1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 #include <drm/drmP.h> 36 #include <drm/drm_core.h> 37 #include "drm_legacy.h" 38 #include "drm_internal.h" 39 40 unsigned int drm_debug = 0; /* bitmask of DRM_UT_x */ 41 EXPORT_SYMBOL(drm_debug); 42 43 MODULE_AUTHOR(CORE_AUTHOR); 44 MODULE_DESCRIPTION(CORE_DESC); 45 MODULE_LICENSE("GPL and additional rights"); 46 MODULE_PARM_DESC(debug, "Enable debug output"); 47 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 48 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 49 MODULE_PARM_DESC(timestamp_monotonic, "Use monotonic timestamps"); 50 51 module_param_named(debug, drm_debug, int, 0600); 52 53 static DEFINE_SPINLOCK(drm_minor_lock); 54 static struct idr drm_minors_idr; 55 56 static struct dentry *drm_debugfs_root; 57 58 void drm_err(const char *format, ...) 59 { 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, format); 64 65 vaf.fmt = format; 66 vaf.va = &args; 67 68 printk(KERN_ERR "[" DRM_NAME ":%ps] *ERROR* %pV", 69 __builtin_return_address(0), &vaf); 70 71 va_end(args); 72 } 73 EXPORT_SYMBOL(drm_err); 74 75 void drm_ut_debug_printk(const char *function_name, const char *format, ...) 76 { 77 struct va_format vaf; 78 va_list args; 79 80 va_start(args, format); 81 vaf.fmt = format; 82 vaf.va = &args; 83 84 printk(KERN_DEBUG "[" DRM_NAME ":%s] %pV", function_name, &vaf); 85 86 va_end(args); 87 } 88 EXPORT_SYMBOL(drm_ut_debug_printk); 89 90 struct drm_master *drm_master_create(struct drm_minor *minor) 91 { 92 struct drm_master *master; 93 94 master = kzalloc(sizeof(*master), GFP_KERNEL); 95 if (!master) 96 return NULL; 97 98 kref_init(&master->refcount); 99 spin_lock_init(&master->lock.spinlock); 100 init_waitqueue_head(&master->lock.lock_queue); 101 idr_init(&master->magic_map); 102 master->minor = minor; 103 104 return master; 105 } 106 107 struct drm_master *drm_master_get(struct drm_master *master) 108 { 109 kref_get(&master->refcount); 110 return master; 111 } 112 EXPORT_SYMBOL(drm_master_get); 113 114 static void drm_master_destroy(struct kref *kref) 115 { 116 struct drm_master *master = container_of(kref, struct drm_master, refcount); 117 struct drm_device *dev = master->minor->dev; 118 struct drm_map_list *r_list, *list_temp; 119 120 mutex_lock(&dev->struct_mutex); 121 if (dev->driver->master_destroy) 122 dev->driver->master_destroy(dev, master); 123 124 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) { 125 if (r_list->master == master) { 126 drm_legacy_rmmap_locked(dev, r_list->map); 127 r_list = NULL; 128 } 129 } 130 mutex_unlock(&dev->struct_mutex); 131 132 idr_destroy(&master->magic_map); 133 kfree(master->unique); 134 kfree(master); 135 } 136 137 void drm_master_put(struct drm_master **master) 138 { 139 kref_put(&(*master)->refcount, drm_master_destroy); 140 *master = NULL; 141 } 142 EXPORT_SYMBOL(drm_master_put); 143 144 int drm_setmaster_ioctl(struct drm_device *dev, void *data, 145 struct drm_file *file_priv) 146 { 147 int ret = 0; 148 149 mutex_lock(&dev->master_mutex); 150 if (file_priv->is_master) 151 goto out_unlock; 152 153 if (file_priv->minor->master) { 154 ret = -EINVAL; 155 goto out_unlock; 156 } 157 158 if (!file_priv->master) { 159 ret = -EINVAL; 160 goto out_unlock; 161 } 162 163 if (!file_priv->allowed_master) { 164 ret = drm_new_set_master(dev, file_priv); 165 goto out_unlock; 166 } 167 168 file_priv->minor->master = drm_master_get(file_priv->master); 169 file_priv->is_master = 1; 170 if (dev->driver->master_set) { 171 ret = dev->driver->master_set(dev, file_priv, false); 172 if (unlikely(ret != 0)) { 173 file_priv->is_master = 0; 174 drm_master_put(&file_priv->minor->master); 175 } 176 } 177 