1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/pseudo_fs.h> 35 #include <linux/slab.h> 36 #include <linux/srcu.h> 37 38 #include <drm/drm_accel.h> 39 #include <drm/drm_cache.h> 40 #include <drm/drm_client.h> 41 #include <drm/drm_color_mgmt.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_file.h> 44 #include <drm/drm_managed.h> 45 #include <drm/drm_mode_object.h> 46 #include <drm/drm_print.h> 47 #include <drm/drm_privacy_screen_machine.h> 48 49 #include "drm_crtc_internal.h" 50 #include "drm_internal.h" 51 #include "drm_legacy.h" 52 53 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 54 MODULE_DESCRIPTION("DRM shared core routines"); 55 MODULE_LICENSE("GPL and additional rights"); 56 57 static DEFINE_SPINLOCK(drm_minor_lock); 58 static struct idr drm_minors_idr; 59 60 /* 61 * If the drm core fails to init for whatever reason, 62 * we should prevent any drivers from registering with it. 63 * It's best to check this at drm_dev_init(), as some drivers 64 * prefer to embed struct drm_device into their own device 65 * structure and call drm_dev_init() themselves. 66 */ 67 static bool drm_core_init_complete; 68 69 static struct dentry *drm_debugfs_root; 70 71 DEFINE_STATIC_SRCU(drm_unplug_srcu); 72 73 /* 74 * DRM Minors 75 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 76 * of them is represented by a drm_minor object. Depending on the capabilities 77 * of the device-driver, different interfaces are registered. 78 * 79 * Minors can be accessed via dev->$minor_name. This pointer is either 80 * NULL or a valid drm_minor pointer and stays valid as long as the device is 81 * valid. This means, DRM minors have the same life-time as the underlying 82 * device. However, this doesn't mean that the minor is active. Minors are 83 * registered and unregistered dynamically according to device-state. 84 */ 85 86 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 87 unsigned int type) 88 { 89 switch (type) { 90 case DRM_MINOR_PRIMARY: 91 return &dev->primary; 92 case DRM_MINOR_RENDER: 93 return &dev->render; 94 case DRM_MINOR_ACCEL: 95 return &dev->accel; 96 default: 97 BUG(); 98 } 99 } 100 101 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 102 { 103 struct drm_minor *minor = data; 104 unsigned long flags; 105 106 WARN_ON(dev != minor->dev); 107 108 put_device(minor->kdev); 109 110 if (minor->type == DRM_MINOR_ACCEL) { 111 accel_minor_remove(minor->index); 112 } else { 113 spin_lock_irqsave(&drm_minor_lock, flags); 114 idr_remove(&drm_minors_idr, minor->index); 115 spin_unlock_irqrestore(&drm_minor_lock, flags); 116 } 117 } 118 119 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 120 { 121 struct drm_minor *minor; 122 unsigned long flags; 123 int r; 124 125 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 126 if (!minor) 127 return -ENOMEM; 128 129 minor->type = type; 130 minor->dev = dev; 131 132 idr_preload(GFP_KERNEL); 133 if (type == DRM_MINOR_ACCEL) { 134 r = accel_minor_alloc(); 135 } else { 136 spin_lock_irqsave(&drm_minor_lock, flags); 137 r = idr_alloc(&drm_minors_idr, 138 NULL, 139 64 * type, 140 64 * (type + 1), 141 GFP_NOWAIT); 142 spin_unlock_irqrestore(&drm_minor_lock, flags); 143 } 144 idr_preload_end(); 145 146 if (r < 0) 147 return r; 148 149 minor->index = r; 150 151 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 152 if (r) 153 return r; 154 155 minor->kdev = drm_sysfs_minor_alloc(minor); 156 if (IS_ERR(minor->kdev)) 157 return PTR_ERR(minor->kdev); 158 159 *drm_minor_get_slot(dev, type) = minor; 160 return 0; 161 } 162 163 static int drm_minor_register(struct drm_device *dev, unsigned int type) 164 { 165 struct drm_minor *minor; 166 unsigned long flags; 167 int ret; 168 169 DRM_DEBUG("\n"); 170 171 minor = *drm_minor_get_slot(dev, type); 172 if (!minor) 173 return 0; 174 175 if (minor->type == DRM_MINOR_ACCEL) { 176 accel_debugfs_init(minor, minor->index); 177 } else { 178 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 179 if (ret) { 180 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 181 goto