1 /* 2 * Copyright © 2014 Red Hat 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/bitfield.h> 24 #include <linux/delay.h> 25 #include <linux/errno.h> 26 #include <linux/i2c.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/random.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/iopoll.h> 33 34 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 35 #include <linux/stacktrace.h> 36 #include <linux/sort.h> 37 #include <linux/timekeeping.h> 38 #include <linux/math64.h> 39 #endif 40 41 #include <drm/display/drm_dp_mst_helper.h> 42 #include <drm/drm_atomic.h> 43 #include <drm/drm_atomic_helper.h> 44 #include <drm/drm_drv.h> 45 #include <drm/drm_print.h> 46 #include <drm/drm_probe_helper.h> 47 48 #include "drm_dp_helper_internal.h" 49 #include "drm_dp_mst_topology_internal.h" 50 51 /** 52 * DOC: dp mst helper 53 * 54 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport 55 * protocol. The helpers contain a topology manager and bandwidth manager. 56 * The helpers encapsulate the sending and received of sideband msgs. 57 */ 58 struct drm_dp_pending_up_req { 59 struct drm_dp_sideband_msg_hdr hdr; 60 struct drm_dp_sideband_msg_req_body msg; 61 struct list_head next; 62 }; 63 64 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 65 char *buf); 66 67 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port); 68 69 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 70 int id, 71 struct drm_dp_payload *payload); 72 73 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 74 struct drm_dp_mst_port *port, 75 int offset, int size, u8 *bytes); 76 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 77 struct drm_dp_mst_port *port, 78 int offset, int size, u8 *bytes); 79 80 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 81 struct drm_dp_mst_branch *mstb); 82 83 static void 84 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 85 struct drm_dp_mst_branch *mstb); 86 87 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 88 struct drm_dp_mst_branch *mstb, 89 struct drm_dp_mst_port *port); 90 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 91 u8 *guid); 92 93 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port); 94 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port); 95 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr); 96 97 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 98 struct drm_dp_mst_branch *branch); 99 100 #define DBG_PREFIX "[dp_mst]" 101 102 #define DP_STR(x) [DP_ ## x] = #x 103 104 static const char *drm_dp_mst_req_type_str(u8 req_type) 105 { 106 static const char * const req_type_str[] = { 107 DP_STR(GET_MSG_TRANSACTION_VERSION), 108 DP_STR(LINK_ADDRESS), 109 DP_STR(CONNECTION_STATUS_NOTIFY), 110 DP_STR(ENUM_PATH_RESOURCES), 111 DP_STR(ALLOCATE_PAYLOAD), 112 DP_STR(QUERY_PAYLOAD), 113 DP_STR(RESOURCE_STATUS_NOTIFY), 114 DP_STR(CLEAR_PAYLOAD_ID_TABLE), 115 DP_STR(REMOTE_DPCD_READ), 116 DP_STR(REMOTE_DPCD_WRITE), 117 DP_STR(REMOTE_I2C_READ), 118 DP_STR(REMOTE_I2C_WRITE), 119 DP_STR(POWER_UP_PHY), 120 DP_STR(POWER_DOWN_PHY), 121 DP_STR(SINK_EVENT_NOTIFY), 122 DP_STR(QUERY_STREAM_ENC_STATUS), 123 }; 124 125 if (req_type >= ARRAY_SIZE(req_type_str) || 126 !req_type_str[req_type]) 127 return "unknown"; 128 129 return req_type_str[req_type]; 130 } 131 132 #undef DP_STR 133 #define DP_STR(x) [DP_NAK_ ## x] = #x 134 135 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason) 136 { 137 static const char * const nak_reason_str[] = { 138 DP_STR(WRITE_FAILURE), 139 DP_STR(INVALID_READ), 140 DP_STR(CRC_FAILURE), 141 DP_STR(BAD_PARAM), 142 DP_STR(DEFER), 143 DP_STR(LINK_FAILURE), 144 DP_STR(NO_RESOURCES), 145 DP_STR(DPCD_FAIL), 146 DP_STR(I2C_NAK), 147 DP_STR(ALLOCATE_FAIL), 148 }; 149 150 if (nak_reason >= ARRAY_SIZE(nak_reason_str) || 151 !nak_reason_str[nak_reason]) 152 return "unknown"; 153 154 return nak_reason_str[nak_reason]; 155 } 156 157 #undef DP_STR 158 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x 159 160 static const char *drm_dp_mst_sideband_tx_state_str(int state) 161 { 162 static const char * const sideband_reason_str[] = { 163 DP_STR(QUEUED), 164 DP_STR(START_SEND), 165 DP_STR(SENT), 166 DP_STR(RX), 167 DP_STR(TIMEOUT), 168 }; 169 170 if (state >= ARRAY_SIZE(sideband_reason_str) || 171 !sideband_reason_str[state]) 172 return "unknown"; 173 174 return sideband_reason_str[state]; 175 } 176 177 static int 178 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len) 179 { 180 int i; 181 u8 unpacked_rad[16]; 182 183 for (i = 0; i < lct; i++) { 184 if (i % 2) 185 unpacked_rad[i] = rad[i / 2] >> 4; 186 else 187 unpacked_rad[i] = rad[i / 2] & BIT_MASK(4); 188 } 189 190 /* TODO: Eventually add something to printk so we can format the rad 191 * like this: 1.2.3 192 */ 193 return snprintf(out, len, "%*phC", lct, unpacked_rad); 194 } 195 196 /* sideband msg handling */ 197 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles) 198 { 199 u8 bitmask = 0x80; 200 u8 bitshift = 7; 201 u8 array_index = 0; 202 int number_of_bits = num_nibbles * 4; 203 u8 remainder = 0; 204 205 while (number_of_bits != 0) { 206 number_of_bits--; 207 remainder <<= 1; 208 remainder |= (data[array_index] & bitmask) >> bitshift; 209 bitmask >>= 1; 210 bitshift--; 211 if (bitmask == 0) { 212 bitmask = 0x80; 213 bitshift = 7; 214 array_index++; 215 } 216 if ((remainder & 0x10) == 0x10) 217 remainder ^= 0x13; 218 } 219 220 number_of_bits = 4; 221 while (number_of_bits != 0) { 222 number_of_bits--; 223 remainder <<= 1; 224 if ((remainder & 0x10) != 0) 225 remainder ^= 0x13; 226 } 227 228 return remainder; 229 } 230 231 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes) 232 { 233 u8 bitmask = 0x80; 234 u8 bitshift = 7; 235 u8 array_index = 0; 236 int number_of_bits = number_of_bytes * 8; 237 u16 remainder = 0; 238 239 while (number_of_bits != 0) { 240 number_of_bits--; 241 remainder <<= 1; 242 remainder |= (data[array_index] & bitmask) >> bitshift; 243 bitmask >>= 1; 244 bitshift--; 245 if (bitmask == 0) { 246 bitmask = 0x80; 247 bitshift = 7; 248 array_index++; 249 } 250 if ((remainder & 0x100) == 0x100) 251 remainder ^= 0xd5; 252 } 253 254 number_of_bits = 8; 255 while (number_of_bits != 0) { 256 number_of_bits--; 257 remainder <<= 1; 258 if ((remainder & 0x100) != 0) 259 remainder ^= 0xd5; 260 } 261 262 return remainder & 0xff; 263 } 264 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr) 265 { 266 u8 size = 3; 267 268 size += (hdr->lct / 2); 269 return size; 270 } 271 272 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr, 273 u8 *buf, int *len) 274 { 275 int idx = 0; 276 int i; 277 u8 crc4; 278 279 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf); 280 for (i = 0; i < (hdr->lct / 2); i++) 281 buf[idx++] = hdr->rad[i]; 282 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) | 283 (hdr->msg_len & 0x3f); 284 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4); 285 286 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1); 287 buf[idx - 1] |= (crc4 & 0xf); 288 289 *len = idx; 290 } 291 292 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr, 293 struct drm_dp_sideband_msg_hdr *hdr, 294 u8 *buf, int buflen, u8 *hdrlen) 295 { 296 u8 crc4; 297 u8 len; 298 int i; 299 u8 idx; 300 301 if (buf[0] == 0) 302 return false; 303 len = 3; 304 len += ((buf[0] & 0xf0) >> 4) / 2; 305 if (len > buflen) 306 return false; 307 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1); 308 309 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) { 310 drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]); 311 return false; 312 } 313 314 hdr->lct = (buf[0] & 0xf0) >> 4; 315 hdr->lcr = (buf[0] & 0xf); 316 idx = 1; 317 for (i = 0; i < (hdr->lct / 2); i++) 318 hdr->rad[i] = buf[idx++]; 319 hdr->broadcast = (buf[idx] >> 7) & 0x1; 320 hdr->path_msg = (buf[idx] >> 6) & 0x1; 321 hdr->msg_len = buf[idx] & 0x3f; 322 idx++; 323 hdr->somt = (buf[idx] >> 7) & 0x1; 324 hdr->eomt = (buf[idx] >> 6) & 0x1; 325 hdr->seqno = (buf[idx] >> 4) & 0x1; 326 idx++; 327 *hdrlen = idx; 328 return true; 329 } 330 331 void 332 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req, 333 struct drm_dp_sideband_msg_tx *raw) 334 { 335 int idx = 0; 336 int i; 337 u8 *buf = raw->msg; 338 339 buf[idx++] = req->req_type & 0x7f; 340 341 switch (req->req_type) { 342 case DP_ENUM_PATH_RESOURCES: 343 case DP_POWER_DOWN_PHY: 344 case DP_POWER_UP_PHY: 345 buf[idx] = (req->u.port_num.port_number & 0xf) << 4; 346 idx++; 347 break; 348 case DP_ALLOCATE_PAYLOAD: 349 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 | 350 (req->u.allocate_payload.number_sdp_streams & 0xf); 351 idx++; 352 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f); 353 idx++; 354 buf[idx] = (req->u.allocate_payload.pbn >> 8); 355 idx++; 356 buf[idx] = (req->u.allocate_payload.pbn & 0xff); 357 idx++; 358 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) { 359 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) | 360 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf); 361 idx++; 362 } 363 if (req->u.allocate_payload.number_sdp_streams & 1) { 364 i = req->u.allocate_payload.number_sdp_streams - 1; 365 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4; 366 idx++; 367 } 368 break; 369 case DP_QUERY_PAYLOAD: 370 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4; 371 idx++; 372 buf[idx] = (req->u.query_payload.vcpi & 0x7f); 373 idx++; 374 break; 375 case DP_REMOTE_DPCD_READ: 376 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4; 377 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf; 378 idx++; 379 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8; 380 idx++; 381 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff); 382 idx++; 383 buf[idx] = (req->u.dpcd_read.num_bytes); 384 idx++; 385 break; 386 387 case DP_REMOTE_DPCD_WRITE: 388 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4; 389 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf; 390 idx++; 391 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8; 392 idx++; 393 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff); 394 idx++; 395 buf[idx] = (req->u.dpcd_write.num_bytes); 396 idx++; 397 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes); 398 idx += req->u.dpcd_write.num_bytes; 399 break; 400 case DP_REMOTE_I2C_READ: 401 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4; 402 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3); 403 idx++; 404 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) { 405 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f; 406 idx++; 407 buf[idx] = req->u.i2c_read.transactions[i].num_bytes; 408 idx++; 409 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes); 410 idx += req->u.i2c_read.transactions[i].num_bytes; 411 412 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4; 413 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf); 414 idx++; 415 } 416 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f; 417 idx++; 418 buf[idx] = (req->u.i2c_read.num_bytes_read); 419 idx++; 420 break; 421 422 case DP_REMOTE_I2C_WRITE: 423 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4; 424 idx++; 425 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f; 426 idx++; 427 buf[idx] = (req->u.i2c_write.num_bytes); 428 idx++; 429 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes); 430 idx += req->u.i2c_write.num_bytes; 431 break; 432 case DP_QUERY_STREAM_ENC_STATUS: { 433 const struct drm_dp_query_stream_enc_status *msg; 434 435 msg = &req->u.enc_status; 436 buf[idx] = msg->stream_id; 437 idx++; 438 memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id)); 439 idx += sizeof(msg->client_id); 440 buf[idx] = 0; 441 buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event); 442 buf[idx] |= msg->valid_stream_event ? BIT(2) : 0; 443 buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior); 444 buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0; 445 idx++; 446 } 447 break; 448 } 449 raw->cur_len = idx; 450 } 451 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req); 452 453 /* Decode a sideband request we've encoded, mainly used for debugging */ 454 int 455 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw, 456 struct drm_dp_sideband_msg_req_body *req) 457 { 458 const u8 *buf = raw->msg; 459 int i, idx = 0; 460 461 req->req_type = buf[idx++] & 0x7f; 462 switch (req->req_type) { 463 case DP_ENUM_PATH_RESOURCES: 464 case DP_POWER_DOWN_PHY: 465 case DP_POWER_UP_PHY: 466 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf; 467 break; 468 case DP_ALLOCATE_PAYLOAD: 469 { 470 struct drm_dp_allocate_payload *a = 471 &req->u.allocate_payload; 472 473 a->number_sdp_streams = buf[idx] & 0xf; 474 a->port_number = (buf[idx] >> 4) & 0xf; 475 476 WARN_ON(buf[++idx] & 0x80); 477 a->vcpi = buf[idx] & 0x7f; 478 479 a->pbn = buf[++idx] << 8; 480 a->pbn |= buf[++idx]; 481 482 idx++; 483 for (i = 0; i < a->number_sdp_streams; i++) { 484 a->sdp_stream_sink[i] = 485 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf; 486 } 487 } 488 break; 489 case DP_QUERY_PAYLOAD: 490 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf; 491 WARN_ON(buf[++idx] & 0x80); 492 req->u.query_payload.vcpi = buf[idx] & 0x7f; 493 break; 494 case DP_REMOTE_DPCD_READ: 495 { 496 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read; 497 498 r->port_number = (buf[idx] >> 4) & 0xf; 499 500 r->dpcd_address = (buf[idx] << 16) & 0xf0000; 501 r->dpcd_address |= (buf[++idx] << 8) & 0xff00; 502 r->dpcd_address |= buf[++idx] & 0xff; 503 504 r->num_bytes = buf[++idx]; 505 } 506 break; 507 case DP_REMOTE_DPCD_WRITE: 508 { 509 struct drm_dp_remote_dpcd_write *w = 510 &req->u.dpcd_write; 511 512 w->port_number = (buf[idx] >> 4) & 0xf; 513 514 w->dpcd_address = (buf[idx] << 16) & 0xf0000; 515 w->dpcd_address |= (buf[++idx] << 8) & 0xff00; 516 w->dpcd_address |= buf[++idx] & 0xff; 517 518 w->num_bytes = buf[++idx]; 519 520 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 521 GFP_KERNEL); 522 if (!w->bytes) 523 return -ENOMEM; 524 } 525 break; 526 case DP_REMOTE_I2C_READ: 527 { 528 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read; 529 struct drm_dp_remote_i2c_read_tx *tx; 530 bool failed = false; 531 532 r->num_transactions = buf[idx] & 0x3; 533 r->port_number = (buf[idx] >> 4) & 0xf; 534 for (i = 0; i < r->num_transactions; i++) { 535 tx = &r->transactions[i]; 536 537 tx->i2c_dev_id = buf[++idx] & 0x7f; 538 tx->num_bytes = buf[++idx]; 539 tx->bytes = kmemdup(&buf[++idx], 540 tx->num_bytes, 541 GFP_KERNEL); 542 if (!tx->bytes) { 543 failed = true; 544 break; 545 } 546 idx += tx->num_bytes; 547 tx->no_stop_bit = (buf[idx] >> 5) & 0x1; 548 tx->i2c_transaction_delay = buf[idx] & 0xf; 549 } 550 551 if (failed) { 552 for (i = 0; i < r->num_transactions; i++) { 553 tx = &r->transactions[i]; 554 kfree(tx->bytes); 555 } 556 return -ENOMEM; 557 } 558 559 r->read_i2c_device_id = buf[++idx] & 0x7f; 560 r->num_bytes_read = buf[++idx]; 561 } 562 break; 563 case DP_REMOTE_I2C_WRITE: 564 { 565 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write; 566 567 w->port_number = (buf[idx] >> 4) & 0xf; 568 w->write_i2c_device_id = buf[++idx] & 0x7f; 569 w->num_bytes = buf[++idx]; 570 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 571 GFP_KERNEL); 572 if (!w->bytes) 573 return -ENOMEM; 574 } 575 break; 576 case DP_QUERY_STREAM_ENC_STATUS: 577 req->u.enc_status.stream_id = buf[idx++]; 578 for (i = 0; i < sizeof(req->u.enc_status.client_id); i++) 579 req->u.enc_status.client_id[i] = buf[idx++]; 580 581 req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0), 582 buf[idx]); 583 req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2), 584 buf[idx]); 585 req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3), 586 buf[idx]); 587 req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5), 588 buf[idx]); 589 break; 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req); 595 596 void 597 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req, 598 int indent, struct drm_printer *printer) 599 { 600 int i; 601 602 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__) 603 if (req->req_type == DP_LINK_ADDRESS) { 604 /* No contents to print */ 605 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type)); 606 return; 607 } 608 609 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type)); 610 indent++; 611 612 switch (req->req_type) { 613 case DP_ENUM_PATH_RESOURCES: 614 case DP_POWER_DOWN_PHY: 615 case DP_POWER_UP_PHY: 616 P("port=%d\n", req->u.port_num.port_number); 617 break; 618 case DP_ALLOCATE_PAYLOAD: 619 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n", 620 req->u.allocate_payload.port_number, 621 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn, 622 req->u.allocate_payload.number_sdp_streams, 623 req->u.allocate_payload.number_sdp_streams, 624 req->u.allocate_payload.sdp_stream_sink); 625 break; 626 case DP_QUERY_PAYLOAD: 627 P("port=%d vcpi=%d\n", 628 req->u.query_payload.port_number, 629 req->u.query_payload.vcpi); 630 break; 631 case DP_REMOTE_DPCD_READ: 632 P("port=%d dpcd_addr=%05x len=%d\n", 633 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address, 634 req->u.dpcd_read.num_bytes); 635 break; 636 case DP_REMOTE_DPCD_WRITE: 637 P("port=%d addr=%05x len=%d: %*ph\n", 638 req->u.dpcd_write.port_number, 639 req->u.dpcd_write.dpcd_address, 640 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes, 641 req->u.dpcd_write.bytes); 642 break; 643 case DP_REMOTE_I2C_READ: 644 P("port=%d num_tx=%d id=%d size=%d:\n", 645 req->u.i2c_read.port_number, 646 req->u.i2c_read.num_transactions, 647 req->u.i2c_read.read_i2c_device_id, 648 req->u.i2c_read.num_bytes_read); 649 650 indent++; 651 for (i = 0; i < req->u.i2c_read.num_transactions; i++) { 652 const struct drm_dp_remote_i2c_read_tx *rtx = 653 &req->u.i2c_read.transactions[i]; 654 655 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n", 656 i, rtx->i2c_dev_id, rtx->num_bytes, 657 rtx->no_stop_bit, rtx->i2c_transaction_delay, 658 rtx->num_bytes, rtx->bytes); 659 } 660 break; 661 case DP_REMOTE_I2C_WRITE: 662 P("port=%d id=%d size=%d: %*ph\n", 663 req->u.i2c_write.port_number, 664 req->u.i2c_write.write_i2c_device_id, 665 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes, 666 req->u.i2c_write.bytes); 667 break; 668 case DP_QUERY_STREAM_ENC_STATUS: 669 P("stream_id=%u client_id=%*ph stream_event=%x " 670 "valid_event=%d stream_behavior=%x valid_behavior=%d", 671 req->u.enc_status.stream_id, 672 (int)ARRAY_SIZE(req->u.enc_status.client_id), 673 req->u.enc_status.client_id, req->u.enc_status.stream_event, 674 req->u.enc_status.valid_stream_event, 675 req->u.enc_status.stream_behavior, 676 req->u.enc_status.valid_stream_behavior); 677 break; 678 default: 679 P("???