1 /* 2 * Copyright (C) 2016 Samsung Electronics Co.Ltd 3 * Authors: 4 * Marek Szyprowski <m.szyprowski@samsung.com> 5 * 6 * DRM core plane blending related functions 7 * 8 * Permission to use, copy, modify, distribute, and sell this software and its 9 * documentation for any purpose is hereby granted without fee, provided that 10 * the above copyright notice appear in all copies and that both that copyright 11 * notice and this permission notice appear in supporting documentation, and 12 * that the name of the copyright holders not be used in advertising or 13 * publicity pertaining to distribution of the software without specific, 14 * written prior permission. The copyright holders make no representations 15 * about the suitability of this software for any purpose. It is provided "as 16 * is" without express or implied warranty. 17 * 18 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 20 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 21 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 22 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 23 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 24 * OF THIS SOFTWARE. 25 */ 26 #include <drm/drmP.h> 27 #include <drm/drm_atomic.h> 28 #include <drm/drm_blend.h> 29 #include <linux/export.h> 30 #include <linux/slab.h> 31 #include <linux/sort.h> 32 33 #include "drm_crtc_internal.h" 34 35 /** 36 * DOC: overview 37 * 38 * The basic plane composition model supported by standard plane properties only 39 * has a source rectangle (in logical pixels within the &drm_framebuffer), with 40 * sub-pixel accuracy, which is scaled up to a pixel-aligned destination 41 * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is 42 * defined by the horizontal and vertical visible pixels (stored in @hdisplay 43 * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These 44 * two rectangles are both stored in the &drm_plane_state. 45 * 46 * For the atomic ioctl the following standard (atomic) properties on the plane object 47 * encode the basic plane composition model: 48 * 49 * SRC_X: 50 * X coordinate offset for the source rectangle within the 51 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 52 * SRC_Y: 53 * Y coordinate offset for the source rectangle within the 54 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 55 * SRC_W: 56 * Width for the source rectangle within the &drm_framebuffer, in 16.16 57 * fixed point. SRC_X plus SRC_W must be within the width of the source 58 * framebuffer. Must be positive. 59 * SRC_H: 60 * Height for the source rectangle within the &drm_framebuffer, in 16.16 61 * fixed point. SRC_Y plus SRC_H must be within the height of the source 62 * framebuffer. Must be positive. 63 * CRTC_X: 64 * X coordinate offset for the destination rectangle. Can be negative. 65 * CRTC_Y: 66 * Y coordinate offset for the destination rectangle. Can be negative. 67 * CRTC_W: 68 * Width for the destination rectangle. CRTC_X plus CRTC_W can extend past 69 * the currently visible horizontal area of the &drm_crtc. 70 * CRTC_H: 71 * Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past 72 * the currently visible vertical area of the &drm_crtc. 73 * FB_ID: 74 * Mode object ID of the &drm_framebuffer this plane should scan out. 75 * CRTC_ID: 76 * Mode object ID of the &drm_crtc this plane should be connected to. 77 * 78 * Note that the source rectangle must fully lie within the bounds of the 79 * &drm_framebuffer. The destination rectangle can lie outside of the visible 80 * area of the current mode of the CRTC. It must be apprpriately clipped by the 81 * driver, which can be done by calling drm_plane_helper_check_update(). Drivers 82 * are also allowed to round the subpixel sampling positions appropriately, but 83 * only to the next full pixel. No pixel outside of the source rectangle may 84 * ever be sampled, which is important when applying more sophisticated 85 * filtering than just a bilinear one when scaling. The filtering mode when 86 * scaling is unspecified. 87 * 88 * On top of this basic transformation additional properties can be exposed by 89 * the driver: 90 * 91 * rotation: 92 * Rotation is set up with drm_plane_create_rotation_property(). It adds a 93 * rotation and reflection step between the source and destination rectangles. 94 * Without this property the rectangle is only scaled, but not rotated or 95 * reflected. 96 * 97 * zpos: 98 * Z position is set up with drm_plane_create_zpos_immutable_property() and 99 * drm_plane_create_zpos_property(). It controls the visibility of overlapping 100 * planes. Without this property the primary plane is always below the cursor 101 * plane, and ordering between all other planes is undefined. 102 * 103 * Note that all the property extensions described here apply either to the 104 * plane or the CRTC (e.g. for the background color, which currently is not 105 * exposed and assumed to be black). 106 */ 107 108 /** 109 * drm_plane_create_rotation_property - create a new rotation property 110 * @plane: drm plane 111 * @rotation: initial value of the rotation property 112 * @supported_rotations: bitmask of supported rotations and reflections 113 * 114 * This creates a new property with the selected support for transformations. 