1 /* 2 * Copyright (C) 2016 Samsung Electronics Co.Ltd 3 * Authors: 4 * Marek Szyprowski <m.szyprowski@samsung.com> 5 * 6 * DRM core plane blending related functions 7 * 8 * Permission to use, copy, modify, distribute, and sell this software and its 9 * documentation for any purpose is hereby granted without fee, provided that 10 * the above copyright notice appear in all copies and that both that copyright 11 * notice and this permission notice appear in supporting documentation, and 12 * that the name of the copyright holders not be used in advertising or 13 * publicity pertaining to distribution of the software without specific, 14 * written prior permission. The copyright holders make no representations 15 * about the suitability of this software for any purpose. It is provided "as 16 * is" without express or implied warranty. 17 * 18 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 20 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 21 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 22 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 23 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 24 * OF THIS SOFTWARE. 25 */ 26 #include <drm/drmP.h> 27 #include <drm/drm_atomic.h> 28 #include <drm/drm_blend.h> 29 #include <linux/export.h> 30 #include <linux/slab.h> 31 #include <linux/sort.h> 32 33 #include "drm_crtc_internal.h" 34 35 /** 36 * DOC: overview 37 * 38 * The basic plane composition model supported by standard plane properties only 39 * has a source rectangle (in logical pixels within the &drm_framebuffer), with 40 * sub-pixel accuracy, which is scaled up to a pixel-aligned destination 41 * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is 42 * defined by the horizontal and vertical visible pixels (stored in @hdisplay 43 * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These 44 * two rectangles are both stored in the &drm_plane_state. 45 * 46 * For the atomic ioctl the following standard (atomic) properties on the plane object 47 * encode the basic plane composition model: 48 * 49 * SRC_X: 50 * X coordinate offset for the source rectangle within the 51 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 52 * SRC_Y: 53 * Y coordinate offset for the source rectangle within the 54 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 55 * SRC_W: 56 * Width for the source rectangle within the &drm_framebuffer, in 16.16 57 * fixed point. SRC_X plus SRC_W must be within the width of the source 58 * framebuffer. Must be positive. 59 * SRC_H: 60 * Height for the source rectangle within the &drm_framebuffer, in 16.16 61 * fixed point. SRC_Y plus SRC_H must be within the height of the source 62 * framebuffer. Must be positive. 63 * CRTC_X: 64 * X coordinate offset for the destination rectangle. Can be negative. 65 * CRTC_Y: 66 * Y coordinate offset for the destination rectangle. Can be negative. 67 * CRTC_W: 68 * Width for the destination rectangle. CRTC_X plus CRTC_W can extend past 69 * the currently visible horizontal area of the &drm_crtc. 70 * CRTC_H: 71 * Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past 72 * the currently visible vertical area of the &drm_crtc. 73 * FB_ID: 74 * Mode object ID of the &drm_framebuffer this plane should scan out. 75 * CRTC_ID: 76 * Mode object ID of the &drm_crtc this plane should be connected to. 77 * 78 * Note that the source rectangle must fully lie within the bounds of the 79 * &drm_framebuffer. The destination rectangle can lie outside of the visible 80 * area of the current mode of the CRTC. It must be apprpriately clipped by the 81 * driver, which can be done by calling drm_plane_helper_check_update(). Drivers 82 * are also allowed to round the subpixel sampling positions appropriately, but 83 * only to the next full pixel. No pixel outside of the source rectangle may 84 * ever be sampled, which is important when applying more sophisticated 85 * filtering than just a bilinear one when scaling. The filtering mode when 86 * scaling is unspecified. 87 * 88 * On top of this basic transformation additional properties can be exposed by 89 * the driver: 90 * 91 * alpha: 92 * Alpha is setup with drm_plane_create_alpha_property(). It controls the 93 * plane-wide opacity, from transparent (0) to opaque (0xffff). It can be 94 * combined with pixel alpha. 