\n"); 680 break; 681 } 682 #undef P 683 } 684 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body); 685 686 static inline void 687 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p, 688 const struct drm_dp_sideband_msg_tx *txmsg) 689 { 690 struct drm_dp_sideband_msg_req_body req; 691 char buf[64]; 692 int ret; 693 int i; 694 695 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf, 696 sizeof(buf)); 697 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n", 698 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno, 699 drm_dp_mst_sideband_tx_state_str(txmsg->state), 700 txmsg->path_msg, buf); 701 702 ret = drm_dp_decode_sideband_req(txmsg, &req); 703 if (ret) { 704 drm_printf(p, "<failed to decode sideband req: %d>\n", ret); 705 return; 706 } 707 drm_dp_dump_sideband_msg_req_body(&req, 1, p); 708 709 switch (req.req_type) { 710 case DP_REMOTE_DPCD_WRITE: 711 kfree(req.u.dpcd_write.bytes); 712 break; 713 case DP_REMOTE_I2C_READ: 714 for (i = 0; i < req.u.i2c_read.num_transactions; i++) 715 kfree(req.u.i2c_read.transactions[i].bytes); 716 break; 717 case DP_REMOTE_I2C_WRITE: 718 kfree(req.u.i2c_write.bytes); 719 break; 720 } 721 } 722 723 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len) 724 { 725 u8 crc4; 726 727 crc4 = drm_dp_msg_data_crc4(msg, len); 728 msg[len] = crc4; 729 } 730 731 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep, 732 struct drm_dp_sideband_msg_tx *raw) 733 { 734 int idx = 0; 735 u8 *buf = raw->msg; 736 737 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f); 738 739 raw->cur_len = idx; 740 } 741 742 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg, 743 struct drm_dp_sideband_msg_hdr *hdr, 744 u8 hdrlen) 745 { 746 /* 747 * ignore out-of-order messages or messages that are part of a 748 * failed transaction 749 */ 750 if (!hdr->somt && !msg->have_somt) 751 return false; 752 753 /* get length contained in this portion */ 754 msg->curchunk_idx = 0; 755 msg->curchunk_len = hdr->msg_len; 756 msg->curchunk_hdrlen = hdrlen; 757 758 /* we have already gotten an somt - don't bother parsing */ 759 if (hdr->somt && msg->have_somt) 760 return false; 761 762 if (hdr->somt) { 763 memcpy(&msg->initial_hdr, hdr, 764 sizeof(struct drm_dp_sideband_msg_hdr)); 765 msg->have_somt = true; 766 } 767 if (hdr->eomt) 768 msg->have_eomt = true; 769 770 return true; 771 } 772 773 /* this adds a chunk of msg to the builder to get the final msg */ 774 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg, 775 u8 *replybuf, u8 replybuflen) 776 { 777 u8 crc4; 778 779 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen); 780 msg->curchunk_idx += replybuflen; 781 782 if (msg->curchunk_idx >= msg->curchunk_len) { 783 /* do CRC */ 784 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1); 785 if (crc4 != msg->chunk[msg->curchunk_len - 1]) 786 print_hex_dump(KERN_DEBUG, "wrong crc", 787 DUMP_PREFIX_NONE, 16, 1, 788 msg->chunk, msg->curchunk_len, false); 789 /* copy chunk into bigger msg */ 790 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1); 791 msg->curlen += msg->curchunk_len - 1; 792 } 793 return true; 794 } 795 796 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr, 797 struct drm_dp_sideband_msg_rx *raw, 798 struct drm_dp_sideband_msg_reply_body *repmsg) 799 { 800 int idx = 1; 801 int i; 802 803 memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16); 804 idx += 16; 805 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf; 806 idx++; 807 if (idx > raw->curlen) 808 goto fail_len; 809 for (i = 0; i < repmsg->u.link_addr.nports; i++) { 810 if (raw->msg[idx] & 0x80) 811 repmsg->u.link_addr.ports[i].input_port = 1; 812 813 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7; 814 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf); 815 816 idx++; 817 if (idx > raw->curlen) 818 goto fail_len; 819 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1; 820 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1; 821 if (repmsg->u.link_addr.ports[i].input_port == 0) 822 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 823 idx++; 824 if (idx > raw->curlen) 825 goto fail_len; 826 if (repmsg->u.link_addr.ports[i].input_port == 0) { 827 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]); 828 idx++; 829 if (idx > raw->curlen) 830 goto fail_len; 831 memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16); 832 idx += 16; 833 if (idx > raw->curlen) 834 goto fail_len; 835 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf; 836 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf); 837 idx++; 838 839 } 840 if (idx > raw->curlen) 841 goto fail_len; 842 } 843 844 return true; 845 fail_len: 846 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 847 return false; 848 } 849 850 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw, 851 struct drm_dp_sideband_msg_reply_body *repmsg) 852 { 853 int idx = 1; 854 855 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf; 856 idx++; 857 if (idx > raw->curlen) 858 goto fail_len; 859 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx]; 860 idx++; 861 if (idx > raw->curlen) 862 goto fail_len; 863 864 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes); 865 return true; 866 fail_len: 867 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 868 return false; 869 } 870 871 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw, 872 struct drm_dp_sideband_msg_reply_body *repmsg) 873 { 874 int idx = 1; 875 876 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf; 877 idx++; 878 if (idx > raw->curlen) 879 goto fail_len; 880 return true; 881 fail_len: 882 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen); 883 return false; 884 } 885 886 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw, 887 struct drm_dp_sideband_msg_reply_body *repmsg) 888 { 889 int idx = 1; 890 891 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf); 892 idx++; 893 if (idx > raw->curlen) 894 goto fail_len; 895 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx]; 896 idx++; 897 /* TODO check */ 898 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes); 899 return true; 900 fail_len: 901 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen); 902 return false; 903 } 904 905 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw, 906 struct drm_dp_sideband_msg_reply_body *repmsg) 907 { 908 int idx = 1; 909 910 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf; 911 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1; 912 idx++; 913 if (idx > raw->curlen) 914 goto fail_len; 915 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 916 idx += 2; 917 if (idx > raw->curlen) 918 goto fail_len; 919 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 920 idx += 2; 921 if (idx > raw->curlen) 922 goto fail_len; 923 return true; 924 fail_len: 925 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen); 926 return false; 927 } 928 929 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw, 930 struct drm_dp_sideband_msg_reply_body *repmsg) 931 { 932 int idx = 1; 933 934 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 935 idx++; 936 if (idx > raw->curlen) 937 goto fail_len; 938 repmsg->u.allocate_payload.vcpi = raw->msg[idx]; 939 idx++; 940 if (idx > raw->curlen) 941 goto fail_len; 942 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 943 idx += 2; 944 if (idx > raw->curlen) 945 goto fail_len; 946 return true; 947 fail_len: 948 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen); 949 return false; 950 } 951 952 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw, 953 struct drm_dp_sideband_msg_reply_body *repmsg) 954 { 955 int idx = 1; 956 957 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 958 idx++; 959 if (idx > raw->curlen) 960 goto fail_len; 961 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 962 idx += 2; 963 if (idx > raw->curlen) 964 goto fail_len; 965 return true; 966 fail_len: 967 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen); 968 return false; 969 } 970 971 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw, 972 struct drm_dp_sideband_msg_reply_body *repmsg) 973 { 974 int idx = 1; 975 976 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf; 977 idx++; 978 if (idx > raw->curlen) { 979 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n", 980 idx, raw->curlen); 981 return false; 982 } 983 return true; 984 } 985 986 static bool 987 drm_dp_sideband_parse_query_stream_enc_status( 988 struct drm_dp_sideband_msg_rx *raw, 989 struct drm_dp_sideband_msg_reply_body *repmsg) 990 { 991 struct drm_dp_query_stream_enc_status_ack_reply *reply; 992 993 reply = &repmsg->u.enc_status; 994 995 reply->stream_id = raw->msg[3]; 996 997 reply->reply_signed = raw->msg[2] & BIT(0); 998 999 /* 1000 * NOTE: It's my impression from reading the spec that the below parsing 1001 * is correct. However I noticed while testing with an HDCP 1.4 display 1002 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I 1003 * would expect both bits to be set. So keep the parsing following the 1004 * spec, but beware reality might not match the spec (at least for some 1005 * configurations). 1006 */ 1007 reply->hdcp_1x_device_present = raw->msg[2] & BIT(4); 1008 reply->hdcp_2x_device_present = raw->msg[2] & BIT(3); 1009 1010 reply->query_capable_device_present = raw->msg[2] & BIT(5); 1011 reply->legacy_device_present = raw->msg[2] & BIT(6); 1012 reply->unauthorizable_device_present = raw->msg[2] & BIT(7); 1013 1014 reply->auth_completed = !!(raw->msg[1] & BIT(3)); 1015 reply->encryption_enabled = !!(raw->msg[1] & BIT(4)); 1016 reply->repeater_present = !!(raw->msg[1] & BIT(5)); 1017 reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6; 1018 1019 return true; 1020 } 1021 1022 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr, 1023 struct drm_dp_sideband_msg_rx *raw, 1024 struct drm_dp_sideband_msg_reply_body *msg) 1025 { 1026 memset(msg, 0, sizeof(*msg)); 1027 msg->reply_type = (raw->msg[0] & 0x80) >> 7; 1028 msg->req_type = (raw->msg[0] & 0x7f); 1029 1030 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) { 1031 memcpy(msg->u.nak.guid, &raw->msg[1], 16); 1032 msg->u.nak.reason = raw->msg[17]; 1033 msg->u.nak.nak_data = raw->msg[18]; 1034 return false; 1035 } 1036 1037 switch (msg->req_type) { 1038 case DP_LINK_ADDRESS: 1039 return drm_dp_sideband_parse_link_address(mgr, raw, msg); 1040 case DP_QUERY_PAYLOAD: 1041 return drm_dp_sideband_parse_query_payload_ack(raw, msg); 1042 case DP_REMOTE_DPCD_READ: 1043 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg); 1044 case DP_REMOTE_DPCD_WRITE: 1045 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg); 1046 case DP_REMOTE_I2C_READ: 1047 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg); 1048 case DP_REMOTE_I2C_WRITE: 1049 return true; /* since there's nothing to parse */ 1050 case DP_ENUM_PATH_RESOURCES: 1051 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg); 1052 case DP_ALLOCATE_PAYLOAD: 1053 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg); 1054 case DP_POWER_DOWN_PHY: 1055 case DP_POWER_UP_PHY: 1056 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg); 1057 case DP_CLEAR_PAYLOAD_ID_TABLE: 1058 return true; /* since there's nothing to parse */ 1059 case DP_QUERY_STREAM_ENC_STATUS: 1060 return drm_dp_sideband_parse_query_stream_enc_status(raw, msg); 1061 default: 1062 drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n", 1063 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1064 return false; 1065 } 1066 } 1067 1068 static bool 1069 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1070 struct drm_dp_sideband_msg_rx *raw, 1071 struct drm_dp_sideband_msg_req_body *msg) 1072 { 1073 int idx = 1; 1074 1075 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1076 idx++; 1077 if (idx > raw->curlen) 1078 goto fail_len; 1079 1080 memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16); 1081 idx += 16; 1082 if (idx > raw->curlen) 1083 goto fail_len; 1084 1085 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1; 1086 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 1087 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1; 1088 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1; 1089 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7); 1090 idx++; 1091 return true; 1092 fail_len: 1093 drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n", 1094 idx, raw->curlen); 1095 return false; 1096 } 1097 1098 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1099 struct drm_dp_sideband_msg_rx *raw, 1100 struct drm_dp_sideband_msg_req_body *msg) 1101 { 1102 int idx = 1; 1103 1104 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1105 idx++; 1106 if (idx > raw->curlen) 1107 goto fail_len; 1108 1109 memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16); 1110 idx += 16; 1111 if (idx > raw->curlen) 1112 goto fail_len; 1113 1114 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 1115 idx++; 1116 return true; 1117 fail_len: 1118 drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen); 1119 return false; 1120 } 1121 1122 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr, 1123 struct drm_dp_sideband_msg_rx *raw, 1124 struct drm_dp_sideband_msg_req_body *msg) 1125 { 1126 memset(msg, 0, sizeof(*msg)); 1127 msg->req_type = (raw->msg[0] & 0x7f); 1128 1129 switch (msg->req_type) { 1130 case DP_CONNECTION_STATUS_NOTIFY: 1131 return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg); 1132 case DP_RESOURCE_STATUS_NOTIFY: 1133 return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg); 1134 default: 1135 drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n", 1136 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1137 return false; 1138 } 1139 } 1140 1141 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, 1142 u8 port_num, u32 offset, u8 num_bytes, u8 *bytes) 1143 { 1144 struct drm_dp_sideband_msg_req_body req; 1145 1146 req.req_type = DP_REMOTE_DPCD_WRITE; 1147 req.u.dpcd_write.port_number = port_num; 1148 req.u.dpcd_write.dpcd_address = offset; 1149 req.u.dpcd_write.num_bytes = num_bytes; 1150 req.u.dpcd_write.bytes = bytes; 1151 drm_dp_encode_sideband_req(&req, msg); 1152 } 1153 1154 static void build_link_address(struct drm_dp_sideband_msg_tx *msg) 1155 { 1156 struct drm_dp_sideband_msg_req_body req; 1157 1158 req.req_type = DP_LINK_ADDRESS; 1159 drm_dp_encode_sideband_req(&req, msg); 1160 } 1161 1162 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg) 1163 { 1164 struct drm_dp_sideband_msg_req_body req; 1165 1166 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE; 1167 drm_dp_encode_sideband_req(&req, msg); 1168 msg->path_msg = true; 1169 } 1170 1171 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, 1172 int port_num) 1173 { 1174 struct drm_dp_sideband_msg_req_body req; 1175 1176 req.req_type = DP_ENUM_PATH_RESOURCES; 1177 req.u.port_num.port_number = port_num; 1178 drm_dp_encode_sideband_req(&req, msg); 1179 msg->path_msg = true; 1180 return 0; 1181 } 1182 1183 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, 1184 int port_num, 1185 u8 vcpi, uint16_t pbn, 1186 u8 number_sdp_streams, 1187 u8 *sdp_stream_sink) 1188 { 1189 struct drm_dp_sideband_msg_req_body req; 1190 1191 memset(&req, 0, sizeof(req)); 1192 req.req_type = DP_ALLOCATE_PAYLOAD; 1193 req.u.allocate_payload.port_number = port_num; 1194 req.u.allocate_payload.vcpi = vcpi; 1195 req.u.allocate_payload.pbn = pbn; 1196 req.u.allocate_payload.number_sdp_streams = number_sdp_streams; 1197 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink, 1198 number_sdp_streams); 1199 drm_dp_encode_sideband_req(&req, msg); 1200 msg->path_msg = true; 1201 } 1202 1203 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg, 1204 int port_num, bool power_up) 1205 { 1206 struct drm_dp_sideband_msg_req_body req; 1207 1208 if (power_up) 1209 req.req_type = DP_POWER_UP_PHY; 1210 else 1211 req.req_type = DP_POWER_DOWN_PHY; 1212 1213 req.u.port_num.port_number = port_num; 1214 drm_dp_encode_sideband_req(&req, msg); 1215 msg->path_msg = true; 1216 } 1217 1218 static int 1219 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id, 1220 u8 *q_id) 1221 { 1222 struct drm_dp_sideband_msg_req_body req; 1223 1224 req.req_type = DP_QUERY_STREAM_ENC_STATUS; 1225 req.u.enc_status.stream_id = stream_id; 1226 memcpy(req.u.enc_status.client_id, q_id, 1227 sizeof(req.u.enc_status.client_id)); 1228 req.u.enc_status.stream_event = 0; 1229 req.u.enc_status.valid_stream_event = false; 1230 req.u.enc_status.stream_behavior = 0; 1231 req.u.enc_status.valid_stream_behavior = false; 1232 1233 drm_dp_encode_sideband_req(&req, msg); 1234 return 0; 1235 } 1236 1237 static int drm_dp_mst_assign_payload_id(struct drm_dp_mst_topology_mgr *mgr, 1238 struct drm_dp_vcpi *vcpi) 1239 { 1240 int ret, vcpi_ret; 1241 1242 mutex_lock(&mgr->payload_lock); 1243 ret = find_first_zero_bit(&mgr->payload_mask, mgr->max_payloads + 1); 1244 if (ret > mgr->max_payloads) { 1245 ret = -EINVAL; 1246 drm_dbg_kms(mgr->dev, "out of payload ids %d\n", ret); 1247 goto out_unlock; 1248 } 1249 1250 vcpi_ret = find_first_zero_bit(&mgr->vcpi_mask, mgr->max_payloads + 1); 1251 if (vcpi_ret > mgr->max_payloads) { 1252 ret = -EINVAL; 1253 drm_dbg_kms(mgr->dev, "out of vcpi ids %d\n", ret); 1254 goto out_unlock; 1255 } 1256 1257 set_bit(ret, &mgr->payload_mask); 1258 set_bit(vcpi_ret, &mgr->vcpi_mask); 1259 vcpi->vcpi = vcpi_ret + 1; 1260 mgr->proposed_vcpis[ret - 1] = vcpi; 1261 out_unlock: 1262 mutex_unlock(&mgr->payload_lock); 1263 return ret; 1264 } 1265 1266 static void drm_dp_mst_put_payload_id(struct drm_dp_mst_topology_mgr *mgr, 1267 int vcpi) 1268 { 1269 int i; 1270 1271 if (vcpi == 0) 1272 return; 1273 1274 mutex_lock(&mgr->payload_lock); 1275 drm_dbg_kms(mgr->dev, "putting payload %d\n", vcpi); 1276 clear_bit(vcpi - 1, &mgr->vcpi_mask); 1277 1278 for (i = 0; i < mgr->max_payloads; i++) { 1279 if (mgr->proposed_vcpis[i] && 1280 mgr->proposed_vcpis[i]->vcpi == vcpi) { 1281 mgr->proposed_vcpis[i] = NULL; 1282 clear_bit(i + 1, &mgr->payload_mask); 1283 } 1284 } 1285 mutex_unlock(&mgr->payload_lock); 1286 } 1287 1288 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr, 1289 struct drm_dp_sideband_msg_tx *txmsg) 1290 { 1291 unsigned int state; 1292 1293 /* 1294 * All updates to txmsg->state are protected by mgr->qlock, and the two 1295 * cases we check here are terminal states. For those the barriers 1296 * provided by the wake_up/wait_event pair are enough. 1297 */ 1298 state = READ_ONCE(txmsg->state); 1299 return (state == DRM_DP_SIDEBAND_TX_RX || 1300 state == DRM_DP_SIDEBAND_TX_TIMEOUT); 1301 } 1302 1303 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb, 1304 struct drm_dp_sideband_msg_tx *txmsg) 1305 { 1306 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1307 unsigned long wait_timeout = msecs_to_jiffies(4000); 1308 unsigned long wait_expires = jiffies + wait_timeout; 1309 int ret; 1310 1311 for (;;) { 1312 /* 1313 * If the driver provides a way for this, change to 1314 * poll-waiting for the MST reply interrupt if we didn't receive 1315 * it for 50 msec. This would cater for cases where the HPD 1316 * pulse signal got lost somewhere, even though the sink raised 1317 * the corresponding MST interrupt correctly. One example is the 1318 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason 1319 * filters out short pulses with a duration less than ~540 usec. 1320 * 1321 * The poll period is 50 msec to avoid missing an interrupt 1322 * after the sink has cleared it (after a 110msec timeout 1323 * since it raised the interrupt). 1324 */ 1325 ret = wait_event_timeout(mgr->tx_waitq, 1326 check_txmsg_state(mgr, txmsg), 1327 mgr->cbs->poll_hpd_irq ? 1328 msecs_to_jiffies(50) : 1329 wait_timeout); 1330 1331 if (ret || !mgr->cbs->poll_hpd_irq || 1332 time_after(jiffies, wait_expires)) 1333 break; 1334 1335 mgr->cbs->poll_hpd_irq(mgr); 1336 } 1337 1338 mutex_lock(&mgr->qlock); 1339 if (ret > 0) { 1340 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) { 1341 ret = -EIO; 1342 goto out; 1343 } 1344 } else { 1345 drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n", 1346 txmsg, txmsg->state, txmsg->seqno); 1347 1348 /* dump some state */ 1349 ret = -EIO; 1350 1351 /* remove from q */ 1352 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED || 1353 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 1354 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 1355 list_del(&txmsg->next); 1356 } 1357 out: 1358 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) { 1359 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 1360 1361 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 1362 } 1363 mutex_unlock(&mgr->qlock); 1364 1365 drm_dp_mst_kick_tx(mgr); 1366 return ret; 1367 } 1368 1369 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad) 1370 { 1371 struct drm_dp_mst_branch *mstb; 1372 1373 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL); 1374 if (!mstb) 1375 return NULL; 1376 1377 mstb->lct = lct; 1378 if (lct > 1) 1379 memcpy(mstb->rad, rad, lct / 2); 1380 INIT_LIST_HEAD(&mstb->ports); 1381 kref_init(&mstb->topology_kref); 1382 kref_init(&mstb->malloc_kref); 1383 return mstb; 1384 } 1385 1386 static void drm_dp_free_mst_branch_device(struct kref *kref) 1387 { 1388 struct drm_dp_mst_branch *mstb = 1389 container_of(kref, struct drm_dp_mst_branch, malloc_kref); 1390 1391 if (mstb->port_parent) 1392 drm_dp_mst_put_port_malloc(mstb->port_parent); 1393 1394 kfree(mstb); 1395 } 1396 1397 /** 1398 * DOC: Branch device and port refcounting 1399 * 1400 * Topology refcount overview 1401 * ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1402 * 1403 * The refcounting schemes for &struct drm_dp_mst_branch and &struct 1404 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have 1405 * two different kinds of refcounts: topology refcounts, and malloc refcounts. 1406 * 1407 * Topology refcounts are not exposed to drivers, and are handled internally 1408 * by the DP MST helpers. The helpers use them in order to prevent the 1409 * in-memory topology state from being changed in the middle of critical 1410 * operations like changing the internal state of payload allocations. This 1411 * means each branch and port will be considered to be connected to the rest 1412 * of the topology until its topology refcount reaches zero. Additionally, 1413 * for ports this means that their associated &struct drm_connector will stay 1414 * registered with userspace until the port's refcount reaches 0. 1415 * 1416 * Malloc refcount overview 1417 * ~~~~~~~~~~~~~~~~~~~~~~~~ 1418 * 1419 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct 1420 * drm_dp_mst_branch allocated even after all of its topology references have 1421 * been dropped, so that the driver or MST helpers can safely access each 1422 * branch's last known state before it was disconnected from the topology. 1423 * When the malloc refcount of a port or branch reaches 0, the memory 1424 * allocation containing the &struct drm_dp_mst_branch or &struct 1425 * drm_dp_mst_port respectively will be freed. 1426 * 1427 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed 1428 * to drivers. As of writing this documentation, there are no drivers that 1429 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST 1430 * helpers. Exposing this API to drivers in a race-free manner would take more 1431 * tweaking of the refcounting scheme, however patches are welcome provided 1432 * there is a legitimate driver usecase for this. 1433 * 1434 * Refcount relationships in a topology 1435 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1436 * 1437 * Let's take a look at why the relationship between topology and malloc 1438 * refcounts is designed the way it is. 1439 * 1440 * .. kernel-figure:: dp-mst/topology-figure-1.dot 1441 * 1442 * An example of topology and malloc refs in a DP MST topology with two 1443 * active payloads. Topology refcount increments are indicated by solid 1444 * lines, and malloc refcount increments are indicated by dashed lines. 1445 * Each starts from the branch which incremented the refcount, and ends at 1446 * the branch to which the refcount belongs to, i.e. the arrow points the 1447 * same way as the C pointers used to reference a structure. 