1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/pseudo_fs.h> 35 #include <linux/slab.h> 36 #include <linux/srcu.h> 37 #include <linux/xarray.h> 38 39 #include <drm/drm_accel.h> 40 #include <drm/drm_cache.h> 41 #include <drm/drm_client.h> 42 #include <drm/drm_color_mgmt.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_file.h> 45 #include <drm/drm_managed.h> 46 #include <drm/drm_mode_object.h> 47 #include <drm/drm_print.h> 48 #include <drm/drm_privacy_screen_machine.h> 49 50 #include "drm_crtc_internal.h" 51 #include "drm_internal.h" 52 #include "drm_legacy.h" 53 54 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 55 MODULE_DESCRIPTION("DRM shared core routines"); 56 MODULE_LICENSE("GPL and additional rights"); 57 58 DEFINE_XARRAY_ALLOC(drm_minors_xa); 59 60 /* 61 * If the drm core fails to init for whatever reason, 62 * we should prevent any drivers from registering with it. 63 * It's best to check this at drm_dev_init(), as some drivers 64 * prefer to embed struct drm_device into their own device 65 * structure and call drm_dev_init() themselves. 66 */ 67 static bool drm_core_init_complete; 68 69 static struct dentry *drm_debugfs_root; 70 71 DEFINE_STATIC_SRCU(drm_unplug_srcu); 72 73 /* 74 * DRM Minors 75 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 76 * of them is represented by a drm_minor object. Depending on the capabilities 77 * of the device-driver, different interfaces are registered. 78 * 79 * Minors can be accessed via dev->$minor_name. This pointer is either 80 * NULL or a valid drm_minor pointer and stays valid as long as the device is 81 * valid. This means, DRM minors have the same life-time as the underlying 82 * device. However, this doesn't mean that the minor is active. Minors are 83 * registered and unregistered dynamically according to device-state. 84 */ 85 86 static struct xarray *drm_minor_get_xa(enum drm_minor_type type) 87 { 88 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER) 89 return &drm_minors_xa; 90 #if IS_ENABLED(CONFIG_DRM_ACCEL) 91 else if (type == DRM_MINOR_ACCEL) 92 return &accel_minors_xa; 93 #endif 94 else 95 return ERR_PTR(-EOPNOTSUPP); 96 } 97 98 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 99 enum drm_minor_type type) 100 { 101 switch (type) { 102 case DRM_MINOR_PRIMARY: 103 return &dev->primary; 104 case DRM_MINOR_RENDER: 105 return &dev->render; 106 case DRM_MINOR_ACCEL: 107 return &dev->accel; 108 default: 109 BUG(); 110 } 111 } 112 113 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 114 { 115 struct drm_minor *minor = data; 116 117 WARN_ON(dev != minor->dev); 118 119 put_device(minor->kdev); 120 121 xa_erase(drm_minor_get_xa(minor->type), minor->index); 122 } 123 124 /* 125 * DRM used to support 64 devices, for backwards compatibility we need to maintain the 126 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes, 127 * and 128-191 are render nodes. 128 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve. 129 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX 130 * range. 131 */ 132 #define DRM_MINOR_LIMIT(t) ({ \ 133 typeof(t) _t = (t); \ 134 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \ 135 }) 136 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1) 137 138 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type) 139 { 140 struct drm_minor *minor; 141 int r; 142 143 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 144 if (!minor) 145 return -ENOMEM; 146 147 minor->type = type; 148 minor->dev = dev; 149 150 r = xa_alloc(drm_minor_get_xa(type), &minor->index, 151 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL); 152 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)) 153 r = xa_alloc(&drm_minors_xa, &minor->index, 154 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL); 155 if (r < 0) 156 return r; 157 158 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 159 if (r) 160 return r; 161 162 minor->kdev = drm_sysfs_minor_alloc(minor); 163 if (IS_ERR(minor->kdev)) 164 return PTR_ERR(minor->kdev); 