1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/pseudo_fs.h> 35 #include <linux/slab.h> 36 #include <linux/srcu.h> 37 38 #include <drm/drm_client.h> 39 #include <drm/drm_color_mgmt.h> 40 #include <drm/drm_drv.h> 41 #include <drm/drm_file.h> 42 #include <drm/drm_mode_object.h> 43 #include <drm/drm_print.h> 44 45 #include "drm_crtc_internal.h" 46 #include "drm_internal.h" 47 #include "drm_legacy.h" 48 49 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 50 MODULE_DESCRIPTION("DRM shared core routines"); 51 MODULE_LICENSE("GPL and additional rights"); 52 53 static DEFINE_SPINLOCK(drm_minor_lock); 54 static struct idr drm_minors_idr; 55 56 /* 57 * If the drm core fails to init for whatever reason, 58 * we should prevent any drivers from registering with it. 59 * It's best to check this at drm_dev_init(), as some drivers 60 * prefer to embed struct drm_device into their own device 61 * structure and call drm_dev_init() themselves. 62 */ 63 static bool drm_core_init_complete = false; 64 65 static struct dentry *drm_debugfs_root; 66 67 DEFINE_STATIC_SRCU(drm_unplug_srcu); 68 69 /* 70 * DRM Minors 71 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 72 * of them is represented by a drm_minor object. Depending on the capabilities 73 * of the device-driver, different interfaces are registered. 74 * 75 * Minors can be accessed via dev->$minor_name. This pointer is either 76 * NULL or a valid drm_minor pointer and stays valid as long as the device is 77 * valid. This means, DRM minors have the same life-time as the underlying 78 * device. However, this doesn't mean that the minor is active. Minors are 79 * registered and unregistered dynamically according to device-state. 80 */ 81 82 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 83 unsigned int type) 84 { 85 switch (type) { 86 case DRM_MINOR_PRIMARY: 87 return &dev->primary; 88 case DRM_MINOR_RENDER: 89 return &dev->render; 90 default: 91 BUG(); 92 } 93 } 94 95 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 96 { 97 struct drm_minor *minor; 98 unsigned long flags; 99 int r; 100 101 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 102 if (!minor) 103 return -ENOMEM; 104 105 minor->type = type; 106 minor->dev = dev; 107 108 idr_preload(GFP_KERNEL); 109 spin_lock_irqsave(&drm_minor_lock, flags); 110 r = idr_alloc(&drm_minors_idr, 111 NULL, 112 64 * type, 113 64 * (type + 1), 114 GFP_NOWAIT); 115 spin_unlock_irqrestore(&drm_minor_lock, flags); 116 idr_preload_end(); 117 118 if (r < 0) 119 goto err_free; 120 121 minor->index = r; 122 123 minor->kdev = drm_sysfs_minor_alloc(minor); 124 if (IS_ERR(minor->kdev)) { 125 r = PTR_ERR(minor->kdev); 126 goto err_index; 127 } 128 129 *drm_minor_get_slot(dev, type) = minor; 130 return 0; 131 132 err_index: 133 spin_lock_irqsave(&drm_minor_lock, flags); 134 idr_remove(&drm_minors_idr, minor->index); 135 spin_unlock_irqrestore(&drm_minor_lock, flags); 136 err_free: 137 kfree(minor); 138 return r; 139 } 140 141 static void drm_minor_free(struct drm_device *dev, unsigned int type) 142 { 143 struct drm_minor **slot, *minor; 144 unsigned long flags; 145 146 slot = drm_minor_get_slot(dev, type); 147 minor = *slot; 148 if (!minor) 149 return; 150 151 put_device(minor->kdev); 152 153 spin_lock_irqsave(&drm_minor_lock, flags); 154 idr_remove(&drm_minors_idr, minor->index); 155 spin_unlock_irqrestore(&drm_minor_lock, flags); 156 157 kfree(minor); 158 *slot = NULL; 159 } 160 161 static int drm_minor_register(struct drm_device *dev, unsigned int type) 162 { 163 struct drm_minor *minor; 164 unsigned long flags; 165 int ret; 166 167 DRM_DEBUG("\n"); 168 169 minor = *drm_minor_get_slot(dev, type); 170 if (!minor) 171 return 0; 172 173 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 174 if (ret) { 175 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 176 goto err_debugfs; 177 } 178 179 ret = device_add(minor->kdev); 180 if (ret) 181 goto err_debugfs; 182 183 /* replace NULL with @minor so lookups will succeed from now on */ 184 spin_lock_irqsave(&drm_minor_lock, flags); 185 idr_replace(&drm_minors_idr, minor, minor->index); 186 spin_unlock_irqrestore(&drm_minor_lock, flags); 187 188 DRM_DEBUG("new minor registered %d\n", minor->index); 189 return 