95 * The pixel values in the framebuffers are expected to not be 96 * pre-multiplied by the global alpha associated to the plane. 97 * 98 * rotation: 99 * Rotation is set up with drm_plane_create_rotation_property(). It adds a 100 * rotation and reflection step between the source and destination rectangles. 101 * Without this property the rectangle is only scaled, but not rotated or 102 * reflected. 103 * 104 * zpos: 105 * Z position is set up with drm_plane_create_zpos_immutable_property() and 106 * drm_plane_create_zpos_property(). It controls the visibility of overlapping 107 * planes. Without this property the primary plane is always below the cursor 108 * plane, and ordering between all other planes is undefined. 109 * 110 * Note that all the property extensions described here apply either to the 111 * plane or the CRTC (e.g. for the background color, which currently is not 112 * exposed and assumed to be black). 113 */ 114 115 /** 116 * drm_plane_create_alpha_property - create a new alpha property 117 * @plane: drm plane 118 * 119 * This function creates a generic, mutable, alpha property and enables support 120 * for it in the DRM core. It is attached to @plane. 121 * 122 * The alpha property will be allowed to be within the bounds of 0 123 * (transparent) to 0xffff (opaque). 124 * 125 * Returns: 126 * 0 on success, negative error code on failure. 127 */ 128 int drm_plane_create_alpha_property(struct drm_plane *plane) 129 { 130 struct drm_property *prop; 131 132 prop = drm_property_create_range(plane->dev, 0, "alpha", 133 0, DRM_BLEND_ALPHA_OPAQUE); 134 if (!prop) 135 return -ENOMEM; 136 137 drm_object_attach_property(&plane->base, prop, DRM_BLEND_ALPHA_OPAQUE); 138 plane->alpha_property = prop; 139 140 if (plane->state) 141 plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE; 142 143 return 0; 144 } 145 EXPORT_SYMBOL(drm_plane_create_alpha_property); 146 147 /** 148 * drm_plane_create_rotation_property - create a new rotation property 149 * @plane: drm plane 150 * @rotation: initial value of the rotation property 151 * @supported_rotations: bitmask of supported rotations and reflections 152 * 153 * This creates a new property with the selected support for transformations. 154 * 155 * Since a rotation by 180° degress is the same as reflecting both along the x 156 * and the y axis the rotation property is somewhat redundant. Drivers can use 157 * drm_rotation_simplify() to normalize values of this property. 158 * 159 * The property exposed to userspace is a bitmask property (see 160 * drm_property_create_bitmask()) called "rotation" and has the following 161 * bitmask enumaration values: 162 * 163 * DRM_MODE_ROTATE_0: 164 * "rotate-0" 165 * DRM_MODE_ROTATE_90: 166 * "rotate-90" 167 * DRM_MODE_ROTATE_180: 168 * "rotate-180" 169 * DRM_MODE_ROTATE_270: 170 * "rotate-270" 171 * DRM_MODE_REFLECT_X: 172 * "reflect-x" 173 * DRM_MODE_REFLECT_Y: 174 * "reflect-y" 175 * 176 * Rotation is the specified amount in degrees in counter clockwise direction, 177 * the X and Y axis are within the source rectangle, i.e. the X/Y axis before 178 * rotation. After reflection, the rotation is applied to the image sampled from 179 * the source rectangle, before scaling it to fit the destination rectangle. 180 */ 181 int drm_plane_create_rotation_property(struct drm_plane *plane, 182 unsigned int rotation, 183 unsigned int supported_rotations) 184 { 185 static const struct drm_prop_enum_list props[] = { 186 { __builtin_ffs(DRM_MODE_ROTATE_0) - 1, "rotate-0" }, 187 { __builtin_ffs(DRM_MODE_ROTATE_90) - 1, "rotate-90" }, 188 { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" }, 189 { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" }, 190 { __builtin_ffs(DRM_MODE_REFLECT_X) - 1, "reflect-x" }, 191 { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1, "reflect-y" }, 192 }; 193 struct drm_property *prop; 194 195 WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0); 196 WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK)); 197 WARN_ON(rotation & ~supported_rotations); 198 199 prop = drm_property_create_bitmask(plane->dev, 0, "rotation", 200 props, ARRAY_SIZE(props), 201 supported_rotations); 202 if (!prop) 203 return -ENOMEM; 204 205 drm_object_attach_property(&plane->base, prop, rotation); 206 207 if (plane->state) 208 plane->state->rotation = rotation; 209 210 plane->rotation_property = prop; 211 212 return 0; 213 } 214 EXPORT_SYMBOL(drm_plane_create_rotation_property); 215 216 /** 217 * drm_rotation_simplify() - Try to simplify the rotation 218 * @rotation: Rotation to be simplified 219 * @supported_rotations: Supported rotations 220 * 221 * Attempt to simplify the rotation to a form that is supported. 