1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 #include <linux/srcu.h> 36 37 #include <drm/drm_client.h> 38 #include <drm/drm_drv.h> 39 #include <drm/drmP.h> 40 41 #include "drm_crtc_internal.h" 42 #include "drm_legacy.h" 43 #include "drm_internal.h" 44 45 /* 46 * drm_debug: Enable debug output. 47 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details. 48 */ 49 unsigned int drm_debug = 0; 50 EXPORT_SYMBOL(drm_debug); 51 52 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 53 MODULE_DESCRIPTION("DRM shared core routines"); 54 MODULE_LICENSE("GPL and additional rights"); 55 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 56 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 57 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 58 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 59 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 60 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 61 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n" 62 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)\n" 63 "\t\tBit 8 (0x100) will enable DP messages (displayport code)"); 64 module_param_named(debug, drm_debug, int, 0600); 65 66 static DEFINE_SPINLOCK(drm_minor_lock); 67 static struct idr drm_minors_idr; 68 69 /* 70 * If the drm core fails to init for whatever reason, 71 * we should prevent any drivers from registering with it. 72 * It's best to check this at drm_dev_init(), as some drivers 73 * prefer to embed struct drm_device into their own device 74 * structure and call drm_dev_init() themselves. 75 */ 76 static bool drm_core_init_complete = false; 77 78 static struct dentry *drm_debugfs_root; 79 80 DEFINE_STATIC_SRCU(drm_unplug_srcu); 81 82 /* 83 * DRM Minors 84 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 85 * of them is represented by a drm_minor object. Depending on the capabilities 86 * of the device-driver, different interfaces are registered. 87 * 88 * Minors can be accessed via dev->$minor_name. This pointer is either 89 * NULL or a valid drm_minor pointer and stays valid as long as the device is 90 * valid. This means, DRM minors have the same life-time as the underlying 91 * device. However, this doesn't mean that the minor is active. Minors are 92 * registered and unregistered dynamically according to device-state. 93 */ 94 95 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 96 unsigned int type) 97 { 98 switch (type) { 99 case DRM_MINOR_PRIMARY: 100 return &dev->primary; 101 case DRM_MINOR_RENDER: 102 return &dev->render; 103 default: 104 BUG(); 105 } 106 } 107 108 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 109 { 110 struct drm_minor *minor; 111 unsigned long flags; 112 int r; 113 114 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 115 if (!minor) 116 return -ENOMEM; 117 118 minor->type = type; 119 minor->dev = dev; 120 121 idr_preload(GFP_KERNEL); 122 spin_lock_irqsave(&drm_minor_lock, flags); 123 r = idr_alloc(&drm_minors_idr, 124 NULL, 125 64 * type, 126 64 * (type + 1), 127 GFP_NOWAIT); 128 spin_unlock_irqrestore(&drm_minor_lock, flags); 129 idr_preload_end(); 130 131 if (r < 0) 132 goto err_free; 133 134 minor->index = r; 135 136 minor->kdev = drm_sysfs_minor_alloc(minor); 137 if (IS_ERR(minor->kdev)) { 138 r = PTR_ERR(minor->kdev); 139 goto err_index; 140 } 141 142 *drm_minor_get_slot(dev, type) = minor; 143 return 0; 144 145 err_index: 146 spin_lock_irqsave(&drm_minor_lock, flags); 147 idr_remove(&drm_minors_idr, minor->index); 148 spin_unlock_irqrestore(&drm_minor_lock, flags); 149 err_free: 150 kfree(minor); 151 return r; 152 } 153 154 static void drm_minor_free(struct drm_device *dev, unsigned int type) 155 { 156 struct drm_minor **slot, *minor; 157 unsigned long flags; 158 159 slot = drm_minor_get_slot(dev, type); 160 minor = *slot; 161 if (!minor) 162 return; 163 164 put_device(minor->kdev); 165 166 spin_lock_irqsave(&drm_minor_lock, flags); 167 idr_remove(&drm_minors_idr, minor->index); 168 spin_unlock_irqrestore(&drm_minor_lock, flags); 169 170 kfree(minor); 171 *slot = NULL; 172 } 173 174 static int drm_minor_register(struct