1448 * 1449 * As you can see in the above figure, every branch increments the topology 1450 * refcount of its children, and increments the malloc refcount of its 1451 * parent. Additionally, every payload increments the malloc refcount of its 1452 * assigned port by 1. 1453 * 1454 * So, what would happen if MSTB #3 from the above figure was unplugged from 1455 * the system, but the driver hadn't yet removed payload #2 from port #3? The 1456 * topology would start to look like the figure below. 1457 * 1458 * .. kernel-figure:: dp-mst/topology-figure-2.dot 1459 * 1460 * Ports and branch devices which have been released from memory are 1461 * colored grey, and references which have been removed are colored red. 1462 * 1463 * Whenever a port or branch device's topology refcount reaches zero, it will 1464 * decrement the topology refcounts of all its children, the malloc refcount 1465 * of its parent, and finally its own malloc refcount. For MSTB #4 and port 1466 * #4, this means they both have been disconnected from the topology and freed 1467 * from memory. But, because payload #2 is still holding a reference to port 1468 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port 1469 * is still accessible from memory. This also means port #3 has not yet 1470 * decremented the malloc refcount of MSTB #3, so its &struct 1471 * drm_dp_mst_branch will also stay allocated in memory until port #3's 1472 * malloc refcount reaches 0. 1473 * 1474 * This relationship is necessary because in order to release payload #2, we 1475 * need to be able to figure out the last relative of port #3 that's still 1476 * connected to the topology. In this case, we would travel up the topology as 1477 * shown below. 1478 * 1479 * .. kernel-figure:: dp-mst/topology-figure-3.dot 1480 * 1481 * And finally, remove payload #2 by communicating with port #2 through 1482 * sideband transactions. 1483 */ 1484 1485 /** 1486 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch 1487 * device 1488 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of 1489 * 1490 * Increments &drm_dp_mst_branch.malloc_kref. When 1491 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1492 * will be released and @mstb may no longer be used. 1493 * 1494 * See also: drm_dp_mst_put_mstb_malloc() 1495 */ 1496 static void 1497 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb) 1498 { 1499 kref_get(&mstb->malloc_kref); 1500 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref)); 1501 } 1502 1503 /** 1504 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch 1505 * device 1506 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of 1507 * 1508 * Decrements &drm_dp_mst_branch.malloc_kref. When 1509 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1510 * will be released and @mstb may no longer be used. 1511 * 1512 * See also: drm_dp_mst_get_mstb_malloc() 1513 */ 1514 static void 1515 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb) 1516 { 1517 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1); 1518 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device); 1519 } 1520 1521 static void drm_dp_free_mst_port(struct kref *kref) 1522 { 1523 struct drm_dp_mst_port *port = 1524 container_of(kref, struct drm_dp_mst_port, malloc_kref); 1525 1526 drm_dp_mst_put_mstb_malloc(port->parent); 1527 kfree(port); 1528 } 1529 1530 /** 1531 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port 1532 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of 1533 * 1534 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1535 * reaches 0, the memory allocation for @port will be released and @port may 1536 * no longer be used. 1537 * 1538 * Because @port could potentially be freed at any time by the DP MST helpers 1539 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this 1540 * function, drivers that which to make use of &struct drm_dp_mst_port should 1541 * ensure that they grab at least one main malloc reference to their MST ports 1542 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before 1543 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0. 1544 * 1545 * See also: drm_dp_mst_put_port_malloc() 1546 */ 1547 void 1548 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port) 1549 { 1550 kref_get(&port->malloc_kref); 1551 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref)); 1552 } 1553 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc); 1554 1555 /** 1556 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port 1557 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of 1558 * 1559 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1560 * reaches 0, the memory allocation for @port will be released and @port may 1561 * no longer be used. 1562 * 1563 * See also: drm_dp_mst_get_port_malloc() 1564 */ 1565 void 1566 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port) 1567 { 1568 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1); 1569 kref_put(&port->malloc_kref, drm_dp_free_mst_port); 1570 } 1571 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc); 1572 1573 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 1574 1575 #define STACK_DEPTH 8 1576 1577 static noinline void 1578 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr, 1579 struct drm_dp_mst_topology_ref_history *history, 1580 enum drm_dp_mst_topology_ref_type type) 1581 { 1582 struct drm_dp_mst_topology_ref_entry *entry = NULL; 1583 depot_stack_handle_t backtrace; 1584 ulong stack_entries[STACK_DEPTH]; 1585 uint n; 1586 int i; 1587 1588 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1); 1589 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL); 1590 if (!backtrace) 1591 return; 1592 1593 /* Try to find an existing entry for this backtrace */ 1594 for (i = 0; i < history->len; i++) { 1595 if (history->entries[i].backtrace == backtrace) { 1596 entry = &history->entries[i]; 1597 break; 1598 } 1599 } 1600 1601 /* Otherwise add one */ 1602 if (!entry) { 1603 struct drm_dp_mst_topology_ref_entry *new; 1604 int new_len = history->len + 1; 1605 1606 new = krealloc(history->entries, sizeof(*new) * new_len, 1607 GFP_KERNEL); 1608 if (!new) 1609 return; 1610 1611 entry = &new[history->len]; 1612 history->len = new_len; 1613 history->entries = new; 1614 1615 entry->backtrace = backtrace; 1616 entry->type = type; 1617 entry->count = 0; 1618 } 1619 entry->count++; 1620 entry->ts_nsec = ktime_get_ns(); 1621 } 1622 1623 static int 1624 topology_ref_history_cmp(const void *a, const void *b) 1625 { 1626 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b; 1627 1628 if (entry_a->ts_nsec > entry_b->ts_nsec) 1629 return 1; 1630 else if (entry_a->ts_nsec < entry_b->ts_nsec) 1631 return -1; 1632 else 1633 return 0; 1634 } 1635 1636 static inline const char * 1637 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type) 1638 { 1639 if (type == DRM_DP_MST_TOPOLOGY_REF_GET) 1640 return "get"; 1641 else 1642 return "put"; 1643 } 1644 1645 static void 1646 __dump_topology_ref_history(struct drm_dp_mst_topology_ref_history *history, 1647 void *ptr, const char *type_str) 1648 { 1649 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 1650 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 1651 int i; 1652 1653 if (!buf) 1654 return; 1655 1656 if (!history->len) 1657 goto out; 1658 1659 /* First, sort the list so that it goes from oldest to newest 1660 * reference entry 1661 */ 1662 sort(history->entries, history->len, sizeof(*history->entries), 1663 topology_ref_history_cmp, NULL); 1664 1665 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n", 1666 type_str, ptr); 1667 1668 for (i = 0; i < history->len; i++) { 1669 const struct drm_dp_mst_topology_ref_entry *entry = 1670 &history->entries[i]; 1671 u64 ts_nsec = entry->ts_nsec; 1672 u32 rem_nsec = do_div(ts_nsec, 1000000000); 1673 1674 stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4); 1675 1676 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s", 1677 entry->count, 1678 topology_ref_type_to_str(entry->type), 1679 ts_nsec, rem_nsec / 1000, buf); 1680 } 1681 1682 /* Now free the history, since this is the only time we expose it */ 1683 kfree(history->entries); 1684 out: 1685 kfree(buf); 1686 } 1687 1688 static __always_inline void 1689 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) 1690 { 1691 __dump_topology_ref_history(&mstb->topology_ref_history, mstb, 1692 "MSTB"); 1693 } 1694 1695 static __always_inline void 1696 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) 1697 { 1698 __dump_topology_ref_history(&port->topology_ref_history, port, 1699 "Port"); 1700 } 1701 1702 static __always_inline void 1703 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb, 1704 enum drm_dp_mst_topology_ref_type type) 1705 { 1706 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type); 1707 } 1708 1709 static __always_inline void 1710 save_port_topology_ref(struct drm_dp_mst_port *port, 1711 enum drm_dp_mst_topology_ref_type type) 1712 { 1713 __topology_ref_save(port->mgr, &port->topology_ref_history, type); 1714 } 1715 1716 static inline void 1717 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) 1718 { 1719 mutex_lock(&mgr->topology_ref_history_lock); 1720 } 1721 1722 static inline void 1723 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) 1724 { 1725 mutex_unlock(&mgr->topology_ref_history_lock); 1726 } 1727 #else 1728 static inline void 1729 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {} 1730 static inline void 1731 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {} 1732 static inline void 1733 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {} 1734 static inline void 1735 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {} 1736 #define save_mstb_topology_ref(mstb, type) 1737 #define save_port_topology_ref(port, type) 1738 #endif 1739 1740 static void drm_dp_destroy_mst_branch_device(struct kref *kref) 1741 { 1742 struct drm_dp_mst_branch *mstb = 1743 container_of(kref, struct drm_dp_mst_branch, topology_kref); 1744 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1745 1746 drm_dp_mst_dump_mstb_topology_history(mstb); 1747 1748 INIT_LIST_HEAD(&mstb->destroy_next); 1749 1750 /* 1751 * This can get called under mgr->mutex, so we need to perform the 1752 * actual destruction of the mstb in another worker 1753 */ 1754 mutex_lock(&mgr->delayed_destroy_lock); 1755 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list); 1756 mutex_unlock(&mgr->delayed_destroy_lock); 1757 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1758 } 1759 1760 /** 1761 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a 1762 * branch device unless it's zero 1763 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of 1764 * 1765 * Attempts to grab a topology reference to @mstb, if it hasn't yet been 1766 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has 1767 * reached 0). Holding a topology reference implies that a malloc reference 1768 * will be held to @mstb as long as the user holds the topology reference. 1769 * 1770 * Care should be taken to ensure that the user has at least one malloc 1771 * reference to @mstb. If you already have a topology reference to @mstb, you 1772 * should use drm_dp_mst_topology_get_mstb() instead. 1773 * 1774 * See also: 1775 * drm_dp_mst_topology_get_mstb() 1776 * drm_dp_mst_topology_put_mstb() 1777 * 1778 * Returns: 1779 * * 1: A topology reference was grabbed successfully 1780 * * 0: @port is no longer in the topology, no reference was grabbed 1781 */ 1782 static int __must_check 1783 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb) 1784 { 1785 int ret; 1786 1787 topology_ref_history_lock(mstb->mgr); 1788 ret = kref_get_unless_zero(&mstb->topology_kref); 1789 if (ret) { 1790 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1791 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1792 } 1793 1794 topology_ref_history_unlock(mstb->mgr); 1795 1796 return ret; 1797 } 1798 1799 /** 1800 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a 1801 * branch device 1802 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of 1803 * 1804 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or 1805 * not it's already reached 0. This is only valid to use in scenarios where 1806 * you are already guaranteed to have at least one active topology reference 1807 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used. 1808 * 1809 * See also: 1810 * drm_dp_mst_topology_try_get_mstb() 1811 * drm_dp_mst_topology_put_mstb() 1812 */ 1813 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb) 1814 { 1815 topology_ref_history_lock(mstb->mgr); 1816 1817 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1818 WARN_ON(kref_read(&mstb->topology_kref) == 0); 1819 kref_get(&mstb->topology_kref); 1820 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1821 1822 topology_ref_history_unlock(mstb->mgr); 1823 } 1824 1825 /** 1826 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch 1827 * device 1828 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from 1829 * 1830 * Releases a topology reference from @mstb by decrementing 1831 * &drm_dp_mst_branch.topology_kref. 1832 * 1833 * See also: 1834 * drm_dp_mst_topology_try_get_mstb() 1835 * drm_dp_mst_topology_get_mstb() 1836 */ 1837 static void 1838 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb) 1839 { 1840 topology_ref_history_lock(mstb->mgr); 1841 1842 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1); 1843 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT); 1844 1845 topology_ref_history_unlock(mstb->mgr); 1846 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device); 1847 } 1848 1849 static void drm_dp_destroy_port(struct kref *kref) 1850 { 1851 struct drm_dp_mst_port *port = 1852 container_of(kref, struct drm_dp_mst_port, topology_kref); 1853 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 1854 1855 drm_dp_mst_dump_port_topology_history(port); 1856 1857 /* There's nothing that needs locking to destroy an input port yet */ 1858 if (port->input) { 1859 drm_dp_mst_put_port_malloc(port); 1860 return; 1861 } 1862 1863 kfree(port->cached_edid); 1864 1865 /* 1866 * we can't destroy the connector here, as we might be holding the 1867 * mode_config.mutex from an EDID retrieval 1868 */ 1869 mutex_lock(&mgr->delayed_destroy_lock); 1870 list_add(&port->next, &mgr->destroy_port_list); 1871 mutex_unlock(&mgr->delayed_destroy_lock); 1872 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1873 } 1874 1875 /** 1876 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a 1877 * port unless it's zero 1878 * @port: &struct drm_dp_mst_port to increment the topology refcount of 1879 * 1880 * Attempts to grab a topology reference to @port, if it hasn't yet been 1881 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached 1882 * 0). Holding a topology reference implies that a malloc reference will be 1883 * held to @port as long as the user holds the topology reference. 1884 * 1885 * Care should be taken to ensure that the user has at least one malloc 1886 * reference to @port. If you already have a topology reference to @port, you 1887 * should use drm_dp_mst_topology_get_port() instead. 1888 * 1889 * See also: 1890 * drm_dp_mst_topology_get_port() 1891 * drm_dp_mst_topology_put_port() 1892 * 1893 * Returns: 1894 * * 1: A topology reference was grabbed successfully 1895 * * 0: @port is no longer in the topology, no reference was grabbed 1896 */ 1897 static int __must_check 1898 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port) 1899 { 1900 int ret; 1901 1902 topology_ref_history_lock(port->mgr); 1903 ret = kref_get_unless_zero(&port->topology_kref); 1904 if (ret) { 1905 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1906 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1907 } 1908 1909 topology_ref_history_unlock(port->mgr); 1910 return ret; 1911 } 1912 1913 /** 1914 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port 1915 * @port: The &struct drm_dp_mst_port to increment the topology refcount of 1916 * 1917 * Increments &drm_dp_mst_port.topology_refcount without checking whether or 1918 * not it's already reached 0. This is only valid to use in scenarios where 1919 * you are already guaranteed to have at least one active topology reference 1920 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used. 1921 * 1922 * See also: 1923 * drm_dp_mst_topology_try_get_port() 1924 * drm_dp_mst_topology_put_port() 1925 */ 1926 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port) 1927 { 1928 topology_ref_history_lock(port->mgr); 1929 1930 WARN_ON(kref_read(&port->topology_kref) == 0); 1931 kref_get(&port->topology_kref); 1932 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1933 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1934 1935 topology_ref_history_unlock(port->mgr); 1936 } 1937 1938 /** 1939 * drm_dp_mst_topology_put_port() - release a topology reference to a port 1940 * @port: The &struct drm_dp_mst_port to release the topology reference from 1941 * 1942 * Releases a topology reference from @port by decrementing 1943 * &drm_dp_mst_port.topology_kref. 1944 * 1945 * See also: 1946 * drm_dp_mst_topology_try_get_port() 1947 * drm_dp_mst_topology_get_port() 1948 */ 1949 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port) 1950 { 1951 topology_ref_history_lock(port->mgr); 1952 1953 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1); 1954 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT); 1955 1956 topology_ref_history_unlock(port->mgr); 1957 kref_put(&port->topology_kref, drm_dp_destroy_port); 1958 } 1959 1960 static struct drm_dp_mst_branch * 1961 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb, 1962 struct drm_dp_mst_branch *to_find) 1963 { 1964 struct drm_dp_mst_port *port; 1965 struct drm_dp_mst_branch *rmstb; 1966 1967 if (to_find == mstb) 1968 return mstb; 1969 1970 list_for_each_entry(port, &mstb->ports, next) { 1971 if (port->mstb) { 1972 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1973 port->mstb, to_find); 1974 if (rmstb) 1975 return rmstb; 1976 } 1977 } 1978 return NULL; 1979 } 1980 1981 static struct drm_dp_mst_branch * 1982 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr, 1983 struct drm_dp_mst_branch *mstb) 1984 { 1985 struct drm_dp_mst_branch *rmstb = NULL; 1986 1987 mutex_lock(&mgr->lock); 1988 if (mgr->mst_primary) { 1989 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1990 mgr->mst_primary, mstb); 1991 1992 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb)) 1993 rmstb = NULL; 1994 } 1995 mutex_unlock(&mgr->lock); 1996 return rmstb; 1997 } 1998 1999 static struct drm_dp_mst_port * 2000 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb, 2001 struct drm_dp_mst_port *to_find) 2002 { 2003 struct drm_dp_mst_port *port, *mport; 2004 2005 list_for_each_entry(port, &mstb->ports, next) { 2006 if (port == to_find) 2007 return port; 2008 2009 if (port->mstb) { 2010 mport = drm_dp_mst_topology_get_port_validated_locked( 2011 port->mstb, to_find); 2012 if (mport) 2013 return mport; 2014 } 2015 } 2016 return NULL; 2017 } 2018 2019 static struct drm_dp_mst_port * 2020 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr, 2021 struct drm_dp_mst_port *port) 2022 { 2023 struct drm_dp_mst_port *rport = NULL; 2024 2025 mutex_lock(&mgr->lock); 2026 if (mgr->mst_primary) { 2027 rport = drm_dp_mst_topology_get_port_validated_locked( 2028 mgr->mst_primary, port); 2029 2030 if (rport && !drm_dp_mst_topology_try_get_port(rport)) 2031 rport = NULL; 2032 } 2033 mutex_unlock(&mgr->lock); 2034 return rport; 2035 } 2036 2037 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num) 2038 { 2039 struct drm_dp_mst_port *port; 2040 int ret; 2041 2042 list_for_each_entry(port, &mstb->ports, next) { 2043 if (port->port_num == port_num) { 2044 ret = drm_dp_mst_topology_try_get_port(port); 2045 return ret ? port : NULL; 2046 } 2047 } 2048 2049 return NULL; 2050 } 2051 2052 /* 2053 * calculate a new RAD for this MST branch device 2054 * if parent has an LCT of 2 then it has 1 nibble of RAD, 2055 * if parent has an LCT of 3 then it has 2 nibbles of RAD, 2056 */ 2057 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port, 2058 u8 *rad) 2059 { 2060 int parent_lct = port->parent->lct; 2061 int shift = 4; 2062 int idx = (parent_lct - 1) / 2; 2063 2064 if (parent_lct > 1) { 2065 memcpy(rad, port->parent->rad, idx + 1); 2066 shift = (parent_lct % 2) ? 