0; 190 191 err_debugfs: 192 drm_debugfs_cleanup(minor); 193 return ret; 194 } 195 196 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 197 { 198 struct drm_minor *minor; 199 unsigned long flags; 200 201 minor = *drm_minor_get_slot(dev, type); 202 if (!minor || !device_is_registered(minor->kdev)) 203 return; 204 205 /* replace @minor with NULL so lookups will fail from now on */ 206 spin_lock_irqsave(&drm_minor_lock, flags); 207 idr_replace(&drm_minors_idr, NULL, minor->index); 208 spin_unlock_irqrestore(&drm_minor_lock, flags); 209 210 device_del(minor->kdev); 211 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 212 drm_debugfs_cleanup(minor); 213 } 214 215 /* 216 * Looks up the given minor-ID and returns the respective DRM-minor object. The 217 * refence-count of the underlying device is increased so you must release this 218 * object with drm_minor_release(). 219 * 220 * As long as you hold this minor, it is guaranteed that the object and the 221 * minor->dev pointer will stay valid! However, the device may get unplugged and 222 * unregistered while you hold the minor. 223 */ 224 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 225 { 226 struct drm_minor *minor; 227 unsigned long flags; 228 229 spin_lock_irqsave(&drm_minor_lock, flags); 230 minor = idr_find(&drm_minors_idr, minor_id); 231 if (minor) 232 drm_dev_get(minor->dev); 233 spin_unlock_irqrestore(&drm_minor_lock, flags); 234 235 if (!minor) { 236 return ERR_PTR(-ENODEV); 237 } else if (drm_dev_is_unplugged(minor->dev)) { 238 drm_dev_put(minor->dev); 239 return ERR_PTR(-ENODEV); 240 } 241 242 return minor; 243 } 244 245 void drm_minor_release(struct drm_minor *minor) 246 { 247 drm_dev_put(minor->dev); 248 } 249 250 /** 251 * DOC: driver instance overview 252 * 253 * A device instance for a drm driver is represented by &struct drm_device. This 254 * is initialized with drm_dev_init(), usually from bus-specific ->probe() 255 * callbacks implemented by the driver. The driver then needs to initialize all 256 * the various subsystems for the drm device like memory management, vblank 257 * handling, modesetting support and intial output configuration plus obviously 258 * initialize all the corresponding hardware bits. Finally when everything is up 259 * and running and ready for userspace the device instance can be published 260 * using drm_dev_register(). 261 * 262 * There is also deprecated support for initalizing device instances using 263 * bus-specific helpers and the &drm_driver.load callback. But due to 264 * backwards-compatibility needs the device instance have to be published too 265 * early, which requires unpretty global locking to make safe and is therefore 266 * only support for existing drivers not yet converted to the new scheme. 267 * 268 * When cleaning up a device instance everything needs to be done in reverse: 269 * First unpublish the device instance with drm_dev_unregister(). Then clean up 270 * any other resources allocated at device initialization and drop the driver's 271 * reference to &drm_device using drm_dev_put(). 272 * 273 * Note that the lifetime rules for &drm_device instance has still a lot of 274 * historical baggage. Hence use the reference counting provided by 275 * drm_dev_get() and drm_dev_put() only carefully. 276 * 277 * Display driver example 278 * ~~~~~~~~~~~~~~~~~~~~~~ 279 * 280 * The following example shows a typical structure of a DRM display driver. 281 * The example focus on the probe() function and the other functions that is 282 * almost always present and serves as a demonstration of devm_drm_dev_init() 283 * usage with its accompanying drm_driver->release callback. 284 * 285 * .. code-block:: c 286 * 287 * struct driver_device { 288 * struct drm_device drm; 289 * void *userspace_facing; 290 * struct clk *pclk; 291 * }; 292 * 293 * static void driver_drm_release(struct drm_device *drm) 294 * { 295 * struct driver_device *priv = container_of(...); 296 * 297 * drm_mode_config_cleanup(drm); 298 * drm_dev_fini(drm); 299 * kfree(priv->userspace_facing); 300 * kfree(priv); 301 * } 302 * 303 * static struct drm_driver driver_drm_driver = { 304 * [...] 