drm_device *dev, unsigned int type) 175 { 176 struct drm_minor *minor; 177 unsigned long flags; 178 int ret; 179 180 DRM_DEBUG("\n"); 181 182 minor = *drm_minor_get_slot(dev, type); 183 if (!minor) 184 return 0; 185 186 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 187 if (ret) { 188 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 189 goto err_debugfs; 190 } 191 192 ret = device_add(minor->kdev); 193 if (ret) 194 goto err_debugfs; 195 196 /* replace NULL with @minor so lookups will succeed from now on */ 197 spin_lock_irqsave(&drm_minor_lock, flags); 198 idr_replace(&drm_minors_idr, minor, minor->index); 199 spin_unlock_irqrestore(&drm_minor_lock, flags); 200 201 DRM_DEBUG("new minor registered %d\n", minor->index); 202 return 0; 203 204 err_debugfs: 205 drm_debugfs_cleanup(minor); 206 return ret; 207 } 208 209 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 210 { 211 struct drm_minor *minor; 212 unsigned long flags; 213 214 minor = *drm_minor_get_slot(dev, type); 215 if (!minor || !device_is_registered(minor->kdev)) 216 return; 217 218 /* replace @minor with NULL so lookups will fail from now on */ 219 spin_lock_irqsave(&drm_minor_lock, flags); 220 idr_replace(&drm_minors_idr, NULL, minor->index); 221 spin_unlock_irqrestore(&drm_minor_lock, flags); 222 223 device_del(minor->kdev); 224 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 225 drm_debugfs_cleanup(minor); 226 } 227 228 /* 229 * Looks up the given minor-ID and returns the respective DRM-minor object. The 230 * refence-count of the underlying device is increased so you must release this 231 * object with drm_minor_release(). 232 * 233 * As long as you hold this minor, it is guaranteed that the object and the 234 * minor->dev pointer will stay valid! However, the device may get unplugged and 235 * unregistered while you hold the minor. 236 */ 237 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 238 { 239 struct drm_minor *minor; 240 unsigned long flags; 241 242 spin_lock_irqsave(&drm_minor_lock, flags); 243 minor = idr_find(&drm_minors_idr, minor_id); 244 if (minor) 245 drm_dev_get(minor->dev); 246 spin_unlock_irqrestore(&drm_minor_lock, flags); 247 248 if (!minor) { 249 return ERR_PTR(-ENODEV); 250 } else if (drm_dev_is_unplugged(minor->dev)) { 251 drm_dev_put(minor->dev); 252 return ERR_PTR(-ENODEV); 253 } 254 255 return minor; 256 } 257 258 void drm_minor_release(struct drm_minor *minor) 259 { 260 drm_dev_put(minor->dev); 261 } 262 263 /** 264 * DOC: driver instance overview 265 * 266 * A device instance for a drm driver is represented by &struct drm_device. This 267 * is initialized with drm_dev_init(), usually from bus-specific ->probe() 268 * callbacks implemented by the driver. The driver then needs to initialize all 269 * the various subsystems for the drm device like memory management, vblank 270 * handling, modesetting support and intial output configuration plus obviously 271 * initialize all the corresponding hardware bits. Finally when everything is up 272 * and running and ready for userspace the device instance can be published 273 * using drm_dev_register(). 274 * 275 * There is also deprecated support for initalizing device instances using 276 * bus-specific helpers and the &drm_driver.load callback. But due to 277 * backwards-compatibility needs the device instance have to be published too 278 * early, which requires unpretty global locking to make safe and is therefore 279 * only support for existing drivers not yet converted to the new scheme. 280 * 281 * When cleaning up a device instance everything needs to be done in reverse: 282 * First unpublish the device instance with drm_dev_unregister(). Then clean up 283 * any other resources allocated at device initialization and drop the driver's 284 * reference to &drm_device using drm_dev_put(). 285 * 286 * Note that the lifetime rules for &drm_device instance has still a lot of 287 * historical baggage. Hence use the reference counting provided by 288 * drm_dev_get() and drm_dev_put() only carefully. 