4 : 0; 2067 } else 2068 rad[0] = 0; 2069 2070 rad[idx] |= port->port_num << shift; 2071 return parent_lct + 1; 2072 } 2073 2074 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs) 2075 { 2076 switch (pdt) { 2077 case DP_PEER_DEVICE_DP_LEGACY_CONV: 2078 case DP_PEER_DEVICE_SST_SINK: 2079 return true; 2080 case DP_PEER_DEVICE_MST_BRANCHING: 2081 /* For sst branch device */ 2082 if (!mcs) 2083 return true; 2084 2085 return false; 2086 } 2087 return true; 2088 } 2089 2090 static int 2091 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt, 2092 bool new_mcs) 2093 { 2094 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2095 struct drm_dp_mst_branch *mstb; 2096 u8 rad[8], lct; 2097 int ret = 0; 2098 2099 if (port->pdt == new_pdt && port->mcs == new_mcs) 2100 return 0; 2101 2102 /* Teardown the old pdt, if there is one */ 2103 if (port->pdt != DP_PEER_DEVICE_NONE) { 2104 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2105 /* 2106 * If the new PDT would also have an i2c bus, 2107 * don't bother with reregistering it 2108 */ 2109 if (new_pdt != DP_PEER_DEVICE_NONE && 2110 drm_dp_mst_is_end_device(new_pdt, new_mcs)) { 2111 port->pdt = new_pdt; 2112 port->mcs = new_mcs; 2113 return 0; 2114 } 2115 2116 /* remove i2c over sideband */ 2117 drm_dp_mst_unregister_i2c_bus(port); 2118 } else { 2119 mutex_lock(&mgr->lock); 2120 drm_dp_mst_topology_put_mstb(port->mstb); 2121 port->mstb = NULL; 2122 mutex_unlock(&mgr->lock); 2123 } 2124 } 2125 2126 port->pdt = new_pdt; 2127 port->mcs = new_mcs; 2128 2129 if (port->pdt != DP_PEER_DEVICE_NONE) { 2130 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2131 /* add i2c over sideband */ 2132 ret = drm_dp_mst_register_i2c_bus(port); 2133 } else { 2134 lct = drm_dp_calculate_rad(port, rad); 2135 mstb = drm_dp_add_mst_branch_device(lct, rad); 2136 if (!mstb) { 2137 ret = -ENOMEM; 2138 drm_err(mgr->dev, "Failed to create MSTB for port %p", port); 2139 goto out; 2140 } 2141 2142 mutex_lock(&mgr->lock); 2143 port->mstb = mstb; 2144 mstb->mgr = port->mgr; 2145 mstb->port_parent = port; 2146 2147 /* 2148 * Make sure this port's memory allocation stays 2149 * around until its child MSTB releases it 2150 */ 2151 drm_dp_mst_get_port_malloc(port); 2152 mutex_unlock(&mgr->lock); 2153 2154 /* And make sure we send a link address for this */ 2155 ret = 1; 2156 } 2157 } 2158 2159 out: 2160 if (ret < 0) 2161 port->pdt = DP_PEER_DEVICE_NONE; 2162 return ret; 2163 } 2164 2165 /** 2166 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband 2167 * @aux: Fake sideband AUX CH 2168 * @offset: address of the (first) register to read 2169 * @buffer: buffer to store the register values 2170 * @size: number of bytes in @buffer 2171 * 2172 * Performs the same functionality for remote devices via 2173 * sideband messaging as drm_dp_dpcd_read() does for local 2174 * devices via actual AUX CH. 2175 * 2176 * Return: Number of bytes read, or negative error code on failure. 2177 */ 2178 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux, 2179 unsigned int offset, void *buffer, size_t size) 2180 { 2181 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2182 aux); 2183 2184 return drm_dp_send_dpcd_read(port->mgr, port, 2185 offset, size, buffer); 2186 } 2187 2188 /** 2189 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband 2190 * @aux: Fake sideband AUX CH 2191 * @offset: address of the (first) register to write 2192 * @buffer: buffer containing the values to write 2193 * @size: number of bytes in @buffer 2194 * 2195 * Performs the same functionality for remote devices via 2196 * sideband messaging as drm_dp_dpcd_write() does for local 2197 * devices via actual AUX CH. 2198 * 2199 * Return: number of bytes written on success, negative error code on failure. 2200 */ 2201 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux, 2202 unsigned int offset, void *buffer, size_t size) 2203 { 2204 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2205 aux); 2206 2207 return drm_dp_send_dpcd_write(port->mgr, port, 2208 offset, size, buffer); 2209 } 2210 2211 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid) 2212 { 2213 int ret = 0; 2214 2215 memcpy(mstb->guid, guid, 16); 2216 2217 if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) { 2218 if (mstb->port_parent) { 2219 ret = drm_dp_send_dpcd_write(mstb->mgr, 2220 mstb->port_parent, 2221 DP_GUID, 16, mstb->guid); 2222 } else { 2223 ret = drm_dp_dpcd_write(mstb->mgr->aux, 2224 DP_GUID, mstb->guid, 16); 2225 } 2226 } 2227 2228 if (ret < 16 && ret > 0) 2229 return -EPROTO; 2230 2231 return ret == 16 ? 0 : ret; 2232 } 2233 2234 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb, 2235 int pnum, 2236 char *proppath, 2237 size_t proppath_size) 2238 { 2239 int i; 2240 char temp[8]; 2241 2242 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id); 2243 for (i = 0; i < (mstb->lct - 1); i++) { 2244 int shift = (i % 2) ? 0 : 4; 2245 int port_num = (mstb->rad[i / 2] >> shift) & 0xf; 2246 2247 snprintf(temp, sizeof(temp), "-%d", port_num); 2248 strlcat(proppath, temp, proppath_size); 2249 } 2250 snprintf(temp, sizeof(temp), "-%d", pnum); 2251 strlcat(proppath, temp, proppath_size); 2252 } 2253 2254 /** 2255 * drm_dp_mst_connector_late_register() - Late MST connector registration 2256 * @connector: The MST connector 2257 * @port: The MST port for this connector 2258 * 2259 * Helper to register the remote aux device for this MST port. Drivers should 2260 * call this from their mst connector's late_register hook to enable MST aux 2261 * devices. 2262 * 2263 * Return: 0 on success, negative error code on failure. 2264 */ 2265 int drm_dp_mst_connector_late_register(struct drm_connector *connector, 2266 struct drm_dp_mst_port *port) 2267 { 2268 drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n", 2269 port->aux.name, connector->kdev->kobj.name); 2270 2271 port->aux.dev = connector->kdev; 2272 return drm_dp_aux_register_devnode(&port->aux); 2273 } 2274 EXPORT_SYMBOL(drm_dp_mst_connector_late_register); 2275 2276 /** 2277 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration 2278 * @connector: The MST connector 2279 * @port: The MST port for this connector 2280 * 2281 * Helper to unregister the remote aux device for this MST port, registered by 2282 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst 2283 * connector's early_unregister hook. 2284 */ 2285 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector, 2286 struct drm_dp_mst_port *port) 2287 { 2288 drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n", 2289 port->aux.name, connector->kdev->kobj.name); 2290 drm_dp_aux_unregister_devnode(&port->aux); 2291 } 2292 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister); 2293 2294 static void 2295 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb, 2296 struct drm_dp_mst_port *port) 2297 { 2298 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2299 char proppath[255]; 2300 int ret; 2301 2302 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath)); 2303 port->connector = mgr->cbs->add_connector(mgr, port, proppath); 2304 if (!port->connector) { 2305 ret = -ENOMEM; 2306 goto error; 2307 } 2308 2309 if (port->pdt != DP_PEER_DEVICE_NONE && 2310 drm_dp_mst_is_end_device(port->pdt, port->mcs) && 2311 port->port_num >= DP_MST_LOGICAL_PORT_0) 2312 port->cached_edid = drm_get_edid(port->connector, 2313 &port->aux.ddc); 2314 2315 drm_connector_register(port->connector); 2316 return; 2317 2318 error: 2319 drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret); 2320 } 2321 2322 /* 2323 * Drop a topology reference, and unlink the port from the in-memory topology 2324 * layout 2325 */ 2326 static void 2327 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr, 2328 struct drm_dp_mst_port *port) 2329 { 2330 mutex_lock(&mgr->lock); 2331 port->parent->num_ports--; 2332 list_del(&port->next); 2333 mutex_unlock(&mgr->lock); 2334 drm_dp_mst_topology_put_port(port); 2335 } 2336 2337 static struct drm_dp_mst_port * 2338 drm_dp_mst_add_port(struct drm_device *dev, 2339 struct drm_dp_mst_topology_mgr *mgr, 2340 struct drm_dp_mst_branch *mstb, u8 port_number) 2341 { 2342 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL); 2343 2344 if (!port) 2345 return NULL; 2346 2347 kref_init(&port->topology_kref); 2348 kref_init(&port->malloc_kref); 2349 port->parent = mstb; 2350 port->port_num = port_number; 2351 port->mgr = mgr; 2352 port->aux.name = "DPMST"; 2353 port->aux.dev = dev->dev; 2354 port->aux.is_remote = true; 2355 2356 /* initialize the MST downstream port's AUX crc work queue */ 2357 port->aux.drm_dev = dev; 2358 drm_dp_remote_aux_init(&port->aux); 2359 2360 /* 2361 * Make sure the memory allocation for our parent branch stays 2362 * around until our own memory allocation is released 2363 */ 2364 drm_dp_mst_get_mstb_malloc(mstb); 2365 2366 return port; 2367 } 2368 2369 static int 2370 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb, 2371 struct drm_device *dev, 2372 struct drm_dp_link_addr_reply_port *port_msg) 2373 { 2374 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2375 struct drm_dp_mst_port *port; 2376 int old_ddps = 0, ret; 2377 u8 new_pdt = DP_PEER_DEVICE_NONE; 2378 bool new_mcs = 0; 2379 bool created = false, send_link_addr = false, changed = false; 2380 2381 port = drm_dp_get_port(mstb, port_msg->port_number); 2382 if (!port) { 2383 port = drm_dp_mst_add_port(dev, mgr, mstb, 2384 port_msg->port_number); 2385 if (!port) 2386 return -ENOMEM; 2387 created = true; 2388 changed = true; 2389 } else if (!port->input && port_msg->input_port && port->connector) { 2390 /* Since port->connector can't be changed here, we create a 2391 * new port if input_port changes from 0 to 1 2392 */ 2393 drm_dp_mst_topology_unlink_port(mgr, port); 2394 drm_dp_mst_topology_put_port(port); 2395 port = drm_dp_mst_add_port(dev, mgr, mstb, 2396 port_msg->port_number); 2397 if (!port) 2398 return -ENOMEM; 2399 changed = true; 2400 created = true; 2401 } else if (port->input && !port_msg->input_port) { 2402 changed = true; 2403 } else if (port->connector) { 2404 /* We're updating a port that's exposed to userspace, so do it 2405 * under lock 2406 */ 2407 drm_modeset_lock(&mgr->base.lock, NULL); 2408 2409 old_ddps = port->ddps; 2410 changed = port->ddps != port_msg->ddps || 2411 (port->ddps && 2412 (port->ldps != port_msg->legacy_device_plug_status || 2413 port->dpcd_rev != port_msg->dpcd_revision || 2414 port->mcs != port_msg->mcs || 2415 port->pdt != port_msg->peer_device_type || 2416 port->num_sdp_stream_sinks != 2417 port_msg->num_sdp_stream_sinks)); 2418 } 2419 2420 port->input = port_msg->input_port; 2421 if (!port->input) 2422 new_pdt = port_msg->peer_device_type; 2423 new_mcs = port_msg->mcs; 2424 port->ddps = port_msg->ddps; 2425 port->ldps = port_msg->legacy_device_plug_status; 2426 port->dpcd_rev = port_msg->dpcd_revision; 2427 port->num_sdp_streams = port_msg->num_sdp_streams; 2428 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks; 2429 2430 /* manage mstb port lists with mgr lock - take a reference 2431 for this list */ 2432 if (created) { 2433 mutex_lock(&mgr->lock); 2434 drm_dp_mst_topology_get_port(port); 2435 list_add(&port->next, &mstb->ports); 2436 mstb->num_ports++; 2437 mutex_unlock(&mgr->lock); 2438 } 2439 2440 /* 2441 * Reprobe PBN caps on both hotplug, and when re-probing the link 2442 * for our parent mstb 2443 */ 2444 if (old_ddps != port->ddps || !created) { 2445 if (port->ddps && !port->input) { 2446 ret = drm_dp_send_enum_path_resources(mgr, mstb, 2447 port); 2448 if (ret == 1) 2449 changed = true; 2450 } else { 2451 port->full_pbn = 0; 2452 } 2453 } 2454 2455 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2456 if (ret == 1) { 2457 send_link_addr = true; 2458 } else if (ret < 0) { 2459 drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret); 2460 goto fail; 2461 } 2462 2463 /* 2464 * If this port wasn't just created, then we're reprobing because 2465 * we're coming out of suspend. In this case, always resend the link 2466 * address if there's an MSTB on this port 2467 */ 2468 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 2469 port->mcs) 2470 send_link_addr = true; 2471 2472 if (port->connector) 2473 drm_modeset_unlock(&mgr->base.lock); 2474 else if (!port->input) 2475 drm_dp_mst_port_add_connector(mstb, port); 2476 2477 if (send_link_addr && port->mstb) { 2478 ret = drm_dp_send_link_address(mgr, port->mstb); 2479 if (ret == 1) /* MSTB below us changed */ 2480 changed = true; 2481 else if (ret < 0) 2482 goto fail_put; 2483 } 2484 2485 /* put reference to this port */ 2486 drm_dp_mst_topology_put_port(port); 2487 return changed; 2488 2489 fail: 2490 drm_dp_mst_topology_unlink_port(mgr, port); 2491 if (port->connector) 2492 drm_modeset_unlock(&mgr->base.lock); 2493 fail_put: 2494 drm_dp_mst_topology_put_port(port); 2495 return ret; 2496 } 2497 2498 static void 2499 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb, 2500 struct drm_dp_connection_status_notify *conn_stat) 2501 { 2502 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2503 struct drm_dp_mst_port *port; 2504 int old_ddps, ret; 2505 u8 new_pdt; 2506 bool new_mcs; 2507 bool dowork = false, create_connector = false; 2508 2509 port = drm_dp_get_port(mstb, conn_stat->port_number); 2510 if (!port) 2511 return; 2512 2513 if (port->connector) { 2514 if (!port->input && conn_stat->input_port) { 2515 /* 2516 * We can't remove a connector from an already exposed 2517 * port, so just throw the port out and make sure we 2518 * reprobe the link address of it's parent MSTB 2519 */ 2520 drm_dp_mst_topology_unlink_port(mgr, port); 2521 mstb->link_address_sent = false; 2522 dowork = true; 2523 goto out; 2524 } 2525 2526 /* Locking is only needed if the port's exposed to userspace */ 2527 drm_modeset_lock(&mgr->base.lock, NULL); 2528 } else if (port->input && !conn_stat->input_port) { 2529 create_connector = true; 2530 /* Reprobe link address so we get num_sdp_streams */ 2531 mstb->link_address_sent = false; 2532 dowork = true; 2533 } 2534 2535 old_ddps = port->ddps; 2536 port->input = conn_stat->input_port; 2537 port->ldps = conn_stat->legacy_device_plug_status; 2538 port->ddps = conn_stat->displayport_device_plug_status; 2539 2540 if (old_ddps != port->ddps) { 2541 if (port->ddps && !port->input) 2542 drm_dp_send_enum_path_resources(mgr, mstb, port); 2543 else 2544 port->full_pbn = 0; 2545 } 2546 2547 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type; 2548 new_mcs = conn_stat->message_capability_status; 2549 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2550 if (ret == 1) { 2551 dowork = true; 2552 } else if (ret < 0) { 2553 drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret); 2554 dowork = false; 2555 } 2556 2557 if (port->connector) 2558 drm_modeset_unlock(&mgr->base.lock); 2559 else if (create_connector) 2560 drm_dp_mst_port_add_connector(mstb, port); 2561 2562 out: 2563 drm_dp_mst_topology_put_port(port); 2564 if (dowork) 2565 queue_work(system_long_wq, &mstb->mgr->work); 2566 } 2567 2568 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr, 2569 u8 lct, u8 *rad) 2570 { 2571 struct drm_dp_mst_branch *mstb; 2572 struct drm_dp_mst_port *port; 2573 int i, ret; 2574 /* find the port by iterating down */ 2575 2576 mutex_lock(&mgr->lock); 2577 mstb = mgr->mst_primary; 2578 2579 if (!mstb) 2580 goto out; 2581 2582 for (i = 0; i < lct - 1; i++) { 2583 int shift = (i % 2) ? 0 : 4; 2584 int port_num = (rad[i / 2] >> shift) & 0xf; 2585 2586 list_for_each_entry(port, &mstb->ports, next) { 2587 if (port->port_num == port_num) { 2588 mstb = port->mstb; 2589 if (!mstb) { 2590 drm_err(mgr->dev, 2591 "failed to lookup MSTB with lct %d, rad %02x\n", 2592 lct, rad[0]); 2593 goto out; 2594 } 2595 2596 break; 2597 } 2598 } 2599 } 2600 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2601 if (!ret) 2602 mstb = NULL; 2603 out: 2604 mutex_unlock(&mgr->lock); 2605 return mstb; 2606 } 2607 2608 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper( 2609 struct drm_dp_mst_branch *mstb, 2610 const uint8_t *guid) 2611 { 2612 struct drm_dp_mst_branch *found_mstb; 2613 struct drm_dp_mst_port *port; 2614 2615 if (memcmp(mstb->guid, guid, 16) == 0) 2616 return mstb; 2617 2618 2619 list_for_each_entry(port, &mstb->ports, next) { 2620 if (!port->mstb) 2621 continue; 2622 2623 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid); 2624 2625 if (found_mstb) 2626 return found_mstb; 2627 } 2628 2629 return NULL; 2630 } 2631 2632 static struct drm_dp_mst_branch * 2633 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr, 2634 const uint8_t *guid) 2635 { 2636 struct drm_dp_mst_branch *mstb; 2637 int ret; 2638 2639 /* find the port by iterating down */ 2640 mutex_lock(&mgr->lock); 2641 2642 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid); 2643 if (mstb) { 2644 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2645 if (!ret) 2646 mstb = NULL; 2647 } 2648 2649 mutex_unlock(&mgr->lock); 2650 return mstb; 2651 } 2652 2653 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2654 struct drm_dp_mst_branch *mstb) 2655 { 2656 struct drm_dp_mst_port *port; 2657 int ret; 2658 bool changed = false; 2659 2660 if (!mstb->link_address_sent) { 2661 ret = drm_dp_send_link_address(mgr, mstb); 2662 if (ret == 1) 2663 changed = true; 2664 else if (ret < 0) 2665 return ret; 2666 } 2667 2668 list_for_each_entry(port, &mstb->ports, next) { 2669 struct drm_dp_mst_branch *mstb_child = NULL; 2670 2671 if (port->input || !port->ddps) 2672 continue; 2673 2674 if (port->mstb) 2675 mstb_child = drm_dp_mst_topology_get_mstb_validated( 2676 mgr, port->mstb); 2677 2678 if (mstb_child) { 2679 ret = drm_dp_check_and_send_link_address(mgr, 2680 mstb_child); 2681 drm_dp_mst_topology_put_mstb(mstb_child); 2682 if (ret == 1) 2683 changed = true; 2684 else if (ret < 0) 2685 return ret; 2686 } 2687 } 2688 2689 return changed; 2690 } 2691 2692 static void drm_dp_mst_link_probe_work(struct work_struct *work) 2693 { 2694 struct drm_dp_mst_topology_mgr *mgr = 2695 container_of(work, struct drm_dp_mst_topology_mgr, work); 2696 struct drm_device *dev = mgr->dev; 2697 struct drm_dp_mst_branch *mstb; 2698 int ret; 2699 bool clear_payload_id_table; 2700 2701 mutex_lock(&mgr->probe_lock); 2702 2703 mutex_lock(&mgr->lock); 2704 clear_payload_id_table = !mgr->payload_id_table_cleared; 2705 mgr->payload_id_table_cleared = true; 2706 2707 mstb = mgr->mst_primary; 2708 if (mstb) { 2709 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2710 if (!ret) 2711 mstb = NULL; 2712 } 2713 mutex_unlock(&mgr->lock); 2714 if (!mstb) { 2715 mutex_unlock(&mgr->probe_lock); 2716 return; 2717 } 2718 2719 /* 2720 * Certain branch devices seem to incorrectly report an available_pbn 2721 * of 0 on downstream sinks, even after clearing the 2722 * DP_PAYLOAD_ALLOCATE_* registers in 2723 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C 2724 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make 2725 * things work again. 2726 */ 2727 if (clear_payload_id_table) { 2728 drm_dbg_kms(dev, "Clearing payload ID table\n"); 2729 drm_dp_send_clear_payload_id_table(mgr, mstb); 2730 } 2731 2732 ret = drm_dp_check_and_send_link_address(mgr, mstb); 2733 drm_dp_mst_topology_put_mstb(mstb); 2734 2735 mutex_unlock(&mgr->probe_lock); 2736 if (ret > 0) 2737 drm_kms_helper_hotplug_event(dev); 2738 } 2739 2740 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 2741 u8 *guid) 2742 { 2743 u64 salt; 2744 2745 if (memchr_inv(guid, 0, 16)) 2746 return true; 2747 2748 salt = get_jiffies_64(); 2749 2750 memcpy(&guid[0], &salt, sizeof(u64)); 2751 memcpy(&guid[8], &salt, sizeof(u64)); 2752 2753 return false; 2754 } 2755 2756 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, 2757 u8 port_num, u32 offset, u8 num_bytes) 2758 { 2759 struct drm_dp_sideband_msg_req_body req; 2760 2761 req.req_type = DP_REMOTE_DPCD_READ; 2762 req.u.dpcd_read.port_number = port_num; 2763 req.u.dpcd_read.dpcd_address = offset; 2764 req.u.dpcd_read.num_bytes = num_bytes; 2765 drm_dp_encode_sideband_req(&req, msg); 2766 } 2767 2768 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr, 2769 bool up, u8 *msg, int len) 2770 { 2771 int ret; 2772 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE; 2773 int tosend, total, offset; 2774 int retries = 0; 2775 2776 retry: 2777 total = len; 2778 offset = 0; 2779 do { 2780 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total); 2781 2782 ret = drm_dp_dpcd_write(mgr->aux, regbase + offset, 2783 &msg[offset], 2784 tosend); 2785 if (ret != tosend) { 2786 if (ret == -EIO && retries < 5) { 2787 retries++; 2788 goto retry; 2789 } 2790 drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret); 2791 2792 return -EIO; 2793 } 2794 offset += tosend; 2795 total -= tosend; 2796 } while (total > 0); 2797 return 0; 2798 } 2799 2800 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr, 2801 struct drm_dp_sideband_msg_tx *txmsg) 2802 { 2803 struct drm_dp_mst_branch *mstb = txmsg->dst; 2804 u8 req_type; 2805 2806 req_type = txmsg->msg[0] & 0x7f; 2807 if (req_type == DP_CONNECTION_STATUS_NOTIFY || 2808 req_type == DP_RESOURCE_STATUS_NOTIFY || 2809 req_type == DP_CLEAR_PAYLOAD_ID_TABLE) 2810 hdr->broadcast = 1; 2811 else 2812 hdr->broadcast = 0; 2813 hdr->path_msg = txmsg->path_msg; 2814 if (hdr->broadcast) { 2815 hdr->lct = 1; 2816 hdr->lcr = 6; 2817 } else { 2818 hdr->lct = mstb->lct; 2819 hdr->lcr = mstb->lct - 1; 2820 } 2821 2822 memcpy(hdr->rad, mstb->rad, hdr->lct / 2); 2823 2824 return 0; 2825 } 2826 /* 2827 * process a single block of the next message in the sideband queue 2828 */ 2829 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr, 2830 struct drm_dp_sideband_msg_tx *txmsg, 2831 bool up) 2832 { 2833 u8 chunk[48]; 2834 struct drm_dp_sideband_msg_hdr hdr; 2835 int len, space, idx, tosend; 2836 int ret; 2837 2838 if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 2839 return 0; 2840 2841 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr)); 2842 2843 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) 2844 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND; 2845 2846 /* make hdr from dst mst */ 2847 ret = set_hdr_from_dst_qlock(&hdr, txmsg); 2848 if (ret < 0) 2849 return ret; 2850 2851 /* amount left to send in this message */ 2852 len = txmsg->cur_len - txmsg->cur_offset; 2853 2854 