err_debugfs; 182 } 183 } 184 185 ret = device_add(minor->kdev); 186 if (ret) 187 goto err_debugfs; 188 189 /* replace NULL with @minor so lookups will succeed from now on */ 190 if (minor->type == DRM_MINOR_ACCEL) { 191 accel_minor_replace(minor, minor->index); 192 } else { 193 spin_lock_irqsave(&drm_minor_lock, flags); 194 idr_replace(&drm_minors_idr, minor, minor->index); 195 spin_unlock_irqrestore(&drm_minor_lock, flags); 196 } 197 198 DRM_DEBUG("new minor registered %d\n", minor->index); 199 return 0; 200 201 err_debugfs: 202 drm_debugfs_cleanup(minor); 203 return ret; 204 } 205 206 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 207 { 208 struct drm_minor *minor; 209 unsigned long flags; 210 211 minor = *drm_minor_get_slot(dev, type); 212 if (!minor || !device_is_registered(minor->kdev)) 213 return; 214 215 /* replace @minor with NULL so lookups will fail from now on */ 216 if (minor->type == DRM_MINOR_ACCEL) { 217 accel_minor_replace(NULL, minor->index); 218 } else { 219 spin_lock_irqsave(&drm_minor_lock, flags); 220 idr_replace(&drm_minors_idr, NULL, minor->index); 221 spin_unlock_irqrestore(&drm_minor_lock, flags); 222 } 223 224 device_del(minor->kdev); 225 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 226 drm_debugfs_cleanup(minor); 227 } 228 229 /* 230 * Looks up the given minor-ID and returns the respective DRM-minor object. The 231 * refence-count of the underlying device is increased so you must release this 232 * object with drm_minor_release(). 233 * 234 * As long as you hold this minor, it is guaranteed that the object and the 235 * minor->dev pointer will stay valid! However, the device may get unplugged and 236 * unregistered while you hold the minor. 237 */ 238 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 239 { 240 struct drm_minor *minor; 241 unsigned long flags; 242 243 spin_lock_irqsave(&drm_minor_lock, flags); 244 minor = idr_find(&drm_minors_idr, minor_id); 245 if (minor) 246 drm_dev_get(minor->dev); 247 spin_unlock_irqrestore(&drm_minor_lock, flags); 248 249 if (!minor) { 250 return ERR_PTR(-ENODEV); 251 } else if (drm_dev_is_unplugged(minor->dev)) { 252 drm_dev_put(minor->dev); 253 return ERR_PTR(-ENODEV); 254 } 255 256 return minor; 257 } 258 259 void drm_minor_release(struct drm_minor *minor) 260 { 261 drm_dev_put(minor->dev); 262 } 263 264 /** 265 * DOC: driver instance overview 266 * 267 * A device instance for a drm driver is represented by &struct drm_device. This 268 * is allocated and initialized with devm_drm_dev_alloc(), usually from 269 * bus-specific ->probe() callbacks implemented by the driver. The driver then 270 * needs to initialize all the various subsystems for the drm device like memory 271 * management, vblank handling, modesetting support and initial output 272 * configuration plus obviously initialize all the corresponding hardware bits. 273 * Finally when everything is up and running and ready for userspace the device 274 * instance can be published using drm_dev_register(). 275 * 276 * There is also deprecated support for initializing device instances using 277 * bus-specific helpers and the &drm_driver.load callback. But due to 278 * backwards-compatibility needs the device instance have to be published too 279 * early, which requires unpretty global locking to make safe and is therefore 280 * only support for existing drivers not yet converted to the new scheme. 281 * 282 * When cleaning up a device instance everything needs to be done in reverse: 283 * First unpublish the device instance with drm_dev_unregister(). Then clean up 284 * any other resources allocated at device initialization and drop the driver's 285 * reference to &drm_device using drm_dev_put(). 286 * 287 * Note that any allocation or resource which is visible to userspace must be 288 * released only when the final drm_dev_put() is called, and not when the 289 * driver is unbound from the underlying physical struct &device. Best to use 290 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 291 * related functions. 