289 */ 290 291 /** 292 * drm_put_dev - Unregister and release a DRM device 293 * @dev: DRM device 294 * 295 * Called at module unload time or when a PCI device is unplugged. 296 * 297 * Cleans up all DRM device, calling drm_lastclose(). 298 * 299 * Note: Use of this function is deprecated. It will eventually go away 300 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 301 * instead to make sure that the device isn't userspace accessible any more 302 * while teardown is in progress, ensuring that userspace can't access an 303 * inconsistent state. 304 */ 305 void drm_put_dev(struct drm_device *dev) 306 { 307 DRM_DEBUG("\n"); 308 309 if (!dev) { 310 DRM_ERROR("cleanup called no dev\n"); 311 return; 312 } 313 314 drm_dev_unregister(dev); 315 drm_dev_put(dev); 316 } 317 EXPORT_SYMBOL(drm_put_dev); 318 319 /** 320 * drm_dev_enter - Enter device critical section 321 * @dev: DRM device 322 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 323 * 324 * This function marks and protects the beginning of a section that should not 325 * be entered after the device has been unplugged. The section end is marked 326 * with drm_dev_exit(). Calls to this function can be nested. 327 * 328 * Returns: 329 * True if it is OK to enter the section, false otherwise. 330 */ 331 bool drm_dev_enter(struct drm_device *dev, int *idx) 332 { 333 *idx = srcu_read_lock(&drm_unplug_srcu); 334 335 if (dev->unplugged) { 336 srcu_read_unlock(&drm_unplug_srcu, *idx); 337 return false; 338 } 339 340 return true; 341 } 342 EXPORT_SYMBOL(drm_dev_enter); 343 344 /** 345 * drm_dev_exit - Exit device critical section 346 * @idx: index returned from drm_dev_enter() 347 * 348 * This function marks the end of a section that should not be entered after 349 * the device has been unplugged. 350 */ 351 void drm_dev_exit(int idx) 352 { 353 srcu_read_unlock(&drm_unplug_srcu, idx); 354 } 355 EXPORT_SYMBOL(drm_dev_exit); 356 357 /** 358 * drm_dev_unplug - unplug a DRM device 359 * @dev: DRM device 360 * 361 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 362 * userspace operations. Entry-points can use drm_dev_enter() and 363 * drm_dev_exit() to protect device resources in a race free manner. This 364 * essentially unregisters the device like drm_dev_unregister(), but can be 365 * called while there are still open users of @dev. 366 */ 367 void drm_dev_unplug(struct drm_device *dev) 368 { 369 /* 370 * After synchronizing any critical read section is guaranteed to see 371 * the new value of ->unplugged, and any critical section which might 372 * still have seen the old value of ->unplugged is guaranteed to have 373 * finished. 374 */ 375 dev->unplugged = true; 376 synchronize_srcu(&drm_unplug_srcu); 377 378 drm_dev_unregister(dev); 379 drm_dev_put(dev); 380 } 381 EXPORT_SYMBOL(drm_dev_unplug); 382 383 /* 384 * DRM internal mount 385 * We want to be able to allocate our own "struct address_space" to control 386 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 387 * stand-alone address_space objects, so we need an underlying inode. As there 388 * is no way to allocate an independent inode easily, we need a fake internal 389 * VFS mount-point. 390 * 391 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 392 * frees it again. You are allowed to use iget() and iput() to get references to 393 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 394 * drm_fs_inode_free() call (which does not have to be the last iput()). 395 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 396 * between multiple inode-users. You could, technically, call 397 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 398 * iput(), but this way you'd end up with a new vfsmount for each inode. 