1 /* 2 * Copyright (C) 2016 Samsung Electronics Co.Ltd 3 * Authors: 4 * Marek Szyprowski <m.szyprowski@samsung.com> 5 * 6 * DRM core plane blending related functions 7 * 8 * Permission to use, copy, modify, distribute, and sell this software and its 9 * documentation for any purpose is hereby granted without fee, provided that 10 * the above copyright notice appear in all copies and that both that copyright 11 * notice and this permission notice appear in supporting documentation, and 12 * that the name of the copyright holders not be used in advertising or 13 * publicity pertaining to distribution of the software without specific, 14 * written prior permission. The copyright holders make no representations 15 * about the suitability of this software for any purpose. It is provided "as 16 * is" without express or implied warranty. 17 * 18 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 20 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 21 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 22 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 23 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 24 * OF THIS SOFTWARE. 25 */ 26 #include <drm/drmP.h> 27 #include <drm/drm_atomic.h> 28 #include <drm/drm_blend.h> 29 #include <linux/export.h> 30 #include <linux/slab.h> 31 #include <linux/sort.h> 32 33 #include "drm_crtc_internal.h" 34 35 /** 36 * DOC: overview 37 * 38 * The basic plane composition model supported by standard plane properties only 39 * has a source rectangle (in logical pixels within the &drm_framebuffer), with 40 * sub-pixel accuracy, which is scaled up to a pixel-aligned destination 41 * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is 42 * defined by the horizontal and vertical visible pixels (stored in @hdisplay 43 * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These 44 * two rectangles are both stored in the &drm_plane_state. 45 * 46 * For the atomic ioctl the following standard (atomic) properties on the plane object 47 * encode the basic plane composition model: 48 * 49 * SRC_X: 50 * X coordinate offset for the source rectangle within the 51 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 52 * SRC_Y: 53 * Y coordinate offset for the source rectangle within the 54 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 55 * SRC_W: 56 * Width for the source rectangle within the &drm_framebuffer, in 16.16 57 * fixed point. SRC_X plus SRC_W must be within the width of the source 58 * framebuffer. Must be positive. 59 * SRC_H: 60 * Height for the source rectangle within the &drm_framebuffer, in 16.16 61 * fixed point. SRC_Y plus SRC_H must be within the height of the source 62 * framebuffer. Must be positive. 63 * CRTC_X: 64 * X coordinate offset for the destination rectangle. Can be negative. 65 * CRTC_Y: 66 * Y coordinate offset for the destination rectangle. Can be negative. 67 * CRTC_W: 68 * Width for the destination rectangle. CRTC_X plus CRTC_W can extend past 69 * the currently visible horizontal area of the &drm_crtc. 70 * CRTC_H: 71 * Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past 72 * the currently visible vertical area of the &drm_crtc. 73 * FB_ID: 74 * Mode object ID of the &drm_framebuffer this plane should scan out. 75 * CRTC_ID: 76 * Mode object ID of the &drm_crtc this plane should be connected to. 77 * 78 * Note that the source rectangle must fully lie within the bounds of the 79 * &drm_framebuffer. The destination rectangle can lie outside of the visible 80 * area of the current mode of the CRTC. It must be apprpriately clipped by the 81 * driver, which can be done by calling drm_plane_helper_check_update(). Drivers 82 * are also allowed to round the subpixel sampling positions appropriately, but 83 * only to the next full pixel. No pixel outside of the source rectangle may 84 * ever be sampled, which is important when applying more sophisticated 85 * filtering than just a bilinear one when scaling. The filtering mode when 86 * scaling is unspecified. 87 * 88 * On top of this basic transformation additional properties can be exposed by 89 * the driver: 90 * 91 * - Rotation is set up with drm_plane_create_rotation_property(). It adds a 92 * rotation and reflection step between the source and destination rectangles. 93 * Without this property the rectangle is only scaled, but not rotated or 94 * reflected. 95 * 96 * - Z position is set up with drm_plane_create_zpos_immutable_property() and 97 * drm_plane_create_zpos_property(). It controls the visibility of overlapping 98 * planes. Without this property the primary plane is always below the cursor 99 * plane, and ordering between all other planes is undefined. 100 * 101 * Note that all the property extensions described here apply either to the 102 * plane or the CRTC (e.g. for the background color, which currently is not 103 * exposed and assumed to be black). 104 */ 105 106 /** 107 * drm_plane_create_rotation_property - create a new rotation property 108 * @plane: drm plane 109 * @rotation: initial value of the rotation property 110 * @supported_rotations: bitmask of supported rotations and reflections 111 * 112 * This creates a new property with the selected support for transformations. 