222 * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X 223 * one could call this function like this: 224 * 225 * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 | 226 * DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 | 227 * DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y); 228 * 229 * to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of 230 * transforms the hardware supports, this function may not 231 * be able to produce a supported transform, so the caller should 232 * check the result afterwards. 233 */ 234 unsigned int drm_rotation_simplify(unsigned int rotation, 235 unsigned int supported_rotations) 236 { 237 if (rotation & ~supported_rotations) { 238 rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y; 239 rotation = (rotation & DRM_MODE_REFLECT_MASK) | 240 BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1) 241 % 4); 242 } 243 244 return rotation; 245 } 246 EXPORT_SYMBOL(drm_rotation_simplify); 247 248 /** 249 * drm_plane_create_zpos_property - create mutable zpos property 250 * @plane: drm plane 251 * @zpos: initial value of zpos property 252 * @min: minimal possible value of zpos property 253 * @max: maximal possible value of zpos property 254 * 255 * This function initializes generic mutable zpos property and enables support 256 * for it in drm core. Drivers can then attach this property to planes to enable 257 * support for configurable planes arrangement during blending operation. 258 * Drivers that attach a mutable zpos property to any plane should call the 259 * drm_atomic_normalize_zpos() helper during their implementation of 260 * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos 261 * values and store them in &drm_plane_state.normalized_zpos. Usually min 262 * should be set to 0 and max to maximal number of planes for given crtc - 1. 263 * 264 * If zpos of some planes cannot be changed (like fixed background or 265 * cursor/topmost planes), driver should adjust min/max values and assign those 266 * planes immutable zpos property with lower or higher values (for more 267 * information, see drm_plane_create_zpos_immutable_property() function). In such 268 * case driver should also assign proper initial zpos values for all planes in 269 * its plane_reset() callback, so the planes will be always sorted properly. 270 * 271 * See also drm_atomic_normalize_zpos(). 272 * 273 * The property exposed to userspace is called "zpos". 274 * 275 * Returns: 276 * Zero on success, negative errno on failure. 277 */ 278 int drm_plane_create_zpos_property(struct drm_plane *plane, 279 unsigned int zpos, 280 unsigned int min, unsigned int max) 281 { 282 struct drm_property *prop; 283 284 prop = drm_property_create_range(plane->dev, 0, "zpos", min, max); 285 if (!prop) 286 return -ENOMEM; 287 288 drm_object_attach_property(&plane->base, prop, zpos); 289 290 plane->zpos_property = prop; 291 292 if (plane->state) { 293 plane->state->zpos = zpos; 294 plane->state->normalized_zpos = zpos; 295 } 296 297 return 0; 298 } 299 EXPORT_SYMBOL(drm_plane_create_zpos_property); 300 301 /** 302 * drm_plane_create_zpos_immutable_property - create immuttable zpos property 303 * @plane: drm plane 304 * @zpos: value of zpos property 305 * 306 * This function initializes generic immutable zpos property and enables 307 * support for it in drm core. Using this property driver lets userspace 308 * to get the arrangement of the planes for blending operation and notifies 309 * it that the hardware (or driver) doesn't support changing of the planes' 310 * order. For mutable zpos see drm_plane_create_zpos_property(). 