178 out_unlock: 179 mutex_unlock(&dev->master_mutex); 180 return ret; 181 } 182 183 int drm_dropmaster_ioctl(struct drm_device *dev, void *data, 184 struct drm_file *file_priv) 185 { 186 int ret = -EINVAL; 187 188 mutex_lock(&dev->master_mutex); 189 if (!file_priv->is_master) 190 goto out_unlock; 191 192 if (!file_priv->minor->master) 193 goto out_unlock; 194 195 ret = 0; 196 if (dev->driver->master_drop) 197 dev->driver->master_drop(dev, file_priv, false); 198 drm_master_put(&file_priv->minor->master); 199 file_priv->is_master = 0; 200 201 out_unlock: 202 mutex_unlock(&dev->master_mutex); 203 return ret; 204 } 205 206 /* 207 * DRM Minors 208 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 209 * of them is represented by a drm_minor object. Depending on the capabilities 210 * of the device-driver, different interfaces are registered. 211 * 212 * Minors can be accessed via dev->$minor_name. This pointer is either 213 * NULL or a valid drm_minor pointer and stays valid as long as the device is 214 * valid. This means, DRM minors have the same life-time as the underlying 215 * device. However, this doesn't mean that the minor is active. Minors are 216 * registered and unregistered dynamically according to device-state. 217 */ 218 219 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 220 unsigned int type) 221 { 222 switch (type) { 223 case DRM_MINOR_LEGACY: 224 return &dev->primary; 225 case DRM_MINOR_RENDER: 226 return &dev->render; 227 case DRM_MINOR_CONTROL: 228 return &dev->control; 229 default: 230 return NULL; 231 } 232 } 233 234 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 235 { 236 struct drm_minor *minor; 237 unsigned long flags; 238 int r; 239 240 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 241 if (!minor) 242 return -ENOMEM; 243 244 minor->type = type; 245 minor->dev = dev; 246 247 idr_preload(GFP_KERNEL); 248 spin_lock_irqsave(&drm_minor_lock, flags); 249 r = idr_alloc(&drm_minors_idr, 250 NULL, 251 64 * type, 252 64 * (type + 1), 253 GFP_NOWAIT); 254 spin_unlock_irqrestore(&drm_minor_lock, flags); 255 idr_preload_end(); 256 257 if (r < 0) 258 goto err_free; 259 260 minor->index = r; 261 262 minor->kdev = drm_sysfs_minor_alloc(minor); 263 if (IS_ERR(minor->kdev)) { 264 r = PTR_ERR(minor->kdev); 265 goto err_index; 266 } 267 268 *drm_minor_get_slot(dev, type) = minor; 269 return 0; 270 271 err_index: 272 spin_lock_irqsave(&drm_minor_lock, flags); 273 idr_remove(&drm_minors_idr, minor->index); 274 spin_unlock_irqrestore(&drm_minor_lock, flags); 275 err_free: 276 kfree(minor); 277 return r; 278 } 279 280 static void drm_minor_free(struct drm_device *dev, unsigned int type) 281 { 282 struct drm_minor **slot, *minor; 283 unsigned long flags; 284 285 slot = drm_minor_get_slot(dev, type); 286 minor = *slot; 287 if (!minor) 288 return; 289 290 put_device(minor->kdev); 291 292 spin_lock_irqsave(&drm_minor_lock, flags); 293 idr_remove(&drm_minors_idr, minor->index); 294 spin_unlock_irqrestore(&drm_minor_lock, flags); 295 296 kfree(minor); 297 *slot = NULL; 298 } 299 300 static int drm_minor_register(struct drm_device *dev, unsigned int type) 301 { 302 struct drm_minor *minor; 303 unsigned long flags; 304 int ret; 305 306 DRM_DEBUG("\n"); 307 308 minor = *drm_minor_get_slot(dev, type); 309 if (!minor) 310 return 0; 311 312 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 313 if (ret) { 314 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 315 return ret; 316 } 317 318 ret = device_add(minor->kdev); 319 if (ret) 320 goto err_debugfs; 321 322 /* replace NULL with @minor so lookups will succeed from now on */ 323 spin_lock_irqsave(&drm_minor_lock, flags); 324 