305 * .release = driver_drm_release, 306 * }; 307 * 308 * static int driver_probe(struct platform_device *pdev) 309 * { 310 * struct driver_device *priv; 311 * struct drm_device *drm; 312 * int ret; 313 * 314 * // devm_kzalloc() can't be used here because the drm_device ' 315 * // lifetime can exceed the device lifetime if driver unbind 316 * // happens when userspace still has open file descriptors. 317 * priv = kzalloc(sizeof(*priv), GFP_KERNEL); 318 * if (!priv) 319 * return -ENOMEM; 320 * 321 * drm = &priv->drm; 322 * 323 * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver); 324 * if (ret) { 325 * kfree(drm); 326 * return ret; 327 * } 328 * 329 * drm_mode_config_init(drm); 330 * 331 * priv->userspace_facing = kzalloc(..., GFP_KERNEL); 332 * if (!priv->userspace_facing) 333 * return -ENOMEM; 334 * 335 * priv->pclk = devm_clk_get(dev, "PCLK"); 336 * if (IS_ERR(priv->pclk)) 337 * return PTR_ERR(priv->pclk); 338 * 339 * // Further setup, display pipeline etc 340 * 341 * platform_set_drvdata(pdev, drm); 342 * 343 * drm_mode_config_reset(drm); 344 * 345 * ret = drm_dev_register(drm); 346 * if (ret) 347 * return ret; 348 * 349 * drm_fbdev_generic_setup(drm, 32); 350 * 351 * return 0; 352 * } 353 * 354 * // This function is called before the devm_ resources are released 355 * static int driver_remove(struct platform_device *pdev) 356 * { 357 * struct drm_device *drm = platform_get_drvdata(pdev); 358 * 359 * drm_dev_unregister(drm); 360 * drm_atomic_helper_shutdown(drm) 361 * 362 * return 0; 363 * } 364 * 365 * // This function is called on kernel restart and shutdown 366 * static void driver_shutdown(struct platform_device *pdev) 367 * { 368 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 369 * } 370 * 371 * static int __maybe_unused driver_pm_suspend(struct device *dev) 372 * { 373 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 374 * } 375 * 376 * static int __maybe_unused driver_pm_resume(struct device *dev) 377 * { 378 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 379 * 380 * return 0; 381 * } 382 * 383 * static const struct dev_pm_ops driver_pm_ops = { 384 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 385 * }; 386 * 387 * static struct platform_driver driver_driver = { 388 * .driver = { 389 * [...] 390 * .pm = &driver_pm_ops, 391 * }, 392 * .probe = driver_probe, 393 * .remove = driver_remove, 394 * .shutdown = driver_shutdown, 395 * }; 396 * module_platform_driver(driver_driver); 397 * 398 * Drivers that want to support device unplugging (USB, DT overlay unload) should 399 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 400 * regions that is accessing device resources to prevent use after they're 401 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 402 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 403 * drm_atomic_helper_shutdown() is called. This means that if the disable code 404 * paths are protected, they will not run on regular driver module unload, 405 * possibily leaving the hardware enabled. 406 */ 407 408 /** 409 * drm_put_dev - Unregister and release a DRM device 410 * @dev: DRM device 411 * 412 * Called at module unload time or when a PCI device is unplugged. 413 * 414 * Cleans up all DRM device, calling drm_lastclose(). 415 * 416 * Note: Use of this function is deprecated. It will eventually go away 417 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 418 * instead to make sure that the device isn't userspace accessible any more 419 * while teardown is in progress, ensuring that userspace can't access an 420 * inconsistent state. 421 */ 422 void drm_put_dev(struct drm_device *dev) 423 { 424 DRM_DEBUG("\n"); 425 426 if (!dev) { 427 DRM_ERROR("cleanup called no dev\n"); 428 return; 429 } 430 431 drm_dev_unregister(dev); 432 drm_dev_put(dev); 433 } 434 EXPORT_SYMBOL(drm_put_dev); 435 436 /** 437 * drm_dev_enter - Enter device critical section 438 * @dev: DRM device 439 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 440 * 441 * This function marks and protects the beginning of a section that should not 442 * be entered after the device has been unplugged. The section end is marked 443 * with drm_dev_exit(). Calls to this function can be nested. 444 * 445 * Returns: 446 * True if it is OK to enter the section, false otherwise. 