292 * 293 * devres managed resources like devm_kmalloc() can only be used for resources 294 * directly related to the underlying hardware device, and only used in code 295 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 296 * 297 * Display driver example 298 * ~~~~~~~~~~~~~~~~~~~~~~ 299 * 300 * The following example shows a typical structure of a DRM display driver. 301 * The example focus on the probe() function and the other functions that is 302 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 303 * 304 * .. code-block:: c 305 * 306 * struct driver_device { 307 * struct drm_device drm; 308 * void *userspace_facing; 309 * struct clk *pclk; 310 * }; 311 * 312 * static const struct drm_driver driver_drm_driver = { 313 * [...] 314 * }; 315 * 316 * static int driver_probe(struct platform_device *pdev) 317 * { 318 * struct driver_device *priv; 319 * struct drm_device *drm; 320 * int ret; 321 * 322 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 323 * struct driver_device, drm); 324 * if (IS_ERR(priv)) 325 * return PTR_ERR(priv); 326 * drm = &priv->drm; 327 * 328 * ret = drmm_mode_config_init(drm); 329 * if (ret) 330 * return ret; 331 * 332 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 333 * if (!priv->userspace_facing) 334 * return -ENOMEM; 335 * 336 * priv->pclk = devm_clk_get(dev, "PCLK"); 337 * if (IS_ERR(priv->pclk)) 338 * return PTR_ERR(priv->pclk); 339 * 340 * // Further setup, display pipeline etc 341 * 342 * platform_set_drvdata(pdev, drm); 343 * 344 * drm_mode_config_reset(drm); 345 * 346 * ret = drm_dev_register(drm); 347 * if (ret) 348 * return ret; 349 * 350 * drm_fbdev_generic_setup(drm, 32); 351 * 352 * return 0; 353 * } 354 * 355 * // This function is called before the devm_ resources are released 356 * static int driver_remove(struct platform_device *pdev) 357 * { 358 * struct drm_device *drm = platform_get_drvdata(pdev); 359 * 360 * drm_dev_unregister(drm); 361 * drm_atomic_helper_shutdown(drm) 362 * 363 * return 0; 364 * } 365 * 366 * // This function is called on kernel restart and shutdown 367 * static void driver_shutdown(struct platform_device *pdev) 368 * { 369 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 370 * } 371 * 372 * static int __maybe_unused driver_pm_suspend(struct device *dev) 373 * { 374 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 375 * } 376 * 377 * static int __maybe_unused driver_pm_resume(struct device *dev) 378 * { 379 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 380 * 381 * return 0; 382 * } 383 * 384 * static const struct dev_pm_ops driver_pm_ops = { 385 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 386 * }; 387 * 388 * static struct platform_driver driver_driver = { 389 * .driver = { 390 * [...] 391 * .pm = &driver_pm_ops, 392 * }, 393 * .probe = driver_probe, 394 * .remove = driver_remove, 395 * .shutdown = driver_shutdown, 396 * }; 397 * module_platform_driver(driver_driver); 398 * 399 * Drivers that want to support device unplugging (USB, DT overlay unload) should 400 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 401 * regions that is accessing device resources to prevent use after they're 402 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 403 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 404 * drm_atomic_helper_shutdown() is called. This means that if the disable code 405 * paths are protected, they will not run on regular driver module unload, 406 * possibly leaving the hardware enabled. 407 */ 408 409 /** 410 * drm_put_dev - Unregister and release a DRM device 411 * @dev: DRM device 412 * 413 * Called at module unload time or when a PCI device is unplugged. 414 * 415 * Cleans up all DRM device, calling drm_lastclose(). 416 * 417 * Note: Use of this function is deprecated. It will eventually go away 418 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 419 * instead to make sure that the device isn't userspace accessible any more 420 * while teardown is in progress, ensuring that userspace can't access an 421 * inconsistent state. 