115 * 116 * Since a rotation by 180° degress is the same as reflecting both along the x 117 * and the y axis the rotation property is somewhat redundant. Drivers can use 118 * drm_rotation_simplify() to normalize values of this property. 119 * 120 * The property exposed to userspace is a bitmask property (see 121 * drm_property_create_bitmask()) called "rotation" and has the following 122 * bitmask enumaration values: 123 * 124 * DRM_MODE_ROTATE_0: 125 * "rotate-0" 126 * DRM_MODE_ROTATE_90: 127 * "rotate-90" 128 * DRM_MODE_ROTATE_180: 129 * "rotate-180" 130 * DRM_MODE_ROTATE_270: 131 * "rotate-270" 132 * DRM_MODE_REFLECT_X: 133 * "reflect-x" 134 * DRM_MODE_REFLECT_Y: 135 * "reflect-y" 136 * 137 * Rotation is the specified amount in degrees in counter clockwise direction, 138 * the X and Y axis are within the source rectangle, i.e. the X/Y axis before 139 * rotation. After reflection, the rotation is applied to the image sampled from 140 * the source rectangle, before scaling it to fit the destination rectangle. 141 */ 142 int drm_plane_create_rotation_property(struct drm_plane *plane, 143 unsigned int rotation, 144 unsigned int supported_rotations) 145 { 146 static const struct drm_prop_enum_list props[] = { 147 { __builtin_ffs(DRM_MODE_ROTATE_0) - 1, "rotate-0" }, 148 { __builtin_ffs(DRM_MODE_ROTATE_90) - 1, "rotate-90" }, 149 { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" }, 150 { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" }, 151 { __builtin_ffs(DRM_MODE_REFLECT_X) - 1, "reflect-x" }, 152 { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1, "reflect-y" }, 153 }; 154 struct drm_property *prop; 155 156 WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0); 157 WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK)); 158 WARN_ON(rotation & ~supported_rotations); 159 160 prop = drm_property_create_bitmask(plane->dev, 0, "rotation", 161 props, ARRAY_SIZE(props), 162 supported_rotations); 163 if (!prop) 164 return -ENOMEM; 165 166 drm_object_attach_property(&plane->base, prop, rotation); 167 168 if (plane->state) 169 plane->state->rotation = rotation; 170 171 plane->rotation_property = prop; 172 173 return 0; 174 } 175 EXPORT_SYMBOL(drm_plane_create_rotation_property); 176 177 /** 178 * drm_rotation_simplify() - Try to simplify the rotation 179 * @rotation: Rotation to be simplified 180 * @supported_rotations: Supported rotations 181 * 182 * Attempt to simplify the rotation to a form that is supported. 183 * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X 184 * one could call this function like this: 185 * 186 * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 | 187 * DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 | 188 * DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y); 189 * 190 * to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of 191 * transforms the hardware supports, this function may not 192 * be able to produce a supported transform, so the caller should 193 * check the result afterwards. 194 */ 195 unsigned int drm_rotation_simplify(unsigned int rotation, 196 unsigned int supported_rotations) 197 { 198 if (rotation & ~supported_rotations) { 199 rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y; 200 rotation = (rotation & DRM_MODE_REFLECT_MASK) | 201 BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1) 202 % 4); 203 } 204 205 return rotation; 206 } 207 EXPORT_SYMBOL(drm_rotation_simplify); 208 209 /** 210 * drm_plane_create_zpos_property - create mutable zpos property 211 * @plane: drm plane 212 * @zpos: initial value of zpos property 213 * @min: minimal possible value of zpos property 214 * @max: maximal possible value of zpos property 215 * 216 * This function initializes generic mutable zpos property and enables support 217 * for it in drm core. Drivers can then attach this property to planes to enable 218 * support for configurable planes arrangement during blending operation. 219 * Drivers that attach a mutable zpos property to any plane should call the 220 * drm_atomic_normalize_zpos() helper during their implementation of 221 * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos 222 * values and store them in &drm_plane_state.normalized_zpos. Usually min 223 * should be set to 0 and max to maximal number of planes for given crtc - 1. 224 * 225 * If zpos of some planes cannot be changed (like fixed background or 226 * cursor/topmost planes), driver should adjust min/max values and assign those 227 * planes immutable zpos property with lower or higher values (for more 228 * information, see drm_plane_create_zpos_immutable_property() function). In such 229 * case driver should also assign proper initial zpos values for all planes in 230 * its plane_reset() callback, so the planes will be always sorted properly. 231 * 232 * See also drm_atomic_normalize_zpos(). 233 * 234 * The property exposed to userspace is called "zpos". 235 * 236 * Returns: 237 * Zero on success, negative errno on failure. 