113 * 114 * Since a rotation by 180° degress is the same as reflecting both along the x 115 * and the y axis the rotation property is somewhat redundant. Drivers can use 116 * drm_rotation_simplify() to normalize values of this property. 117 * 118 * The property exposed to userspace is a bitmask property (see 119 * drm_property_create_bitmask()) called "rotation" and has the following 120 * bitmask enumaration values: 121 * 122 * DRM_MODE_ROTATE_0: 123 * "rotate-0" 124 * DRM_MODE_ROTATE_90: 125 * "rotate-90" 126 * DRM_MODE_ROTATE_180: 127 * "rotate-180" 128 * DRM_MODE_ROTATE_270: 129 * "rotate-270" 130 * DRM_MODE_REFLECT_X: 131 * "reflect-x" 132 * DRM_MODE_REFLECT_Y: 133 * "reflect-y" 134 * 135 * Rotation is the specified amount in degrees in counter clockwise direction, 136 * the X and Y axis are within the source rectangle, i.e. the X/Y axis before 137 * rotation. After reflection, the rotation is applied to the image sampled from 138 * the source rectangle, before scaling it to fit the destination rectangle. 139 */ 140 int drm_plane_create_rotation_property(struct drm_plane *plane, 141 unsigned int rotation, 142 unsigned int supported_rotations) 143 { 144 static const struct drm_prop_enum_list props[] = { 145 { __builtin_ffs(DRM_MODE_ROTATE_0) - 1, "rotate-0" }, 146 { __builtin_ffs(DRM_MODE_ROTATE_90) - 1, "rotate-90" }, 147 { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" }, 148 { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" }, 149 { __builtin_ffs(DRM_MODE_REFLECT_X) - 1, "reflect-x" }, 150 { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1, "reflect-y" }, 151 }; 152 struct drm_property *prop; 153 154 WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0); 155 WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK)); 156 WARN_ON(rotation & ~supported_rotations); 157 158 prop = drm_property_create_bitmask(plane->dev, 0, "rotation", 159 props, ARRAY_SIZE(props), 160 supported_rotations); 161 if (!prop) 162 return -ENOMEM; 163 164 drm_object_attach_property(&plane->base, prop, rotation); 165 166 if (plane->state) 167 plane->state->rotation = rotation; 168 169 plane->rotation_property = prop; 170 171 return 0; 172 } 173 EXPORT_SYMBOL(drm_plane_create_rotation_property); 174 175 /** 176 * drm_rotation_simplify() - Try to simplify the rotation 177 * @rotation: Rotation to be simplified 178 * @supported_rotations: Supported rotations 179 * 180 * Attempt to simplify the rotation to a form that is supported. 181 * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X 182 * one could call this function like this: 183 * 184 * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 | 185 * DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 | 186 * DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y); 187 * 188 * to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of 189 * transforms the hardware supports, this function may not 190 * be able to produce a supported transform, so the caller should 191 * check the result afterwards. 192 */ 193 unsigned int drm_rotation_simplify(unsigned int rotation, 194 unsigned int supported_rotations) 195 { 196 if (rotation & ~supported_rotations) { 197 rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y; 198 rotation = (rotation & DRM_MODE_REFLECT_MASK) | 199 BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1) 200 % 4); 201 } 202 203 return rotation; 204 } 205 EXPORT_SYMBOL(drm_rotation_simplify); 206 207 /** 208 * drm_plane_create_zpos_property - create mutable zpos property 209 * @plane: drm plane 210 * @zpos: initial value of zpos property 211 * @min: minimal possible value of zpos property 212 * @max: maximal possible value of zpos property 213 * 214 * This function initializes generic mutable zpos property and enables support 215 * for it in drm core. Drivers can then attach this property to planes to enable 216 * support for configurable planes arrangement during blending operation. 217 * Once mutable zpos property has been enabled, the DRM core will automatically 218 * calculate &drm_plane_state.normalized_zpos values. Usually min should be set 219 * to 0 and max to maximal number of planes for given crtc - 1. 220 * 221 * If zpos of some planes cannot be changed (like fixed background or 222 * cursor/topmost planes), driver should adjust min/max values and assign those 223 * planes immutable zpos property with lower or higher values (for more 224 * information, see drm_plane_create_zpos_immutable_property() function). In such 225 * case driver should also assign proper initial zpos values for all planes in 226 * its plane_reset() callback, so the planes will be always sorted properly. 227 * 228 * See also drm_atomic_normalize_zpos(). 229 * 230 * The property exposed to userspace is called "zpos". 231 * 232 * Returns: 233 * Zero on success, negative errno on failure. 