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */ 2855 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr); 2856 2857 tosend = min(len, space); 2858 if (len == txmsg->cur_len) 2859 hdr.somt = 1; 2860 if (space >= len) 2861 hdr.eomt = 1; 2862 2863 2864 hdr.msg_len = tosend + 1; 2865 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx); 2866 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend); 2867 /* add crc at end */ 2868 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend); 2869 idx += tosend + 1; 2870 2871 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx); 2872 if (ret) { 2873 if (drm_debug_enabled(DRM_UT_DP)) { 2874 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 2875 2876 drm_printf(&p, "sideband msg failed to send\n"); 2877 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2878 } 2879 return ret; 2880 } 2881 2882 txmsg->cur_offset += tosend; 2883 if (txmsg->cur_offset == txmsg->cur_len) { 2884 txmsg->state = DRM_DP_SIDEBAND_TX_SENT; 2885 return 1; 2886 } 2887 return 0; 2888 } 2889 2890 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr) 2891 { 2892 struct drm_dp_sideband_msg_tx *txmsg; 2893 int ret; 2894 2895 WARN_ON(!mutex_is_locked(&mgr->qlock)); 2896 2897 /* construct a chunk from the first msg in the tx_msg queue */ 2898 if (list_empty(&mgr->tx_msg_downq)) 2899 return; 2900 2901 txmsg = list_first_entry(&mgr->tx_msg_downq, 2902 struct drm_dp_sideband_msg_tx, next); 2903 ret = process_single_tx_qlock(mgr, txmsg, false); 2904 if (ret < 0) { 2905 drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret); 2906 list_del(&txmsg->next); 2907 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 2908 wake_up_all(&mgr->tx_waitq); 2909 } 2910 } 2911 2912 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr, 2913 struct drm_dp_sideband_msg_tx *txmsg) 2914 { 2915 mutex_lock(&mgr->qlock); 2916 list_add_tail(&txmsg->next, &mgr->tx_msg_downq); 2917 2918 if (drm_debug_enabled(DRM_UT_DP)) { 2919 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 2920 2921 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2922 } 2923 2924 if (list_is_singular(&mgr->tx_msg_downq)) 2925 process_single_down_tx_qlock(mgr); 2926 mutex_unlock(&mgr->qlock); 2927 } 2928 2929 static void 2930 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr, 2931 struct drm_dp_link_address_ack_reply *reply) 2932 { 2933 struct drm_dp_link_addr_reply_port *port_reply; 2934 int i; 2935 2936 for (i = 0; i < reply->nports; i++) { 2937 port_reply = &reply->ports[i]; 2938 drm_dbg_kms(mgr->dev, 2939 "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n", 2940 i, 2941 port_reply->input_port, 2942 port_reply->peer_device_type, 2943 port_reply->port_number, 2944 port_reply->dpcd_revision, 2945 port_reply->mcs, 2946 port_reply->ddps, 2947 port_reply->legacy_device_plug_status, 2948 port_reply->num_sdp_streams, 2949 port_reply->num_sdp_stream_sinks); 2950 } 2951 } 2952 2953 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2954 struct drm_dp_mst_branch *mstb) 2955 { 2956 struct drm_dp_sideband_msg_tx *txmsg; 2957 struct drm_dp_link_address_ack_reply *reply; 2958 struct drm_dp_mst_port *port, *tmp; 2959 int i, ret, port_mask = 0; 2960 bool changed = false; 2961 2962 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 2963 if (!txmsg) 2964 return -ENOMEM; 2965 2966 txmsg->dst = mstb; 2967 build_link_address(txmsg); 2968 2969 mstb->link_address_sent = true; 2970 drm_dp_queue_down_tx(mgr, txmsg); 2971 2972 /* FIXME: Actually do some real error handling here */ 2973 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 2974 if (ret <= 0) { 2975 drm_err(mgr->dev, "Sending link address failed with %d\n", ret); 2976 goto out; 2977 } 2978 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 2979 drm_err(mgr->dev, "link address NAK received\n"); 2980 ret = -EIO; 2981 goto out; 2982 } 2983 2984 reply = &txmsg->reply.u.link_addr; 2985 drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports); 2986 drm_dp_dump_link_address(mgr, reply); 2987 2988 ret = drm_dp_check_mstb_guid(mstb, reply->guid); 2989 if (ret) { 2990 char buf[64]; 2991 2992 drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf)); 2993 drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret); 2994 goto out; 2995 } 2996 2997 for (i = 0; i < reply->nports; i++) { 2998 port_mask |= BIT(reply->ports[i].port_number); 2999 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev, 3000 &reply->ports[i]); 3001 if (ret == 1) 3002 changed = true; 3003 else if (ret < 0) 3004 goto out; 3005 } 3006 3007 /* Prune any ports that are currently a part of mstb in our in-memory 3008 * topology, but were not seen in this link address. Usually this 3009 * means that they were removed while the topology was out of sync, 3010 * e.g. during suspend/resume 3011 */ 3012 mutex_lock(&mgr->lock); 3013 list_for_each_entry_safe(port, tmp, &mstb->ports, next) { 3014 if (port_mask & BIT(port->port_num)) 3015 continue; 3016 3017 drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n", 3018 port->port_num); 3019 list_del(&port->next); 3020 drm_dp_mst_topology_put_port(port); 3021 changed = true; 3022 } 3023 mutex_unlock(&mgr->lock); 3024 3025 out: 3026 if (ret <= 0) 3027 mstb->link_address_sent = false; 3028 kfree(txmsg); 3029 return ret < 0 ? ret : changed; 3030 } 3031 3032 static void 3033 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 3034 struct drm_dp_mst_branch *mstb) 3035 { 3036 struct drm_dp_sideband_msg_tx *txmsg; 3037 int ret; 3038 3039 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3040 if (!txmsg) 3041 return; 3042 3043 txmsg->dst = mstb; 3044 build_clear_payload_id_table(txmsg); 3045 3046 drm_dp_queue_down_tx(mgr, txmsg); 3047 3048 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3049 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3050 drm_dbg_kms(mgr->dev, "clear payload table id nak received\n"); 3051 3052 kfree(txmsg); 3053 } 3054 3055 static int 3056 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 3057 struct drm_dp_mst_branch *mstb, 3058 struct drm_dp_mst_port *port) 3059 { 3060 struct drm_dp_enum_path_resources_ack_reply *path_res; 3061 struct drm_dp_sideband_msg_tx *txmsg; 3062 int ret; 3063 3064 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3065 if (!txmsg) 3066 return -ENOMEM; 3067 3068 txmsg->dst = mstb; 3069 build_enum_path_resources(txmsg, port->port_num); 3070 3071 drm_dp_queue_down_tx(mgr, txmsg); 3072 3073 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3074 if (ret > 0) { 3075 ret = 0; 3076 path_res = &txmsg->reply.u.path_resources; 3077 3078 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3079 drm_dbg_kms(mgr->dev, "enum path resources nak received\n"); 3080 } else { 3081 if (port->port_num != path_res->port_number) 3082 DRM_ERROR("got incorrect port in response\n"); 3083 3084 drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n", 3085 path_res->port_number, 3086 path_res->full_payload_bw_number, 3087 path_res->avail_payload_bw_number); 3088 3089 /* 3090 * If something changed, make sure we send a 3091 * hotplug 3092 */ 3093 if (port->full_pbn != path_res->full_payload_bw_number || 3094 port->fec_capable != path_res->fec_capable) 3095 ret = 1; 3096 3097 port->full_pbn = path_res->full_payload_bw_number; 3098 port->fec_capable = path_res->fec_capable; 3099 } 3100 } 3101 3102 kfree(txmsg); 3103 return ret; 3104 } 3105 3106 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb) 3107 { 3108 if (!mstb->port_parent) 3109 return NULL; 3110 3111 if (mstb->port_parent->mstb != mstb) 3112 return mstb->port_parent; 3113 3114 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent); 3115 } 3116 3117 /* 3118 * Searches upwards in the topology starting from mstb to try to find the 3119 * closest available parent of mstb that's still connected to the rest of the 3120 * topology. This can be used in order to perform operations like releasing 3121 * payloads, where the branch device which owned the payload may no longer be 3122 * around and thus would require that the payload on the last living relative 3123 * be freed instead. 3124 */ 3125 static struct drm_dp_mst_branch * 3126 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr, 3127 struct drm_dp_mst_branch *mstb, 3128 int *port_num) 3129 { 3130 struct drm_dp_mst_branch *rmstb = NULL; 3131 struct drm_dp_mst_port *found_port; 3132 3133 mutex_lock(&mgr->lock); 3134 if (!mgr->mst_primary) 3135 goto out; 3136 3137 do { 3138 found_port = drm_dp_get_last_connected_port_to_mstb(mstb); 3139 if (!found_port) 3140 break; 3141 3142 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) { 3143 rmstb = found_port->parent; 3144 *port_num = found_port->port_num; 3145 } else { 3146 /* Search again, starting from this parent */ 3147 mstb = found_port->parent; 3148 } 3149 } while (!rmstb); 3150 out: 3151 mutex_unlock(&mgr->lock); 3152 return rmstb; 3153 } 3154 3155 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr, 3156 struct drm_dp_mst_port *port, 3157 int id, 3158 int pbn) 3159 { 3160 struct drm_dp_sideband_msg_tx *txmsg; 3161 struct drm_dp_mst_branch *mstb; 3162 int ret, port_num; 3163 u8 sinks[DRM_DP_MAX_SDP_STREAMS]; 3164 int i; 3165 3166 port_num = port->port_num; 3167 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3168 if (!mstb) { 3169 mstb = drm_dp_get_last_connected_port_and_mstb(mgr, 3170 port->parent, 3171 &port_num); 3172 3173 if (!mstb) 3174 return -EINVAL; 3175 } 3176 3177 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3178 if (!txmsg) { 3179 ret = -ENOMEM; 3180 goto fail_put; 3181 } 3182 3183 for (i = 0; i < port->num_sdp_streams; i++) 3184 sinks[i] = i; 3185 3186 txmsg->dst = mstb; 3187 build_allocate_payload(txmsg, port_num, 3188 id, 3189 pbn, port->num_sdp_streams, sinks); 3190 3191 drm_dp_queue_down_tx(mgr, txmsg); 3192 3193 /* 3194 * FIXME: there is a small chance that between getting the last 3195 * connected mstb and sending the payload message, the last connected 3196 * mstb could also be removed from the topology. In the future, this 3197 * needs to be fixed by restarting the 3198 * drm_dp_get_last_connected_port_and_mstb() search in the event of a 3199 * timeout if the topology is still connected to the system. 3200 */ 3201 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3202 if (ret > 0) { 3203 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3204 ret = -EINVAL; 3205 else 3206 ret = 0; 3207 } 3208 kfree(txmsg); 3209 fail_put: 3210 drm_dp_mst_topology_put_mstb(mstb); 3211 return ret; 3212 } 3213 3214 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr, 3215 struct drm_dp_mst_port *port, bool power_up) 3216 { 3217 struct drm_dp_sideband_msg_tx *txmsg; 3218 int ret; 3219 3220 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3221 if (!port) 3222 return -EINVAL; 3223 3224 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3225 if (!txmsg) { 3226 drm_dp_mst_topology_put_port(port); 3227 return -ENOMEM; 3228 } 3229 3230 txmsg->dst = port->parent; 3231 build_power_updown_phy(txmsg, port->port_num, power_up); 3232 drm_dp_queue_down_tx(mgr, txmsg); 3233 3234 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg); 3235 if (ret > 0) { 3236 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3237 ret = -EINVAL; 3238 else 3239 ret = 0; 3240 } 3241 kfree(txmsg); 3242 drm_dp_mst_topology_put_port(port); 3243 3244 return ret; 3245 } 3246 EXPORT_SYMBOL(drm_dp_send_power_updown_phy); 3247 3248 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr, 3249 struct drm_dp_mst_port *port, 3250 struct drm_dp_query_stream_enc_status_ack_reply *status) 3251 { 3252 struct drm_dp_sideband_msg_tx *txmsg; 3253 u8 nonce[7]; 3254 int ret; 3255 3256 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3257 if (!txmsg) 3258 return -ENOMEM; 3259 3260 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3261 if (!port) { 3262 ret = -EINVAL; 3263 goto out_get_port; 3264 } 3265 3266 get_random_bytes(nonce, sizeof(nonce)); 3267 3268 /* 3269 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message 3270 * transaction at the MST Branch device directly connected to the 3271 * Source" 3272 */ 3273 txmsg->dst = mgr->mst_primary; 3274 3275 build_query_stream_enc_status(txmsg, port->vcpi.vcpi, nonce); 3276 3277 drm_dp_queue_down_tx(mgr, txmsg); 3278 3279 ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg); 3280 if (ret < 0) { 3281 goto out; 3282 } else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3283 drm_dbg_kms(mgr->dev, "query encryption status nak received\n"); 3284 ret = -ENXIO; 3285 goto out; 3286 } 3287 3288 ret = 0; 3289 memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status)); 3290 3291 out: 3292 drm_dp_mst_topology_put_port(port); 3293 out_get_port: 3294 kfree(txmsg); 3295 return ret; 3296 } 3297 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status); 3298 3299 static int drm_dp_create_payload_step1(struct drm_dp_mst_topology_mgr *mgr, 3300 int id, 3301 struct drm_dp_payload *payload) 3302 { 3303 int ret; 3304 3305 ret = drm_dp_dpcd_write_payload(mgr, id, payload); 3306 if (ret < 0) { 3307 payload->payload_state = 0; 3308 return ret; 3309 } 3310 payload->payload_state = DP_PAYLOAD_LOCAL; 3311 return 0; 3312 } 3313 3314 static int drm_dp_create_payload_step2(struct drm_dp_mst_topology_mgr *mgr, 3315 struct drm_dp_mst_port *port, 3316 int id, 3317 struct drm_dp_payload *payload) 3318 { 3319 int ret; 3320 3321 ret = drm_dp_payload_send_msg(mgr, port, id, port->vcpi.pbn); 3322 if (ret < 0) 3323 return ret; 3324 payload->payload_state = DP_PAYLOAD_REMOTE; 3325 return ret; 3326 } 3327 3328 static int drm_dp_destroy_payload_step1(struct drm_dp_mst_topology_mgr *mgr, 3329 struct drm_dp_mst_port *port, 3330 int id, 3331 struct drm_dp_payload *payload) 3332 { 3333 drm_dbg_kms(mgr->dev, "\n"); 3334 /* it's okay for these to fail */ 3335 if (port) { 3336 drm_dp_payload_send_msg(mgr, port, id, 0); 3337 } 3338 3339 drm_dp_dpcd_write_payload(mgr, id, payload); 3340 payload->payload_state = DP_PAYLOAD_DELETE_LOCAL; 3341 return 0; 3342 } 3343 3344 static int drm_dp_destroy_payload_step2(struct drm_dp_mst_topology_mgr *mgr, 3345 int id, 3346 struct drm_dp_payload *payload) 3347 { 3348 payload->payload_state = 0; 3349 return 0; 3350 } 3351 3352 /** 3353 * drm_dp_update_payload_part1() - Execute payload update part 1 3354 * @mgr: manager to use. 3355 * @start_slot: this is the cur slot 3356 * 3357 * NOTE: start_slot is a temporary workaround for non-atomic drivers, 3358 * this will be removed when non-atomic mst helpers are moved out of the helper 3359 * 3360 * This iterates over all proposed virtual channels, and tries to 3361 * allocate space in the link for them. For 0->slots transitions, 3362 * this step just writes the VCPI to the MST device. For slots->0 3363 * transitions, this writes the updated VCPIs and removes the 3364 * remote VC payloads. 3365 * 3366 * after calling this the driver should generate ACT and payload 3367 * packets. 3368 */ 3369 int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr *mgr, int start_slot) 3370 { 3371 struct drm_dp_payload req_payload; 3372 struct drm_dp_mst_port *port; 3373 int i, j; 3374 int cur_slots = start_slot; 3375 bool skip; 3376 3377 mutex_lock(&mgr->payload_lock); 3378 for (i = 0; i < mgr->max_payloads; i++) { 3379 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i]; 3380 struct drm_dp_payload *payload = &mgr->payloads[i]; 3381 bool put_port = false; 3382 3383 /* solve the current payloads - compare to the hw ones 3384 - update the hw view */ 3385 req_payload.start_slot = cur_slots; 3386 if (vcpi) { 3387 port = container_of(vcpi, struct drm_dp_mst_port, 3388 vcpi); 3389 3390 mutex_lock(&mgr->lock); 3391 skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary); 3392 mutex_unlock(&mgr->lock); 3393 3394 if (skip) { 3395 drm_dbg_kms(mgr->dev, 3396 "Virtual channel %d is not in current topology\n", 3397 i); 3398 continue; 3399 } 3400 /* Validated ports don't matter if we're releasing 3401 * VCPI 3402 */ 3403 if (vcpi->num_slots) { 3404 port = drm_dp_mst_topology_get_port_validated( 3405 mgr, port); 3406 if (!port) { 3407 if (vcpi->num_slots == payload->num_slots) { 3408 cur_slots += vcpi->num_slots; 3409 payload->start_slot = req_payload.start_slot; 3410 continue; 3411 } else { 3412 drm_dbg_kms(mgr->dev, 3413 "Fail:set payload to invalid sink"); 3414 mutex_unlock(&mgr->payload_lock); 3415 return -EINVAL; 3416 } 3417 } 3418 put_port = true; 3419 } 3420 3421 req_payload.num_slots = vcpi->num_slots; 3422 req_payload.vcpi = vcpi->vcpi; 3423 } else { 3424 port = NULL; 3425 req_payload.num_slots = 0; 3426 } 3427 3428 payload->start_slot = req_payload.start_slot; 3429 /* work out what is required to happen with this payload */ 3430 if (payload->num_slots != req_payload.num_slots) { 3431 3432 /* need to push an update for this payload */ 3433 if (req_payload.num_slots) { 3434 drm_dp_create_payload_step1(mgr, vcpi->vcpi, 3435 &req_payload); 3436 payload->num_slots = req_payload.num_slots; 3437 payload->vcpi = req_payload.vcpi; 3438 3439 } else if (payload->num_slots) { 3440 payload->num_slots = 0; 3441 drm_dp_destroy_payload_step1(mgr, port, 3442 payload->vcpi, 3443 payload); 3444 req_payload.payload_state = 3445 payload->payload_state; 3446 payload->start_slot = 0; 3447 } 3448 payload->payload_state = req_payload.payload_state; 3449 } 3450 cur_slots += req_payload.num_slots; 3451 3452 if (put_port) 3453 drm_dp_mst_topology_put_port(port); 3454 } 3455 3456 for (i = 0; i < mgr->max_payloads; /* do nothing */) { 3457 if (mgr->payloads[i].payload_state != DP_PAYLOAD_DELETE_LOCAL) { 3458 i++; 3459 continue; 3460 } 3461 3462 drm_dbg_kms(mgr->dev, "removing payload %d\n", i); 3463 for (j = i; j < mgr->max_payloads - 1; j++) { 3464 mgr->payloads[j] = mgr->payloads[j + 1]; 3465 mgr->proposed_vcpis[j] = mgr->proposed_vcpis[j + 1]; 3466 3467 if (mgr->proposed_vcpis[j] && 3468 mgr->proposed_vcpis[j]->num_slots) { 3469 set_bit(j + 1, &mgr->payload_mask); 3470 } else { 3471 clear_bit(j + 1, &mgr->payload_mask); 3472 } 3473 } 3474 3475 memset(&mgr->payloads[mgr->max_payloads - 1], 0, 3476 sizeof(struct drm_dp_payload)); 3477 mgr->proposed_vcpis[mgr->max_payloads - 1] = NULL; 3478 clear_bit(mgr->max_payloads, &mgr->payload_mask); 3479 } 3480 mutex_unlock(&mgr->payload_lock); 3481 3482 return 0; 3483 } 3484 EXPORT_SYMBOL(drm_dp_update_payload_part1); 3485 3486 /** 3487 * drm_dp_update_payload_part2() - Execute payload update part 2 3488 * @mgr: manager to use. 3489 * 3490 * This iterates over all proposed virtual channels, and tries to 3491 * allocate space in the link for them. For 0->slots transitions, 3492 * this step writes the remote VC payload commands. For slots->0 3493 * this just resets some internal state. 