399 */ 400 401 static int drm_fs_cnt; 402 static struct vfsmount *drm_fs_mnt; 403 404 static const struct dentry_operations drm_fs_dops = { 405 .d_dname = simple_dname, 406 }; 407 408 static const struct super_operations drm_fs_sops = { 409 .statfs = simple_statfs, 410 }; 411 412 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 413 const char *dev_name, void *data) 414 { 415 return mount_pseudo(fs_type, 416 "drm:", 417 &drm_fs_sops, 418 &drm_fs_dops, 419 0x010203ff); 420 } 421 422 static struct file_system_type drm_fs_type = { 423 .name = "drm", 424 .owner = THIS_MODULE, 425 .mount = drm_fs_mount, 426 .kill_sb = kill_anon_super, 427 }; 428 429 static struct inode *drm_fs_inode_new(void) 430 { 431 struct inode *inode; 432 int r; 433 434 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 435 if (r < 0) { 436 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 437 return ERR_PTR(r); 438 } 439 440 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 441 if (IS_ERR(inode)) 442 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 443 444 return inode; 445 } 446 447 static void drm_fs_inode_free(struct inode *inode) 448 { 449 if (inode) { 450 iput(inode); 451 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 452 } 453 } 454 455 /** 456 * drm_dev_init - Initialise new DRM device 457 * @dev: DRM device 458 * @driver: DRM driver 459 * @parent: Parent device object 460 * 461 * Initialize a new DRM device. No device registration is done. 462 * Call drm_dev_register() to advertice the device to user space and register it 463 * with other core subsystems. This should be done last in the device 464 * initialization sequence to make sure userspace can't access an inconsistent 465 * state. 466 * 467 * The initial ref-count of the object is 1. Use drm_dev_get() and 468 * drm_dev_put() to take and drop further ref-counts. 469 * 470 * It is recommended that drivers embed &struct drm_device into their own device 471 * structure. 472 * 473 * Drivers that do not want to allocate their own device struct 474 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 475 * that do embed &struct drm_device it must be placed first in the overall 476 * structure, and the overall structure must be allocated using kmalloc(): The 477 * drm core's release function unconditionally calls kfree() on the @dev pointer 478 * when the final reference is released. To override this behaviour, and so 479 * allow embedding of the drm_device inside the driver's device struct at an 480 * arbitrary offset, you must supply a &drm_driver.release callback and control 481 * the finalization explicitly. 482 * 483 * RETURNS: 484 * 0 on success, or error code on failure. 485 */ 486 int drm_dev_init(struct drm_device *dev, 487 struct drm_driver *driver, 488 struct device *parent) 489 { 490 int ret; 491 492 if (!drm_core_init_complete) { 493 DRM_ERROR("DRM core is not initialized\n"); 494 return -ENODEV; 495 } 496 497 BUG_ON(!parent); 498 499 kref_init(&dev->ref); 500 dev->dev = parent; 501 dev->driver = driver; 502 503 /* no per-device feature limits by default */ 504 dev->driver_features = ~0u; 505 506 INIT_LIST_HEAD(&dev->filelist); 507 INIT_LIST_HEAD(&dev->filelist_internal); 508 INIT_LIST_HEAD(&dev->clientlist); 509 INIT_LIST_HEAD(&dev->ctxlist); 510 INIT_LIST_HEAD(&dev->vmalist); 511 INIT_LIST_HEAD(&dev->maplist); 512 INIT_LIST_HEAD(&dev->vblank_event_list); 513 514 spin_lock_init(&dev->buf_lock); 515 spin_lock_init(&dev->event_lock); 516 mutex_init(&dev->struct_mutex); 517 mutex_init(&dev->filelist_mutex); 518 mutex_init(&dev->clientlist_mutex); 519 mutex_init(&dev->ctxlist_mutex); 520 mutex_init(&dev->master_mutex); 521 522 dev->anon_inode = drm_fs_inode_new(); 523 if (IS_ERR(dev->anon_inode)) { 524 ret = PTR_ERR(dev->anon_inode); 525 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 526 goto err_free; 527 } 528 529 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 530 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 531 if (ret) 532 goto err_minors; 533 } 534 535 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 536 if (ret) 537 goto err_minors; 538 539 ret = drm_ht_create(&dev->map_hash, 12); 540 if (ret) 541 goto err_minors; 542 543 drm_legacy_ctxbitmap_init(dev); 544 545 if (drm_core_check_feature(dev, DRIVER_GEM)) { 546 ret = drm_gem_init(dev); 547 if (ret) { 548 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 549 goto err_ctxbitmap; 550 } 551 } 552 553 ret = drm_dev_set_unique(dev, dev_name(parent)); 554 if (ret) 555 goto err_setunique; 556 557 return 0; 558 559 err_setunique: 560 if (drm_core_check_feature(dev, DRIVER_GEM)) 561 drm_gem_destroy(dev); 562 err_ctxbitmap: 563 drm_legacy_ctxbitmap_cleanup(dev); 564 drm_ht_remove(&dev->map_hash); 565 err_minors: 566 drm_minor_free(dev, DRM_MINOR_PRIMARY); 567 drm_minor_free(dev, DRM_MINOR_RENDER); 568 drm_fs_inode_free(dev->anon_inode); 569 err_free: 570 mutex_destroy(&dev->master_mutex); 571 mutex_destroy(&dev->ctxlist_mutex); 572 mutex_destroy(&dev->clientlist_mutex); 573 mutex_destroy(&dev->filelist_mutex); 574 mutex_destroy(&dev->struct_mutex); 575 return ret; 576 } 577 EXPORT_SYMBOL(drm_dev_init); 578 579 /** 580 * drm_dev_fini - Finalize a dead DRM device 581 * @dev: DRM device 582 * 583 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 584 * frees up all data allocated by it. All driver private data should be 585 * finalized first. Note that this function does not free the @dev, that is 586 * left to the caller. 587 * 588 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 589 * from a &drm_driver.release callback. 590 */ 591 void drm_dev_fini(struct drm_device *dev) 592 { 593 drm_vblank_cleanup(dev); 594 595 if (drm_core_check_feature(dev, DRIVER_GEM)) 596 drm_gem_destroy(dev); 597 598 drm_legacy_ctxbitmap_cleanup(dev); 599 drm_ht_remove(&dev->map_hash); 600 drm_fs_inode_free(dev->anon_inode); 601 602 drm_minor_free(dev, DRM_MINOR_PRIMARY); 603 drm_minor_free(dev, DRM_MINOR_RENDER); 604 605 mutex_destroy(&dev->master_mutex); 606 mutex_destroy(&dev->ctxlist_mutex); 607 mutex_destroy(&dev->clientlist_mutex); 608 mutex_destroy(&dev->filelist_mutex); 609 mutex_destroy(&dev->struct_mutex); 610 kfree(dev->unique); 611 } 612 EXPORT_SYMBOL(drm_dev_fini); 613 614 /** 615 * drm_dev_alloc - Allocate new DRM device 616 * @driver: DRM driver to allocate device for 617 * @parent: Parent device object 618 * 619 * Allocate and initialize a new DRM device. No device registration is done. 620 * Call drm_dev_register() to advertice the device to user space and register it 621 * with other core subsystems. This should be done last in the device 622 * initialization sequence to make sure userspace can't access an inconsistent 623 * state. 624 * 625 * The initial ref-count of the object is 1. Use drm_dev_get() and 626 * drm_dev_put() to take and drop further ref-counts. 627 * 628 * Note that for purely virtual devices @parent can be NULL. 629 * 630 * Drivers that wish to subclass or embed &struct drm_device into their 631 * own struct should look at using drm_dev_init() instead. 632 * 633 * RETURNS: 634 * Pointer to new DRM device, or ERR_PTR on failure. 635 */ 636 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 637 struct device *parent) 638 { 639 struct drm_device *dev; 640 int ret; 641 642 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 643 if (!dev) 644 return ERR_PTR(-ENOMEM); 645 646 ret = drm_dev_init(dev, driver, parent); 647 if (ret) { 648 kfree(dev); 649 return ERR_PTR(ret); 650 } 651 652 return dev; 653 } 654 EXPORT_SYMBOL(drm_dev_alloc); 655 656 static void drm_dev_release(struct kref *ref) 657 { 658 struct drm_device *dev = container_of(ref, struct drm_device, ref); 659 660 if (dev->driver->release) { 661 dev->driver->release(dev); 662 } else { 663 drm_dev_fini(dev); 664 kfree(dev); 665 } 666 } 667 668 /** 669 * drm_dev_get - Take reference of a DRM device 670 * @dev: device to take reference of or NULL 671 * 672 * This increases the ref-count of @dev by one. You *must* already own a 673 * reference when calling this. Use drm_dev_put() to drop this reference 674 * again. 