165 166 *drm_minor_get_slot(dev, type) = minor; 167 return 0; 168 } 169 170 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type) 171 { 172 struct drm_minor *minor; 173 void *entry; 174 int ret; 175 176 DRM_DEBUG("\n"); 177 178 minor = *drm_minor_get_slot(dev, type); 179 if (!minor) 180 return 0; 181 182 if (minor->type == DRM_MINOR_ACCEL) { 183 accel_debugfs_init(minor, minor->index); 184 } else { 185 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 186 if (ret) { 187 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 188 goto err_debugfs; 189 } 190 } 191 192 ret = device_add(minor->kdev); 193 if (ret) 194 goto err_debugfs; 195 196 /* replace NULL with @minor so lookups will succeed from now on */ 197 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL); 198 if (xa_is_err(entry)) { 199 ret = xa_err(entry); 200 goto err_debugfs; 201 } 202 WARN_ON(entry); 203 204 DRM_DEBUG("new minor registered %d\n", minor->index); 205 return 0; 206 207 err_debugfs: 208 drm_debugfs_cleanup(minor); 209 return ret; 210 } 211 212 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type) 213 { 214 struct drm_minor *minor; 215 216 minor = *drm_minor_get_slot(dev, type); 217 if (!minor || !device_is_registered(minor->kdev)) 218 return; 219 220 /* replace @minor with NULL so lookups will fail from now on */ 221 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL); 222 223 device_del(minor->kdev); 224 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 225 drm_debugfs_cleanup(minor); 226 } 227 228 /* 229 * Looks up the given minor-ID and returns the respective DRM-minor object. The 230 * refence-count of the underlying device is increased so you must release this 231 * object with drm_minor_release(). 232 * 233 * As long as you hold this minor, it is guaranteed that the object and the 234 * minor->dev pointer will stay valid! However, the device may get unplugged and 235 * unregistered while you hold the minor. 236 */ 237 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id) 238 { 239 struct drm_minor *minor; 240 241 xa_lock(minor_xa); 242 minor = xa_load(minor_xa, minor_id); 243 if (minor) 244 drm_dev_get(minor->dev); 245 xa_unlock(minor_xa); 246 247 if (!minor) { 248 return ERR_PTR(-ENODEV); 249 } else if (drm_dev_is_unplugged(minor->dev)) { 250 drm_dev_put(minor->dev); 251 return ERR_PTR(-ENODEV); 252 } 253 254 return minor; 255 } 256 257 void drm_minor_release(struct drm_minor *minor) 258 { 259 drm_dev_put(minor->dev); 260 } 261 262 /** 263 * DOC: driver instance overview 264 * 265 * A device instance for a drm driver is represented by &struct drm_device. This 266 * is allocated and initialized with devm_drm_dev_alloc(), usually from 267 * bus-specific ->probe() callbacks implemented by the driver. The driver then 268 * needs to initialize all the various subsystems for the drm device like memory 269 * management, vblank handling, modesetting support and initial output 270 * configuration plus obviously initialize all the corresponding hardware bits. 271 * Finally when everything is up and running and ready for userspace the device 272 * instance can be published using drm_dev_register(). 273 * 274 * There is also deprecated support for initializing device instances using 275 * bus-specific helpers and the &drm_driver.load callback. But due to 276 * backwards-compatibility needs the device instance have to be published too 277 * early, which requires unpretty global locking to make safe and is therefore 278 * only support for existing drivers not yet converted to the new scheme. 279 * 280 * When cleaning up a device instance everything needs to be done in reverse: 281 * First unpublish the device instance with drm_dev_unregister(). Then clean up 282 * any other resources allocated at device initialization and drop the driver's 283 * reference to &drm_device using drm_dev_put(). 