234 */ 235 int drm_plane_create_zpos_property(struct drm_plane *plane, 236 unsigned int zpos, 237 unsigned int min, unsigned int max) 238 { 239 struct drm_property *prop; 240 241 prop = drm_property_create_range(plane->dev, 0, "zpos", min, max); 242 if (!prop) 243 return -ENOMEM; 244 245 drm_object_attach_property(&plane->base, prop, zpos); 246 247 plane->zpos_property = prop; 248 249 if (plane->state) { 250 plane->state->zpos = zpos; 251 plane->state->normalized_zpos = zpos; 252 } 253 254 return 0; 255 } 256 EXPORT_SYMBOL(drm_plane_create_zpos_property); 257 258 /** 259 * drm_plane_create_zpos_immutable_property - create immuttable zpos property 260 * @plane: drm plane 261 * @zpos: value of zpos property 262 * 263 * This function initializes generic immutable zpos property and enables 264 * support for it in drm core. Using this property driver lets userspace 265 * to get the arrangement of the planes for blending operation and notifies 266 * it that the hardware (or driver) doesn't support changing of the planes' 267 * order. For mutable zpos see drm_plane_create_zpos_property(). 268 * 269 * The property exposed to userspace is called "zpos". 270 * 271 * Returns: 272 * Zero on success, negative errno on failure. 273 */ 274 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane, 275 unsigned int zpos) 276 { 277 struct drm_property *prop; 278 279 prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE, 280 "zpos", zpos, zpos); 281 if (!prop) 282 return -ENOMEM; 283 284 drm_object_attach_property(&plane->base, prop, zpos); 285 286 plane->zpos_property = prop; 287 288 if (plane->state) { 289 plane->state->zpos = zpos; 290 plane->state->normalized_zpos = zpos; 291 } 292 293 return 0; 294 } 295 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property); 296 297 static int drm_atomic_state_zpos_cmp(const void *a, const void *b) 298 { 299 const struct drm_plane_state *sa = *(struct drm_plane_state **)a; 300 const struct drm_plane_state *sb = *(struct drm_plane_state **)b; 301 302 if (sa->zpos != sb->zpos) 303 return sa->zpos - sb->zpos; 304 else 305 return sa->plane->base.id - sb->plane->base.id; 306 } 307 308 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc, 309 struct drm_crtc_state *crtc_state) 310 { 311 struct drm_atomic_state *state = crtc_state->state; 312 struct drm_device *dev = crtc->dev; 313 int total_planes = dev->mode_config.num_total_plane; 314 struct drm_plane_state **states; 315 struct drm_plane *plane; 316 int i, n = 0; 317 int ret = 0; 318 319 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n", 320 crtc->base.id, crtc->name); 321 322 states = kmalloc_array(total_planes, sizeof(*states), GFP_TEMPORARY); 323 if (!states) 324 return -ENOMEM; 325 326 /* 327 * Normalization process might create new states for planes which 328 * normalized_zpos has to be recalculated. 329 */ 330 drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) { 331 struct drm_plane_state *plane_state = 332 drm_atomic_get_plane_state(state, plane); 333 if (IS_ERR(plane_state)) { 334 ret = PTR_ERR(plane_state); 335 goto done; 336 } 337 states[n++] = plane_state; 338 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n", 339 plane->base.id, plane->name, 340 plane_state->zpos); 341 } 342 343 sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL); 344 345 for (i = 0; i < n; i++) { 346 plane = states[i]->plane; 347 348 states[i]->normalized_zpos = i; 349 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n", 350 plane->base.id, plane->name, i); 351 } 352 crtc_state->zpos_changed = true; 353 354 done: 355 kfree(states); 356 return ret; 357 } 358 359 /** 360 * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs 361 * @dev: DRM device 362 * @state: atomic state of DRM device 363 * 364 * This function calculates normalized zpos value for all modified planes in 365 * the provided atomic state of DRM device. 366 * 367 * For every CRTC this function checks new states of all planes assigned to 368 * it and calculates normalized zpos value for these planes. Planes are compared 369 * first by their zpos values, then by plane id (if zpos is equal). The plane 370 * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos 371 * is then filled with unique values from 0 to number of active planes in crtc 372 * minus one. 373 * 374 * RETURNS 375 * Zero for success or -errno 376 */ 377 int drm_atomic_normalize_zpos(struct drm_device *dev, 378 struct drm_atomic_state *state) 379 { 380 struct drm_crtc *crtc; 381 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 382 struct drm_plane *plane; 383 struct drm_plane_state *old_plane_state, *new_plane_state; 384 int i, ret = 0; 385 386 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { 387 crtc = new_plane_state->crtc; 388 if (!crtc) 389 continue; 390 if (old_plane_state->zpos != new_plane_state->zpos) { 391 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 392 new_crtc_state->zpos_changed = true; 393 } 394 } 395 396 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 397 if (old_crtc_state->plane_mask != new_crtc_state->plane_mask || 398 new_crtc_state->zpos_changed) { 399 ret = drm_atomic_helper_crtc_normalize_zpos(crtc, 400 new_crtc_state); 401 if (ret) 402 return ret; 403 } 404 } 405 return 0; 406 } 407 EXPORT_SYMBOL(drm_atomic_normalize_zpos); 408