xref: /openbmc/linux/drivers/gpu/drm/drm_drv.c (revision 0d7ddfc8)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37 #include <linux/xarray.h>
38 
39 #include <drm/drm_accel.h>
40 #include <drm/drm_cache.h>
41 #include <drm/drm_client.h>
42 #include <drm/drm_color_mgmt.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_file.h>
45 #include <drm/drm_managed.h>
46 #include <drm/drm_mode_object.h>
47 #include <drm/drm_print.h>
48 #include <drm/drm_privacy_screen_machine.h>
49 
50 #include "drm_crtc_internal.h"
51 #include "drm_internal.h"
52 #include "drm_legacy.h"
53 
54 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
55 MODULE_DESCRIPTION("DRM shared core routines");
56 MODULE_LICENSE("GPL and additional rights");
57 
58 DEFINE_XARRAY_ALLOC(drm_minors_xa);
59 
60 /*
61  * If the drm core fails to init for whatever reason,
62  * we should prevent any drivers from registering with it.
63  * It's best to check this at drm_dev_init(), as some drivers
64  * prefer to embed struct drm_device into their own device
65  * structure and call drm_dev_init() themselves.
66  */
67 static bool drm_core_init_complete;
68 
69 static struct dentry *drm_debugfs_root;
70 
71 DEFINE_STATIC_SRCU(drm_unplug_srcu);
72 
73 /*
74  * DRM Minors
75  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
76  * of them is represented by a drm_minor object. Depending on the capabilities
77  * of the device-driver, different interfaces are registered.
78  *
79  * Minors can be accessed via dev->$minor_name. This pointer is either
80  * NULL or a valid drm_minor pointer and stays valid as long as the device is
81  * valid. This means, DRM minors have the same life-time as the underlying
82  * device. However, this doesn't mean that the minor is active. Minors are
83  * registered and unregistered dynamically according to device-state.
84  */
85 
86 static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
87 {
88 	if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
89 		return &drm_minors_xa;
90 #if IS_ENABLED(CONFIG_DRM_ACCEL)
91 	else if (type == DRM_MINOR_ACCEL)
92 		return &accel_minors_xa;
93 #endif
94 	else
95 		return ERR_PTR(-EOPNOTSUPP);
96 }
97 
98 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
99 					     enum drm_minor_type type)
100 {
101 	switch (type) {
102 	case DRM_MINOR_PRIMARY:
103 		return &dev->primary;
104 	case DRM_MINOR_RENDER:
105 		return &dev->render;
106 	case DRM_MINOR_ACCEL:
107 		return &dev->accel;
108 	default:
109 		BUG();
110 	}
111 }
112 
113 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
114 {
115 	struct drm_minor *minor = data;
116 
117 	WARN_ON(dev != minor->dev);
118 
119 	put_device(minor->kdev);
120 
121 	xa_erase(drm_minor_get_xa(minor->type), minor->index);
122 }
123 
124 /*
125  * DRM used to support 64 devices, for backwards compatibility we need to maintain the
126  * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
127  * and 128-191 are render nodes.
128  * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
129  * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
130  * range.