675 * 676 * This function never fails. However, this function does not provide *any* 677 * guarantee whether the device is alive or running. It only provides a 678 * reference to the object and the memory associated with it. 679 */ 680 void drm_dev_get(struct drm_device *dev) 681 { 682 if (dev) 683 kref_get(&dev->ref); 684 } 685 EXPORT_SYMBOL(drm_dev_get); 686 687 /** 688 * drm_dev_put - Drop reference of a DRM device 689 * @dev: device to drop reference of or NULL 690 * 691 * This decreases the ref-count of @dev by one. The device is destroyed if the 692 * ref-count drops to zero. 693 */ 694 void drm_dev_put(struct drm_device *dev) 695 { 696 if (dev) 697 kref_put(&dev->ref, drm_dev_release); 698 } 699 EXPORT_SYMBOL(drm_dev_put); 700 701 static int create_compat_control_link(struct drm_device *dev) 702 { 703 struct drm_minor *minor; 704 char *name; 705 int ret; 706 707 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 708 return 0; 709 710 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 711 if (!minor) 712 return 0; 713 714 /* 715 * Some existing userspace out there uses the existing of the controlD* 716 * sysfs files to figure out whether it's a modeset driver. It only does 717 * readdir, hence a symlink is sufficient (and the least confusing 718 * option). Otherwise controlD* is entirely unused. 719 * 720 * Old controlD chardev have been allocated in the range 721 * 64-127. 722 */ 723 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 724 if (!name) 725 return -ENOMEM; 726 727 ret = sysfs_create_link(minor->kdev->kobj.parent, 728 &minor->kdev->kobj, 729 name); 730 731 kfree(name); 732 733 return ret; 734 } 735 736 static void remove_compat_control_link(struct drm_device *dev) 737 { 738 struct drm_minor *minor; 739 char *name; 740 741 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 742 return; 743 744 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 745 if (!minor) 746 return; 747 748 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 749 if (!name) 750 return; 751 752 sysfs_remove_link(minor->kdev->kobj.parent, name); 753 754 kfree(name); 755 } 756 757 /** 758 * drm_dev_register - Register DRM device 759 * @dev: Device to register 760 * @flags: Flags passed to the driver's .load() function 761 * 762 * Register the DRM device @dev with the system, advertise device to user-space 763 * and start normal device operation. @dev must be initialized via drm_dev_init() 764 * previously. 765 * 766 * Never call this twice on any device! 767 * 768 * NOTE: To ensure backward compatibility with existing drivers method this 769 * function calls the &drm_driver.load method after registering the device 770 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 771 * therefore deprecated, drivers must perform all initialization before calling 772 * drm_dev_register(). 773 * 774 * RETURNS: 775 * 0 on success, negative error code on failure. 776 */ 777 int drm_dev_register(struct drm_device *dev, unsigned long flags) 778 { 779 struct drm_driver *driver = dev->driver; 780 int ret; 781 782 mutex_lock(&drm_global_mutex); 783 784 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 785 if (ret) 786 goto err_minors; 787 788 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 789 if (ret) 790 goto err_minors; 791 792 ret = create_compat_control_link(dev); 793 if (ret) 794 goto err_minors; 795 796 dev->registered = true; 797 798 if (dev->driver->load) { 799 ret = dev->driver->load(dev, flags); 800 if (ret) 801 goto err_minors; 802 } 803 804 if (drm_core_check_feature(dev, DRIVER_MODESET)) 805 drm_modeset_register_all(dev); 806 807 ret = 0; 808 809 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 810 driver->name, driver->major, driver->minor, 811 driver->patchlevel, driver->date, 812 dev->dev ? dev_name(dev->dev) : "virtual device", 813 dev->primary->index); 814 815 goto out_unlock; 816 817 err_minors: 818 remove_compat_control_link(dev); 819 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 820 drm_minor_unregister(dev, DRM_MINOR_RENDER); 821 out_unlock: 822 mutex_unlock(&drm_global_mutex); 823 return ret; 824 } 825 EXPORT_SYMBOL(drm_dev_register); 826 827 /** 828 * drm_dev_unregister - Unregister DRM device 829 * @dev: Device to unregister 830 * 831 * Unregister the DRM device from the system. This does the reverse of 832 * drm_dev_register() but does not deallocate the device. The caller must call 833 * drm_dev_put() to drop their final reference. 