idr_replace(&drm_minors_idr, minor, minor->index); 325 spin_unlock_irqrestore(&drm_minor_lock, flags); 326 327 DRM_DEBUG("new minor registered %d\n", minor->index); 328 return 0; 329 330 err_debugfs: 331 drm_debugfs_cleanup(minor); 332 return ret; 333 } 334 335 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 336 { 337 struct drm_minor *minor; 338 unsigned long flags; 339 340 minor = *drm_minor_get_slot(dev, type); 341 if (!minor || !device_is_registered(minor->kdev)) 342 return; 343 344 /* replace @minor with NULL so lookups will fail from now on */ 345 spin_lock_irqsave(&drm_minor_lock, flags); 346 idr_replace(&drm_minors_idr, NULL, minor->index); 347 spin_unlock_irqrestore(&drm_minor_lock, flags); 348 349 device_del(minor->kdev); 350 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 351 drm_debugfs_cleanup(minor); 352 } 353 354 /** 355 * drm_minor_acquire - Acquire a DRM minor 356 * @minor_id: Minor ID of the DRM-minor 357 * 358 * Looks up the given minor-ID and returns the respective DRM-minor object. The 359 * refence-count of the underlying device is increased so you must release this 360 * object with drm_minor_release(). 361 * 362 * As long as you hold this minor, it is guaranteed that the object and the 363 * minor->dev pointer will stay valid! However, the device may get unplugged and 364 * unregistered while you hold the minor. 365 * 366 * Returns: 367 * Pointer to minor-object with increased device-refcount, or PTR_ERR on 368 * failure. 369 */ 370 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 371 { 372 struct drm_minor *minor; 373 unsigned long flags; 374 375 spin_lock_irqsave(&drm_minor_lock, flags); 376 minor = idr_find(&drm_minors_idr, minor_id); 377 if (minor) 378 drm_dev_ref(minor->dev); 379 spin_unlock_irqrestore(&drm_minor_lock, flags); 380 381 if (!minor) { 382 return ERR_PTR(-ENODEV); 383 } else if (drm_device_is_unplugged(minor->dev)) { 384 drm_dev_unref(minor->dev); 385 return ERR_PTR(-ENODEV); 386 } 387 388 return minor; 389 } 390 391 /** 392 * drm_minor_release - Release DRM minor 393 * @minor: Pointer to DRM minor object 394 * 395 * Release a minor that was previously acquired via drm_minor_acquire(). 396 */ 397 void drm_minor_release(struct drm_minor *minor) 398 { 399 drm_dev_unref(minor->dev); 400 } 401 402 /** 403 * DOC: driver instance overview 404 * 405 * A device instance for a drm driver is represented by struct &drm_device. This 406 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe() 407 * callbacks implemented by the driver. The driver then needs to initialize all 408 * the various subsystems for the drm device like memory management, vblank 409 * handling, modesetting support and intial output configuration plus obviously 410 * initialize all the corresponding hardware bits. An important part of this is 411 * also calling drm_dev_set_unique() to set the userspace-visible unique name of 412 * this device instance. Finally when everything is up and running and ready for 413 * userspace the device instance can be published using drm_dev_register(). 414 * 415 * There is also deprecated support for initalizing device instances using 416 * bus-specific helpers and the ->load() callback. But due to 417 * backwards-compatibility needs the device instance have to be published too 418 * early, which requires unpretty global locking to make safe and is therefore 419 * only support for existing drivers not yet converted to the new scheme. 420 * 421 * When cleaning up a device instance everything needs to be done in reverse: 422 * First unpublish the device instance with drm_dev_unregister(). Then clean up 423 * any other resources allocated at device initialization and drop the driver's 424 * reference to &drm_device using drm_dev_unref(). 