131  */
132 #define DRM_MINOR_LIMIT(t) ({ \
133 	typeof(t) _t = (t); \
134 	_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
135 })
136 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
137 
138 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
139 {
140 	struct drm_minor *minor;
141 	int r;
142 
143 	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
144 	if (!minor)
145 		return -ENOMEM;
146 
147 	minor->type = type;
148 	minor->dev = dev;
149 
150 	r = xa_alloc(drm_minor_get_xa(type), &minor->index,
151 		     NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
152 	if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
153 		r = xa_alloc(&drm_minors_xa, &minor->index,
154 			     NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
155 	if (r < 0)
156 		return r;
157 
158 	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
159 	if (r)
160 		return r;
161 
162 	minor->kdev = drm_sysfs_minor_alloc(minor);
163 	if (IS_ERR(minor->kdev))
164 		return PTR_ERR(minor->kdev);
165 
166 	*drm_minor_get_slot(dev, type) = minor;
167 	return 0;
168 }
169 
170 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
171 {
172 	struct drm_minor *minor;
173 	void *entry;
174 	int ret;
175 
176 	DRM_DEBUG("\n");
177 
178 	minor = *drm_minor_get_slot(dev, type);
179 	if (!minor)
180 		return 0;
181 
182 	if (minor->type == DRM_MINOR_ACCEL) {
183 		accel_debugfs_init(minor, minor->index);
184 	} else {
185 		ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
186 		if (ret) {
187 			DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
188 			goto err_debugfs;
189 		}
190 	}
191 
192 	ret = device_add(minor->kdev);
193 	if (ret)
194 		goto err_debugfs;
195 
196 	/* replace NULL with @minor so lookups will succeed from now on */
197 	entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
198 	if (xa_is_err(entry)) {
199 		ret = xa_err(entry);
200 		goto err_debugfs;
201 	}
202 	WARN_ON(entry);
203 
204 	DRM_DEBUG("new minor registered %d\n", minor->index);
205 	return 0;
206 
207 err_debugfs:
208 	drm_debugfs_cleanup(minor);
209 	return ret;
210 }
211 
212 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
213 {
214 	struct drm_minor *minor;
215 
216 	minor = *drm_minor_get_slot(dev, type);
217 	if (!minor || !device_is_registered(minor->kdev))
218 		return;
219 
220 	/* replace @minor with NULL so lookups will fail from now on */
221 	xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
222 
223 	device_del(minor->kdev);
224 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
225 	drm_debugfs_cleanup(minor);
226 }
227 
228 /*
229  * Looks up the given minor-ID and returns the respective DRM-minor object. The
230  * refence-count of the underlying device is increased so you must release this
231  * object with drm_minor_release().
232  *
233  * As long as you hold this minor, it is guaranteed that the object and the
234  * minor->dev pointer will stay valid! However, the device may get unplugged and
235  * unregistered while you hold the minor.
236  */
237 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
238 {
239 	struct drm_minor *minor;
240 
241 	xa_lock(minor_xa);
242 	minor = xa_load(minor_xa, minor_id);
243 	if (minor)
244 		drm_dev_get(minor->dev);
245 	xa_unlock(minor_xa);
246 
247 	if (!minor) {
248 		return ERR_PTR(-ENODEV);
249 	} else if (drm_dev_is_unplugged(minor->dev)) {
250 		drm_dev_put(minor->dev);
251 		return ERR_PTR(-ENODEV);
252 	}
253 
254 	return minor;
255 }
256 
257 void drm_minor_release(struct drm_minor *minor)
258 {
259 	drm_dev_put(minor->dev);
260 }
261 
262 /**
263  * DOC: driver instance overview
264  *
265  * A device instance for a drm driver is represented by &struct drm_device. This
266  * is allocated and initialized with devm_drm_dev_alloc(), usually from
267  * bus-specific ->probe() callbacks implemented by the driver. The driver then
268  * needs to initialize all the various subsystems for the drm device like memory
269  * management, vblank handling, modesetting support and initial output
270  * configuration plus obviously initialize all the corresponding hardware bits.
271  * Finally when everything is up and running and ready for userspace the device
272  * instance can be published using drm_dev_register().
273  *
274  * There is also deprecated support for initializing device instances using
275  * bus-specific helpers and the &drm_driver.load callback. But due to
276  * backwards-compatibility needs the device instance have to be published too
277  * early, which requires unpretty global locking to make safe and is therefore
278  * only support for existing drivers not yet converted to the new scheme.
279  *
280  * When cleaning up a device instance everything needs to be done in reverse:
281  * First unpublish the device instance with drm_dev_unregister(). Then clean up
282  * any other resources allocated at device initialization and drop the driver's
283  * reference to &drm_device using drm_dev_put().
284  *
285  * Note that any allocation or resource which is visible to userspace must be
286  * released only when the final drm_dev_put() is called, and not when the
287  * driver is unbound from the underlying physical struct &device. Best to use
288  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
289  * related functions.
290  *
291  * devres managed resources like devm_kmalloc() can only be used for resources
292  * directly related to the underlying hardware device, and only used in code
293  * paths fully protected by drm_dev_enter() and drm_dev_exit().