311 * 312 * The property exposed to userspace is called "zpos". 313 * 314 * Returns: 315 * Zero on success, negative errno on failure. 316 */ 317 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane, 318 unsigned int zpos) 319 { 320 struct drm_property *prop; 321 322 prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE, 323 "zpos", zpos, zpos); 324 if (!prop) 325 return -ENOMEM; 326 327 drm_object_attach_property(&plane->base, prop, zpos); 328 329 plane->zpos_property = prop; 330 331 if (plane->state) { 332 plane->state->zpos = zpos; 333 plane->state->normalized_zpos = zpos; 334 } 335 336 return 0; 337 } 338 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property); 339 340 static int drm_atomic_state_zpos_cmp(const void *a, const void *b) 341 { 342 const struct drm_plane_state *sa = *(struct drm_plane_state **)a; 343 const struct drm_plane_state *sb = *(struct drm_plane_state **)b; 344 345 if (sa->zpos != sb->zpos) 346 return sa->zpos - sb->zpos; 347 else 348 return sa->plane->base.id - sb->plane->base.id; 349 } 350 351 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc, 352 struct drm_crtc_state *crtc_state) 353 { 354 struct drm_atomic_state *state = crtc_state->state; 355 struct drm_device *dev = crtc->dev; 356 int total_planes = dev->mode_config.num_total_plane; 357 struct drm_plane_state **states; 358 struct drm_plane *plane; 359 int i, n = 0; 360 int ret = 0; 361 362 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n", 363 crtc->base.id, crtc->name); 364 365 states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL); 366 if (!states) 367 return -ENOMEM; 368 369 /* 370 * Normalization process might create new states for planes which 371 * normalized_zpos has to be recalculated. 372 */ 373 drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) { 374 struct drm_plane_state *plane_state = 375 drm_atomic_get_plane_state(state, plane); 376 if (IS_ERR(plane_state)) { 377 ret = PTR_ERR(plane_state); 378 goto done; 379 } 380 states[n++] = plane_state; 381 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n", 382 plane->base.id, plane->name, 383 plane_state->zpos); 384 } 385 386 sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL); 387 388 for (i = 0; i < n; i++) { 389 plane = states[i]->plane; 390 391 states[i]->normalized_zpos = i; 392 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n", 393 plane->base.id, plane->name, i); 394 } 395 crtc_state->zpos_changed = true; 396 397 done: 398 kfree(states); 399 return ret; 400 } 401 402 /** 403 * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs 404 * @dev: DRM device 405 * @state: atomic state of DRM device 406 * 407 * This function calculates normalized zpos value for all modified planes in 408 * the provided atomic state of DRM device. 409 * 410 * For every CRTC this function checks new states of all planes assigned to 411 * it and calculates normalized zpos value for these planes. Planes are compared 412 * first by their zpos values, then by plane id (if zpos is equal). The plane 413 * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos 414 * is then filled with unique values from 0 to number of active planes in crtc 415 * minus one. 416 * 417 * RETURNS 418 * Zero for success or -errno 419 */ 420 int drm_atomic_normalize_zpos(struct drm_device *dev, 421 struct drm_atomic_state *state) 422 { 423 struct drm_crtc *crtc; 424 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 425 struct drm_plane *plane; 426 struct drm_plane_state *old_plane_state, *new_plane_state; 427 int i, ret = 0; 428 429 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { 430 crtc = new_plane_state->crtc; 431 if (!crtc) 432 continue; 433 if (old_plane_state->zpos != new_plane_state->zpos) { 434 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 435 new_crtc_state->zpos_changed = true; 436 } 437 } 438 439 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 440 if (old_crtc_state->plane_mask != new_crtc_state->plane_mask || 441 new_crtc_state->zpos_changed) { 442 ret = drm_atomic_helper_crtc_normalize_zpos(crtc, 443 new_crtc_state); 444 if (ret) 445 return ret; 446 } 447 } 448 return 0; 449 } 450 EXPORT_SYMBOL(drm_atomic_normalize_zpos); 451