3494 */ 3495 int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr *mgr) 3496 { 3497 struct drm_dp_mst_port *port; 3498 int i; 3499 int ret = 0; 3500 bool skip; 3501 3502 mutex_lock(&mgr->payload_lock); 3503 for (i = 0; i < mgr->max_payloads; i++) { 3504 3505 if (!mgr->proposed_vcpis[i]) 3506 continue; 3507 3508 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi); 3509 3510 mutex_lock(&mgr->lock); 3511 skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary); 3512 mutex_unlock(&mgr->lock); 3513 3514 if (skip) 3515 continue; 3516 3517 drm_dbg_kms(mgr->dev, "payload %d %d\n", i, mgr->payloads[i].payload_state); 3518 if (mgr->payloads[i].payload_state == DP_PAYLOAD_LOCAL) { 3519 ret = drm_dp_create_payload_step2(mgr, port, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]); 3520 } else if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) { 3521 ret = drm_dp_destroy_payload_step2(mgr, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]); 3522 } 3523 if (ret) { 3524 mutex_unlock(&mgr->payload_lock); 3525 return ret; 3526 } 3527 } 3528 mutex_unlock(&mgr->payload_lock); 3529 return 0; 3530 } 3531 EXPORT_SYMBOL(drm_dp_update_payload_part2); 3532 3533 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 3534 struct drm_dp_mst_port *port, 3535 int offset, int size, u8 *bytes) 3536 { 3537 int ret = 0; 3538 struct drm_dp_sideband_msg_tx *txmsg; 3539 struct drm_dp_mst_branch *mstb; 3540 3541 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3542 if (!mstb) 3543 return -EINVAL; 3544 3545 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3546 if (!txmsg) { 3547 ret = -ENOMEM; 3548 goto fail_put; 3549 } 3550 3551 build_dpcd_read(txmsg, port->port_num, offset, size); 3552 txmsg->dst = port->parent; 3553 3554 drm_dp_queue_down_tx(mgr, txmsg); 3555 3556 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3557 if (ret < 0) 3558 goto fail_free; 3559 3560 if (txmsg->reply.reply_type == 1) { 3561 drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n", 3562 mstb, port->port_num, offset, size); 3563 ret = -EIO; 3564 goto fail_free; 3565 } 3566 3567 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) { 3568 ret = -EPROTO; 3569 goto fail_free; 3570 } 3571 3572 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes, 3573 size); 3574 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret); 3575 3576 fail_free: 3577 kfree(txmsg); 3578 fail_put: 3579 drm_dp_mst_topology_put_mstb(mstb); 3580 3581 return ret; 3582 } 3583 3584 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 3585 struct drm_dp_mst_port *port, 3586 int offset, int size, u8 *bytes) 3587 { 3588 int ret; 3589 struct drm_dp_sideband_msg_tx *txmsg; 3590 struct drm_dp_mst_branch *mstb; 3591 3592 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3593 if (!mstb) 3594 return -EINVAL; 3595 3596 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3597 if (!txmsg) { 3598 ret = -ENOMEM; 3599 goto fail_put; 3600 } 3601 3602 build_dpcd_write(txmsg, port->port_num, offset, size, bytes); 3603 txmsg->dst = mstb; 3604 3605 drm_dp_queue_down_tx(mgr, txmsg); 3606 3607 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3608 if (ret > 0) { 3609 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3610 ret = -EIO; 3611 else 3612 ret = size; 3613 } 3614 3615 kfree(txmsg); 3616 fail_put: 3617 drm_dp_mst_topology_put_mstb(mstb); 3618 return ret; 3619 } 3620 3621 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type) 3622 { 3623 struct drm_dp_sideband_msg_reply_body reply; 3624 3625 reply.reply_type = DP_SIDEBAND_REPLY_ACK; 3626 reply.req_type = req_type; 3627 drm_dp_encode_sideband_reply(&reply, msg); 3628 return 0; 3629 } 3630 3631 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr, 3632 struct drm_dp_mst_branch *mstb, 3633 int req_type, bool broadcast) 3634 { 3635 struct drm_dp_sideband_msg_tx *txmsg; 3636 3637 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3638 if (!txmsg) 3639 return -ENOMEM; 3640 3641 txmsg->dst = mstb; 3642 drm_dp_encode_up_ack_reply(txmsg, req_type); 3643 3644 mutex_lock(&mgr->qlock); 3645 /* construct a chunk from the first msg in the tx_msg queue */ 3646 process_single_tx_qlock(mgr, txmsg, true); 3647 mutex_unlock(&mgr->qlock); 3648 3649 kfree(txmsg); 3650 return 0; 3651 } 3652 3653 /** 3654 * drm_dp_get_vc_payload_bw - get the VC payload BW for an MST link 3655 * @mgr: The &drm_dp_mst_topology_mgr to use 3656 * @link_rate: link rate in 10kbits/s units 3657 * @link_lane_count: lane count 3658 * 3659 * Calculate the total bandwidth of a MultiStream Transport link. The returned 3660 * value is in units of PBNs/(timeslots/1 MTP). This value can be used to 3661 * convert the number of PBNs required for a given stream to the number of 3662 * timeslots this stream requires in each MTP. 3663 */ 3664 int drm_dp_get_vc_payload_bw(const struct drm_dp_mst_topology_mgr *mgr, 3665 int link_rate, int link_lane_count) 3666 { 3667 if (link_rate == 0 || link_lane_count == 0) 3668 drm_dbg_kms(mgr->dev, "invalid link rate/lane count: (%d / %d)\n", 3669 link_rate, link_lane_count); 3670 3671 /* See DP v2.0 2.6.4.2, VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */ 3672 return link_rate * link_lane_count / 54000; 3673 } 3674 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw); 3675 3676 /** 3677 * drm_dp_read_mst_cap() - check whether or not a sink supports MST 3678 * @aux: The DP AUX channel to use 3679 * @dpcd: A cached copy of the DPCD capabilities for this sink 3680 * 3681 * Returns: %True if the sink supports MST, %false otherwise 3682 */ 3683 bool drm_dp_read_mst_cap(struct drm_dp_aux *aux, 3684 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3685 { 3686 u8 mstm_cap; 3687 3688 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12) 3689 return false; 3690 3691 if (drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &mstm_cap) != 1) 3692 return false; 3693 3694 return mstm_cap & DP_MST_CAP; 3695 } 3696 EXPORT_SYMBOL(drm_dp_read_mst_cap); 3697 3698 /** 3699 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager 3700 * @mgr: manager to set state for 3701 * @mst_state: true to enable MST on this connector - false to disable. 3702 * 3703 * This is called by the driver when it detects an MST capable device plugged 3704 * into a DP MST capable port, or when a DP MST capable device is unplugged. 3705 */ 3706 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state) 3707 { 3708 int ret = 0; 3709 struct drm_dp_mst_branch *mstb = NULL; 3710 3711 mutex_lock(&mgr->payload_lock); 3712 mutex_lock(&mgr->lock); 3713 if (mst_state == mgr->mst_state) 3714 goto out_unlock; 3715 3716 mgr->mst_state = mst_state; 3717 /* set the device into MST mode */ 3718 if (mst_state) { 3719 struct drm_dp_payload reset_pay; 3720 int lane_count; 3721 int link_rate; 3722 3723 WARN_ON(mgr->mst_primary); 3724 3725 /* get dpcd info */ 3726 ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd); 3727 if (ret < 0) { 3728 drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n", 3729 mgr->aux->name, ret); 3730 goto out_unlock; 3731 } 3732 3733 lane_count = min_t(int, mgr->dpcd[2] & DP_MAX_LANE_COUNT_MASK, mgr->max_lane_count); 3734 link_rate = min_t(int, drm_dp_bw_code_to_link_rate(mgr->dpcd[1]), mgr->max_link_rate); 3735 mgr->pbn_div = drm_dp_get_vc_payload_bw(mgr, 3736 link_rate, 3737 lane_count); 3738 if (mgr->pbn_div == 0) { 3739 ret = -EINVAL; 3740 goto out_unlock; 3741 } 3742 3743 /* add initial branch device at LCT 1 */ 3744 mstb = drm_dp_add_mst_branch_device(1, NULL); 3745 if (mstb == NULL) { 3746 ret = -ENOMEM; 3747 goto out_unlock; 3748 } 3749 mstb->mgr = mgr; 3750 3751 /* give this the main reference */ 3752 mgr->mst_primary = mstb; 3753 drm_dp_mst_topology_get_mstb(mgr->mst_primary); 3754 3755 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3756 DP_MST_EN | 3757 DP_UP_REQ_EN | 3758 DP_UPSTREAM_IS_SRC); 3759 if (ret < 0) 3760 goto out_unlock; 3761 3762 reset_pay.start_slot = 0; 3763 reset_pay.num_slots = 0x3f; 3764 drm_dp_dpcd_write_payload(mgr, 0, &reset_pay); 3765 3766 queue_work(system_long_wq, &mgr->work); 3767 3768 ret = 0; 3769 } else { 3770 /* disable MST on the device */ 3771 mstb = mgr->mst_primary; 3772 mgr->mst_primary = NULL; 3773 /* this can fail if the device is gone */ 3774 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0); 3775 ret = 0; 3776 memset(mgr->payloads, 0, 3777 mgr->max_payloads * sizeof(mgr->payloads[0])); 3778 memset(mgr->proposed_vcpis, 0, 3779 mgr->max_payloads * sizeof(mgr->proposed_vcpis[0])); 3780 mgr->payload_mask = 0; 3781 set_bit(0, &mgr->payload_mask); 3782 mgr->vcpi_mask = 0; 3783 mgr->payload_id_table_cleared = false; 3784 } 3785 3786 out_unlock: 3787 mutex_unlock(&mgr->lock); 3788 mutex_unlock(&mgr->payload_lock); 3789 if (mstb) 3790 drm_dp_mst_topology_put_mstb(mstb); 3791 return ret; 3792 3793 } 3794 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst); 3795 3796 static void 3797 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb) 3798 { 3799 struct drm_dp_mst_port *port; 3800 3801 /* The link address will need to be re-sent on resume */ 3802 mstb->link_address_sent = false; 3803 3804 list_for_each_entry(port, &mstb->ports, next) 3805 if (port->mstb) 3806 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb); 3807 } 3808 3809 /** 3810 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager 3811 * @mgr: manager to suspend 3812 * 3813 * This function tells the MST device that we can't handle UP messages 3814 * anymore. This should stop it from sending any since we are suspended. 3815 */ 3816 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr) 3817 { 3818 mutex_lock(&mgr->lock); 3819 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3820 DP_MST_EN | DP_UPSTREAM_IS_SRC); 3821 mutex_unlock(&mgr->lock); 3822 flush_work(&mgr->up_req_work); 3823 flush_work(&mgr->work); 3824 flush_work(&mgr->delayed_destroy_work); 3825 3826 mutex_lock(&mgr->lock); 3827 if (mgr->mst_state && mgr->mst_primary) 3828 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary); 3829 mutex_unlock(&mgr->lock); 3830 } 3831 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend); 3832 3833 /** 3834 * drm_dp_mst_topology_mgr_resume() - resume the MST manager 3835 * @mgr: manager to resume 3836 * @sync: whether or not to perform topology reprobing synchronously 3837 * 3838 * This will fetch DPCD and see if the device is still there, 3839 * if it is, it will rewrite the MSTM control bits, and return. 3840 * 3841 * If the device fails this returns -1, and the driver should do 3842 * a full MST reprobe, in case we were undocked. 3843 * 3844 * During system resume (where it is assumed that the driver will be calling 3845 * drm_atomic_helper_resume()) this function should be called beforehand with 3846 * @sync set to true. In contexts like runtime resume where the driver is not 3847 * expected to be calling drm_atomic_helper_resume(), this function should be 3848 * called with @sync set to false in order to avoid deadlocking. 3849 * 3850 * Returns: -1 if the MST topology was removed while we were suspended, 0 3851 * otherwise. 3852 */ 3853 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr, 3854 bool sync) 3855 { 3856 int ret; 3857 u8 guid[16]; 3858 3859 mutex_lock(&mgr->lock); 3860 if (!mgr->mst_primary) 3861 goto out_fail; 3862 3863 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd, 3864 DP_RECEIVER_CAP_SIZE); 3865 if (ret != DP_RECEIVER_CAP_SIZE) { 3866 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3867 goto out_fail; 3868 } 3869 3870 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3871 DP_MST_EN | 3872 DP_UP_REQ_EN | 3873 DP_UPSTREAM_IS_SRC); 3874 if (ret < 0) { 3875 drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n"); 3876 goto out_fail; 3877 } 3878 3879 /* Some hubs forget their guids after they resume */ 3880 ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16); 3881 if (ret != 16) { 3882 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3883 goto out_fail; 3884 } 3885 3886 ret = drm_dp_check_mstb_guid(mgr->mst_primary, guid); 3887 if (ret) { 3888 drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n"); 3889 goto out_fail; 3890 } 3891 3892 /* 3893 * For the final step of resuming the topology, we need to bring the 3894 * state of our in-memory topology back into sync with reality. So, 3895 * restart the probing process as if we're probing a new hub 3896 */ 3897 queue_work(system_long_wq, &mgr->work); 3898 mutex_unlock(&mgr->lock); 3899 3900 if (sync) { 3901 drm_dbg_kms(mgr->dev, 3902 "Waiting for link probe work to finish re-syncing topology...\n"); 3903 flush_work(&mgr->work); 3904 } 3905 3906 return 0; 3907 3908 out_fail: 3909 mutex_unlock(&mgr->lock); 3910 return -1; 3911 } 3912 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume); 3913 3914 static bool 3915 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up, 3916 struct drm_dp_mst_branch **mstb) 3917 { 3918 int len; 3919 u8 replyblock[32]; 3920 int replylen, curreply; 3921 int ret; 3922 u8 hdrlen; 3923 struct drm_dp_sideband_msg_hdr hdr; 3924 struct drm_dp_sideband_msg_rx *msg = 3925 up ? &mgr->up_req_recv : &mgr->down_rep_recv; 3926 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : 3927 DP_SIDEBAND_MSG_DOWN_REP_BASE; 3928 3929 if (!up) 3930 *mstb = NULL; 3931 3932 len = min(mgr->max_dpcd_transaction_bytes, 16); 3933 ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len); 3934 if (ret != len) { 3935 drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret); 3936 return false; 3937 } 3938 3939 ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen); 3940 if (ret == false) { 3941 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 3942 1, replyblock, len, false); 3943 drm_dbg_kms(mgr->dev, "ERROR: failed header\n"); 3944 return false; 3945 } 3946 3947 if (!up) { 3948 /* Caller is responsible for giving back this reference */ 3949 *mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad); 3950 if (!*mstb) { 3951 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct); 3952 return false; 3953 } 3954 } 3955 3956 if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) { 3957 drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]); 3958 return false; 3959 } 3960 3961 replylen = min(msg->curchunk_len, (u8)(len - hdrlen)); 3962 ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen); 3963 if (!ret) { 3964 drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]); 3965 return false; 3966 } 3967 3968 replylen = msg->curchunk_len + msg->curchunk_hdrlen - len; 3969 curreply = len; 3970 while (replylen > 0) { 3971 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16); 3972 ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply, 3973 replyblock, len); 3974 if (ret != len) { 3975 drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n", 3976 len, ret); 3977 return false; 3978 } 3979 3980 ret = drm_dp_sideband_append_payload(msg, replyblock, len); 3981 if (!ret) { 3982 drm_dbg_kms(mgr->dev, "failed to build sideband msg\n"); 3983 return false; 3984 } 3985 3986 curreply += len; 3987 replylen -= len; 3988 } 3989 return true; 3990 } 3991 3992 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr) 3993 { 3994 struct drm_dp_sideband_msg_tx *txmsg; 3995 struct drm_dp_mst_branch *mstb = NULL; 3996 struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv; 3997 3998 if (!drm_dp_get_one_sb_msg(mgr, false, &mstb)) 3999 goto out; 4000 4001 /* Multi-packet message transmission, don't clear the reply */ 4002 if (!msg->have_eomt) 4003 goto out; 4004 4005 /* find the message */ 4006 mutex_lock(&mgr->qlock); 4007 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 4008 struct drm_dp_sideband_msg_tx, next); 4009 mutex_unlock(&mgr->qlock); 4010 4011 /* Were we actually expecting a response, and from this mstb? */ 4012 if (!txmsg || txmsg->dst != mstb) { 4013 struct drm_dp_sideband_msg_hdr *hdr; 4014 4015 hdr = &msg->initial_hdr; 4016 drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n", 4017 mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]); 4018 goto out_clear_reply; 4019 } 4020 4021 drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply); 4022 4023 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 4024 drm_dbg_kms(mgr->dev, 4025 "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n", 4026 txmsg->reply.req_type, 4027 drm_dp_mst_req_type_str(txmsg->reply.req_type), 4028 txmsg->reply.u.nak.reason, 4029 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason), 4030 txmsg->reply.u.nak.nak_data); 4031 } 4032 4033 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 4034 drm_dp_mst_topology_put_mstb(mstb); 4035 4036 mutex_lock(&mgr->qlock); 4037 txmsg->state = DRM_DP_SIDEBAND_TX_RX; 4038 list_del(&txmsg->next); 4039 mutex_unlock(&mgr->qlock); 4040 4041 wake_up_all(&mgr->tx_waitq); 4042 4043 return 0; 4044 4045 out_clear_reply: 4046 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 4047 out: 4048 if (mstb) 4049 drm_dp_mst_topology_put_mstb(mstb); 4050 4051 return 0; 4052 } 4053 4054 static inline bool 4055 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr, 4056 struct drm_dp_pending_up_req *up_req) 4057 { 4058 struct drm_dp_mst_branch *mstb = NULL; 4059 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg; 4060 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr; 4061 bool hotplug = false; 4062 4063 if (hdr->broadcast) { 4064 const u8 *guid = NULL; 4065 4066 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) 4067 guid = msg->u.conn_stat.guid; 4068 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY) 4069 guid = msg->u.resource_stat.guid; 4070 4071 if (guid) 4072 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid); 4073 } else { 4074 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad); 4075 } 4076 4077 if (!mstb) { 4078 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct); 4079 return false; 4080 } 4081 4082 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */ 4083 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) { 4084 drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat); 4085 hotplug = true; 4086 } 4087 4088 drm_dp_mst_topology_put_mstb(mstb); 4089 return hotplug; 4090 } 4091 4092 static void drm_dp_mst_up_req_work(struct work_struct *work) 4093 { 4094 struct drm_dp_mst_topology_mgr *mgr = 4095 container_of(work, struct drm_dp_mst_topology_mgr, 4096 up_req_work); 4097 struct drm_dp_pending_up_req *up_req; 4098 bool send_hotplug = false; 4099 4100 mutex_lock(&mgr->probe_lock); 4101 while (true) { 4102 mutex_lock(&mgr->up_req_lock); 4103 up_req = list_first_entry_or_null(&mgr->up_req_list, 4104 struct drm_dp_pending_up_req, 4105 next); 4106 if (up_req) 4107 list_del(&up_req->next); 4108 mutex_unlock(&mgr->up_req_lock); 4109 4110 if (!up_req) 4111 break; 4112 4113 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req); 4114 kfree(up_req); 4115 } 4116 mutex_unlock(&mgr->probe_lock); 4117 4118 if (send_hotplug) 4119 drm_kms_helper_hotplug_event(mgr->dev); 4120 } 4121 4122 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr) 4123 { 4124 struct drm_dp_pending_up_req *up_req; 4125 4126 if (!drm_dp_get_one_sb_msg(mgr, true, NULL)) 4127 goto out; 4128 4129 if (!mgr->up_req_recv.have_eomt) 4130 return 0; 4131 4132 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL); 4133 if (!up_req) 4134 return -ENOMEM; 4135 4136 INIT_LIST_HEAD(&up_req->next); 4137 4138 drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg); 4139 4140 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY && 4141 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) { 4142 drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n", 4143 up_req->msg.req_type); 4144 kfree(up_req); 4145 goto out; 4146 } 4147 4148 drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type, 4149 false); 4150 4151 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) { 4152 const struct drm_dp_connection_status_notify *conn_stat = 4153 &up_req->msg.u.conn_stat; 4154 4155 drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n", 4156 conn_stat->port_number, 4157 conn_stat->legacy_device_plug_status, 4158 conn_stat->displayport_device_plug_status, 4159 conn_stat->message_capability_status, 4160 conn_stat->input_port, 4161 conn_stat->peer_device_type); 4162 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) { 4163 const struct drm_dp_resource_status_notify *res_stat = 4164 &up_req->msg.u.resource_stat; 4165 4166 drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n", 4167 res_stat->port_number, 4168 res_stat->available_pbn); 4169 } 4170 4171 up_req->hdr = mgr->up_req_recv.initial_hdr; 4172 mutex_lock(&mgr->up_req_lock); 4173 list_add_tail(&up_req->next, &mgr->up_req_list); 4174 mutex_unlock(&mgr->up_req_lock); 4175 queue_work(system_long_wq, &mgr->up_req_work); 4176 4177 out: 4178 memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); 4179 return 0; 4180 } 4181 4182 /** 4183 * drm_dp_mst_hpd_irq() - MST hotplug IRQ notify 4184 * @mgr: manager to notify irq for. 4185 * @esi: 4 bytes from SINK_COUNT_ESI 4186 * @handled: whether the hpd interrupt was consumed or not 4187 * 4188 * This should be called from the driver when it detects a short IRQ, 4189 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The 4190 * topology manager will process the sideband messages received as a result 4191 * of this. 4192 */ 4193 int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr *mgr, u8 *esi, bool *handled) 4194 { 4195 int ret = 0; 4196 int sc; 4197 *handled = false; 4198 sc = DP_GET_SINK_COUNT(esi[0]); 4199 4200 if (sc != mgr->sink_count) { 4201 mgr->sink_count = sc; 4202 *handled = true; 4203 } 4204 4205 if (esi[1] & DP_DOWN_REP_MSG_RDY) { 4206 ret = drm_dp_mst_handle_down_rep(mgr); 4207 *handled = true; 4208 } 4209 4210 if (esi[1] & DP_UP_REQ_MSG_RDY) { 4211 ret |= drm_dp_mst_handle_up_req(mgr); 4212 *handled = true; 4213 } 4214 4215 drm_dp_mst_kick_tx(mgr); 4216 return ret; 4217 } 4218 EXPORT_SYMBOL(drm_dp_mst_hpd_irq); 4219 4220 /** 4221 * drm_dp_mst_detect_port() - get connection status for an MST port 4222 * @connector: DRM connector for this port 4223 * @ctx: The acquisition context to use for grabbing locks 4224 * @mgr: manager for this port 4225 * @port: pointer to a port 4226 * 4227 * This returns the current connection state for a port. 4228 */ 4229 int 4230 drm_dp_mst_detect_port(struct drm_connector *connector, 4231 struct drm_modeset_acquire_ctx *ctx, 4232 struct drm_dp_mst_topology_mgr *mgr, 4233 struct drm_dp_mst_port *port) 4234 { 4235 int ret; 4236 4237 /* we need to search for the port in the mgr in case it's gone */ 4238 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4239 if (!port) 4240 return connector_status_disconnected; 4241 4242 ret = drm_modeset_lock(&mgr->base.lock, ctx); 4243 if (ret) 4244 goto out; 4245 4246 ret = connector_status_disconnected; 4247 4248 if (!port->ddps) 4249 goto out; 4250 4251 switch (port->pdt) { 4252 case DP_PEER_DEVICE_NONE: 4253 break; 4254 case DP_PEER_DEVICE_MST_BRANCHING: 4255 if (!port->mcs) 4256 ret = connector_status_connected; 4257 break; 4258 4259 case DP_PEER_DEVICE_SST_SINK: 4260 ret = connector_status_connected; 4261 /* for logical ports - cache the EDID */ 4262 if (port->port_num >= DP_MST_LOGICAL_PORT_0 && !port->cached_edid) 4263 port->cached_edid = drm_get_edid(connector, &port->aux.ddc); 4264 break; 4265 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4266 if (port->ldps) 4267 ret = connector_status_connected; 4268 break; 4269 } 4270 out: 4271 drm_dp_mst_topology_put_port(port); 4272 return ret; 4273 } 4274 EXPORT_SYMBOL(drm_dp_mst_detect_port); 4275 4276 /** 4277 * drm_dp_mst_get_edid() - get EDID for an MST port 4278 * @connector: toplevel connector to get EDID for 4279 * @mgr: manager for this port 4280 * @port: unverified pointer to a port. 4281 * 4282 * This returns an EDID for the port connected to a connector, 4283 * It validates the pointer still exists so the caller doesn't require a 4284 * reference. 