425 * 426 * Note that the lifetime rules for &drm_device instance has still a lot of 427 * historical baggage. Hence use the reference counting provided by 428 * drm_dev_ref() and drm_dev_unref() only carefully. 429 * 430 * Also note that embedding of &drm_device is currently not (yet) supported (but 431 * it would be easy to add). Drivers can store driver-private data in the 432 * dev_priv field of &drm_device. 433 */ 434 435 /** 436 * drm_put_dev - Unregister and release a DRM device 437 * @dev: DRM device 438 * 439 * Called at module unload time or when a PCI device is unplugged. 440 * 441 * Cleans up all DRM device, calling drm_lastclose(). 442 * 443 * Note: Use of this function is deprecated. It will eventually go away 444 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly 445 * instead to make sure that the device isn't userspace accessible any more 446 * while teardown is in progress, ensuring that userspace can't access an 447 * inconsistent state. 448 */ 449 void drm_put_dev(struct drm_device *dev) 450 { 451 DRM_DEBUG("\n"); 452 453 if (!dev) { 454 DRM_ERROR("cleanup called no dev\n"); 455 return; 456 } 457 458 drm_dev_unregister(dev); 459 drm_dev_unref(dev); 460 } 461 EXPORT_SYMBOL(drm_put_dev); 462 463 void drm_unplug_dev(struct drm_device *dev) 464 { 465 /* for a USB device */ 466 drm_minor_unregister(dev, DRM_MINOR_LEGACY); 467 drm_minor_unregister(dev, DRM_MINOR_RENDER); 468 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 469 470 mutex_lock(&drm_global_mutex); 471 472 drm_device_set_unplugged(dev); 473 474 if (dev->open_count == 0) { 475 drm_put_dev(dev); 476 } 477 mutex_unlock(&drm_global_mutex); 478 } 479 EXPORT_SYMBOL(drm_unplug_dev); 480 481 /* 482 * DRM internal mount 483 * We want to be able to allocate our own "struct address_space" to control 484 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 485 * stand-alone address_space objects, so we need an underlying inode. As there 486 * is no way to allocate an independent inode easily, we need a fake internal 487 * VFS mount-point. 488 * 489 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 490 * frees it again. You are allowed to use iget() and iput() to get references to 491 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 492 * drm_fs_inode_free() call (which does not have to be the last iput()). 493 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 494 * between multiple inode-users. You could, technically, call 495 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 496 * iput(), but this way you'd end up with a new vfsmount for each inode. 497 */ 498 499 static int drm_fs_cnt; 500 static struct vfsmount *drm_fs_mnt; 501 502 static const struct dentry_operations drm_fs_dops = { 503 .d_dname = simple_dname, 504 }; 505 506 static const struct super_operations drm_fs_sops = { 507 .statfs = simple_statfs, 508 }; 509 510 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 511 const char *dev_name, void *data) 512 { 513 return mount_pseudo(fs_type, 514 "drm:", 515 &drm_fs_sops, 516 &drm_fs_dops, 517 0x010203ff); 518 } 519 520 static struct file_system_type drm_fs_type = { 521 .name = "drm", 522 .owner = THIS_MODULE, 523 .mount = drm_fs_mount, 524 .kill_sb = kill_anon_super, 525 }; 526 527 static struct inode *drm_fs_inode_new(void) 528 { 529 struct inode *inode; 530 int r; 531 532 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 533 if (r < 0) { 534 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 535 return ERR_PTR(r); 536 } 537 538 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 539 if (IS_ERR(inode)) 540 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 541 542 return inode; 543 } 544 545 static void drm_fs_inode_free(struct inode *inode) 546 { 547 if (inode) { 548 iput(inode); 549 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 550 } 551 } 552 553 /** 554 * drm_dev_alloc - Allocate new DRM device 555 * @driver: DRM driver to allocate device for 556 * @parent: Parent device object 557 * 558 * Allocate and initialize a new DRM device. No device registration is done. 559 * Call drm_dev_register() to advertice the device to user space and register it 560 * with other core subsystems. This should be done last in the device 561 * initialization sequence to make sure userspace can't access an inconsistent 562 * state. 563 * 564 * The initial ref-count of the object is 1. Use drm_dev_ref() and 565 * drm_dev_unref() to take and drop further ref-counts. 566 * 567 * Note that for purely virtual devices @parent can be NULL. 568 * 569 * RETURNS: 570 * Pointer to new DRM device, or NULL if out of memory. 571 */ 572 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 573 struct device *parent) 574 { 575 struct drm_device *dev; 576 int ret; 577 578 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 579 if (!dev) 580 return NULL; 581 582 kref_init(&dev->ref); 583 dev->dev = parent; 584 dev->driver = driver; 585 586 INIT_LIST_HEAD(&dev->filelist); 587 INIT_LIST_HEAD(&dev->ctxlist); 588 INIT_LIST_HEAD(&dev->vmalist); 589 INIT_LIST_HEAD(&dev->maplist); 590 INIT_LIST_HEAD(&dev->vblank_event_list); 591 592 spin_lock_init(&dev->buf_lock); 593 spin_lock_init(&dev->event_lock); 594 mutex_init(&dev->struct_mutex); 595 mutex_init(&dev->ctxlist_mutex); 596 mutex_init(&dev->master_mutex); 597 598 dev->anon_inode = drm_fs_inode_new(); 599 if (IS_ERR(dev->anon_inode)) { 600 ret = PTR_ERR(dev->anon_inode); 601 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 602 goto err_free; 603 } 604 605 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 606 ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL); 607 if (ret) 608 goto err_minors; 609 610 WARN_ON(driver->suspend || driver->resume); 611 } 612 613 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 614 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 615 if (ret) 616 goto err_minors; 617 } 618 619 ret = drm_minor_alloc(dev, DRM_MINOR_LEGACY); 620 if (ret) 621 goto err_minors; 622 623 if (drm_ht_create(&dev->map_hash, 12)) 624 goto err_minors; 625 626 drm_legacy_ctxbitmap_init(dev); 627 628 if (drm_core_check_feature(dev, DRIVER_GEM)) { 629 ret = drm_gem_init(dev); 630 if (ret) { 631 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 632 goto err_ctxbitmap; 633 } 634 } 635 636 return dev; 637 638 err_ctxbitmap: 639 drm_legacy_ctxbitmap_cleanup(dev); 640 drm_ht_remove(&dev->map_hash); 641 err_minors: 642 drm_minor_free(dev, DRM_MINOR_LEGACY); 643 drm_minor_free(dev, DRM_MINOR_RENDER); 644 drm_minor_free(dev, DRM_MINOR_CONTROL); 645 drm_fs_inode_free(dev->anon_inode); 646 err_free: 647 mutex_destroy(&dev->master_mutex); 648 kfree(dev); 649 return NULL; 650 } 651 EXPORT_SYMBOL(drm_dev_alloc); 652 653 static void drm_dev_release(struct kref *ref) 654 { 655 struct drm_device *dev = container_of(ref, struct drm_device, ref); 656 657 if (drm_core_check_feature(dev, DRIVER_GEM)) 658 drm_gem_destroy(dev); 659 660 drm_legacy_ctxbitmap_cleanup(dev); 661 drm_ht_remove(&dev->map_hash); 662 drm_fs_inode_free(dev->anon_inode); 663 664 drm_minor_free(dev, DRM_MINOR_LEGACY); 665 drm_minor_free(dev, DRM_MINOR_RENDER); 666 drm_minor_free(dev, DRM_MINOR_CONTROL); 667 668 mutex_destroy(&dev->master_mutex); 669 kfree(dev->unique); 670 kfree(dev); 671 } 672 673 /** 674 * drm_dev_ref - Take reference of a DRM device 675 * @dev: device to take reference of or NULL 676 * 677 * This increases the ref-count of @dev by one. You *must* already own a 678 * reference when calling this. Use drm_dev_unref() to drop this reference 679 * again. 