422 */ 423 void drm_put_dev(struct drm_device *dev) 424 { 425 DRM_DEBUG("\n"); 426 427 if (!dev) { 428 DRM_ERROR("cleanup called no dev\n"); 429 return; 430 } 431 432 drm_dev_unregister(dev); 433 drm_dev_put(dev); 434 } 435 EXPORT_SYMBOL(drm_put_dev); 436 437 /** 438 * drm_dev_enter - Enter device critical section 439 * @dev: DRM device 440 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 441 * 442 * This function marks and protects the beginning of a section that should not 443 * be entered after the device has been unplugged. The section end is marked 444 * with drm_dev_exit(). Calls to this function can be nested. 445 * 446 * Returns: 447 * True if it is OK to enter the section, false otherwise. 448 */ 449 bool drm_dev_enter(struct drm_device *dev, int *idx) 450 { 451 *idx = srcu_read_lock(&drm_unplug_srcu); 452 453 if (dev->unplugged) { 454 srcu_read_unlock(&drm_unplug_srcu, *idx); 455 return false; 456 } 457 458 return true; 459 } 460 EXPORT_SYMBOL(drm_dev_enter); 461 462 /** 463 * drm_dev_exit - Exit device critical section 464 * @idx: index returned from drm_dev_enter() 465 * 466 * This function marks the end of a section that should not be entered after 467 * the device has been unplugged. 468 */ 469 void drm_dev_exit(int idx) 470 { 471 srcu_read_unlock(&drm_unplug_srcu, idx); 472 } 473 EXPORT_SYMBOL(drm_dev_exit); 474 475 /** 476 * drm_dev_unplug - unplug a DRM device 477 * @dev: DRM device 478 * 479 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 480 * userspace operations. Entry-points can use drm_dev_enter() and 481 * drm_dev_exit() to protect device resources in a race free manner. This 482 * essentially unregisters the device like drm_dev_unregister(), but can be 483 * called while there are still open users of @dev. 484 */ 485 void drm_dev_unplug(struct drm_device *dev) 486 { 487 /* 488 * After synchronizing any critical read section is guaranteed to see 489 * the new value of ->unplugged, and any critical section which might 490 * still have seen the old value of ->unplugged is guaranteed to have 491 * finished. 492 */ 493 dev->unplugged = true; 494 synchronize_srcu(&drm_unplug_srcu); 495 496 drm_dev_unregister(dev); 497 498 /* Clear all CPU mappings pointing to this device */ 499 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 500 } 501 EXPORT_SYMBOL(drm_dev_unplug); 502 503 /* 504 * DRM internal mount 505 * We want to be able to allocate our own "struct address_space" to control 506 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 507 * stand-alone address_space objects, so we need an underlying inode. As there 508 * is no way to allocate an independent inode easily, we need a fake internal 509 * VFS mount-point. 510 * 511 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 512 * frees it again. You are allowed to use iget() and iput() to get references to 513 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 514 * drm_fs_inode_free() call (which does not have to be the last iput()). 515 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 516 * between multiple inode-users. You could, technically, call 517 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 518 * iput(), but this way you'd end up with a new vfsmount for each inode. 519 */ 520 521 static int drm_fs_cnt; 522 static struct vfsmount *drm_fs_mnt; 523 524 static int drm_fs_init_fs_context(struct fs_context *fc) 525 { 526 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 527 } 528 529 static struct file_system_type drm_fs_type = { 530 .name = "drm", 531 .owner = THIS_MODULE, 532 .init_fs_context = drm_fs_init_fs_context, 533 .kill_sb = kill_anon_super, 534 }; 535 536 static struct inode *drm_fs_inode_new(void) 537 { 538 struct inode *inode; 539 int r; 540 541 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 542 if (r < 0) { 543 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 544 return ERR_PTR(r); 545 } 546 547 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 548 if (IS_ERR(inode)) 549 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 