294  *
295  * Display driver example
296  * ~~~~~~~~~~~~~~~~~~~~~~
297  *
298  * The following example shows a typical structure of a DRM display driver.
299  * The example focus on the probe() function and the other functions that is
300  * almost always present and serves as a demonstration of devm_drm_dev_alloc().
301  *
302  * .. code-block:: c
303  *
304  *	struct driver_device {
305  *		struct drm_device drm;
306  *		void *userspace_facing;
307  *		struct clk *pclk;
308  *	};
309  *
310  *	static const struct drm_driver driver_drm_driver = {
311  *		[...]
312  *	};
313  *
314  *	static int driver_probe(struct platform_device *pdev)
315  *	{
316  *		struct driver_device *priv;
317  *		struct drm_device *drm;
318  *		int ret;
319  *
320  *		priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
321  *					  struct driver_device, drm);
322  *		if (IS_ERR(priv))
323  *			return PTR_ERR(priv);
324  *		drm = &priv->drm;
325  *
326  *		ret = drmm_mode_config_init(drm);
327  *		if (ret)
328  *			return ret;
329  *
330  *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
331  *		if (!priv->userspace_facing)
332  *			return -ENOMEM;
333  *
334  *		priv->pclk = devm_clk_get(dev, "PCLK");
335  *		if (IS_ERR(priv->pclk))
336  *			return PTR_ERR(priv->pclk);
337  *
338  *		// Further setup, display pipeline etc
339  *
340  *		platform_set_drvdata(pdev, drm);
341  *
342  *		drm_mode_config_reset(drm);
343  *
344  *		ret = drm_dev_register(drm);
345  *		if (ret)
346  *			return ret;
347  *
348  *		drm_fbdev_generic_setup(drm, 32);
349  *
350  *		return 0;
351  *	}
352  *
353  *	// This function is called before the devm_ resources are released
354  *	static int driver_remove(struct platform_device *pdev)
355  *	{
356  *		struct drm_device *drm = platform_get_drvdata(pdev);
357  *
358  *		drm_dev_unregister(drm);
359  *		drm_atomic_helper_shutdown(drm)
360  *
361  *		return 0;
362  *	}
363  *
364  *	// This function is called on kernel restart and shutdown
365  *	static void driver_shutdown(struct platform_device *pdev)
366  *	{
367  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
368  *	}
369  *
370  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
371  *	{
372  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
373  *	}
374  *
375  *	static int __maybe_unused driver_pm_resume(struct device *dev)
376  *	{
377  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
378  *
379  *		return 0;
380  *	}
381  *
382  *	static const struct dev_pm_ops driver_pm_ops = {
383  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
384  *	};
385  *
386  *	static struct platform_driver driver_driver = {
387  *		.driver = {
388  *			[...]
389  *			.pm = &driver_pm_ops,
390  *		},
391  *		.probe = driver_probe,
392  *		.remove = driver_remove,
393  *		.shutdown = driver_shutdown,
394  *	};
395  *	module_platform_driver(driver_driver);
396  *
397  * Drivers that want to support device unplugging (USB, DT overlay unload) should
398  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
399  * regions that is accessing device resources to prevent use after they're
400  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
401  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
402  * drm_atomic_helper_shutdown() is called. This means that if the disable code
403  * paths are protected, they will not run on regular driver module unload,
404  * possibly leaving the hardware enabled.
405  */
406 
407 /**
408  * drm_put_dev - Unregister and release a DRM device
409  * @dev: DRM device
410  *
411  * Called at module unload time or when a PCI device is unplugged.
412  *
413  * Cleans up all DRM device, calling drm_lastclose().
414  *
415  * Note: Use of this function is deprecated. It will eventually go away
416  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
417  * instead to make sure that the device isn't userspace accessible any more
418  * while teardown is in progress, ensuring that userspace can't access an
419  * inconsistent state.