680 * 681 * This function never fails. However, this function does not provide *any* 682 * guarantee whether the device is alive or running. It only provides a 683 * reference to the object and the memory associated with it. 684 */ 685 void drm_dev_ref(struct drm_device *dev) 686 { 687 if (dev) 688 kref_get(&dev->ref); 689 } 690 EXPORT_SYMBOL(drm_dev_ref); 691 692 /** 693 * drm_dev_unref - Drop reference of a DRM device 694 * @dev: device to drop reference of or NULL 695 * 696 * This decreases the ref-count of @dev by one. The device is destroyed if the 697 * ref-count drops to zero. 698 */ 699 void drm_dev_unref(struct drm_device *dev) 700 { 701 if (dev) 702 kref_put(&dev->ref, drm_dev_release); 703 } 704 EXPORT_SYMBOL(drm_dev_unref); 705 706 /** 707 * drm_dev_register - Register DRM device 708 * @dev: Device to register 709 * @flags: Flags passed to the driver's .load() function 710 * 711 * Register the DRM device @dev with the system, advertise device to user-space 712 * and start normal device operation. @dev must be allocated via drm_dev_alloc() 713 * previously. 714 * 715 * Never call this twice on any device! 716 * 717 * NOTE: To ensure backward compatibility with existing drivers method this 718 * function calls the ->load() method after registering the device nodes, 719 * creating race conditions. Usage of the ->load() methods is therefore 720 * deprecated, drivers must perform all initialization before calling 721 * drm_dev_register(). 722 * 723 * RETURNS: 724 * 0 on success, negative error code on failure. 725 */ 726 int drm_dev_register(struct drm_device *dev, unsigned long flags) 727 { 728 int ret; 729 730 mutex_lock(&drm_global_mutex); 731 732 ret = drm_minor_register(dev, DRM_MINOR_CONTROL); 733 if (ret) 734 goto err_minors; 735 736 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 737 if (ret) 738 goto err_minors; 739 740 ret = drm_minor_register(dev, DRM_MINOR_LEGACY); 741 if (ret) 742 goto err_minors; 743 744 if (dev->driver->load) { 745 ret = dev->driver->load(dev, flags); 746 if (ret) 747 goto err_minors; 748 } 749 750 ret = 0; 751 goto out_unlock; 752 753 err_minors: 754 drm_minor_unregister(dev, DRM_MINOR_LEGACY); 755 drm_minor_unregister(dev, DRM_MINOR_RENDER); 756 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 757 out_unlock: 758 mutex_unlock(&drm_global_mutex); 759 return ret; 760 } 761 EXPORT_SYMBOL(drm_dev_register); 762 763 /** 764 * drm_dev_unregister - Unregister DRM device 765 * @dev: Device to unregister 766 * 767 * Unregister the DRM device from the system. This does the reverse of 768 * drm_dev_register() but does not deallocate the device. The caller must call 769 * drm_dev_unref() to drop their final reference. 770 * 771 * This should be called first in the device teardown code to make sure 772 * userspace can't access the device instance any more. 773 */ 774 void drm_dev_unregister(struct drm_device *dev) 775 { 776 struct drm_map_list *r_list, *list_temp; 777 778 drm_lastclose(dev); 779 780 if (dev->driver->unload) 781 dev->driver->unload(dev); 782 783 if (dev->agp) 784 drm_pci_agp_destroy(dev); 785 786 drm_vblank_cleanup(dev); 787 788 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) 789 drm_legacy_rmmap(dev, r_list->map); 790 791 drm_minor_unregister(dev, DRM_MINOR_LEGACY); 792 drm_minor_unregister(dev, DRM_MINOR_RENDER); 793 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 794 } 795 EXPORT_SYMBOL(drm_dev_unregister); 796 797 /** 798 * drm_dev_set_unique - Set the unique name of a DRM device 799 * @dev: device of which to set the unique name 800 * @fmt: format string for unique name 801 * 802 * Sets the unique name of a DRM device using the specified format string and 803 * a variable list of arguments. Drivers can use this at driver probe time if 804 * the unique name of the devices they drive is static. 