref:`component helper
594  * library<component>`. For consistency and better options for code reuse the
595  * following guidelines apply:
596  *
597  *  - The entire device initialization procedure should be run from the
598  *    &component_master_ops.master_bind callback, starting with drm_dev_init(),
599  *    then binding all components with component_bind_all() and finishing with
600  *    drm_dev_register().
601  *
602  *  - The opaque pointer passed to all components through component_bind_all()
603  *    should point at &struct drm_device of the device instance, not some driver
604  *    specific private structure.
605  *
606  *  - The component helper fills the niche where further standardization of
607  *    interfaces is not practical. When there already is, or will be, a
608  *    standardized interface like &drm_bridge or &drm_panel, providing its own
609  *    functions to find such components at driver load time, like
610  *    drm_of_find_panel_or_bridge(), then the component helper should not be
611  *    used.
612  */
613 
614 /**
615  * drm_dev_init - Initialise new DRM device
616  * @dev: DRM device
617  * @driver: DRM driver
618  * @parent: Parent device object
619  *
620  * Initialize a new DRM device. No device registration is done.
621  * Call drm_dev_register() to advertice the device to user space and register it
622  * with other core subsystems. This should be done last in the device
623  * initialization sequence to make sure userspace can't access an inconsistent
624  * state.
625  *
626  * The initial ref-count of the object is 1. Use drm_dev_get() and
627  * drm_dev_put() to take and drop further ref-counts.
628  *
629  * It is recommended that drivers embed &struct drm_device into their own device
630  * structure.
631  *
632  * Drivers that do not want to allocate their own device struct
633  * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
634  * that do embed &struct drm_device it must be placed first in the overall
635  * structure, and the overall structure must be allocated using kmalloc(): The
636  * drm core's release function unconditionally calls kfree() on the @dev pointer
637  * when the final reference is released. To override this behaviour, and so
638  * allow embedding of the drm_device inside the driver's device struct at an
639  * arbitrary offset, you must supply a &drm_driver.release callback and control
640  * the finalization explicitly.
641  *
642  * RETURNS:
643  * 0 on success, or error code on failure.
644  */
645 int drm_dev_init(struct drm_device *dev,
646 		 struct drm_driver *driver,
647 		 struct device *parent)
648 {
649 	int ret;
650 
651 	if (!drm_core_init_complete) {
652 		DRM_ERROR("DRM core is not initialized\n");
653 		return -ENODEV;
654 	}
655 
656 	BUG_ON(!parent);
657 
658 	kref_init(&dev->ref);
659 	dev->dev = get_device(parent);
660 	dev->driver = driver;
661 
662 	/* no per-device feature limits by default */
663 	dev->driver_features = ~0u;
664 
665 	drm_legacy_init_members(dev);
666 	INIT_LIST_HEAD(&dev->filelist);
667 	INIT_LIST_HEAD(&dev->filelist_internal);
668 	INIT_LIST_HEAD(&dev->clientlist);
669 	INIT_LIST_HEAD(&dev->vblank_event_list);
670 
671 	spin_lock_init(&dev->event_lock);
672 	mutex_init(&dev->struct_mutex);
673 	mutex_init(&dev->filelist_mutex);
674 	mutex_init(&dev->clientlist_mutex);
675 	mutex_init(&dev->master_mutex);
676 
677 	dev->anon_inode = drm_fs_inode_new();
678 	if (IS_ERR(dev->anon_inode)) {
679 		ret = PTR_ERR(dev->anon_inode);
680 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
681 		goto err_free;
682 	}
683 
684 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
685 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
686 		if (ret)
687 			goto err_minors;
688 	}
689 
690 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
691 	if (ret)
692 		goto err_minors;
693 
694 	ret = drm_legacy_create_map_hash(dev);
695 	if (ret)
696 		goto err_minors;
697 
698 	drm_legacy_ctxbitmap_init(dev);
699 
700 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
701 		ret = drm_gem_init(dev);
702 		if (ret) {
703 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
704 			goto err_ctxbitmap;
705 		}
706 	}
707 
708 	ret = drm_dev_set_unique(dev, dev_name(parent));
709 	if (ret)
710 		goto err_setunique;
711 
712 	return 0;
713 
714 err_setunique:
715 	if (drm_core_check_feature(dev, DRIVER_GEM))
716 		drm_gem_destroy(dev);
717 err_ctxbitmap:
718 	drm_legacy_ctxbitmap_cleanup(dev);
719 	drm_legacy_remove_map_hash(dev);
720 err_minors:
721 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
722 	drm_minor_free(dev, DRM_MINOR_RENDER);
723 	drm_fs_inode_free(dev->anon_inode);
724 err_free:
725 	put_device(dev->dev);
726 	mutex_destroy(&dev->master_mutex);
727 	mutex_destroy(&dev->clientlist_mutex);
728 	mutex_destroy(&dev->filelist_mutex);
729 	mutex_destroy(&dev->struct_mutex);
730 	drm_legacy_destroy_members(dev);
731 	return ret;
732 }
733 EXPORT_SYMBOL(drm_dev_init);
734 
735 static void devm_drm_dev_init_release(void *data)
736 {
737 	drm_dev_put(data);
738 }
739 
740 /**
741  * devm_drm_dev_init - Resource managed drm_dev_init()
742  * @parent: Parent device object
743  * @dev: DRM device
744  * @driver: DRM driver
745  *
746  * Managed drm_dev_init(). The DRM device initialized with this function is
747  * automatically put on driver detach using drm_dev_put(). You must supply a
748  * &drm_driver.release callback to control the finalization explicitly.