420  */
421 void drm_put_dev(struct drm_device *dev)
422 {
423 	DRM_DEBUG("\n");
424 
425 	if (!dev) {
426 		DRM_ERROR("cleanup called no dev\n");
427 		return;
428 	}
429 
430 	drm_dev_unregister(dev);
431 	drm_dev_put(dev);
432 }
433 EXPORT_SYMBOL(drm_put_dev);
434 
435 /**
436  * drm_dev_enter - Enter device critical section
437  * @dev: DRM device
438  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
439  *
440  * This function marks and protects the beginning of a section that should not
441  * be entered after the device has been unplugged. The section end is marked
442  * with drm_dev_exit(). Calls to this function can be nested.
443  *
444  * Returns:
445  * True if it is OK to enter the section, false otherwise.
446  */
447 bool drm_dev_enter(struct drm_device *dev, int *idx)
448 {
449 	*idx = srcu_read_lock(&drm_unplug_srcu);
450 
451 	if (dev->unplugged) {
452 		srcu_read_unlock(&drm_unplug_srcu, *idx);
453 		return false;
454 	}
455 
456 	return true;
457 }
458 EXPORT_SYMBOL(drm_dev_enter);
459 
460 /**
461  * drm_dev_exit - Exit device critical section
462  * @idx: index returned from drm_dev_enter()
463  *
464  * This function marks the end of a section that should not be entered after
465  * the device has been unplugged.
466  */
467 void drm_dev_exit(int idx)
468 {
469 	srcu_read_unlock(&drm_unplug_srcu, idx);
470 }
471 EXPORT_SYMBOL(drm_dev_exit);
472 
473 /**
474  * drm_dev_unplug - unplug a DRM device
475  * @dev: DRM device
476  *
477  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
478  * userspace operations. Entry-points can use drm_dev_enter() and
479  * drm_dev_exit() to protect device resources in a race free manner. This
480  * essentially unregisters the device like drm_dev_unregister(), but can be
481  * called while there are still open users of @dev.
482  */
483 void drm_dev_unplug(struct drm_device *dev)
484 {
485 	/*
486 	 * After synchronizing any critical read section is guaranteed to see
487 	 * the new value of ->unplugged, and any critical section which might
488 	 * still have seen the old value of ->unplugged is guaranteed to have
489 	 * finished.
490 	 */
491 	dev->unplugged = true;
492 	synchronize_srcu(&drm_unplug_srcu);
493 
494 	drm_dev_unregister(dev);
495 
496 	/* Clear all CPU mappings pointing to this device */
497 	unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
498 }
499 EXPORT_SYMBOL(drm_dev_unplug);
500 
501 /*
502  * DRM internal mount
503  * We want to be able to allocate our own "struct address_space" to control
504  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
505  * stand-alone address_space objects, so we need an underlying inode. As there
506  * is no way to allocate an independent inode easily, we need a fake internal
507  * VFS mount-point.
508  *
509  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
510  * frees it again. You are allowed to use iget() and iput() to get references to
511  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
512  * drm_fs_inode_free() call (which does not have to be the last iput()).
513  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
514  * between multiple inode-users. You could, technically, call
515  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
516  * iput(), but this way you'd end up with a new vfsmount for each inode.
517  */
518 
519 static int drm_fs_cnt;
520 static struct vfsmount *drm_fs_mnt;
521 
522 static int drm_fs_init_fs_context(struct fs_context *fc)
523 {
524 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
525 }
526 
527 static struct file_system_type drm_fs_type = {
528 	.name		= "drm",
529 	.owner		= THIS_MODULE,
530 	.init_fs_context = drm_fs_init_fs_context,
531 	.kill_sb	= kill_anon_super,
532 };
533 
534 static struct inode *drm_fs_inode_new(void)
535 {
536 	struct inode *inode;
537 	int r;
538 
539 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
540 	if (r < 0) {
541 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
542 		return ERR_PTR(r);
543 	}
544 
545 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
546 	if (IS_ERR(inode))
547 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
548 
549 	return inode;
550 }
551 
552 static void drm_fs_inode_free(struct inode *inode)
553 {
554 	if (inode) {
555 		iput(inode);
556 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
557 	}
558 }
559 
560 /**
561  * DOC: component helper usage recommendations
562  *
563  * DRM drivers that drive hardware where a logical device consists of a pile of
564  * independent hardware blocks are recommended to use the :ref:`component helper
565  * library<component>`. For consistency and better options for code reuse the
566  * following guidelines apply:
567  *
568  *  - The entire device initialization procedure should be run from the
569  *    &component_master_ops.master_bind callback, starting with
570  *    devm_drm_dev_alloc(), then binding all components with
571  *    component_bind_all() and finishing with drm_dev_register().