447 */ 448 bool drm_dev_enter(struct drm_device *dev, int *idx) 449 { 450 *idx = srcu_read_lock(&drm_unplug_srcu); 451 452 if (dev->unplugged) { 453 srcu_read_unlock(&drm_unplug_srcu, *idx); 454 return false; 455 } 456 457 return true; 458 } 459 EXPORT_SYMBOL(drm_dev_enter); 460 461 /** 462 * drm_dev_exit - Exit device critical section 463 * @idx: index returned from drm_dev_enter() 464 * 465 * This function marks the end of a section that should not be entered after 466 * the device has been unplugged. 467 */ 468 void drm_dev_exit(int idx) 469 { 470 srcu_read_unlock(&drm_unplug_srcu, idx); 471 } 472 EXPORT_SYMBOL(drm_dev_exit); 473 474 /** 475 * drm_dev_unplug - unplug a DRM device 476 * @dev: DRM device 477 * 478 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 479 * userspace operations. Entry-points can use drm_dev_enter() and 480 * drm_dev_exit() to protect device resources in a race free manner. This 481 * essentially unregisters the device like drm_dev_unregister(), but can be 482 * called while there are still open users of @dev. 483 */ 484 void drm_dev_unplug(struct drm_device *dev) 485 { 486 /* 487 * After synchronizing any critical read section is guaranteed to see 488 * the new value of ->unplugged, and any critical section which might 489 * still have seen the old value of ->unplugged is guaranteed to have 490 * finished. 491 */ 492 dev->unplugged = true; 493 synchronize_srcu(&drm_unplug_srcu); 494 495 drm_dev_unregister(dev); 496 } 497 EXPORT_SYMBOL(drm_dev_unplug); 498 499 /* 500 * DRM internal mount 501 * We want to be able to allocate our own "struct address_space" to control 502 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 503 * stand-alone address_space objects, so we need an underlying inode. As there 504 * is no way to allocate an independent inode easily, we need a fake internal 505 * VFS mount-point. 506 * 507 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 508 * frees it again. You are allowed to use iget() and iput() to get references to 509 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 510 * drm_fs_inode_free() call (which does not have to be the last iput()). 511 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 512 * between multiple inode-users. You could, technically, call 513 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 514 * iput(), but this way you'd end up with a new vfsmount for each inode. 515 */ 516 517 static int drm_fs_cnt; 518 static struct vfsmount *drm_fs_mnt; 519 520 static int drm_fs_init_fs_context(struct fs_context *fc) 521 { 522 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 523 } 524 525 static struct file_system_type drm_fs_type = { 526 .name = "drm", 527 .owner = THIS_MODULE, 528 .init_fs_context = drm_fs_init_fs_context, 529 .kill_sb = kill_anon_super, 530 }; 531 532 static struct inode *drm_fs_inode_new(void) 533 { 534 struct inode *inode; 535 int r; 536 537 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 538 if (r < 0) { 539 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 540 return ERR_PTR(r); 541 } 542 543 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 544 if (IS_ERR(inode)) 545 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 546 547 return inode; 548 } 549 550 static void drm_fs_inode_free(struct inode *inode) 551 { 552 if (inode) { 553 iput(inode); 554 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 555 } 556 } 557 558 /** 559 * DOC: component helper usage recommendations 560 * 561 * DRM drivers that drive hardware where a logical device consists of a pile of 562 * independent hardware blocks are recommended to use the :ref:`component helper 563 * library<component>`. For consistency and better options for code reuse the 564 * following guidelines apply: 565 * 566 * - The entire device initialization procedure should be run from the 567 * &component_master_ops.master_bind callback, starting with drm_dev_init(), 568 * then binding all components with component_bind_all() and finishing with 569 * drm_dev_register(). 570 * 571 * - The opaque pointer passed to all components through component_bind_all() 572 * should point at &struct drm_device of the device instance, not some driver 573 * specific private structure. 