4285 */ 4286 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) 4287 { 4288 struct edid *edid = NULL; 4289 4290 /* we need to search for the port in the mgr in case it's gone */ 4291 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4292 if (!port) 4293 return NULL; 4294 4295 if (port->cached_edid) 4296 edid = drm_edid_duplicate(port->cached_edid); 4297 else { 4298 edid = drm_get_edid(connector, &port->aux.ddc); 4299 } 4300 port->has_audio = drm_detect_monitor_audio(edid); 4301 drm_dp_mst_topology_put_port(port); 4302 return edid; 4303 } 4304 EXPORT_SYMBOL(drm_dp_mst_get_edid); 4305 4306 /** 4307 * drm_dp_find_vcpi_slots() - Find VCPI slots for this PBN value 4308 * @mgr: manager to use 4309 * @pbn: payload bandwidth to convert into slots. 4310 * 4311 * Calculate the number of VCPI slots that will be required for the given PBN 4312 * value. This function is deprecated, and should not be used in atomic 4313 * drivers. 4314 * 4315 * RETURNS: 4316 * The total slots required for this port, or error. 4317 */ 4318 int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, 4319 int pbn) 4320 { 4321 int num_slots; 4322 4323 num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div); 4324 4325 /* max. time slots - one slot for MTP header */ 4326 if (num_slots > 63) 4327 return -ENOSPC; 4328 return num_slots; 4329 } 4330 EXPORT_SYMBOL(drm_dp_find_vcpi_slots); 4331 4332 static int drm_dp_init_vcpi(struct drm_dp_mst_topology_mgr *mgr, 4333 struct drm_dp_vcpi *vcpi, int pbn, int slots) 4334 { 4335 int ret; 4336 4337 vcpi->pbn = pbn; 4338 vcpi->aligned_pbn = slots * mgr->pbn_div; 4339 vcpi->num_slots = slots; 4340 4341 ret = drm_dp_mst_assign_payload_id(mgr, vcpi); 4342 if (ret < 0) 4343 return ret; 4344 return 0; 4345 } 4346 4347 /** 4348 * drm_dp_atomic_find_vcpi_slots() - Find and add VCPI slots to the state 4349 * @state: global atomic state 4350 * @mgr: MST topology manager for the port 4351 * @port: port to find vcpi slots for 4352 * @pbn: bandwidth required for the mode in PBN 4353 * @pbn_div: divider for DSC mode that takes FEC into account 4354 * 4355 * Allocates VCPI slots to @port, replacing any previous VCPI allocations it 4356 * may have had. Any atomic drivers which support MST must call this function 4357 * in their &drm_encoder_helper_funcs.atomic_check() callback to change the 4358 * current VCPI allocation for the new state, but only when 4359 * &drm_crtc_state.mode_changed or &drm_crtc_state.connectors_changed is set 4360 * to ensure compatibility with userspace applications that still use the 4361 * legacy modesetting UAPI. 4362 * 4363 * Allocations set by this function are not checked against the bandwidth 4364 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check(). 4365 * 4366 * Additionally, it is OK to call this function multiple times on the same 4367 * @port as needed. It is not OK however, to call this function and 4368 * drm_dp_atomic_release_vcpi_slots() in the same atomic check phase. 4369 * 4370 * See also: 4371 * drm_dp_atomic_release_vcpi_slots() 4372 * drm_dp_mst_atomic_check() 4373 * 4374 * Returns: 4375 * Total slots in the atomic state assigned for this port, or a negative error 4376 * code if the port no longer exists 4377 */ 4378 int drm_dp_atomic_find_vcpi_slots(struct drm_atomic_state *state, 4379 struct drm_dp_mst_topology_mgr *mgr, 4380 struct drm_dp_mst_port *port, int pbn, 4381 int pbn_div) 4382 { 4383 struct drm_dp_mst_topology_state *topology_state; 4384 struct drm_dp_vcpi_allocation *pos, *vcpi = NULL; 4385 int prev_slots, prev_bw, req_slots; 4386 4387 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4388 if (IS_ERR(topology_state)) 4389 return PTR_ERR(topology_state); 4390 4391 /* Find the current allocation for this port, if any */ 4392 list_for_each_entry(pos, &topology_state->vcpis, next) { 4393 if (pos->port == port) { 4394 vcpi = pos; 4395 prev_slots = vcpi->vcpi; 4396 prev_bw = vcpi->pbn; 4397 4398 /* 4399 * This should never happen, unless the driver tries 4400 * releasing and allocating the same VCPI allocation, 4401 * which is an error 4402 */ 4403 if (WARN_ON(!prev_slots)) { 4404 drm_err(mgr->dev, 4405 "cannot allocate and release VCPI on [MST PORT:%p] in the same state\n", 4406 port); 4407 return -EINVAL; 4408 } 4409 4410 break; 4411 } 4412 } 4413 if (!vcpi) { 4414 prev_slots = 0; 4415 prev_bw = 0; 4416 } 4417 4418 if (pbn_div <= 0) 4419 pbn_div = mgr->pbn_div; 4420 4421 req_slots = DIV_ROUND_UP(pbn, pbn_div); 4422 4423 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] VCPI %d -> %d\n", 4424 port->connector->base.id, port->connector->name, 4425 port, prev_slots, req_slots); 4426 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n", 4427 port->connector->base.id, port->connector->name, 4428 port, prev_bw, pbn); 4429 4430 /* Add the new allocation to the state */ 4431 if (!vcpi) { 4432 vcpi = kzalloc(sizeof(*vcpi), GFP_KERNEL); 4433 if (!vcpi) 4434 return -ENOMEM; 4435 4436 drm_dp_mst_get_port_malloc(port); 4437 vcpi->port = port; 4438 list_add(&vcpi->next, &topology_state->vcpis); 4439 } 4440 vcpi->vcpi = req_slots; 4441 vcpi->pbn = pbn; 4442 4443 return req_slots; 4444 } 4445 EXPORT_SYMBOL(drm_dp_atomic_find_vcpi_slots); 4446 4447 /** 4448 * drm_dp_atomic_release_vcpi_slots() - Release allocated vcpi slots 4449 * @state: global atomic state 4450 * @mgr: MST topology manager for the port 4451 * @port: The port to release the VCPI slots from 4452 * 4453 * Releases any VCPI slots that have been allocated to a port in the atomic 4454 * state. Any atomic drivers which support MST must call this function in 4455 * their &drm_connector_helper_funcs.atomic_check() callback when the 4456 * connector will no longer have VCPI allocated (e.g. because its CRTC was 4457 * removed) when it had VCPI allocated in the previous atomic state. 4458 * 4459 * It is OK to call this even if @port has been removed from the system. 4460 * Additionally, it is OK to call this function multiple times on the same 4461 * @port as needed. It is not OK however, to call this function and 4462 * drm_dp_atomic_find_vcpi_slots() on the same @port in a single atomic check 4463 * phase. 4464 * 4465 * See also: 4466 * drm_dp_atomic_find_vcpi_slots() 4467 * drm_dp_mst_atomic_check() 4468 * 4469 * Returns: 4470 * 0 if all slots for this port were added back to 4471 * &drm_dp_mst_topology_state.avail_slots or negative error code 4472 */ 4473 int drm_dp_atomic_release_vcpi_slots(struct drm_atomic_state *state, 4474 struct drm_dp_mst_topology_mgr *mgr, 4475 struct drm_dp_mst_port *port) 4476 { 4477 struct drm_dp_mst_topology_state *topology_state; 4478 struct drm_dp_vcpi_allocation *pos; 4479 bool found = false; 4480 4481 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4482 if (IS_ERR(topology_state)) 4483 return PTR_ERR(topology_state); 4484 4485 list_for_each_entry(pos, &topology_state->vcpis, next) { 4486 if (pos->port == port) { 4487 found = true; 4488 break; 4489 } 4490 } 4491 if (WARN_ON(!found)) { 4492 drm_err(mgr->dev, "no VCPI for [MST PORT:%p] found in mst state %p\n", 4493 port, &topology_state->base); 4494 return -EINVAL; 4495 } 4496 4497 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] VCPI %d -> 0\n", port, pos->vcpi); 4498 if (pos->vcpi) { 4499 drm_dp_mst_put_port_malloc(port); 4500 pos->vcpi = 0; 4501 pos->pbn = 0; 4502 } 4503 4504 return 0; 4505 } 4506 EXPORT_SYMBOL(drm_dp_atomic_release_vcpi_slots); 4507 4508 /** 4509 * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format 4510 * @mst_state: mst_state to update 4511 * @link_encoding_cap: the ecoding format on the link 4512 */ 4513 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap) 4514 { 4515 if (link_encoding_cap == DP_CAP_ANSI_128B132B) { 4516 mst_state->total_avail_slots = 64; 4517 mst_state->start_slot = 0; 4518 } else { 4519 mst_state->total_avail_slots = 63; 4520 mst_state->start_slot = 1; 4521 } 4522 4523 DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n", 4524 (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b", 4525 mst_state); 4526 } 4527 EXPORT_SYMBOL(drm_dp_mst_update_slots); 4528 4529 /** 4530 * drm_dp_mst_allocate_vcpi() - Allocate a virtual channel 4531 * @mgr: manager for this port 4532 * @port: port to allocate a virtual channel for. 4533 * @pbn: payload bandwidth number to request 4534 * @slots: returned number of slots for this PBN. 4535 */ 4536 bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr *mgr, 4537 struct drm_dp_mst_port *port, int pbn, int slots) 4538 { 4539 int ret; 4540 4541 if (slots < 0) 4542 return false; 4543 4544 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4545 if (!port) 4546 return false; 4547 4548 if (port->vcpi.vcpi > 0) { 4549 drm_dbg_kms(mgr->dev, 4550 "payload: vcpi %d already allocated for pbn %d - requested pbn %d\n", 4551 port->vcpi.vcpi, port->vcpi.pbn, pbn); 4552 if (pbn == port->vcpi.pbn) { 4553 drm_dp_mst_topology_put_port(port); 4554 return true; 4555 } 4556 } 4557 4558 ret = drm_dp_init_vcpi(mgr, &port->vcpi, pbn, slots); 4559 if (ret) { 4560 drm_dbg_kms(mgr->dev, "failed to init vcpi slots=%d ret=%d\n", 4561 DIV_ROUND_UP(pbn, mgr->pbn_div), ret); 4562 drm_dp_mst_topology_put_port(port); 4563 goto out; 4564 } 4565 drm_dbg_kms(mgr->dev, "initing vcpi for pbn=%d slots=%d\n", pbn, port->vcpi.num_slots); 4566 4567 /* Keep port allocated until its payload has been removed */ 4568 drm_dp_mst_get_port_malloc(port); 4569 drm_dp_mst_topology_put_port(port); 4570 return true; 4571 out: 4572 return false; 4573 } 4574 EXPORT_SYMBOL(drm_dp_mst_allocate_vcpi); 4575 4576 int drm_dp_mst_get_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) 4577 { 4578 int slots = 0; 4579 4580 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4581 if (!port) 4582 return slots; 4583 4584 slots = port->vcpi.num_slots; 4585 drm_dp_mst_topology_put_port(port); 4586 return slots; 4587 } 4588 EXPORT_SYMBOL(drm_dp_mst_get_vcpi_slots); 4589 4590 /** 4591 * drm_dp_mst_reset_vcpi_slots() - Reset number of slots to 0 for VCPI 4592 * @mgr: manager for this port 4593 * @port: unverified pointer to a port. 4594 * 4595 * This just resets the number of slots for the ports VCPI for later programming. 4596 */ 4597 void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) 4598 { 4599 /* 4600 * A port with VCPI will remain allocated until its VCPI is 4601 * released, no verified ref needed 4602 */ 4603 4604 port->vcpi.num_slots = 0; 4605 } 4606 EXPORT_SYMBOL(drm_dp_mst_reset_vcpi_slots); 4607 4608 /** 4609 * drm_dp_mst_deallocate_vcpi() - deallocate a VCPI 4610 * @mgr: manager for this port 4611 * @port: port to deallocate vcpi for 4612 * 4613 * This can be called unconditionally, regardless of whether 4614 * drm_dp_mst_allocate_vcpi() succeeded or not. 4615 */ 4616 void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr *mgr, 4617 struct drm_dp_mst_port *port) 4618 { 4619 bool skip; 4620 4621 if (!port->vcpi.vcpi) 4622 return; 4623 4624 mutex_lock(&mgr->lock); 4625 skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary); 4626 mutex_unlock(&mgr->lock); 4627 4628 if (skip) 4629 return; 4630 4631 drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi); 4632 port->vcpi.num_slots = 0; 4633 port->vcpi.pbn = 0; 4634 port->vcpi.aligned_pbn = 0; 4635 port->vcpi.vcpi = 0; 4636 drm_dp_mst_put_port_malloc(port); 4637 } 4638 EXPORT_SYMBOL(drm_dp_mst_deallocate_vcpi); 4639 4640 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 4641 int id, struct drm_dp_payload *payload) 4642 { 4643 u8 payload_alloc[3], status; 4644 int ret; 4645 int retries = 0; 4646 4647 drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, 4648 DP_PAYLOAD_TABLE_UPDATED); 4649 4650 payload_alloc[0] = id; 4651 payload_alloc[1] = payload->start_slot; 4652 payload_alloc[2] = payload->num_slots; 4653 4654 ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3); 4655 if (ret != 3) { 4656 drm_dbg_kms(mgr->dev, "failed to write payload allocation %d\n", ret); 4657 goto fail; 4658 } 4659 4660 retry: 4661 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4662 if (ret < 0) { 4663 drm_dbg_kms(mgr->dev, "failed to read payload table status %d\n", ret); 4664 goto fail; 4665 } 4666 4667 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) { 4668 retries++; 4669 if (retries < 20) { 4670 usleep_range(10000, 20000); 4671 goto retry; 4672 } 4673 drm_dbg_kms(mgr->dev, "status not set after read payload table status %d\n", 4674 status); 4675 ret = -EINVAL; 4676 goto fail; 4677 } 4678 ret = 0; 4679 fail: 4680 return ret; 4681 } 4682 4683 static int do_get_act_status(struct drm_dp_aux *aux) 4684 { 4685 int ret; 4686 u8 status; 4687 4688 ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4689 if (ret < 0) 4690 return ret; 4691 4692 return status; 4693 } 4694 4695 /** 4696 * drm_dp_check_act_status() - Polls for ACT handled status. 4697 * @mgr: manager to use 4698 * 4699 * Tries waiting for the MST hub to finish updating it's payload table by 4700 * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really 4701 * take that long). 4702 * 4703 * Returns: 4704 * 0 if the ACT was handled in time, negative error code on failure. 4705 */ 4706 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr) 4707 { 4708 /* 4709 * There doesn't seem to be any recommended retry count or timeout in 4710 * the MST specification. Since some hubs have been observed to take 4711 * over 1 second to update their payload allocations under certain 4712 * conditions, we use a rather large timeout value. 4713 */ 4714 const int timeout_ms = 3000; 4715 int ret, status; 4716 4717 ret = readx_poll_timeout(do_get_act_status, mgr->aux, status, 4718 status & DP_PAYLOAD_ACT_HANDLED || status < 0, 4719 200, timeout_ms * USEC_PER_MSEC); 4720 if (ret < 0 && status >= 0) { 4721 drm_err(mgr->dev, "Failed to get ACT after %dms, last status: %02x\n", 4722 timeout_ms, status); 4723 return -EINVAL; 4724 } else if (status < 0) { 4725 /* 4726 * Failure here isn't unexpected - the hub may have 4727 * just been unplugged 4728 */ 4729 drm_dbg_kms(mgr->dev, "Failed to read payload table status: %d\n", status); 4730 return status; 4731 } 4732 4733 return 0; 4734 } 4735 EXPORT_SYMBOL(drm_dp_check_act_status); 4736 4737 /** 4738 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode. 4739 * @clock: dot clock for the mode 4740 * @bpp: bpp for the mode. 4741 * @dsc: DSC mode. If true, bpp has units of 1/16 of a bit per pixel 4742 * 4743 * This uses the formula in the spec to calculate the PBN value for a mode. 4744 */ 4745 int drm_dp_calc_pbn_mode(int clock, int bpp, bool dsc) 4746 { 4747 /* 4748 * margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006 4749 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on 4750 * common multiplier to render an integer PBN for all link rate/lane 4751 * counts combinations 4752 * calculate 4753 * peak_kbps *= (1006/1000) 4754 * peak_kbps *= (64/54) 4755 * peak_kbps *= 8 convert to bytes 4756 * 4757 * If the bpp is in units of 1/16, further divide by 16. Put this 4758 * factor in the numerator rather than the denominator to avoid 4759 * integer overflow 4760 */ 4761 4762 if (dsc) 4763 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * (bpp / 16), 64 * 1006), 4764 8 * 54 * 1000 * 1000); 4765 4766 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * bpp, 64 * 1006), 4767 8 * 54 * 1000 * 1000); 4768 } 4769 EXPORT_SYMBOL(drm_dp_calc_pbn_mode); 4770 4771 /* we want to kick the TX after we've ack the up/down IRQs. */ 4772 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr) 4773 { 4774 queue_work(system_long_wq, &mgr->tx_work); 4775 } 4776 4777 /* 4778 * Helper function for parsing DP device types into convenient strings 4779 * for use with dp_mst_topology 4780 */ 4781 static const char *pdt_to_string(u8 pdt) 4782 { 4783 switch (pdt) { 4784 case DP_PEER_DEVICE_NONE: 4785 return "NONE"; 4786 case DP_PEER_DEVICE_SOURCE_OR_SST: 4787 return "SOURCE OR SST"; 4788 case DP_PEER_DEVICE_MST_BRANCHING: 4789 return "MST BRANCHING"; 4790 case DP_PEER_DEVICE_SST_SINK: 4791 return "SST SINK"; 4792 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4793 return "DP LEGACY CONV"; 4794 default: 4795 return "ERR"; 4796 } 4797 } 4798 4799 static void drm_dp_mst_dump_mstb(struct seq_file *m, 4800 struct drm_dp_mst_branch *mstb) 4801 { 4802 struct drm_dp_mst_port *port; 4803 int tabs = mstb->lct; 4804 char prefix[10]; 4805 int i; 4806 4807 for (i = 0; i < tabs; i++) 4808 prefix[i] = '\t'; 4809 prefix[i] = '\0'; 4810 4811 seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports); 4812 list_for_each_entry(port, &mstb->ports, next) { 4813 seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n", 4814 prefix, 4815 port->port_num, 4816 port, 4817 port->input ? "input" : "output", 4818 pdt_to_string(port->pdt), 4819 port->ddps, 4820 port->ldps, 4821 port->num_sdp_streams, 4822 port->num_sdp_stream_sinks, 4823 port->fec_capable ? "true" : "false", 4824 port->connector); 4825 if (port->mstb) 4826 drm_dp_mst_dump_mstb(m, port->mstb); 4827 } 4828 } 4829 4830 #define DP_PAYLOAD_TABLE_SIZE 64 4831 4832 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 4833 char *buf) 4834 { 4835 int i; 4836 4837 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) { 4838 if (drm_dp_dpcd_read(mgr->aux, 4839 DP_PAYLOAD_TABLE_UPDATE_STATUS + i, 4840 &buf[i], 16) != 16) 4841 return false; 4842 } 4843 return true; 4844 } 4845 4846 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr, 4847 struct drm_dp_mst_port *port, char *name, 4848 int namelen) 4849 { 4850 struct edid *mst_edid; 4851 4852 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port); 4853 drm_edid_get_monitor_name(mst_edid, name, namelen); 4854 kfree(mst_edid); 4855 } 4856 4857 /** 4858 * drm_dp_mst_dump_topology(): dump topology to seq file. 4859 * @m: seq_file to dump output to 4860 * @mgr: manager to dump current topology for. 4861 * 4862 * helper to dump MST topology to a seq file for debugfs. 4863 */ 4864 void drm_dp_mst_dump_topology(struct seq_file *m, 4865 struct drm_dp_mst_topology_mgr *mgr) 4866 { 4867 int i; 4868 struct drm_dp_mst_port *port; 4869 4870 mutex_lock(&mgr->lock); 4871 if (mgr->mst_primary) 4872 drm_dp_mst_dump_mstb(m, mgr->mst_primary); 4873 4874 /* dump VCPIs */ 4875 mutex_unlock(&mgr->lock); 4876 4877 mutex_lock(&mgr->payload_lock); 4878 seq_printf(m, "\n*** VCPI Info ***\n"); 4879 seq_printf(m, "payload_mask: %lx, vcpi_mask: %lx, max_payloads: %d\n", mgr->payload_mask, mgr->vcpi_mask, mgr->max_payloads); 4880 4881 seq_printf(m, "\n| idx | port # | vcp_id | # slots | sink name |\n"); 4882 for (i = 0; i < mgr->max_payloads; i++) { 4883 if (mgr->proposed_vcpis[i]) { 4884 char name[14]; 4885 4886 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi); 4887 fetch_monitor_name(mgr, port, name, sizeof(name)); 4888 seq_printf(m, "%10d%10d%10d%10d%20s\n", 4889 i, 4890 port->port_num, 4891 port->vcpi.vcpi, 4892 port->vcpi.num_slots, 4893 (*name != 0) ? name : "Unknown"); 4894 } else 4895 seq_printf(m, "%6d - Unused\n", i); 4896 } 4897 seq_printf(m, "\n*** Payload Info ***\n"); 4898 seq_printf(m, "| idx | state | start slot | # slots |\n"); 4899 for (i = 0; i < mgr->max_payloads; i++) { 4900 seq_printf(m, "%10d%10d%15d%10d\n", 4901 i, 4902 mgr->payloads[i].payload_state, 4903 mgr->payloads[i].start_slot, 4904 mgr->payloads[i].num_slots); 4905 } 4906 mutex_unlock(&mgr->payload_lock); 4907 4908 seq_printf(m, "\n*** DPCD Info ***\n"); 4909 mutex_lock(&mgr->lock); 4910 if (mgr->mst_primary) { 4911 u8 buf[DP_PAYLOAD_TABLE_SIZE]; 4912 int ret; 4913 4914 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, buf, DP_RECEIVER_CAP_SIZE); 4915 if (ret) { 4916 seq_printf(m, "dpcd read failed\n"); 4917 goto out; 4918 } 4919 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf); 4920 4921 ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2); 4922 if (ret) { 4923 seq_printf(m, "faux/mst read failed\n"); 4924 goto out; 4925 } 4926 seq_printf(m, "faux/mst: %*ph\n", 2, buf); 4927 4928 ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1); 4929 if (ret) { 4930 seq_printf(m, "mst ctrl read failed\n"); 4931 goto out; 4932 } 4933 seq_printf(m, "mst ctrl: %*ph\n", 1, buf); 4934 4935 /* dump the standard OUI branch header */ 4936 ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE); 4937 if (ret) { 4938 seq_printf(m, "branch oui read failed\n"); 4939 goto out; 4940 } 4941 seq_printf(m, "branch oui: %*phN devid: ", 3, buf); 4942 4943 for (i = 0x3; i < 0x8 && buf[i]; i++) 4944 seq_printf(m, "%c", buf[i]); 4945 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n", 4946 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]); 4947 if (dump_dp_payload_table(mgr, buf)) 4948 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf); 4949 } 4950 4951 out: 4952 mutex_unlock(&mgr->lock); 4953 4954 } 4955 EXPORT_SYMBOL(drm_dp_mst_dump_topology); 4956 4957 static void drm_dp_tx_work(struct work_struct *work) 4958 { 4959 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work); 4960 4961 mutex_lock(&mgr->qlock); 4962 if (!list_empty(&mgr->tx_msg_downq)) 4963 process_single_down_tx_qlock(mgr); 4964 mutex_unlock(&mgr->qlock); 4965 } 4966 4967 static inline void 4968 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port) 4969 { 4970 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs); 4971 4972 if (port->connector) { 4973 drm_connector_unregister(port->connector); 4974 drm_connector_put(port->connector); 4975 } 4976 4977 drm_dp_mst_put_port_malloc(port); 4978 } 4979 4980 static inline void 4981 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb) 4982 { 4983 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 4984 struct drm_dp_mst_port *port, *port_tmp; 4985 struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp; 4986 bool wake_tx = false; 4987 4988 mutex_lock(&mgr->lock); 4989 list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) { 4990 list_del(&port->next); 4991 drm_dp_mst_topology_put_port(port); 4992 } 4993 mutex_unlock(&mgr->lock); 4994 4995 /* drop any tx slot msg */ 4996 mutex_lock(&mstb->mgr->qlock); 4997 list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) { 4998 if (txmsg->dst != mstb) 4999 continue; 5000 5001 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 5002 list_del(&txmsg->next); 5003 wake_tx = true; 5004 } 5005 mutex_unlock(&mstb->mgr->qlock); 5006 5007 if (wake_tx) 5008 wake_up_all(&mstb->mgr->tx_waitq); 5009 5010 drm_dp_mst_put_mstb_malloc(mstb); 5011 } 5012 5013 static void drm_dp_delayed_destroy_work(struct work_struct *work) 5014 { 5015 struct drm_dp_mst_topology_mgr *mgr = 5016 container_of(work, struct drm_dp_mst_topology_mgr, 5017 delayed_destroy_work); 5018 bool send_hotplug = false, go_again; 5019 5020 /* 5021 * Not a regular list traverse as we have to drop the destroy 5022 * connector lock before destroying the mstb/port, to avoid AB->BA 5023 * ordering between this lock and the config mutex. 