572  *
573  *  - The opaque pointer passed to all components through component_bind_all()
574  *    should point at &struct drm_device of the device instance, not some driver
575  *    specific private structure.
576  *
577  *  - The component helper fills the niche where further standardization of
578  *    interfaces is not practical. When there already is, or will be, a
579  *    standardized interface like &drm_bridge or &drm_panel, providing its own
580  *    functions to find such components at driver load time, like
581  *    drm_of_find_panel_or_bridge(), then the component helper should not be
582  *    used.
583  */
584 
585 static void drm_dev_init_release(struct drm_device *dev, void *res)
586 {
587 	drm_legacy_ctxbitmap_cleanup(dev);
588 	drm_legacy_remove_map_hash(dev);
589 	drm_fs_inode_free(dev->anon_inode);
590 
591 	put_device(dev->dev);
592 	/* Prevent use-after-free in drm_managed_release when debugging is
593 	 * enabled. Slightly awkward, but can't really be helped. */
594 	dev->dev = NULL;
595 	mutex_destroy(&dev->master_mutex);
596 	mutex_destroy(&dev->clientlist_mutex);
597 	mutex_destroy(&dev->filelist_mutex);
598 	mutex_destroy(&dev->struct_mutex);
599 	mutex_destroy(&dev->debugfs_mutex);
600 	drm_legacy_destroy_members(dev);
601 }
602 
603 static int drm_dev_init(struct drm_device *dev,
604 			const struct drm_driver *driver,
605 			struct device *parent)
606 {
607 	struct inode *inode;
608 	int ret;
609 
610 	if (!drm_core_init_complete) {
611 		DRM_ERROR("DRM core is not initialized\n");
612 		return -ENODEV;
613 	}
614 
615 	if (WARN_ON(!parent))
616 		return -EINVAL;
617 
618 	kref_init(&dev->ref);
619 	dev->dev = get_device(parent);
620 	dev->driver = driver;
621 
622 	INIT_LIST_HEAD(&dev->managed.resources);
623 	spin_lock_init(&dev->managed.lock);
624 
625 	/* no per-device feature limits by default */
626 	dev->driver_features = ~0u;
627 
628 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
629 				(drm_core_check_feature(dev, DRIVER_RENDER) ||
630 				drm_core_check_feature(dev, DRIVER_MODESET))) {
631 		DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
632 		return -EINVAL;
633 	}
634 
635 	drm_legacy_init_members(dev);
636 	INIT_LIST_HEAD(&dev->filelist);
637 	INIT_LIST_HEAD(&dev->filelist_internal);
638 	INIT_LIST_HEAD(&dev->clientlist);
639 	INIT_LIST_HEAD(&dev->vblank_event_list);
640 	INIT_LIST_HEAD(&dev->debugfs_list);
641 
642 	spin_lock_init(&dev->event_lock);
643 	mutex_init(&dev->struct_mutex);
644 	mutex_init(&dev->filelist_mutex);
645 	mutex_init(&dev->clientlist_mutex);
646 	mutex_init(&dev->master_mutex);
647 	mutex_init(&dev->debugfs_mutex);
648 
649 	ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
650 	if (ret)
651 		return ret;
652 
653 	inode = drm_fs_inode_new();
654 	if (IS_ERR(inode)) {
655 		ret = PTR_ERR(inode);
656 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
657 		goto err;
658 	}
659 
660 	dev->anon_inode = inode;
661 
662 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
663 		ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
664 		if (ret)
665 			goto err;
666 	} else {
667 		if (drm_core_check_feature(dev, DRIVER_RENDER)) {
668 			ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
669 			if (ret)
670 				goto err;
671 		}
672 
673 		ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
674 		if (ret)
675 			goto err;
676 	}
677 
678 	ret = drm_legacy_create_map_hash(dev);
679 	if (ret)
680 		goto err;
681 
682 	drm_legacy_ctxbitmap_init(dev);
683 
684 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