284 * 285 * Note that any allocation or resource which is visible to userspace must be 286 * released only when the final drm_dev_put() is called, and not when the 287 * driver is unbound from the underlying physical struct &device. Best to use 288 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 289 * related functions. 290 * 291 * devres managed resources like devm_kmalloc() can only be used for resources 292 * directly related to the underlying hardware device, and only used in code 293 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 294 * 295 * Display driver example 296 * ~~~~~~~~~~~~~~~~~~~~~~ 297 * 298 * The following example shows a typical structure of a DRM display driver. 299 * The example focus on the probe() function and the other functions that is 300 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 301 * 302 * .. code-block:: c 303 * 304 * struct driver_device { 305 * struct drm_device drm; 306 * void *userspace_facing; 307 * struct clk *pclk; 308 * }; 309 * 310 * static const struct drm_driver driver_drm_driver = { 311 * [...] 312 * }; 313 * 314 * static int driver_probe(struct platform_device *pdev) 315 * { 316 * struct driver_device *priv; 317 * struct drm_device *drm; 318 * int ret; 319 * 320 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 321 * struct driver_device, drm); 322 * if (IS_ERR(priv)) 323 * return PTR_ERR(priv); 324 * drm = &priv->drm; 325 * 326 * ret = drmm_mode_config_init(drm); 327 * if (ret) 328 * return ret; 329 * 330 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 331 * if (!priv->userspace_facing) 332 * return -ENOMEM; 333 * 334 * priv->pclk = devm_clk_get(dev, "PCLK"); 335 * if (IS_ERR(priv->pclk)) 336 * return PTR_ERR(priv->pclk); 337 * 338 * // Further setup, display pipeline etc 339 * 340 * platform_set_drvdata(pdev, drm); 341 * 342 * drm_mode_config_reset(drm); 343 * 344 * ret = drm_dev_register(drm); 345 * if (ret) 346 * return ret; 347 * 348 * drm_fbdev_generic_setup(drm, 32); 349 * 350 * return 0; 351 * } 352 * 353 * // This function is called before the devm_ resources are released 354 * static int driver_remove(struct platform_device *pdev) 355 * { 356 * struct drm_device *drm = platform_get_drvdata(pdev); 357 * 358 * drm_dev_unregister(drm); 359 * drm_atomic_helper_shutdown(drm) 360 * 361 * return 0; 362 * } 363 * 364 * // This function is called on kernel restart and shutdown 365 * static void driver_shutdown(struct platform_device *pdev) 366 * { 367 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 368 * } 369 * 370 * static int __maybe_unused driver_pm_suspend(struct device *dev) 371 * { 372 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 373 * } 374 * 375 * static int __maybe_unused driver_pm_resume(struct device *dev) 376 * { 377 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 378 * 379 * return 0; 380 * } 381 * 382 * static const struct dev_pm_ops driver_pm_ops = { 383 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 384 * }; 385 * 386 * static struct platform_driver driver_driver = { 387 * .driver = { 388 * [...] 389 * .pm = &driver_pm_ops, 390 * }, 391 * .probe = driver_probe, 392 * .remove = driver_remove, 393 * .shutdown = driver_shutdown, 394 * }; 395 * module_platform_driver(driver_driver); 396 * 397 * Drivers that want to support device unplugging (USB, DT overlay unload) should 398 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 399 * regions that is accessing device resources to prevent use after they're 400 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 401 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 402 * drm_atomic_helper_shutdown() is called. This means that if the disable code 403 * paths are protected, they will not run on regular driver module unload, 404 * possibly leaving the hardware enabled. 405 */ 406 407 /** 408 * drm_put_dev - Unregister and release a DRM device 409 * @dev: DRM device 410 * 411 * Called at module unload time or when a PCI device is unplugged. 412 * 413 * Cleans up all DRM device, calling drm_lastclose(). 