574 * 575 * - The component helper fills the niche where further standardization of 576 * interfaces is not practical. When there already is, or will be, a 577 * standardized interface like &drm_bridge or &drm_panel, providing its own 578 * functions to find such components at driver load time, like 579 * drm_of_find_panel_or_bridge(), then the component helper should not be 580 * used. 581 */ 582 583 /** 584 * drm_dev_init - Initialise new DRM device 585 * @dev: DRM device 586 * @driver: DRM driver 587 * @parent: Parent device object 588 * 589 * Initialize a new DRM device. No device registration is done. 590 * Call drm_dev_register() to advertice the device to user space and register it 591 * with other core subsystems. This should be done last in the device 592 * initialization sequence to make sure userspace can't access an inconsistent 593 * state. 594 * 595 * The initial ref-count of the object is 1. Use drm_dev_get() and 596 * drm_dev_put() to take and drop further ref-counts. 597 * 598 * It is recommended that drivers embed &struct drm_device into their own device 599 * structure. 600 * 601 * Drivers that do not want to allocate their own device struct 602 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 603 * that do embed &struct drm_device it must be placed first in the overall 604 * structure, and the overall structure must be allocated using kmalloc(): The 605 * drm core's release function unconditionally calls kfree() on the @dev pointer 606 * when the final reference is released. To override this behaviour, and so 607 * allow embedding of the drm_device inside the driver's device struct at an 608 * arbitrary offset, you must supply a &drm_driver.release callback and control 609 * the finalization explicitly. 610 * 611 * RETURNS: 612 * 0 on success, or error code on failure. 613 */ 614 int drm_dev_init(struct drm_device *dev, 615 struct drm_driver *driver, 616 struct device *parent) 617 { 618 int ret; 619 620 if (!drm_core_init_complete) { 621 DRM_ERROR("DRM core is not initialized\n"); 622 return -ENODEV; 623 } 624 625 if (WARN_ON(!parent)) 626 return -EINVAL; 627 628 kref_init(&dev->ref); 629 dev->dev = get_device(parent); 630 dev->driver = driver; 631 632 /* no per-device feature limits by default */ 633 dev->driver_features = ~0u; 634 635 drm_legacy_init_members(dev); 636 INIT_LIST_HEAD(&dev->filelist); 637 INIT_LIST_HEAD(&dev->filelist_internal); 638 INIT_LIST_HEAD(&dev->clientlist); 639 INIT_LIST_HEAD(&dev->vblank_event_list); 640 641 spin_lock_init(&dev->event_lock); 642 mutex_init(&dev->struct_mutex); 643 mutex_init(&dev->filelist_mutex); 644 mutex_init(&dev->clientlist_mutex); 645 mutex_init(&dev->master_mutex); 646 647 dev->anon_inode = drm_fs_inode_new(); 648 if (IS_ERR(dev->anon_inode)) { 649 ret = PTR_ERR(dev->anon_inode); 650 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 651 goto err_free; 652 } 653 654 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 655 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 656 if (ret) 657 goto err_minors; 658 } 659 660 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 661 if (ret) 662 goto err_minors; 663 664 ret = drm_legacy_create_map_hash(dev); 665 if (ret) 666 goto err_minors; 667 668 drm_legacy_ctxbitmap_init(dev); 669 670 if (drm_core_check_feature(dev, DRIVER_GEM)) { 671 ret = drm_gem_init(dev); 672 if (ret) { 673 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 674 goto err_ctxbitmap; 675 } 676 } 677 678 ret = drm_dev_set_unique(dev, dev_name(parent)); 679 if (ret) 680 goto err_setunique; 681 682 return 0; 683 684 err_setunique: 685 if (drm_core_check_feature(dev, DRIVER_GEM)) 686 drm_gem_destroy(dev); 687 err_ctxbitmap: 688 drm_legacy_ctxbitmap_cleanup(dev); 689 drm_legacy_remove_map_hash(dev); 690 err_minors: 691 drm_minor_free(dev, DRM_MINOR_PRIMARY); 692 drm_minor_free(dev, DRM_MINOR_RENDER); 693 drm_fs_inode_free(dev->anon_inode); 694 err_free: 695 put_device(dev->dev); 696 mutex_destroy(&dev->master_mutex); 697 mutex_destroy(&dev->clientlist_mutex); 698 mutex_destroy(&dev->filelist_mutex); 699 mutex_destroy(&dev->struct_mutex); 700 drm_legacy_destroy_members(dev); 701 return ret; 702 } 703 EXPORT_SYMBOL(drm_dev_init); 704 705 static void devm_drm_dev_init_release(void *data) 706 { 707 drm_dev_put(data); 708 } 709 710 /** 711 * devm_drm_dev_init - Resource managed drm_dev_init() 712 * @parent: Parent device object 713 * @dev: DRM device 714 * @driver: DRM driver 715 * 716 * Managed drm_dev_init(). The DRM device initialized with this function is 717 * automatically put on driver detach using drm_dev_put(). You must supply a 718 * &drm_driver.release callback to control the finalization explicitly. 