805 * 806 * Return: 0 on success or a negative error code on failure. 807 */ 808 int drm_dev_set_unique(struct drm_device *dev, const char *fmt, ...) 809 { 810 va_list ap; 811 812 kfree(dev->unique); 813 814 va_start(ap, fmt); 815 dev->unique = kvasprintf(GFP_KERNEL, fmt, ap); 816 va_end(ap); 817 818 return dev->unique ? 0 : -ENOMEM; 819 } 820 EXPORT_SYMBOL(drm_dev_set_unique); 821 822 /* 823 * DRM Core 824 * The DRM core module initializes all global DRM objects and makes them 825 * available to drivers. Once setup, drivers can probe their respective 826 * devices. 827 * Currently, core management includes: 828 * - The "DRM-Global" key/value database 829 * - Global ID management for connectors 830 * - DRM major number allocation 831 * - DRM minor management 832 * - DRM sysfs class 833 * - DRM debugfs root 834 * 835 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 836 * interface registered on a DRM device, you can request minor numbers from DRM 837 * core. DRM core takes care of major-number management and char-dev 838 * registration. A stub ->open() callback forwards any open() requests to the 839 * registered minor. 840 */ 841 842 static int drm_stub_open(struct inode *inode, struct file *filp) 843 { 844 const struct file_operations *new_fops; 845 struct drm_minor *minor; 846 int err; 847 848 DRM_DEBUG("\n"); 849 850 mutex_lock(&drm_global_mutex); 851 minor = drm_minor_acquire(iminor(inode)); 852 if (IS_ERR(minor)) { 853 err = PTR_ERR(minor); 854 goto out_unlock; 855 } 856 857 new_fops = fops_get(minor->dev->driver->fops); 858 if (!new_fops) { 859 err = -ENODEV; 860 goto out_release; 861 } 862 863 replace_fops(filp, new_fops); 864 if (filp->f_op->open) 865 err = filp->f_op->open(inode, filp); 866 else 867 err = 0; 868 869 out_release: 870 drm_minor_release(minor); 871 out_unlock: 872 mutex_unlock(&drm_global_mutex); 873 return err; 874 } 875 876 static const struct file_operations drm_stub_fops = { 877 .owner = THIS_MODULE, 878 .open = drm_stub_open, 879 .llseek = noop_llseek, 880 }; 881 882 static int __init drm_core_init(void) 883 { 884 int ret = -ENOMEM; 885 886 drm_global_init(); 887 drm_connector_ida_init(); 888 idr_init(&drm_minors_idr); 889 890 if (register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops)) 891 goto err_p1; 892 893 ret = drm_sysfs_init(); 894 if (ret < 0) { 895 printk(KERN_ERR "DRM: Error creating drm class.\n"); 896 goto err_p2; 897 } 898 899 drm_debugfs_root = debugfs_create_dir("dri", NULL); 900 if (!drm_debugfs_root) { 901 DRM_ERROR("Cannot create /sys/kernel/debug/dri\n"); 902 ret = -1; 903 goto err_p3; 904 } 905 906 DRM_INFO("Initialized %s %d.%d.%d %s\n", 907 CORE_NAME, CORE_MAJOR, CORE_MINOR, CORE_PATCHLEVEL, CORE_DATE); 908 return 0; 909 err_p3: 910 drm_sysfs_destroy(); 911 err_p2: 912 unregister_chrdev(DRM_MAJOR, "drm"); 913 914 idr_destroy(&drm_minors_idr); 915 err_p1: 916 return ret; 917 } 918 919 static void __exit drm_core_exit(void) 920 { 921 debugfs_remove(drm_debugfs_root); 922 drm_sysfs_destroy(); 923 924 unregister_chrdev(DRM_MAJOR, "drm"); 925 926 drm_connector_ida_destroy(); 927 idr_destroy(&drm_minors_idr); 928 } 929 930 module_init(drm_core_init); 931 module_exit(drm_core_exit); 932