685 		ret = drm_gem_init(dev);
686 		if (ret) {
687 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
688 			goto err;
689 		}
690 	}
691 
692 	dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
693 	if (!dev->unique) {
694 		ret = -ENOMEM;
695 		goto err;
696 	}
697 
698 	return 0;
699 
700 err:
701 	drm_managed_release(dev);
702 
703 	return ret;
704 }
705 
706 static void devm_drm_dev_init_release(void *data)
707 {
708 	drm_dev_put(data);
709 }
710 
711 static int devm_drm_dev_init(struct device *parent,
712 			     struct drm_device *dev,
713 			     const struct drm_driver *driver)
714 {
715 	int ret;
716 
717 	ret = drm_dev_init(dev, driver, parent);
718 	if (ret)
719 		return ret;
720 
721 	return devm_add_action_or_reset(parent,
722 					devm_drm_dev_init_release, dev);
723 }
724 
725 void *__devm_drm_dev_alloc(struct device *parent,
726 			   const struct drm_driver *driver,
727 			   size_t size, size_t offset)
728 {
729 	void *container;
730 	struct drm_device *drm;
731 	int ret;
732 
733 	container = kzalloc(size, GFP_KERNEL);
734 	if (!container)
735 		return ERR_PTR(-ENOMEM);
736 
737 	drm = container + offset;
738 	ret = devm_drm_dev_init(parent, drm, driver);
739 	if (ret) {
740 		kfree(container);
741 		return ERR_PTR(ret);
742 	}
743 	drmm_add_final_kfree(drm, container);
744 
745 	return container;
746 }
747 EXPORT_SYMBOL(__devm_drm_dev_alloc);
748 
749 /**
750  * drm_dev_alloc - Allocate new DRM device
751  * @driver: DRM driver to allocate device for
752  * @parent: Parent device object
753  *
754  * This is the deprecated version of devm_drm_dev_alloc(), which does not support
755  * subclassing through embedding the struct &drm_device in a driver private
756  * structure, and which does not support automatic cleanup through devres.
757  *
758  * RETURNS:
759  * Pointer to new DRM device, or ERR_PTR on failure.
760  */
761 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
762 				 struct device *parent)
763 {
764 	struct drm_device *dev;
765 	int ret;
766 
767 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
768 	if (!dev)
769 		return ERR_PTR(-ENOMEM);
770 
771 	ret = drm_dev_init(dev, driver, parent);
772 	if (ret) {
773 		kfree(dev);
774 		return ERR_PTR(ret);
775 	}
776 
777 	drmm_add_final_kfree(dev, dev);
778 
779 	return dev;
780 }
781 EXPORT_SYMBOL(drm_dev_alloc);
782 
783 static void drm_dev_release(struct kref *ref)
784 {
785 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
786 
787 	if (dev->driver->release)
788 		dev->driver->release(dev);
789 
790 	drm_managed_release(dev);
791 
792 	kfree(dev->managed.final_kfree);
793 }
794 
795 /**
796  * drm_dev_get - Take reference of a DRM device
797  * @dev: device to take reference of or NULL
798  *
799  * This increases the ref-count of @dev by one. You *must* already own a
800  * reference when calling this. Use drm_dev_put() to drop this reference
801  * again.
802  *
803  * This function never fails. However, this function does not provide *any*
804  * guarantee whether the device is alive or running. It only provides a
805  * reference to the object and the memory associated with it.
806  */
807 void drm_dev_get(struct drm_device *dev)
808 {
809 	if (dev)
810 		kref_get(&dev->ref);
811 }
812 EXPORT_SYMBOL(drm_dev_get);
813 
814 /**
815  * drm_dev_put - Drop reference of a DRM device
816  * @dev: device to drop reference of or NULL
817  *
818  * This decreases the ref-count of @dev by one. The device is destroyed if the
819  * ref-count drops to zero.