550 551 return inode; 552 } 553 554 static void drm_fs_inode_free(struct inode *inode) 555 { 556 if (inode) { 557 iput(inode); 558 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 559 } 560 } 561 562 /** 563 * DOC: component helper usage recommendations 564 * 565 * DRM drivers that drive hardware where a logical device consists of a pile of 566 * independent hardware blocks are recommended to use the :ref:`component helper 567 * library<component>`. For consistency and better options for code reuse the 568 * following guidelines apply: 569 * 570 * - The entire device initialization procedure should be run from the 571 * &component_master_ops.master_bind callback, starting with 572 * devm_drm_dev_alloc(), then binding all components with 573 * component_bind_all() and finishing with drm_dev_register(). 574 * 575 * - The opaque pointer passed to all components through component_bind_all() 576 * should point at &struct drm_device of the device instance, not some driver 577 * specific private structure. 578 * 579 * - The component helper fills the niche where further standardization of 580 * interfaces is not practical. When there already is, or will be, a 581 * standardized interface like &drm_bridge or &drm_panel, providing its own 582 * functions to find such components at driver load time, like 583 * drm_of_find_panel_or_bridge(), then the component helper should not be 584 * used. 585 */ 586 587 static void drm_dev_init_release(struct drm_device *dev, void *res) 588 { 589 drm_legacy_ctxbitmap_cleanup(dev); 590 drm_legacy_remove_map_hash(dev); 591 drm_fs_inode_free(dev->anon_inode); 592 593 put_device(dev->dev); 594 /* Prevent use-after-free in drm_managed_release when debugging is 595 * enabled. Slightly awkward, but can't really be helped. */ 596 dev->dev = NULL; 597 mutex_destroy(&dev->master_mutex); 598 mutex_destroy(&dev->clientlist_mutex); 599 mutex_destroy(&dev->filelist_mutex); 600 mutex_destroy(&dev->struct_mutex); 601 mutex_destroy(&dev->debugfs_mutex); 602 drm_legacy_destroy_members(dev); 603 } 604 605 static int drm_dev_init(struct drm_device *dev, 606 const struct drm_driver *driver, 607 struct device *parent) 608 { 609 struct inode *inode; 610 int ret; 611 612 if (!drm_core_init_complete) { 613 DRM_ERROR("DRM core is not initialized\n"); 614 return -ENODEV; 615 } 616 617 if (WARN_ON(!parent)) 618 return -EINVAL; 619 620 kref_init(&dev->ref); 621 dev->dev = get_device(parent); 622 dev->driver = driver; 623 624 INIT_LIST_HEAD(&dev->managed.resources); 625 spin_lock_init(&dev->managed.lock); 626 627 /* no per-device feature limits by default */ 628 dev->driver_features = ~0u; 629 630 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 631 (drm_core_check_feature(dev, DRIVER_RENDER) || 632 drm_core_check_feature(dev, DRIVER_MODESET))) { 633 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 634 return -EINVAL; 635 } 636 637 drm_legacy_init_members(dev); 638 INIT_LIST_HEAD(&dev->filelist); 639 INIT_LIST_HEAD(&dev->filelist_internal); 640 INIT_LIST_HEAD(&dev->clientlist); 641 INIT_LIST_HEAD(&dev->vblank_event_list); 642 INIT_LIST_HEAD(&dev->debugfs_list); 643 644 spin_lock_init(&dev->event_lock); 645 mutex_init(&dev->struct_mutex); 646 mutex_init(&dev->filelist_mutex); 647 mutex_init(&dev->clientlist_mutex); 648 mutex_init(&dev->master_mutex); 649 mutex_init(&dev->debugfs_mutex); 650 651 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 652 if (ret) 653 return ret; 654 655 inode = drm_fs_inode_new(); 656 if (IS_ERR(inode)) { 657 ret = PTR_ERR(inode); 658 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 659 goto err; 660 } 661 662 dev->anon_inode = inode; 663 664 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 665 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 666 if (ret) 667 goto err; 668 } else { 669 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 670 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 671 if (ret) 672 goto err; 673 } 674 675 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 676 if (ret) 677 goto err; 678 } 679 680 ret = drm_legacy_create_map_hash(dev); 681 if (ret) 682 goto err; 683 684 drm_legacy_ctxbitmap_init(dev); 685 686 if (drm_core_check_feature(dev, DRIVER_GEM)) { 687 ret = drm_gem_init(dev); 688 if (ret) { 689 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 690 goto err; 691 } 692 } 693 694 ret = drm_dev_set_unique(dev, dev_name(parent)); 695 if (ret) 696 goto err; 697 698 return 0; 699 700 err: 701 drm_managed_release(dev); 702 703 return ret; 704 } 705 706 static void devm_drm_dev_init_release(void *data) 707 { 708 drm_dev_put(data); 709 } 710 711 static int devm_drm_dev_init(struct device *parent, 712 struct drm_device *dev, 713 const struct drm_driver *driver) 714 { 715 int ret; 716 717 ret = drm_dev_init(dev, driver, parent); 718 if (ret) 719 return ret; 720 721 return devm_add_action_or_reset(parent, 722 devm_drm_dev_init_release, dev); 723 } 724 725 void *__devm_drm_dev_alloc(struct device *parent, 726 const struct drm_driver *driver, 727 size_t size, size_t offset) 728 { 729 void *container; 730 struct drm_device *drm; 731 int ret; 732 733 container = kzalloc(size, GFP_KERNEL); 734 if (!container) 735 return ERR_PTR(-ENOMEM); 736 737 drm = container + offset; 738 ret = devm_drm_dev_init(parent, drm, driver); 739 if (ret) { 740 kfree(container); 741 return ERR_PTR(ret); 742 } 743 drmm_add_final_kfree(drm, container); 744 745 return container; 746 } 747 EXPORT_SYMBOL(__devm_drm_dev_alloc); 748 749 /** 750 * drm_dev_alloc - Allocate new DRM device 751 * @driver: DRM driver to allocate device for 752 * @parent: Parent device object 753 * 754 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 755 * subclassing through embedding the struct &drm_device in a driver private 756 * structure, and which does not support automatic cleanup through devres. 757 * 758 * RETURNS: 759 * Pointer to new DRM device, or ERR_PTR on failure. 760 */ 761 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 762 struct device *parent) 763 { 764 struct drm_device *dev; 765 int ret; 766 767 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 768 if (!dev) 769 return ERR_PTR(-ENOMEM); 770 771 ret = drm_dev_init(dev, driver, parent); 772 if (ret) { 773 kfree(dev); 774 return ERR_PTR(ret); 775 } 776 777 drmm_add_final_kfree(dev, dev); 778 779 return dev; 780 } 781 EXPORT_SYMBOL(drm_dev_alloc); 782 783 static void drm_dev_release(struct kref *ref) 784 { 785 struct drm_device *dev = container_of(ref, struct drm_device, ref); 786 787 if (dev->driver->release) 788 dev->driver->release(dev); 789 790 drm_managed_release(dev); 791 792 kfree(dev->managed.final_kfree); 793 } 794 795 /** 796 * drm_dev_get - Take reference of a DRM device 797 * @dev: device to take reference of or NULL 798 * 799 * This increases the ref-count of @dev by one. You *must* already own a 800 * reference when calling this. Use drm_dev_put() to drop this reference 801 * again. 802 * 803 * This function never fails. However, this function does not provide *any* 804 * guarantee whether the device is alive or running. It only provides a 805 * reference to the object and the memory associated with it. 806 */ 807 void drm_dev_get(struct drm_device *dev) 808 { 809 if (dev) 810 kref_get(&dev->ref); 811 } 812 EXPORT_SYMBOL(drm_dev_get); 813 814 /** 815 * drm_dev_put - Drop reference of a DRM device 816 * @dev: device to drop reference of or NULL 817 * 818 * This decreases the ref-count of @dev by one. The device is destroyed if the 819 * ref-count drops to zero. 820 */ 821 void drm_dev_put(struct drm_device *dev) 822 { 823 if (dev) 824 kref_put(&dev->ref, drm_dev_release); 825 } 826 EXPORT_SYMBOL(drm_dev_put); 827 828 static int create_compat_control_link(struct drm_device *dev) 829 { 830 struct drm_minor *minor; 831 char *name; 832 int ret; 833 834 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 835 return 0; 836 837 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 838 if (!minor) 839 return 0; 840 841 /* 842 * Some existing userspace out there uses the existing of the controlD* 843 * sysfs files to figure out whether it's a modeset driver. It only does 844 * readdir, hence a symlink is sufficient (and the least confusing 845 * option). Otherwise controlD* is entirely unused. 