749  *
750  * RETURNS:
751  * 0 on success, or error code on failure.
752  */
753 int devm_drm_dev_init(struct device *parent,
754 		      struct drm_device *dev,
755 		      struct drm_driver *driver)
756 {
757 	int ret;
758 
759 	if (WARN_ON(!parent || !driver->release))
760 		return -EINVAL;
761 
762 	ret = drm_dev_init(dev, driver, parent);
763 	if (ret)
764 		return ret;
765 
766 	ret = devm_add_action(parent, devm_drm_dev_init_release, dev);
767 	if (ret)
768 		devm_drm_dev_init_release(dev);
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL(devm_drm_dev_init);
773 
774 /**
775  * drm_dev_fini - Finalize a dead DRM device
776  * @dev: DRM device
777  *
778  * Finalize a dead DRM device. This is the converse to drm_dev_init() and
779  * frees up all data allocated by it. All driver private data should be
780  * finalized first. Note that this function does not free the @dev, that is
781  * left to the caller.
782  *
783  * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
784  * from a &drm_driver.release callback.
785  */
786 void drm_dev_fini(struct drm_device *dev)
787 {
788 	drm_vblank_cleanup(dev);
789 
790 	if (drm_core_check_feature(dev, DRIVER_GEM))
791 		drm_gem_destroy(dev);
792 
793 	drm_legacy_ctxbitmap_cleanup(dev);
794 	drm_legacy_remove_map_hash(dev);
795 	drm_fs_inode_free(dev->anon_inode);
796 
797 	drm_minor_free(dev, DRM_MINOR_PRIMARY);
798 	drm_minor_free(dev, DRM_MINOR_RENDER);
799 
800 	put_device(dev->dev);
801 
802 	mutex_destroy(&dev->master_mutex);
803 	mutex_destroy(&dev->clientlist_mutex);
804 	mutex_destroy(&dev->filelist_mutex);
805 	mutex_destroy(&dev->struct_mutex);
806 	drm_legacy_destroy_members(dev);
807 	kfree(dev->unique);
808 }
809 EXPORT_SYMBOL(drm_dev_fini);
810 
811 /**
812  * drm_dev_alloc - Allocate new DRM device
813  * @driver: DRM driver to allocate device for
814  * @parent: Parent device object
815  *
816  * Allocate and initialize a new DRM device. No device registration is done.
817  * Call drm_dev_register() to advertice the device to user space and register it
818  * with other core subsystems. This should be done last in the device
819  * initialization sequence to make sure userspace can't access an inconsistent
820  * state.
821  *
822  * The initial ref-count of the object is 1. Use drm_dev_get() and
823  * drm_dev_put() to take and drop further ref-counts.
824  *
825  * Note that for purely virtual devices @parent can be NULL.
826  *
827  * Drivers that wish to subclass or embed &struct drm_device into their
828  * own struct should look at using drm_dev_init() instead.
829  *
830  * RETURNS:
831  * Pointer to new DRM device, or ERR_PTR on failure.
832  */
833 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
834 				 struct device *parent)
835 {
836 	struct drm_device *dev;
837 	int ret;
838 
839 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
840 	if (!dev)
841 		return ERR_PTR(-ENOMEM);
842 
843 	ret = drm_dev_init(dev, driver, parent);
844 	if (ret) {
845 		kfree(dev);
846 		return ERR_PTR(ret);
847 	}
848 
849 	return dev;
850 }
851 EXPORT_SYMBOL(drm_dev_alloc);
852 
853 static void drm_dev_release(struct kref *ref)
854 {
855 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
856 
857 	if (dev->driver->release) {
858 		dev->driver->release(dev);
859 	} else {
860 		drm_dev_fini(dev);
861 		kfree(dev);
862 	}
863 }
864 
865 /**
866  * drm_dev_get - Take reference of a DRM device
867  * @dev: device to take reference of or NULL
868  *
869  * This increases the ref-count of @dev by one. You *must* already own a
870  * reference when calling this. Use drm_dev_put() to drop this reference
871  * again.