414 * 415 * Note: Use of this function is deprecated. It will eventually go away 416 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 417 * instead to make sure that the device isn't userspace accessible any more 418 * while teardown is in progress, ensuring that userspace can't access an 419 * inconsistent state. 420 */ 421 void drm_put_dev(struct drm_device *dev) 422 { 423 DRM_DEBUG("\n"); 424 425 if (!dev) { 426 DRM_ERROR("cleanup called no dev\n"); 427 return; 428 } 429 430 drm_dev_unregister(dev); 431 drm_dev_put(dev); 432 } 433 EXPORT_SYMBOL(drm_put_dev); 434 435 /** 436 * drm_dev_enter - Enter device critical section 437 * @dev: DRM device 438 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 439 * 440 * This function marks and protects the beginning of a section that should not 441 * be entered after the device has been unplugged. The section end is marked 442 * with drm_dev_exit(). Calls to this function can be nested. 443 * 444 * Returns: 445 * True if it is OK to enter the section, false otherwise. 446 */ 447 bool drm_dev_enter(struct drm_device *dev, int *idx) 448 { 449 *idx = srcu_read_lock(&drm_unplug_srcu); 450 451 if (dev->unplugged) { 452 srcu_read_unlock(&drm_unplug_srcu, *idx); 453 return false; 454 } 455 456 return true; 457 } 458 EXPORT_SYMBOL(drm_dev_enter); 459 460 /** 461 * drm_dev_exit - Exit device critical section 462 * @idx: index returned from drm_dev_enter() 463 * 464 * This function marks the end of a section that should not be entered after 465 * the device has been unplugged. 466 */ 467 void drm_dev_exit(int idx) 468 { 469 srcu_read_unlock(&drm_unplug_srcu, idx); 470 } 471 EXPORT_SYMBOL(drm_dev_exit); 472 473 /** 474 * drm_dev_unplug - unplug a DRM device 475 * @dev: DRM device 476 * 477 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 478 * userspace operations. Entry-points can use drm_dev_enter() and 479 * drm_dev_exit() to protect device resources in a race free manner. This 480 * essentially unregisters the device like drm_dev_unregister(), but can be 481 * called while there are still open users of @dev. 482 */ 483 void drm_dev_unplug(struct drm_device *dev) 484 { 485 /* 486 * After synchronizing any critical read section is guaranteed to see 487 * the new value of ->unplugged, and any critical section which might 488 * still have seen the old value of ->unplugged is guaranteed to have 489 * finished. 490 */ 491 dev->unplugged = true; 492 synchronize_srcu(&drm_unplug_srcu); 493 494 drm_dev_unregister(dev); 495 496 /* Clear all CPU mappings pointing to this device */ 497 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 498 } 499 EXPORT_SYMBOL(drm_dev_unplug); 500 501 /* 502 * DRM internal mount 503 * We want to be able to allocate our own "struct address_space" to control 504 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 505 * stand-alone address_space objects, so we need an underlying inode. As there 506 * is no way to allocate an independent inode easily, we need a fake internal 507 * VFS mount-point. 508 * 509 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 510 * frees it again. You are allowed to use iget() and iput() to get references to 511 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 512 * drm_fs_inode_free() call (which does not have to be the last iput()). 513 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 514 * between multiple inode-users. You could, technically, call 515 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 516 * iput(), but this way you'd end up with a new vfsmount for each inode. 