238 */ 239 int drm_plane_create_zpos_property(struct drm_plane *plane, 240 unsigned int zpos, 241 unsigned int min, unsigned int max) 242 { 243 struct drm_property *prop; 244 245 prop = drm_property_create_range(plane->dev, 0, "zpos", min, max); 246 if (!prop) 247 return -ENOMEM; 248 249 drm_object_attach_property(&plane->base, prop, zpos); 250 251 plane->zpos_property = prop; 252 253 if (plane->state) { 254 plane->state->zpos = zpos; 255 plane->state->normalized_zpos = zpos; 256 } 257 258 return 0; 259 } 260 EXPORT_SYMBOL(drm_plane_create_zpos_property); 261 262 /** 263 * drm_plane_create_zpos_immutable_property - create immuttable zpos property 264 * @plane: drm plane 265 * @zpos: value of zpos property 266 * 267 * This function initializes generic immutable zpos property and enables 268 * support for it in drm core. Using this property driver lets userspace 269 * to get the arrangement of the planes for blending operation and notifies 270 * it that the hardware (or driver) doesn't support changing of the planes' 271 * order. For mutable zpos see drm_plane_create_zpos_property(). 272 * 273 * The property exposed to userspace is called "zpos". 274 * 275 * Returns: 276 * Zero on success, negative errno on failure. 277 */ 278 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane, 279 unsigned int zpos) 280 { 281 struct drm_property *prop; 282 283 prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE, 284 "zpos", zpos, zpos); 285 if (!prop) 286 return -ENOMEM; 287 288 drm_object_attach_property(&plane->base, prop, zpos); 289 290 plane->zpos_property = prop; 291 292 if (plane->state) { 293 plane->state->zpos = zpos; 294 plane->state->normalized_zpos = zpos; 295 } 296 297 return 0; 298 } 299 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property); 300 301 static int drm_atomic_state_zpos_cmp(const void *a, const void *b) 302 { 303 const struct drm_plane_state *sa = *(struct drm_plane_state **)a; 304 const struct drm_plane_state *sb = *(struct drm_plane_state **)b; 305 306 if (sa->zpos != sb->zpos) 307 return sa->zpos - sb->zpos; 308 else 309 return sa->plane->base.id - sb->plane->base.id; 310 } 311 312 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc, 313 struct drm_crtc_state *crtc_state) 314 { 315 struct drm_atomic_state *state = crtc_state->state; 316 struct drm_device *dev = crtc->dev; 317 int total_planes = dev->mode_config.num_total_plane; 318 struct drm_plane_state **states; 319 struct drm_plane *plane; 320 int i, n = 0; 321 int ret = 0; 322 323 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n", 324 crtc->base.id, crtc->name); 325 326 states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL); 327 if (!states) 328 return -ENOMEM; 329 330 /* 331 * Normalization process might create new states for planes which 332 * normalized_zpos has to be recalculated. 333 */ 334 drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) { 335 struct drm_plane_state *plane_state = 336 drm_atomic_get_plane_state(state, plane); 337 if (IS_ERR(plane_state)) { 338 ret = PTR_ERR(plane_state); 339 goto done; 340 } 341 states[n++] = plane_state; 342 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n", 343 plane->base.id, plane->name, 344 plane_state->zpos); 345 } 346 347 sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL); 348 349 for (i = 0; i < n; i++) { 350 plane = states[i]->plane; 351 352 states[i]->normalized_zpos = i; 353 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n", 354 plane->base.id, plane->name, i); 355 } 356 crtc_state->zpos_changed = true; 357 358 done: 359 kfree(states); 360 return ret; 361 } 362 363 /** 364 * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs 365 * @dev: DRM device 366 * @state: atomic state of DRM device 367 * 368 * This function calculates normalized zpos value for all modified planes in 369 * the provided atomic state of DRM device. 370 * 371 * For every CRTC this function checks new states of all planes assigned to 372 * it and calculates normalized zpos value for these planes. Planes are compared 373 * first by their zpos values, then by plane id (if zpos is equal). The plane 374 * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos 375 * is then filled with unique values from 0 to number of active planes in crtc 376 * minus one. 377 * 378 * RETURNS 379 * Zero for success or -errno 380 */ 381 int drm_atomic_normalize_zpos(struct drm_device *dev, 382 struct drm_atomic_state *state) 383 { 384 struct drm_crtc *crtc; 385 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 386 struct drm_plane *plane; 387 struct drm_plane_state *old_plane_state, *new_plane_state; 388 int i, ret = 0; 389 390 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { 391 crtc = new_plane_state->crtc; 392 if (!crtc) 393 continue; 394 if (old_plane_state->zpos != new_plane_state->zpos) { 395 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 396 new_crtc_state->zpos_changed = true; 397 } 398 } 399 400 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 401 if (old_crtc_state->plane_mask != new_crtc_state->plane_mask || 402 new_crtc_state->zpos_changed) { 403 ret = drm_atomic_helper_crtc_normalize_zpos(crtc, 404 new_crtc_state); 405 if (ret) 406 return ret; 407 } 408 } 409 return 0; 410 } 411 EXPORT_SYMBOL(drm_atomic_normalize_zpos); 412