719 * 720 * RETURNS: 721 * 0 on success, or error code on failure. 722 */ 723 int devm_drm_dev_init(struct device *parent, 724 struct drm_device *dev, 725 struct drm_driver *driver) 726 { 727 int ret; 728 729 if (WARN_ON(!driver->release)) 730 return -EINVAL; 731 732 ret = drm_dev_init(dev, driver, parent); 733 if (ret) 734 return ret; 735 736 ret = devm_add_action(parent, devm_drm_dev_init_release, dev); 737 if (ret) 738 devm_drm_dev_init_release(dev); 739 740 return ret; 741 } 742 EXPORT_SYMBOL(devm_drm_dev_init); 743 744 /** 745 * drm_dev_fini - Finalize a dead DRM device 746 * @dev: DRM device 747 * 748 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 749 * frees up all data allocated by it. All driver private data should be 750 * finalized first. Note that this function does not free the @dev, that is 751 * left to the caller. 752 * 753 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 754 * from a &drm_driver.release callback. 755 */ 756 void drm_dev_fini(struct drm_device *dev) 757 { 758 drm_vblank_cleanup(dev); 759 760 if (drm_core_check_feature(dev, DRIVER_GEM)) 761 drm_gem_destroy(dev); 762 763 drm_legacy_ctxbitmap_cleanup(dev); 764 drm_legacy_remove_map_hash(dev); 765 drm_fs_inode_free(dev->anon_inode); 766 767 drm_minor_free(dev, DRM_MINOR_PRIMARY); 768 drm_minor_free(dev, DRM_MINOR_RENDER); 769 770 put_device(dev->dev); 771 772 mutex_destroy(&dev->master_mutex); 773 mutex_destroy(&dev->clientlist_mutex); 774 mutex_destroy(&dev->filelist_mutex); 775 mutex_destroy(&dev->struct_mutex); 776 drm_legacy_destroy_members(dev); 777 kfree(dev->unique); 778 } 779 EXPORT_SYMBOL(drm_dev_fini); 780 781 /** 782 * drm_dev_alloc - Allocate new DRM device 783 * @driver: DRM driver to allocate device for 784 * @parent: Parent device object 785 * 786 * Allocate and initialize a new DRM device. No device registration is done. 787 * Call drm_dev_register() to advertice the device to user space and register it 788 * with other core subsystems. This should be done last in the device 789 * initialization sequence to make sure userspace can't access an inconsistent 790 * state. 791 * 792 * The initial ref-count of the object is 1. Use drm_dev_get() and 793 * drm_dev_put() to take and drop further ref-counts. 794 * 795 * Note that for purely virtual devices @parent can be NULL. 796 * 797 * Drivers that wish to subclass or embed &struct drm_device into their 798 * own struct should look at using drm_dev_init() instead. 799 * 800 * RETURNS: 801 * Pointer to new DRM device, or ERR_PTR on failure. 802 */ 803 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 804 struct device *parent) 805 { 806 struct drm_device *dev; 807 int ret; 808 809 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 810 if (!dev) 811 return ERR_PTR(-ENOMEM); 812 813 ret = drm_dev_init(dev, driver, parent); 814 if (ret) { 815 kfree(dev); 816 return ERR_PTR(ret); 817 } 818 819 return dev; 820 } 821 EXPORT_SYMBOL(drm_dev_alloc); 822 823 static void drm_dev_release(struct kref *ref) 824 { 825 struct drm_device *dev = container_of(ref, struct drm_device, ref); 826 827 if (dev->driver->release) { 828 dev->driver->release(dev); 829 } else { 830 drm_dev_fini(dev); 831 kfree(dev); 832 } 833 } 834 835 /** 836 * drm_dev_get - Take reference of a DRM device 837 * @dev: device to take reference of or NULL 838 * 839 * This increases the ref-count of @dev by one. You *must* already own a 840 * reference when calling this. Use drm_dev_put() to drop this reference 841 * again. 