872  *
873  * This function never fails. However, this function does not provide *any*
874  * guarantee whether the device is alive or running. It only provides a
875  * reference to the object and the memory associated with it.
876  */
877 void drm_dev_get(struct drm_device *dev)
878 {
879 	if (dev)
880 		kref_get(&dev->ref);
881 }
882 EXPORT_SYMBOL(drm_dev_get);
883 
884 /**
885  * drm_dev_put - Drop reference of a DRM device
886  * @dev: device to drop reference of or NULL
887  *
888  * This decreases the ref-count of @dev by one. The device is destroyed if the
889  * ref-count drops to zero.
890  */
891 void drm_dev_put(struct drm_device *dev)
892 {
893 	if (dev)
894 		kref_put(&dev->ref, drm_dev_release);
895 }
896 EXPORT_SYMBOL(drm_dev_put);
897 
898 static int create_compat_control_link(struct drm_device *dev)
899 {
900 	struct drm_minor *minor;
901 	char *name;
902 	int ret;
903 
904 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
905 		return 0;
906 
907 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
908 	if (!minor)
909 		return 0;
910 
911 	/*
912 	 * Some existing userspace out there uses the existing of the controlD*
913 	 * sysfs files to figure out whether it's a modeset driver. It only does
914 	 * readdir, hence a symlink is sufficient (and the least confusing
915 	 * option). Otherwise controlD* is entirely unused.
916 	 *
917 	 * Old controlD chardev have been allocated in the range
918 	 * 64-127.
919 	 */
920 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
921 	if (!name)
922 		return -ENOMEM;
923 
924 	ret = sysfs_create_link(minor->kdev->kobj.parent,
925 				&minor->kdev->kobj,
926 				name);
927 
928 	kfree(name);
929 
930 	return ret;
931 }
932 
933 static void remove_compat_control_link(struct drm_device *dev)
934 {
935 	struct drm_minor *minor;
936 	char *name;
937 
938 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
939 		return;
940 
941 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
942 	if (!minor)
943 		return;
944 
945 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
946 	if (!name)
947 		return;
948 
949 	sysfs_remove_link(minor->kdev->kobj.parent, name);
950 
951 	kfree(name);
952 }
953 
954 /**
955  * drm_dev_register - Register DRM device
956  * @dev: Device to register
957  * @flags: Flags passed to the driver's .load() function
958  *
959  * Register the DRM device @dev with the system, advertise device to user-space
960  * and start normal device operation. @dev must be initialized via drm_dev_init()
961  * previously.
962  *
963  * Never call this twice on any device!
964  *
965  * NOTE: To ensure backward compatibility with existing drivers method this
966  * function calls the &drm_driver.load method after registering the device
967  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
968  * therefore deprecated, drivers must perform all initialization before calling
969  * drm_dev_register().
970  *
971  * RETURNS:
972  * 0 on success, negative error code on failure.
973  */
974 int drm_dev_register(struct drm_device *dev, unsigned long flags)
975 {
976 	struct drm_driver *driver = dev->driver;
977 	int ret;
978 
979 	mutex_lock(&drm_global_mutex);
980 
981 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
982 	if (ret)
983 		goto err_minors;
984 
985 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
986 	if (ret)
987 		goto err_minors;
988 
989 	ret = create_compat_control_link(dev);
990 	if (ret)
991 		goto err_minors;
992 
993 	dev->registered = true;
994 
995 	if (dev->driver->load) {
996 		ret = dev->driver->load(dev, flags);
997 		if (ret)
998 			goto err_minors;
999 	}
1000 
1001 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1002 		drm_modeset_register_all(dev);
1003 
1004 	ret = 0;
1005 
1006 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1007 		 driver->name, driver->major, driver->minor,
1008 		 driver->patchlevel, driver->date,
1009 		 dev->dev ? dev_name(dev->dev) : "virtual device",
1010 		 dev->primary->index);
1011 
1012 	goto out_unlock;
1013 
1014 err_minors:
1015 	remove_compat_control_link(dev);
1016 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1017 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1018 out_unlock:
1019 	mutex_unlock(&drm_global_mutex);
1020 	return ret;
1021 }
1022 EXPORT_SYMBOL(drm_dev_register);
1023 
1024 /**
1025  * drm_dev_unregister - Unregister DRM device
1026  * @dev: Device to unregister
1027  *
1028  * Unregister the DRM device from the system. This does the reverse of
1029  * drm_dev_register() but does not deallocate the device. The caller must call
1030  * drm_dev_put() to drop their final reference.
1031  *
1032  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1033  * which can be called while there are still open users of @dev.