517 */ 518 519 static int drm_fs_cnt; 520 static struct vfsmount *drm_fs_mnt; 521 522 static int drm_fs_init_fs_context(struct fs_context *fc) 523 { 524 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 525 } 526 527 static struct file_system_type drm_fs_type = { 528 .name = "drm", 529 .owner = THIS_MODULE, 530 .init_fs_context = drm_fs_init_fs_context, 531 .kill_sb = kill_anon_super, 532 }; 533 534 static struct inode *drm_fs_inode_new(void) 535 { 536 struct inode *inode; 537 int r; 538 539 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 540 if (r < 0) { 541 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 542 return ERR_PTR(r); 543 } 544 545 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 546 if (IS_ERR(inode)) 547 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 548 549 return inode; 550 } 551 552 static void drm_fs_inode_free(struct inode *inode) 553 { 554 if (inode) { 555 iput(inode); 556 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 557 } 558 } 559 560 /** 561 * DOC: component helper usage recommendations 562 * 563 * DRM drivers that drive hardware where a logical device consists of a pile of 564 * independent hardware blocks are recommended to use the :ref:`component helper 565 * library<component>`. For consistency and better options for code reuse the 566 * following guidelines apply: 567 * 568 * - The entire device initialization procedure should be run from the 569 * &component_master_ops.master_bind callback, starting with 570 * devm_drm_dev_alloc(), then binding all components with 571 * component_bind_all() and finishing with drm_dev_register(). 572 * 573 * - The opaque pointer passed to all components through component_bind_all() 574 * should point at &struct drm_device of the device instance, not some driver 575 * specific private structure. 576 * 577 * - The component helper fills the niche where further standardization of 578 * interfaces is not practical. When there already is, or will be, a 579 * standardized interface like &drm_bridge or &drm_panel, providing its own 580 * functions to find such components at driver load time, like 581 * drm_of_find_panel_or_bridge(), then the component helper should not be 582 * used. 583 */ 584 585 static void drm_dev_init_release(struct drm_device *dev, void *res) 586 { 587 drm_legacy_ctxbitmap_cleanup(dev); 588 drm_legacy_remove_map_hash(dev); 589 drm_fs_inode_free(dev->anon_inode); 590 591 put_device(dev->dev); 592 /* Prevent use-after-free in drm_managed_release when debugging is 593 * enabled. Slightly awkward, but can't really be helped. */ 594 dev->dev = NULL; 595 mutex_destroy(&dev->master_mutex); 596 mutex_destroy(&dev->clientlist_mutex); 597 mutex_destroy(&dev->filelist_mutex); 598 mutex_destroy(&dev->struct_mutex); 599 mutex_destroy(&dev->debugfs_mutex); 600 drm_legacy_destroy_members(dev); 601 } 602 603 static int drm_dev_init(struct drm_device *dev, 604 const struct drm_driver *driver, 605 struct device *parent) 606 { 607 struct inode *inode; 608 int ret; 609 610 if (!drm_core_init_complete) { 611 DRM_ERROR("DRM core is not initialized\n"); 612 return -ENODEV; 613 } 614 615 if (WARN_ON(!parent)) 616 return -EINVAL; 617 618 kref_init(&dev->ref); 619 dev->dev = get_device(parent); 620 dev->driver = driver; 621 622 INIT_LIST_HEAD(&dev->managed.resources); 623 spin_lock_init(&dev->managed.lock); 624 625 /* no per-device feature limits by default */ 626 dev->driver_features = ~0u; 627 628 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 629 (drm_core_check_feature(dev, DRIVER_RENDER) || 630 drm_core_check_feature(dev, DRIVER_MODESET))) { 631 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 632 return -EINVAL; 633 } 634 635 drm_legacy_init_members(dev); 636 INIT_LIST_HEAD(&dev->filelist); 637 INIT_LIST_HEAD(&dev->filelist_internal); 638 INIT_LIST_HEAD(&dev->clientlist); 639 INIT_LIST_HEAD(&dev->vblank_event_list); 640 INIT_LIST_HEAD(&dev->debugfs_list); 641 642 spin_lock_init(&dev->event_lock); 643 mutex_init(&dev->struct_mutex); 644 mutex_init(&dev->filelist_mutex); 645 mutex_init(&dev->clientlist_mutex); 646 mutex_init(&dev->master_mutex); 647 mutex_init(&dev->debugfs_mutex); 648 649 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 650 if (ret) 651 return ret; 652 653 inode = drm_fs_inode_new(); 654 if (IS_ERR(inode)) { 655 ret = PTR_ERR(inode); 656 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 657 goto err; 658 } 659 660 dev->anon_inode = inode; 661 662 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 663 