842 * 843 * This function never fails. However, this function does not provide *any* 844 * guarantee whether the device is alive or running. It only provides a 845 * reference to the object and the memory associated with it. 846 */ 847 void drm_dev_get(struct drm_device *dev) 848 { 849 if (dev) 850 kref_get(&dev->ref); 851 } 852 EXPORT_SYMBOL(drm_dev_get); 853 854 /** 855 * drm_dev_put - Drop reference of a DRM device 856 * @dev: device to drop reference of or NULL 857 * 858 * This decreases the ref-count of @dev by one. The device is destroyed if the 859 * ref-count drops to zero. 860 */ 861 void drm_dev_put(struct drm_device *dev) 862 { 863 if (dev) 864 kref_put(&dev->ref, drm_dev_release); 865 } 866 EXPORT_SYMBOL(drm_dev_put); 867 868 static int create_compat_control_link(struct drm_device *dev) 869 { 870 struct drm_minor *minor; 871 char *name; 872 int ret; 873 874 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 875 return 0; 876 877 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 878 if (!minor) 879 return 0; 880 881 /* 882 * Some existing userspace out there uses the existing of the controlD* 883 * sysfs files to figure out whether it's a modeset driver. It only does 884 * readdir, hence a symlink is sufficient (and the least confusing 885 * option). Otherwise controlD* is entirely unused. 886 * 887 * Old controlD chardev have been allocated in the range 888 * 64-127. 889 */ 890 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 891 if (!name) 892 return -ENOMEM; 893 894 ret = sysfs_create_link(minor->kdev->kobj.parent, 895 &minor->kdev->kobj, 896 name); 897 898 kfree(name); 899 900 return ret; 901 } 902 903 static void remove_compat_control_link(struct drm_device *dev) 904 { 905 struct drm_minor *minor; 906 char *name; 907 908 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 909 return; 910 911 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 912 if (!minor) 913 return; 914 915 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 916 if (!name) 917 return; 918 919 sysfs_remove_link(minor->kdev->kobj.parent, name); 920 921 kfree(name); 922 } 923 924 /** 925 * drm_dev_register - Register DRM device 926 * @dev: Device to register 927 * @flags: Flags passed to the driver's .load() function 928 * 929 * Register the DRM device @dev with the system, advertise device to user-space 930 * and start normal device operation. @dev must be initialized via drm_dev_init() 931 * previously. 932 * 933 * Never call this twice on any device! 934 * 935 * NOTE: To ensure backward compatibility with existing drivers method this 936 * function calls the &drm_driver.load method after registering the device 937 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 938 * therefore deprecated, drivers must perform all initialization before calling 939 * drm_dev_register(). 940 * 941 * RETURNS: 942 * 0 on success, negative error code on failure. 943 */ 944 int drm_dev_register(struct drm_device *dev, unsigned long flags) 945 { 946 struct drm_driver *driver = dev->driver; 947 int ret; 948 949 mutex_lock(&drm_global_mutex); 950 951 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 952 if (ret) 953 goto err_minors; 954 955 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 956 if (ret) 957 goto err_minors; 958 959 ret = create_compat_control_link(dev); 960 if (ret) 961 goto err_minors; 962 963 dev->registered = true; 964 965 if (dev->driver->load) { 966 ret = dev->driver->load(dev, flags); 967 if (ret) 968 goto err_minors; 969 } 970 971 if (drm_core_check_feature(dev, DRIVER_MODESET)) 972 drm_modeset_register_all(dev); 973 974 ret = 0; 975 976 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 977 driver->name, driver->major, driver->minor, 978 driver->patchlevel, driver->date, 979 dev->dev ? dev_name(dev->dev) : "virtual device", 980 dev->primary->index); 981 982 goto out_unlock; 983 984 err_minors: 985 remove_compat_control_link(dev); 986 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 987 drm_minor_unregister(dev, DRM_MINOR_RENDER); 988 out_unlock: 989 mutex_unlock(&drm_global_mutex); 990 return ret; 991 } 992 EXPORT_SYMBOL(drm_dev_register); 993 994 /** 995 * drm_dev_unregister - Unregister DRM device 996 * @dev: Device to unregister 997 * 998 * Unregister the DRM device from the system. This does the reverse of 999 * drm_dev_register() but does not deallocate the device. The caller must call 1000 * drm_dev_put() to drop their final reference. 