846 * 847 * Old controlD chardev have been allocated in the range 848 * 64-127. 849 */ 850 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 851 if (!name) 852 return -ENOMEM; 853 854 ret = sysfs_create_link(minor->kdev->kobj.parent, 855 &minor->kdev->kobj, 856 name); 857 858 kfree(name); 859 860 return ret; 861 } 862 863 static void remove_compat_control_link(struct drm_device *dev) 864 { 865 struct drm_minor *minor; 866 char *name; 867 868 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 869 return; 870 871 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 872 if (!minor) 873 return; 874 875 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 876 if (!name) 877 return; 878 879 sysfs_remove_link(minor->kdev->kobj.parent, name); 880 881 kfree(name); 882 } 883 884 /** 885 * drm_dev_register - Register DRM device 886 * @dev: Device to register 887 * @flags: Flags passed to the driver's .load() function 888 * 889 * Register the DRM device @dev with the system, advertise device to user-space 890 * and start normal device operation. @dev must be initialized via drm_dev_init() 891 * previously. 892 * 893 * Never call this twice on any device! 894 * 895 * NOTE: To ensure backward compatibility with existing drivers method this 896 * function calls the &drm_driver.load method after registering the device 897 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 898 * therefore deprecated, drivers must perform all initialization before calling 899 * drm_dev_register(). 900 * 901 * RETURNS: 902 * 0 on success, negative error code on failure. 903 */ 904 int drm_dev_register(struct drm_device *dev, unsigned long flags) 905 { 906 const struct drm_driver *driver = dev->driver; 907 int ret; 908 909 if (!driver->load) 910 drm_mode_config_validate(dev); 911 912 WARN_ON(!dev->managed.final_kfree); 913 914 if (drm_dev_needs_global_mutex(dev)) 915 mutex_lock(&drm_global_mutex); 916 917 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 918 if (ret) 919 goto err_minors; 920 921 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 922 if (ret) 923 goto err_minors; 924 925 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 926 if (ret) 927 goto err_minors; 928 929 ret = create_compat_control_link(dev); 930 if (ret) 931 goto err_minors; 932 933 dev->registered = true; 934 935 if (driver->load) { 936 ret = driver->load(dev, flags); 937 if (ret) 938 goto err_minors; 939 } 940 941 if (drm_core_check_feature(dev, DRIVER_MODESET)) 942 drm_modeset_register_all(dev); 943 944 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 945 driver->name, driver->major, driver->minor, 946 driver->patchlevel, driver->date, 947 dev->dev ? dev_name(dev->dev) : "virtual device", 948 dev->primary ? dev->primary->index : dev->accel->index); 949 950 goto out_unlock; 951 952 err_minors: 953 remove_compat_control_link(dev); 954 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 955 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 956 drm_minor_unregister(dev, DRM_MINOR_RENDER); 957 out_unlock: 958 if (drm_dev_needs_global_mutex(dev)) 959 mutex_unlock(&drm_global_mutex); 960 return ret; 961 } 962 EXPORT_SYMBOL(drm_dev_register); 963 964 /** 965 * drm_dev_unregister - Unregister DRM device 966 * @dev: Device to unregister 967 * 968 * Unregister the DRM device from the system. This does the reverse of 969 * drm_dev_register() but does not deallocate the device. The caller must call 970 * drm_dev_put() to drop their final reference. 