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 664 if (ret) 665 goto err; 666 } else { 667 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 668 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 669 if (ret) 670 goto err; 671 } 672 673 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 674 if (ret) 675 goto err; 676 } 677 678 ret = drm_legacy_create_map_hash(dev); 679 if (ret) 680 goto err; 681 682 drm_legacy_ctxbitmap_init(dev); 683 684 if (drm_core_check_feature(dev, DRIVER_GEM)) { 685 ret = drm_gem_init(dev); 686 if (ret) { 687 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 688 goto err; 689 } 690 } 691 692 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL); 693 if (!dev->unique) { 694 ret = -ENOMEM; 695 goto err; 696 } 697 698 return 0; 699 700 err: 701 drm_managed_release(dev); 702 703 return ret; 704 } 705 706 static void devm_drm_dev_init_release(void *data) 707 { 708 drm_dev_put(data); 709 } 710 711 static int devm_drm_dev_init(struct device *parent, 712 struct drm_device *dev, 713 const struct drm_driver *driver) 714 { 715 int ret; 716 717 ret = drm_dev_init(dev, driver, parent); 718 if (ret) 719 return ret; 720 721 return devm_add_action_or_reset(parent, 722 devm_drm_dev_init_release, dev); 723 } 724 725 void *__devm_drm_dev_alloc(struct device *parent, 726 const struct drm_driver *driver, 727 size_t size, size_t offset) 728 { 729 void *container; 730 struct drm_device *drm; 731 int ret; 732 733 container = kzalloc(size, GFP_KERNEL); 734 if (!container) 735 return ERR_PTR(-ENOMEM); 736 737 drm = container + offset; 738 ret = devm_drm_dev_init(parent, drm, driver); 739 if (ret) { 740 kfree(container); 741 return ERR_PTR(ret); 742 } 743 drmm_add_final_kfree(drm, container); 744 745 return container; 746 } 747 EXPORT_SYMBOL(__devm_drm_dev_alloc); 748 749 /** 750 * drm_dev_alloc - Allocate new DRM device 751 * @driver: DRM driver to allocate device for 752 * @parent: Parent device object 753 * 754 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 755 * subclassing through embedding the struct &drm_device in a driver private 756 * structure, and which does not support automatic cleanup through devres. 757 * 758 * RETURNS: 759 * Pointer to new DRM device, or ERR_PTR on failure. 760 */ 761 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 762 struct device *parent) 763 { 764 struct drm_device *dev; 765 int ret; 766 767 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 768 if (!dev) 769 return ERR_PTR(-ENOMEM); 770 771 ret = drm_dev_init(dev, driver, parent); 772 if (ret) { 773 kfree(dev); 774 return ERR_PTR(ret); 775 } 776 777 drmm_add_final_kfree(dev, dev); 778 779 return dev; 780 } 781 EXPORT_SYMBOL(drm_dev_alloc); 782 783 static void drm_dev_release(struct kref *ref) 784 { 785 struct drm_device *dev = container_of(ref, struct drm_device, ref); 786 787 if (dev->driver->release) 788 dev->driver->release(dev); 789 790 drm_managed_release(dev); 791 792 kfree(dev->managed.final_kfree); 793 } 794 795 /** 796 * drm_dev_get - Take reference of a DRM device 797 * @dev: device to take reference of or NULL 798 * 799 * This increases the ref-count of @dev by one. You *must* already own a 800 * reference when calling this. Use drm_dev_put() to drop this reference 801 * again. 802 * 803 * This function never fails. However, this function does not provide *any* 804 * guarantee whether the device is alive or running. It only provides a 805 * reference to the object and the memory associated with it. 806 */ 807 void drm_dev_get(struct drm_device *dev) 808 { 809 if (dev) 810 kref_get(&dev->ref); 811 } 812 EXPORT_SYMBOL(drm_dev_get); 813 814 /** 815 * drm_dev_put - Drop reference of a DRM device 816 * @dev: device to drop reference of or NULL 817 * 818 * This decreases the ref-count of @dev by one. The device is destroyed if the 819 * ref-count drops to zero. 820 */ 821 void drm_dev_put(struct drm_device *dev) 822 { 823 if (dev) 824 kref_put(&dev->ref, drm_dev_release); 825 } 826 EXPORT_SYMBOL(drm_dev_put); 