1001 * 1002 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1003 * which can be called while there are still open users of @dev. 1004 * 1005 * This should be called first in the device teardown code to make sure 1006 * userspace can't access the device instance any more. 1007 */ 1008 void drm_dev_unregister(struct drm_device *dev) 1009 { 1010 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 1011 drm_lastclose(dev); 1012 1013 dev->registered = false; 1014 1015 drm_client_dev_unregister(dev); 1016 1017 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1018 drm_modeset_unregister_all(dev); 1019 1020 if (dev->driver->unload) 1021 dev->driver->unload(dev); 1022 1023 if (dev->agp) 1024 drm_pci_agp_destroy(dev); 1025 1026 drm_legacy_rmmaps(dev); 1027 1028 remove_compat_control_link(dev); 1029 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1030 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1031 } 1032 EXPORT_SYMBOL(drm_dev_unregister); 1033 1034 /** 1035 * drm_dev_set_unique - Set the unique name of a DRM device 1036 * @dev: device of which to set the unique name 1037 * @name: unique name 1038 * 1039 * Sets the unique name of a DRM device using the specified string. This is 1040 * already done by drm_dev_init(), drivers should only override the default 1041 * unique name for backwards compatibility reasons. 1042 * 1043 * Return: 0 on success or a negative error code on failure. 1044 */ 1045 int drm_dev_set_unique(struct drm_device *dev, const char *name) 1046 { 1047 kfree(dev->unique); 1048 dev->unique = kstrdup(name, GFP_KERNEL); 1049 1050 return dev->unique ? 0 : -ENOMEM; 1051 } 1052 EXPORT_SYMBOL(drm_dev_set_unique); 1053 1054 /* 1055 * DRM Core 1056 * The DRM core module initializes all global DRM objects and makes them 1057 * available to drivers. Once setup, drivers can probe their respective 1058 * devices. 1059 * Currently, core management includes: 1060 * - The "DRM-Global" key/value database 1061 * - Global ID management for connectors 1062 * - DRM major number allocation 1063 * - DRM minor management 1064 * - DRM sysfs class 1065 * - DRM debugfs root 1066 * 1067 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1068 * interface registered on a DRM device, you can request minor numbers from DRM 1069 * core. DRM core takes care of major-number management and char-dev 1070 * registration. A stub ->open() callback forwards any open() requests to the 1071 * registered minor. 1072 */ 1073 1074 static int drm_stub_open(struct inode *inode, struct file *filp) 1075 { 1076 const struct file_operations *new_fops; 1077 struct drm_minor *minor; 1078 int err; 1079 1080 DRM_DEBUG("\n"); 1081 1082 mutex_lock(&drm_global_mutex); 1083 minor = drm_minor_acquire(iminor(inode)); 1084 if (IS_ERR(minor)) { 1085 err = PTR_ERR(minor); 1086 goto out_unlock; 1087 } 1088 1089 new_fops = fops_get(minor->dev->driver->fops); 1090 if (!new_fops) { 1091 err = -ENODEV; 1092 goto out_release; 1093 } 1094 1095 replace_fops(filp, new_fops); 1096 if (filp->f_op->open) 1097 err = filp->f_op->open(inode, filp); 1098 else 1099 err = 0; 1100 1101 out_release: 1102 drm_minor_release(minor); 1103 out_unlock: 1104 mutex_unlock(&drm_global_mutex); 1105 return err; 1106 } 1107 1108 static const struct file_operations drm_stub_fops = { 1109 .owner = THIS_MODULE, 1110 .open = drm_stub_open, 1111 .llseek = noop_llseek, 1112 }; 1113 1114 static void drm_core_exit(void) 1115 { 1116 unregister_chrdev(DRM_MAJOR, "drm"); 1117 debugfs_remove(drm_debugfs_root); 1118 drm_sysfs_destroy(); 1119 idr_destroy(&drm_minors_idr); 1120 drm_connector_ida_destroy(); 1121 } 1122 1123 static int __init drm_core_init(void) 1124 { 1125 int ret; 1126 1127 drm_connector_ida_init(); 1128 idr_init(&drm_minors_idr); 1129 1130 ret = drm_sysfs_init(); 1131 if (ret < 0) { 1132 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1133 goto error; 1134 } 1135 1136 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1137 1138 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1139 if (ret < 0) 1140 goto error; 1141 1142 drm_core_init_complete = true; 1143 1144 DRM_DEBUG("Initialized\n"); 1145 return 0; 1146 1147 error: 1148 drm_core_exit(); 1149 return ret; 1150 } 1151 1152 module_init(drm_core_init); 1153 module_exit(drm_core_exit); 1154