834 * 835 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 836 * which can be called while there are still open users of @dev. 837 * 838 * This should be called first in the device teardown code to make sure 839 * userspace can't access the device instance any more. 840 */ 841 void drm_dev_unregister(struct drm_device *dev) 842 { 843 struct drm_map_list *r_list, *list_temp; 844 845 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 846 drm_lastclose(dev); 847 848 dev->registered = false; 849 850 drm_client_dev_unregister(dev); 851 852 if (drm_core_check_feature(dev, DRIVER_MODESET)) 853 drm_modeset_unregister_all(dev); 854 855 if (dev->driver->unload) 856 dev->driver->unload(dev); 857 858 if (dev->agp) 859 drm_pci_agp_destroy(dev); 860 861 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) 862 drm_legacy_rmmap(dev, r_list->map); 863 864 remove_compat_control_link(dev); 865 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 866 drm_minor_unregister(dev, DRM_MINOR_RENDER); 867 } 868 EXPORT_SYMBOL(drm_dev_unregister); 869 870 /** 871 * drm_dev_set_unique - Set the unique name of a DRM device 872 * @dev: device of which to set the unique name 873 * @name: unique name 874 * 875 * Sets the unique name of a DRM device using the specified string. This is 876 * already done by drm_dev_init(), drivers should only override the default 877 * unique name for backwards compatibility reasons. 878 * 879 * Return: 0 on success or a negative error code on failure. 880 */ 881 int drm_dev_set_unique(struct drm_device *dev, const char *name) 882 { 883 kfree(dev->unique); 884 dev->unique = kstrdup(name, GFP_KERNEL); 885 886 return dev->unique ? 0 : -ENOMEM; 887 } 888 EXPORT_SYMBOL(drm_dev_set_unique); 889 890 /* 891 * DRM Core 892 * The DRM core module initializes all global DRM objects and makes them 893 * available to drivers. Once setup, drivers can probe their respective 894 * devices. 895 * Currently, core management includes: 896 * - The "DRM-Global" key/value database 897 * - Global ID management for connectors 898 * - DRM major number allocation 899 * - DRM minor management 900 * - DRM sysfs class 901 * - DRM debugfs root 902 * 903 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 904 * interface registered on a DRM device, you can request minor numbers from DRM 905 * core. DRM core takes care of major-number management and char-dev 906 * registration. A stub ->open() callback forwards any open() requests to the 907 * registered minor. 908 */ 909 910 static int drm_stub_open(struct inode *inode, struct file *filp) 911 { 912 const struct file_operations *new_fops; 913 struct drm_minor *minor; 914 int err; 915 916 DRM_DEBUG("\n"); 917 918 mutex_lock(&drm_global_mutex); 919 minor = drm_minor_acquire(iminor(inode)); 920 if (IS_ERR(minor)) { 921 err = PTR_ERR(minor); 922 goto out_unlock; 923 } 924 925 new_fops = fops_get(minor->dev->driver->fops); 926 if (!new_fops) { 927 err = -ENODEV; 928 goto out_release; 929 } 930 931 replace_fops(filp, new_fops); 932 if (filp->f_op->open) 933 err = filp->f_op->open(inode, filp); 934 else 935 err = 0; 936 937 out_release: 938 drm_minor_release(minor); 939 out_unlock: 940 mutex_unlock(&drm_global_mutex); 941 return err; 942 } 943 944 static const struct file_operations drm_stub_fops = { 945 .owner = THIS_MODULE, 946 .open = drm_stub_open, 947 .llseek = noop_llseek, 948 }; 949 950 static void drm_core_exit(void) 951 { 952 unregister_chrdev(DRM_MAJOR, "drm"); 953 debugfs_remove(drm_debugfs_root); 954 drm_sysfs_destroy(); 955 idr_destroy(&drm_minors_idr); 956 drm_connector_ida_destroy(); 957 } 958 959 static int __init drm_core_init(void) 960 { 961 int ret; 962 963 drm_connector_ida_init(); 964 idr_init(&drm_minors_idr); 965 966 ret = drm_sysfs_init(); 967 if (ret < 0) { 968 DRM_ERROR("Cannot create DRM class: %d\n", ret); 969 goto error; 970 } 971 972 drm_debugfs_root = debugfs_create_dir("dri", NULL); 973 if (!drm_debugfs_root) { 974 ret = -ENOMEM; 975 DRM_ERROR("Cannot create debugfs-root: %d\n", ret); 976 goto error; 977 } 978 979 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 980 if (ret < 0) 981 goto error; 982 983 drm_core_init_complete = true; 984 985 DRM_DEBUG("Initialized\n"); 986 return 0; 987 988 error: 989 drm_core_exit(); 990 return ret; 991 } 992 993 module_init(drm_core_init); 994 module_exit(drm_core_exit); 995