827 828 static int create_compat_control_link(struct drm_device *dev) 829 { 830 struct drm_minor *minor; 831 char *name; 832 int ret; 833 834 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 835 return 0; 836 837 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 838 if (!minor) 839 return 0; 840 841 /* 842 * Some existing userspace out there uses the existing of the controlD* 843 * sysfs files to figure out whether it's a modeset driver. It only does 844 * readdir, hence a symlink is sufficient (and the least confusing 845 * option). Otherwise controlD* is entirely unused. 846 * 847 * Old controlD chardev have been allocated in the range 848 * 64-127. 849 */ 850 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 851 if (!name) 852 return -ENOMEM; 853 854 ret = sysfs_create_link(minor->kdev->kobj.parent, 855 &minor->kdev->kobj, 856 name); 857 858 kfree(name); 859 860 return ret; 861 } 862 863 static void remove_compat_control_link(struct drm_device *dev) 864 { 865 struct drm_minor *minor; 866 char *name; 867 868 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 869 return; 870 871 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 872 if (!minor) 873 return; 874 875 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 876 if (!name) 877 return; 878 879 sysfs_remove_link(minor->kdev->kobj.parent, name); 880 881 kfree(name); 882 } 883 884 /** 885 * drm_dev_register - Register DRM device 886 * @dev: Device to register 887 * @flags: Flags passed to the driver's .load() function 888 * 889 * Register the DRM device @dev with the system, advertise device to user-space 890 * and start normal device operation. @dev must be initialized via drm_dev_init() 891 * previously. 892 * 893 * Never call this twice on any device! 894 * 895 * NOTE: To ensure backward compatibility with existing drivers method this 896 * function calls the &drm_driver.load method after registering the device 897 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 898 * therefore deprecated, drivers must perform all initialization before calling 899 * drm_dev_register(). 900 * 901 * RETURNS: 902 * 0 on success, negative error code on failure. 903 */ 904 int drm_dev_register(struct drm_device *dev, unsigned long flags) 905 { 906 const struct drm_driver *driver = dev->driver; 907 int ret; 908 909 if (!driver->load) 910 drm_mode_config_validate(dev); 911 912 WARN_ON(!dev->managed.final_kfree); 913 914 if (drm_dev_needs_global_mutex(dev)) 915 mutex_lock(&drm_global_mutex); 916 917 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 918 if (ret) 919 goto err_minors; 920 921 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 922 if (ret) 923 goto err_minors; 924 925 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 926 if (ret) 927 goto err_minors; 928 929 ret = create_compat_control_link(dev); 930 if (ret) 931 goto err_minors; 932 933 dev->registered = true; 934 935 if (driver->load) { 936 ret = driver->load(dev, flags); 937 if (ret) 938 goto err_minors; 939 } 940 941 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 942 ret = drm_modeset_register_all(dev); 943 if (ret) 944 goto err_unload; 945 } 946 947 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 948 driver->name, driver->major, driver->minor, 949 driver->patchlevel, driver->date, 950 dev->dev ? dev_name(dev->dev) : "virtual device", 951 dev->primary ? dev->primary->index : dev->accel->index); 952 953 goto out_unlock; 954 955 err_unload: 956 if (dev->driver->unload) 957 dev->driver->unload(dev); 958 err_minors: 959 remove_compat_control_link(dev); 960 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 961 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 962 drm_minor_unregister(dev, DRM_MINOR_RENDER); 963 out_unlock: 964 if (drm_dev_needs_global_mutex(dev)) 965 mutex_unlock(&drm_global_mutex); 966 return ret; 967 } 968 EXPORT_SYMBOL(drm_dev_register); 969 970 /** 971 * drm_dev_unregister - Unregister DRM device 972 * @dev: Device to unregister 973 * 974 * Unregister the DRM device from the system. This does the reverse of 975 * drm_dev_register() but does not deallocate the device. The caller must call 976 * drm_dev_put() to drop their final reference, unless it is managed with devres 977 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is 978 * already an unwind action registered. 