820  */
821 void drm_dev_put(struct drm_device *dev)
822 {
823 	if (dev)
824 		kref_put(&dev->ref, drm_dev_release);
825 }
826 EXPORT_SYMBOL(drm_dev_put);
827 
828 static int create_compat_control_link(struct drm_device *dev)
829 {
830 	struct drm_minor *minor;
831 	char *name;
832 	int ret;
833 
834 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
835 		return 0;
836 
837 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
838 	if (!minor)
839 		return 0;
840 
841 	/*
842 	 * Some existing userspace out there uses the existing of the controlD*
843 	 * sysfs files to figure out whether it's a modeset driver. It only does
844 	 * readdir, hence a symlink is sufficient (and the least confusing
845 	 * option). Otherwise controlD* is entirely unused.
846 	 *
847 	 * Old controlD chardev have been allocated in the range
848 	 * 64-127.
849 	 */
850 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
851 	if (!name)
852 		return -ENOMEM;
853 
854 	ret = sysfs_create_link(minor->kdev->kobj.parent,
855 				&minor->kdev->kobj,
856 				name);
857 
858 	kfree(name);
859 
860 	return ret;
861 }
862 
863 static void remove_compat_control_link(struct drm_device *dev)
864 {
865 	struct drm_minor *minor;
866 	char *name;
867 
868 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
869 		return;
870 
871 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
872 	if (!minor)
873 		return;
874 
875 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
876 	if (!name)
877 		return;
878 
879 	sysfs_remove_link(minor->kdev->kobj.parent, name);
880 
881 	kfree(name);
882 }
883 
884 /**
885  * drm_dev_register - Register DRM device
886  * @dev: Device to register
887  * @flags: Flags passed to the driver's .load() function
888  *
889  * Register the DRM device @dev with the system, advertise device to user-space
890  * and start normal device operation. @dev must be initialized via drm_dev_init()
891  * previously.
892  *
893  * Never call this twice on any device!
894  *
895  * NOTE: To ensure backward compatibility with existing drivers method this
896  * function calls the &drm_driver.load method after registering the device
897  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
898  * therefore deprecated, drivers must perform all initialization before calling
899  * drm_dev_register().
900  *
901  * RETURNS:
902  * 0 on success, negative error code on failure.
903  */
904 int drm_dev_register(struct drm_device *dev, unsigned long flags)
905 {
906 	const struct drm_driver *driver = dev->driver;
907 	int ret;
908 
909 	if (!driver->load)
910 		drm_mode_config_validate(dev);
911 
912 	WARN_ON(!dev->managed.final_kfree);
913 
914 	if (drm_dev_needs_global_mutex(dev))
915 		mutex_lock(&drm_global_mutex);
916 
917 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
918 	if (ret)
919 		goto err_minors;
920 
921 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
922 	if (ret)
923 		goto err_minors;
924 
925 	ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
926 	if (ret)
927 		goto err_minors;
928 
929 	ret = create_compat_control_link(dev);
930 	if (ret)
931 		goto err_minors;
932 
933 	dev->registered = true;
934 
935 	if (driver->load) {
936 		ret = driver->load(dev, flags);
937 		if (ret)
938 			goto err_minors;
939 	}
940 
941 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
942 		ret = drm_modeset_register_all(dev);
943 		if (ret)
944 			goto err_unload;
945 	}
946 
947 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
948 		 driver->name, driver->major, driver->minor,
949 		 driver->patchlevel, driver->date,
950 		 dev->dev ? dev_name(dev->dev) : "virtual device",
951 		 dev->primary ? dev->primary->index : dev->accel->index);
952 
953 	goto out_unlock;
954 
955 err_unload:
956 	if (dev->driver->unload)
957 		dev->driver->unload(dev);
958 err_minors:
959 	remove_compat_control_link(dev);
960 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
961 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
962 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
963 out_unlock:
964 	if (drm_dev_needs_global_mutex(dev))
965 		mutex_unlock(&drm_global_mutex);
966 	return ret;
967 }
968 EXPORT_SYMBOL(drm_dev_register);
969 
970 /**
971  * drm_dev_unregister - Unregister DRM device
972  * @dev: Device to unregister
973  *
974  * Unregister the DRM device from the system. This does the reverse of
975  * drm_dev_register() but does not deallocate the device. The caller must call
976  * drm_dev_put() to drop their final reference, unless it is managed with devres
977  * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
978  * already an unwind action registered.