971 * 972 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 973 * which can be called while there are still open users of @dev. 974 * 975 * This should be called first in the device teardown code to make sure 976 * userspace can't access the device instance any more. 977 */ 978 void drm_dev_unregister(struct drm_device *dev) 979 { 980 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 981 drm_lastclose(dev); 982 983 dev->registered = false; 984 985 drm_client_dev_unregister(dev); 986 987 if (drm_core_check_feature(dev, DRIVER_MODESET)) 988 drm_modeset_unregister_all(dev); 989 990 if (dev->driver->unload) 991 dev->driver->unload(dev); 992 993 drm_legacy_pci_agp_destroy(dev); 994 drm_legacy_rmmaps(dev); 995 996 remove_compat_control_link(dev); 997 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 998 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 999 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1000 } 1001 EXPORT_SYMBOL(drm_dev_unregister); 1002 1003 /** 1004 * drm_dev_set_unique - Set the unique name of a DRM device 1005 * @dev: device of which to set the unique name 1006 * @name: unique name 1007 * 1008 * Sets the unique name of a DRM device using the specified string. This is 1009 * already done by drm_dev_init(), drivers should only override the default 1010 * unique name for backwards compatibility reasons. 1011 * 1012 * Return: 0 on success or a negative error code on failure. 1013 */ 1014 int drm_dev_set_unique(struct drm_device *dev, const char *name) 1015 { 1016 drmm_kfree(dev, dev->unique); 1017 dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL); 1018 1019 return dev->unique ? 0 : -ENOMEM; 1020 } 1021 EXPORT_SYMBOL(drm_dev_set_unique); 1022 1023 /* 1024 * DRM Core 1025 * The DRM core module initializes all global DRM objects and makes them 1026 * available to drivers. Once setup, drivers can probe their respective 1027 * devices. 1028 * Currently, core management includes: 1029 * - The "DRM-Global" key/value database 1030 * - Global ID management for connectors 1031 * - DRM major number allocation 1032 * - DRM minor management 1033 * - DRM sysfs class 1034 * - DRM debugfs root 1035 * 1036 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1037 * interface registered on a DRM device, you can request minor numbers from DRM 1038 * core. DRM core takes care of major-number management and char-dev 1039 * registration. A stub ->open() callback forwards any open() requests to the 1040 * registered minor. 1041 */ 1042 1043 static int drm_stub_open(struct inode *inode, struct file *filp) 1044 { 1045 const struct file_operations *new_fops; 1046 struct drm_minor *minor; 1047 int err; 1048 1049 DRM_DEBUG("\n"); 1050 1051 minor = drm_minor_acquire(iminor(inode)); 1052 if (IS_ERR(minor)) 1053 return PTR_ERR(minor); 1054 1055 new_fops = fops_get(minor->dev->driver->fops); 1056 if (!new_fops) { 1057 err = -ENODEV; 1058 goto out; 1059 } 1060 1061 replace_fops(filp, new_fops); 1062 if (filp->f_op->open) 1063 err = filp->f_op->open(inode, filp); 1064 else 1065 err = 0; 1066 1067 out: 1068 drm_minor_release(minor); 1069 1070 return err; 1071 } 1072 1073 static const struct file_operations drm_stub_fops = { 1074 .owner = THIS_MODULE, 1075 .open = drm_stub_open, 1076 .llseek = noop_llseek, 1077 }; 1078 1079 static void drm_core_exit(void) 1080 { 1081 drm_privacy_screen_lookup_exit(); 1082 accel_core_exit(); 1083 unregister_chrdev(DRM_MAJOR, "drm"); 1084 debugfs_remove(drm_debugfs_root); 1085 drm_sysfs_destroy(); 1086 idr_destroy(&drm_minors_idr); 1087 drm_connector_ida_destroy(); 1088 } 1089 1090 static int __init drm_core_init(void) 1091 { 1092 int ret; 1093 1094 drm_connector_ida_init(); 1095 idr_init(&drm_minors_idr); 1096 drm_memcpy_init_early(); 1097 1098 ret = drm_sysfs_init(); 1099 if (ret < 0) { 1100 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1101 goto error; 1102 } 1103 1104 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1105 1106 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1107 if (ret < 0) 1108 goto error; 1109 1110 ret = accel_core_init(); 1111 if (ret < 0) 1112 goto error; 1113 1114 drm_privacy_screen_lookup_init(); 1115 1116 drm_core_init_complete = true; 1117 1118 DRM_DEBUG("Initialized\n"); 1119 return 0; 1120 1121 error: 1122 drm_core_exit(); 1123 return ret; 1124 } 1125 1126 module_init(drm_core_init); 1127 module_exit(drm_core_exit); 1128