979 * 980 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 981 * which can be called while there are still open users of @dev. 982 * 983 * This should be called first in the device teardown code to make sure 984 * userspace can't access the device instance any more. 985 */ 986 void drm_dev_unregister(struct drm_device *dev) 987 { 988 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 989 drm_lastclose(dev); 990 991 dev->registered = false; 992 993 drm_client_dev_unregister(dev); 994 995 if (drm_core_check_feature(dev, DRIVER_MODESET)) 996 drm_modeset_unregister_all(dev); 997 998 if (dev->driver->unload) 999 dev->driver->unload(dev); 1000 1001 drm_legacy_pci_agp_destroy(dev); 1002 drm_legacy_rmmaps(dev); 1003 1004 remove_compat_control_link(dev); 1005 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1006 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1007 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1008 } 1009 EXPORT_SYMBOL(drm_dev_unregister); 1010 1011 /* 1012 * DRM Core 1013 * The DRM core module initializes all global DRM objects and makes them 1014 * available to drivers. Once setup, drivers can probe their respective 1015 * devices. 1016 * Currently, core management includes: 1017 * - The "DRM-Global" key/value database 1018 * - Global ID management for connectors 1019 * - DRM major number allocation 1020 * - DRM minor management 1021 * - DRM sysfs class 1022 * - DRM debugfs root 1023 * 1024 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1025 * interface registered on a DRM device, you can request minor numbers from DRM 1026 * core. DRM core takes care of major-number management and char-dev 1027 * registration. A stub ->open() callback forwards any open() requests to the 1028 * registered minor. 1029 */ 1030 1031 static int drm_stub_open(struct inode *inode, struct file *filp) 1032 { 1033 const struct file_operations *new_fops; 1034 struct drm_minor *minor; 1035 int err; 1036 1037 DRM_DEBUG("\n"); 1038 1039 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode)); 1040 if (IS_ERR(minor)) 1041 return PTR_ERR(minor); 1042 1043 new_fops = fops_get(minor->dev->driver->fops); 1044 if (!new_fops) { 1045 err = -ENODEV; 1046 goto out; 1047 } 1048 1049 replace_fops(filp, new_fops); 1050 if (filp->f_op->open) 1051 err = filp->f_op->open(inode, filp); 1052 else 1053 err = 0; 1054 1055 out: 1056 drm_minor_release(minor); 1057 1058 return err; 1059 } 1060 1061 static const struct file_operations drm_stub_fops = { 1062 .owner = THIS_MODULE, 1063 .open = drm_stub_open, 1064 .llseek = noop_llseek, 1065 }; 1066 1067 static void drm_core_exit(void) 1068 { 1069 drm_privacy_screen_lookup_exit(); 1070 accel_core_exit(); 1071 unregister_chrdev(DRM_MAJOR, "drm"); 1072 debugfs_remove(drm_debugfs_root); 1073 drm_sysfs_destroy(); 1074 WARN_ON(!xa_empty(&drm_minors_xa)); 1075 drm_connector_ida_destroy(); 1076 } 1077 1078 static int __init drm_core_init(void) 1079 { 1080 int ret; 1081 1082 drm_connector_ida_init(); 1083 drm_memcpy_init_early(); 1084 1085 ret = drm_sysfs_init(); 1086 if (ret < 0) { 1087 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1088 goto error; 1089 } 1090 1091 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1092 1093 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1094 if (ret < 0) 1095 goto error; 1096 1097 ret = accel_core_init(); 1098 if (ret < 0) 1099 goto error; 1100 1101 drm_privacy_screen_lookup_init(); 1102 1103 drm_core_init_complete = true; 1104 1105 DRM_DEBUG("Initialized\n"); 1106 return 0; 1107 1108 error: 1109 drm_core_exit(); 1110 return ret; 1111 } 1112 1113 module_init(drm_core_init); 1114 module_exit(drm_core_exit); 1115