1034  *
1035  * This should be called first in the device teardown code to make sure
1036  * userspace can't access the device instance any more.
1037  */
1038 void drm_dev_unregister(struct drm_device *dev)
1039 {
1040 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
1041 		drm_lastclose(dev);
1042 
1043 	dev->registered = false;
1044 
1045 	drm_client_dev_unregister(dev);
1046 
1047 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1048 		drm_modeset_unregister_all(dev);
1049 
1050 	if (dev->driver->unload)
1051 		dev->driver->unload(dev);
1052 
1053 	if (dev->agp)
1054 		drm_pci_agp_destroy(dev);
1055 
1056 	drm_legacy_rmmaps(dev);
1057 
1058 	remove_compat_control_link(dev);
1059 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1060 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1061 }
1062 EXPORT_SYMBOL(drm_dev_unregister);
1063 
1064 /**
1065  * drm_dev_set_unique - Set the unique name of a DRM device
1066  * @dev: device of which to set the unique name
1067  * @name: unique name
1068  *
1069  * Sets the unique name of a DRM device using the specified string. This is
1070  * already done by drm_dev_init(), drivers should only override the default
1071  * unique name for backwards compatibility reasons.
1072  *
1073  * Return: 0 on success or a negative error code on failure.
1074  */
1075 int drm_dev_set_unique(struct drm_device *dev, const char *name)
1076 {
1077 	kfree(dev->unique);
1078 	dev->unique = kstrdup(name, GFP_KERNEL);
1079 
1080 	return dev->unique ? 0 : -ENOMEM;
1081 }
1082 EXPORT_SYMBOL(drm_dev_set_unique);
1083 
1084 /*
1085  * DRM Core
1086  * The DRM core module initializes all global DRM objects and makes them
1087  * available to drivers. Once setup, drivers can probe their respective
1088  * devices.
1089  * Currently, core management includes:
1090  *  - The "DRM-Global" key/value database
1091  *  - Global ID management for connectors
1092  *  - DRM major number allocation
1093  *  - DRM minor management
1094  *  - DRM sysfs class
1095  *  - DRM debugfs root
1096  *
1097  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1098  * interface registered on a DRM device, you can request minor numbers from DRM
1099  * core. DRM core takes care of major-number management and char-dev
1100  * registration. A stub ->open() callback forwards any open() requests to the
1101  * registered minor.
1102  */
1103 
1104 static int drm_stub_open(struct inode *inode, struct file *filp)
1105 {
1106 	const struct file_operations *new_fops;
1107 	struct drm_minor *minor;
1108 	int err;
1109 
1110 	DRM_DEBUG("\n");
1111 
1112 	mutex_lock(&drm_global_mutex);
1113 	minor = drm_minor_acquire(iminor(inode));
1114 	if (IS_ERR(minor)) {
1115 		err = PTR_ERR(minor);
1116 		goto out_unlock;
1117 	}
1118 
1119 	new_fops = fops_get(minor->dev->driver->fops);
1120 	if (!new_fops) {
1121 		err = -ENODEV;
1122 		goto out_release;
1123 	}
1124 
1125 	replace_fops(filp, new_fops);
1126 	if (filp->f_op->open)
1127 		err = filp->f_op->open(inode, filp);
1128 	else
1129 		err = 0;
1130 
1131 out_release:
1132 	drm_minor_release(minor);
1133 out_unlock:
1134 	mutex_unlock(&drm_global_mutex);
1135 	return err;
1136 }
1137 
1138 static const struct file_operations drm_stub_fops = {
1139 	.owner = THIS_MODULE,
1140 	.open = drm_stub_open,
1141 	.llseek = noop_llseek,
1142 };
1143 
1144 static void drm_core_exit(void)
1145 {
1146 	unregister_chrdev(DRM_MAJOR, "drm");
1147 	debugfs_remove(drm_debugfs_root);
1148 	drm_sysfs_destroy();
1149 	idr_destroy(&drm_minors_idr);
1150 	drm_connector_ida_destroy();
1151 }
1152 
1153 static int __init drm_core_init(void)
1154 {
1155 	int ret;
1156 
1157 	drm_connector_ida_init();
1158 	idr_init(&drm_minors_idr);
1159 
1160 	ret = drm_sysfs_init();
1161 	if (ret < 0) {
1162 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1163 		goto error;
1164 	}
1165 
1166 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1167 
1168 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1169 	if (ret < 0)
1170 		goto error;
1171 
1172 	drm_core_init_complete = true;
1173 
1174 	DRM_DEBUG("Initialized\n");
1175 	return 0;
1176 
1177 error:
1178 	drm_core_exit();
1179 	return ret;
1180 }
1181 
1182 module_init(drm_core_init);
1183 module_exit(drm_core_exit);
1184