979  *
980  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
981  * which can be called while there are still open users of @dev.
982  *
983  * This should be called first in the device teardown code to make sure
984  * userspace can't access the device instance any more.
985  */
986 void drm_dev_unregister(struct drm_device *dev)
987 {
988 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
989 		drm_lastclose(dev);
990 
991 	dev->registered = false;
992 
993 	drm_client_dev_unregister(dev);
994 
995 	if (drm_core_check_feature(dev, DRIVER_MODESET))
996 		drm_modeset_unregister_all(dev);
997 
998 	if (dev->driver->unload)
999 		dev->driver->unload(dev);
1000 
1001 	drm_legacy_pci_agp_destroy(dev);
1002 	drm_legacy_rmmaps(dev);
1003 
1004 	remove_compat_control_link(dev);
1005 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1006 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1007 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1008 }
1009 EXPORT_SYMBOL(drm_dev_unregister);
1010 
1011 /*
1012  * DRM Core
1013  * The DRM core module initializes all global DRM objects and makes them
1014  * available to drivers. Once setup, drivers can probe their respective
1015  * devices.
1016  * Currently, core management includes:
1017  *  - The "DRM-Global" key/value database
1018  *  - Global ID management for connectors
1019  *  - DRM major number allocation
1020  *  - DRM minor management
1021  *  - DRM sysfs class
1022  *  - DRM debugfs root
1023  *
1024  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1025  * interface registered on a DRM device, you can request minor numbers from DRM
1026  * core. DRM core takes care of major-number management and char-dev
1027  * registration. A stub ->open() callback forwards any open() requests to the
1028  * registered minor.
1029  */
1030 
1031 static int drm_stub_open(struct inode *inode, struct file *filp)
1032 {
1033 	const struct file_operations *new_fops;
1034 	struct drm_minor *minor;
1035 	int err;
1036 
1037 	DRM_DEBUG("\n");
1038 
1039 	minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1040 	if (IS_ERR(minor))
1041 		return PTR_ERR(minor);
1042 
1043 	new_fops = fops_get(minor->dev->driver->fops);
1044 	if (!new_fops) {
1045 		err = -ENODEV;
1046 		goto out;
1047 	}
1048 
1049 	replace_fops(filp, new_fops);
1050 	if (filp->f_op->open)
1051 		err = filp->f_op->open(inode, filp);
1052 	else
1053 		err = 0;
1054 
1055 out:
1056 	drm_minor_release(minor);
1057 
1058 	return err;
1059 }
1060 
1061 static const struct file_operations drm_stub_fops = {
1062 	.owner = THIS_MODULE,
1063 	.open = drm_stub_open,
1064 	.llseek = noop_llseek,
1065 };
1066 
1067 static void drm_core_exit(void)
1068 {
1069 	drm_privacy_screen_lookup_exit();
1070 	accel_core_exit();
1071 	unregister_chrdev(DRM_MAJOR, "drm");
1072 	debugfs_remove(drm_debugfs_root);
1073 	drm_sysfs_destroy();
1074 	WARN_ON(!xa_empty(&drm_minors_xa));
1075 	drm_connector_ida_destroy();
1076 }
1077 
1078 static int __init drm_core_init(void)
1079 {
1080 	int ret;
1081 
1082 	drm_connector_ida_init();
1083 	drm_memcpy_init_early();
1084 
1085 	ret = drm_sysfs_init();
1086 	if (ret < 0) {
1087 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1088 		goto error;
1089 	}
1090 
1091 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1092 
1093 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1094 	if (ret < 0)
1095 		goto error;
1096 
1097 	ret = accel_core_init();
1098 	if (ret < 0)
1099 		goto error;
1100 
1101 	drm_privacy_screen_lookup_init();
1102 
1103 	drm_core_init_complete = true;
1104 
1105 	DRM_DEBUG("Initialized\n");
1106 	return 0;
1107 
1108 error:
1109 	drm_core_exit();
1110 	return ret;
1111 }
1112 
1113 module_init(drm_core_init);
1114 module_exit(drm_core_exit);
1115