5024 */ 5025 do { 5026 go_again = false; 5027 5028 for (;;) { 5029 struct drm_dp_mst_branch *mstb; 5030 5031 mutex_lock(&mgr->delayed_destroy_lock); 5032 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list, 5033 struct drm_dp_mst_branch, 5034 destroy_next); 5035 if (mstb) 5036 list_del(&mstb->destroy_next); 5037 mutex_unlock(&mgr->delayed_destroy_lock); 5038 5039 if (!mstb) 5040 break; 5041 5042 drm_dp_delayed_destroy_mstb(mstb); 5043 go_again = true; 5044 } 5045 5046 for (;;) { 5047 struct drm_dp_mst_port *port; 5048 5049 mutex_lock(&mgr->delayed_destroy_lock); 5050 port = list_first_entry_or_null(&mgr->destroy_port_list, 5051 struct drm_dp_mst_port, 5052 next); 5053 if (port) 5054 list_del(&port->next); 5055 mutex_unlock(&mgr->delayed_destroy_lock); 5056 5057 if (!port) 5058 break; 5059 5060 drm_dp_delayed_destroy_port(port); 5061 send_hotplug = true; 5062 go_again = true; 5063 } 5064 } while (go_again); 5065 5066 if (send_hotplug) 5067 drm_kms_helper_hotplug_event(mgr->dev); 5068 } 5069 5070 static struct drm_private_state * 5071 drm_dp_mst_duplicate_state(struct drm_private_obj *obj) 5072 { 5073 struct drm_dp_mst_topology_state *state, *old_state = 5074 to_dp_mst_topology_state(obj->state); 5075 struct drm_dp_vcpi_allocation *pos, *vcpi; 5076 5077 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL); 5078 if (!state) 5079 return NULL; 5080 5081 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 5082 5083 INIT_LIST_HEAD(&state->vcpis); 5084 5085 list_for_each_entry(pos, &old_state->vcpis, next) { 5086 /* Prune leftover freed VCPI allocations */ 5087 if (!pos->vcpi) 5088 continue; 5089 5090 vcpi = kmemdup(pos, sizeof(*vcpi), GFP_KERNEL); 5091 if (!vcpi) 5092 goto fail; 5093 5094 drm_dp_mst_get_port_malloc(vcpi->port); 5095 list_add(&vcpi->next, &state->vcpis); 5096 } 5097 5098 return &state->base; 5099 5100 fail: 5101 list_for_each_entry_safe(pos, vcpi, &state->vcpis, next) { 5102 drm_dp_mst_put_port_malloc(pos->port); 5103 kfree(pos); 5104 } 5105 kfree(state); 5106 5107 return NULL; 5108 } 5109 5110 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj, 5111 struct drm_private_state *state) 5112 { 5113 struct drm_dp_mst_topology_state *mst_state = 5114 to_dp_mst_topology_state(state); 5115 struct drm_dp_vcpi_allocation *pos, *tmp; 5116 5117 list_for_each_entry_safe(pos, tmp, &mst_state->vcpis, next) { 5118 /* We only keep references to ports with non-zero VCPIs */ 5119 if (pos->vcpi) 5120 drm_dp_mst_put_port_malloc(pos->port); 5121 kfree(pos); 5122 } 5123 5124 kfree(mst_state); 5125 } 5126 5127 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 5128 struct drm_dp_mst_branch *branch) 5129 { 5130 while (port->parent) { 5131 if (port->parent == branch) 5132 return true; 5133 5134 if (port->parent->port_parent) 5135 port = port->parent->port_parent; 5136 else 5137 break; 5138 } 5139 return false; 5140 } 5141 5142 static int 5143 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5144 struct drm_dp_mst_topology_state *state); 5145 5146 static int 5147 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb, 5148 struct drm_dp_mst_topology_state *state) 5149 { 5150 struct drm_dp_vcpi_allocation *vcpi; 5151 struct drm_dp_mst_port *port; 5152 int pbn_used = 0, ret; 5153 bool found = false; 5154 5155 /* Check that we have at least one port in our state that's downstream 5156 * of this branch, otherwise we can skip this branch 5157 */ 5158 list_for_each_entry(vcpi, &state->vcpis, next) { 5159 if (!vcpi->pbn || 5160 !drm_dp_mst_port_downstream_of_branch(vcpi->port, mstb)) 5161 continue; 5162 5163 found = true; 5164 break; 5165 } 5166 if (!found) 5167 return 0; 5168 5169 if (mstb->port_parent) 5170 drm_dbg_atomic(mstb->mgr->dev, 5171 "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n", 5172 mstb->port_parent->parent, mstb->port_parent, mstb); 5173 else 5174 drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb); 5175 5176 list_for_each_entry(port, &mstb->ports, next) { 5177 ret = drm_dp_mst_atomic_check_port_bw_limit(port, state); 5178 if (ret < 0) 5179 return ret; 5180 5181 pbn_used += ret; 5182 } 5183 5184 return pbn_used; 5185 } 5186 5187 static int 5188 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5189 struct drm_dp_mst_topology_state *state) 5190 { 5191 struct drm_dp_vcpi_allocation *vcpi; 5192 int pbn_used = 0; 5193 5194 if (port->pdt == DP_PEER_DEVICE_NONE) 5195 return 0; 5196 5197 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 5198 bool found = false; 5199 5200 list_for_each_entry(vcpi, &state->vcpis, next) { 5201 if (vcpi->port != port) 5202 continue; 5203 if (!vcpi->pbn) 5204 return 0; 5205 5206 found = true; 5207 break; 5208 } 5209 if (!found) 5210 return 0; 5211 5212 /* 5213 * This could happen if the sink deasserted its HPD line, but 5214 * the branch device still reports it as attached (PDT != NONE). 5215 */ 5216 if (!port->full_pbn) { 5217 drm_dbg_atomic(port->mgr->dev, 5218 "[MSTB:%p] [MST PORT:%p] no BW available for the port\n", 5219 port->parent, port); 5220 return -EINVAL; 5221 } 5222 5223 pbn_used = vcpi->pbn; 5224 } else { 5225 pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb, 5226 state); 5227 if (pbn_used <= 0) 5228 return pbn_used; 5229 } 5230 5231 if (pbn_used > port->full_pbn) { 5232 drm_dbg_atomic(port->mgr->dev, 5233 "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n", 5234 port->parent, port, pbn_used, port->full_pbn); 5235 return -ENOSPC; 5236 } 5237 5238 drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n", 5239 port->parent, port, pbn_used, port->full_pbn); 5240 5241 return pbn_used; 5242 } 5243 5244 static inline int 5245 drm_dp_mst_atomic_check_vcpi_alloc_limit(struct drm_dp_mst_topology_mgr *mgr, 5246 struct drm_dp_mst_topology_state *mst_state) 5247 { 5248 struct drm_dp_vcpi_allocation *vcpi; 5249 int avail_slots = mst_state->total_avail_slots, payload_count = 0; 5250 5251 list_for_each_entry(vcpi, &mst_state->vcpis, next) { 5252 /* Releasing VCPI is always OK-even if the port is gone */ 5253 if (!vcpi->vcpi) { 5254 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all VCPI slots\n", 5255 vcpi->port); 5256 continue; 5257 } 5258 5259 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d vcpi slots\n", 5260 vcpi->port, vcpi->vcpi); 5261 5262 avail_slots -= vcpi->vcpi; 5263 if (avail_slots < 0) { 5264 drm_dbg_atomic(mgr->dev, 5265 "[MST PORT:%p] not enough VCPI slots in mst state %p (avail=%d)\n", 5266 vcpi->port, mst_state, avail_slots + vcpi->vcpi); 5267 return -ENOSPC; 5268 } 5269 5270 if (++payload_count > mgr->max_payloads) { 5271 drm_dbg_atomic(mgr->dev, 5272 "[MST MGR:%p] state %p has too many payloads (max=%d)\n", 5273 mgr, mst_state, mgr->max_payloads); 5274 return -EINVAL; 5275 } 5276 } 5277 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p VCPI avail=%d used=%d\n", 5278 mgr, mst_state, avail_slots, mst_state->total_avail_slots - avail_slots); 5279 5280 return 0; 5281 } 5282 5283 /** 5284 * drm_dp_mst_add_affected_dsc_crtcs 5285 * @state: Pointer to the new struct drm_dp_mst_topology_state 5286 * @mgr: MST topology manager 5287 * 5288 * Whenever there is a change in mst topology 5289 * DSC configuration would have to be recalculated 5290 * therefore we need to trigger modeset on all affected 5291 * CRTCs in that topology 5292 * 5293 * See also: 5294 * drm_dp_mst_atomic_enable_dsc() 5295 */ 5296 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr) 5297 { 5298 struct drm_dp_mst_topology_state *mst_state; 5299 struct drm_dp_vcpi_allocation *pos; 5300 struct drm_connector *connector; 5301 struct drm_connector_state *conn_state; 5302 struct drm_crtc *crtc; 5303 struct drm_crtc_state *crtc_state; 5304 5305 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 5306 5307 if (IS_ERR(mst_state)) 5308 return -EINVAL; 5309 5310 list_for_each_entry(pos, &mst_state->vcpis, next) { 5311 5312 connector = pos->port->connector; 5313 5314 if (!connector) 5315 return -EINVAL; 5316 5317 conn_state = drm_atomic_get_connector_state(state, connector); 5318 5319 if (IS_ERR(conn_state)) 5320 return PTR_ERR(conn_state); 5321 5322 crtc = conn_state->crtc; 5323 5324 if (!crtc) 5325 continue; 5326 5327 if (!drm_dp_mst_dsc_aux_for_port(pos->port)) 5328 continue; 5329 5330 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc); 5331 5332 if (IS_ERR(crtc_state)) 5333 return PTR_ERR(crtc_state); 5334 5335 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n", 5336 mgr, crtc); 5337 5338 crtc_state->mode_changed = true; 5339 } 5340 return 0; 5341 } 5342 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs); 5343 5344 /** 5345 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off 5346 * @state: Pointer to the new drm_atomic_state 5347 * @port: Pointer to the affected MST Port 5348 * @pbn: Newly recalculated bw required for link with DSC enabled 5349 * @pbn_div: Divider to calculate correct number of pbn per slot 5350 * @enable: Boolean flag to enable or disable DSC on the port 5351 * 5352 * This function enables DSC on the given Port 5353 * by recalculating its vcpi from pbn provided 5354 * and sets dsc_enable flag to keep track of which 5355 * ports have DSC enabled 5356 * 5357 */ 5358 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state, 5359 struct drm_dp_mst_port *port, 5360 int pbn, int pbn_div, 5361 bool enable) 5362 { 5363 struct drm_dp_mst_topology_state *mst_state; 5364 struct drm_dp_vcpi_allocation *pos; 5365 bool found = false; 5366 int vcpi = 0; 5367 5368 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr); 5369 5370 if (IS_ERR(mst_state)) 5371 return PTR_ERR(mst_state); 5372 5373 list_for_each_entry(pos, &mst_state->vcpis, next) { 5374 if (pos->port == port) { 5375 found = true; 5376 break; 5377 } 5378 } 5379 5380 if (!found) { 5381 drm_dbg_atomic(state->dev, 5382 "[MST PORT:%p] Couldn't find VCPI allocation in mst state %p\n", 5383 port, mst_state); 5384 return -EINVAL; 5385 } 5386 5387 if (pos->dsc_enabled == enable) { 5388 drm_dbg_atomic(state->dev, 5389 "[MST PORT:%p] DSC flag is already set to %d, returning %d VCPI slots\n", 5390 port, enable, pos->vcpi); 5391 vcpi = pos->vcpi; 5392 } 5393 5394 if (enable) { 5395 vcpi = drm_dp_atomic_find_vcpi_slots(state, port->mgr, port, pbn, pbn_div); 5396 drm_dbg_atomic(state->dev, 5397 "[MST PORT:%p] Enabling DSC flag, reallocating %d VCPI slots on the port\n", 5398 port, vcpi); 5399 if (vcpi < 0) 5400 return -EINVAL; 5401 } 5402 5403 pos->dsc_enabled = enable; 5404 5405 return vcpi; 5406 } 5407 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc); 5408 /** 5409 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an 5410 * atomic update is valid 5411 * @state: Pointer to the new &struct drm_dp_mst_topology_state 5412 * 5413 * Checks the given topology state for an atomic update to ensure that it's 5414 * valid. This includes checking whether there's enough bandwidth to support 5415 * the new VCPI allocations in the atomic update. 5416 * 5417 * Any atomic drivers supporting DP MST must make sure to call this after 5418 * checking the rest of their state in their 5419 * &drm_mode_config_funcs.atomic_check() callback. 5420 * 5421 * See also: 5422 * drm_dp_atomic_find_vcpi_slots() 5423 * drm_dp_atomic_release_vcpi_slots() 5424 * 5425 * Returns: 5426 * 5427 * 0 if the new state is valid, negative error code otherwise. 5428 */ 5429 int drm_dp_mst_atomic_check(struct drm_atomic_state *state) 5430 { 5431 struct drm_dp_mst_topology_mgr *mgr; 5432 struct drm_dp_mst_topology_state *mst_state; 5433 int i, ret = 0; 5434 5435 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 5436 if (!mgr->mst_state) 5437 continue; 5438 5439 ret = drm_dp_mst_atomic_check_vcpi_alloc_limit(mgr, mst_state); 5440 if (ret) 5441 break; 5442 5443 mutex_lock(&mgr->lock); 5444 ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary, 5445 mst_state); 5446 mutex_unlock(&mgr->lock); 5447 if (ret < 0) 5448 break; 5449 else 5450 ret = 0; 5451 } 5452 5453 return ret; 5454 } 5455 EXPORT_SYMBOL(drm_dp_mst_atomic_check); 5456 5457 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = { 5458 .atomic_duplicate_state = drm_dp_mst_duplicate_state, 5459 .atomic_destroy_state = drm_dp_mst_destroy_state, 5460 }; 5461 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs); 5462 5463 /** 5464 * drm_atomic_get_mst_topology_state: get MST topology state 5465 * 5466 * @state: global atomic state 5467 * @mgr: MST topology manager, also the private object in this case 5468 * 5469 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic 5470 * state vtable so that the private object state returned is that of a MST 5471 * topology object. Also, drm_atomic_get_private_obj_state() expects the caller 5472 * to care of the locking, so warn if don't hold the connection_mutex. 5473 * 5474 * RETURNS: 5475 * 5476 * The MST topology state or error pointer. 5477 */ 5478 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state, 5479 struct drm_dp_mst_topology_mgr *mgr) 5480 { 5481 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base)); 5482 } 5483 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state); 5484 5485 /** 5486 * drm_dp_mst_topology_mgr_init - initialise a topology manager 5487 * @mgr: manager struct to initialise 5488 * @dev: device providing this structure - for i2c addition. 5489 * @aux: DP helper aux channel to talk to this device 5490 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit 5491 * @max_payloads: maximum number of payloads this GPU can source 5492 * @max_lane_count: maximum number of lanes this GPU supports 5493 * @max_link_rate: maximum link rate per lane this GPU supports in kHz 5494 * @conn_base_id: the connector object ID the MST device is connected to. 5495 * 5496 * Return 0 for success, or negative error code on failure 5497 */ 5498 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr, 5499 struct drm_device *dev, struct drm_dp_aux *aux, 5500 int max_dpcd_transaction_bytes, int max_payloads, 5501 int max_lane_count, int max_link_rate, 5502 int conn_base_id) 5503 { 5504 struct drm_dp_mst_topology_state *mst_state; 5505 5506 mutex_init(&mgr->lock); 5507 mutex_init(&mgr->qlock); 5508 mutex_init(&mgr->payload_lock); 5509 mutex_init(&mgr->delayed_destroy_lock); 5510 mutex_init(&mgr->up_req_lock); 5511 mutex_init(&mgr->probe_lock); 5512 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5513 mutex_init(&mgr->topology_ref_history_lock); 5514 stack_depot_init(); 5515 #endif 5516 INIT_LIST_HEAD(&mgr->tx_msg_downq); 5517 INIT_LIST_HEAD(&mgr->destroy_port_list); 5518 INIT_LIST_HEAD(&mgr->destroy_branch_device_list); 5519 INIT_LIST_HEAD(&mgr->up_req_list); 5520 5521 /* 5522 * delayed_destroy_work will be queued on a dedicated WQ, so that any 5523 * requeuing will be also flushed when deiniting the topology manager. 5524 */ 5525 mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0); 5526 if (mgr->delayed_destroy_wq == NULL) 5527 return -ENOMEM; 5528 5529 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work); 5530 INIT_WORK(&mgr->tx_work, drm_dp_tx_work); 5531 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work); 5532 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work); 5533 init_waitqueue_head(&mgr->tx_waitq); 5534 mgr->dev = dev; 5535 mgr->aux = aux; 5536 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes; 5537 mgr->max_payloads = max_payloads; 5538 mgr->max_lane_count = max_lane_count; 5539 mgr->max_link_rate = max_link_rate; 5540 mgr->conn_base_id = conn_base_id; 5541 if (max_payloads + 1 > sizeof(mgr->payload_mask) * 8 || 5542 max_payloads + 1 > sizeof(mgr->vcpi_mask) * 8) 5543 return -EINVAL; 5544 mgr->payloads = kcalloc(max_payloads, sizeof(struct drm_dp_payload), GFP_KERNEL); 5545 if (!mgr->payloads) 5546 return -ENOMEM; 5547 mgr->proposed_vcpis = kcalloc(max_payloads, sizeof(struct drm_dp_vcpi *), GFP_KERNEL); 5548 if (!mgr->proposed_vcpis) 5549 return -ENOMEM; 5550 set_bit(0, &mgr->payload_mask); 5551 5552 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL); 5553 if (mst_state == NULL) 5554 return -ENOMEM; 5555 5556 mst_state->total_avail_slots = 63; 5557 mst_state->start_slot = 1; 5558 5559 mst_state->mgr = mgr; 5560 INIT_LIST_HEAD(&mst_state->vcpis); 5561 5562 drm_atomic_private_obj_init(dev, &mgr->base, 5563 &mst_state->base, 5564 &drm_dp_mst_topology_state_funcs); 5565 5566 return 0; 5567 } 5568 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init); 5569 5570 /** 5571 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager. 5572 * @mgr: manager to destroy 5573 */ 5574 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr) 5575 { 5576 drm_dp_mst_topology_mgr_set_mst(mgr, false); 5577 flush_work(&mgr->work); 5578 /* The following will also drain any requeued work on the WQ. */ 5579 if (mgr->delayed_destroy_wq) { 5580 destroy_workqueue(mgr->delayed_destroy_wq); 5581 mgr->delayed_destroy_wq = NULL; 5582 } 5583 mutex_lock(&mgr->payload_lock); 5584 kfree(mgr->payloads); 5585 mgr->payloads = NULL; 5586 kfree(mgr->proposed_vcpis); 5587 mgr->proposed_vcpis = NULL; 5588 mutex_unlock(&mgr->payload_lock); 5589 mgr->dev = NULL; 5590 mgr->aux = NULL; 5591 drm_atomic_private_obj_fini(&mgr->base); 5592 mgr->funcs = NULL; 5593 5594 mutex_destroy(&mgr->delayed_destroy_lock); 5595 mutex_destroy(&mgr->payload_lock); 5596 mutex_destroy(&mgr->qlock); 5597 mutex_destroy(&mgr->lock); 5598 mutex_destroy(&mgr->up_req_lock); 5599 mutex_destroy(&mgr->probe_lock); 5600 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5601 mutex_destroy(&mgr->topology_ref_history_lock); 5602 #endif 5603 } 5604 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy); 5605 5606 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num) 5607 { 5608 int i; 5609 5610 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS) 5611 return false; 5612 5613 for (i = 0; i < num - 1; i++) { 5614 if (msgs[i].flags & I2C_M_RD || 5615 msgs[i].len > 0xff) 5616 return false; 5617 } 5618 5619 return msgs[num - 1].flags & I2C_M_RD && 5620 msgs[num - 1].len <= 0xff; 5621 } 5622 5623 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num) 5624 { 5625 int i; 5626 5627 for (i = 0; i < num - 1; i++) { 5628 if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) || 5629 msgs[i].len > 0xff) 5630 return false; 5631 } 5632 5633 return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff; 5634 } 5635 5636 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb, 5637 struct drm_dp_mst_port *port, 5638 struct i2c_msg *msgs, int num) 5639 { 5640 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5641 unsigned int i; 5642 struct drm_dp_sideband_msg_req_body msg; 5643 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5644 int ret; 5645 5646 memset(&msg, 0, sizeof(msg)); 5647 msg.req_type = DP_REMOTE_I2C_READ; 5648 msg.u.i2c_read.num_transactions = num - 1; 5649 msg.u.i2c_read.port_number = port->port_num; 5650 for (i = 0; i < num - 1; i++) { 5651 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr; 5652 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len; 5653 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf; 5654 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP); 5655 } 5656 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr; 5657 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len; 5658 5659 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5660 if (!txmsg) { 5661 ret = -ENOMEM; 5662 goto out; 5663 } 5664 5665 txmsg->dst = mstb; 5666 drm_dp_encode_sideband_req(&msg, txmsg); 5667 5668 drm_dp_queue_down_tx(mgr, txmsg); 5669 5670 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5671 if (ret > 0) { 5672 5673 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5674 ret = -EREMOTEIO; 5675 goto out; 5676 } 5677 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) { 5678 ret = -EIO; 5679 goto out; 5680 } 5681 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len); 5682 ret = num; 5683 } 5684 out: 5685 kfree(txmsg); 5686 return ret; 5687 } 5688 5689 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb, 5690 struct drm_dp_mst_port *port, 5691 struct i2c_msg *msgs, int num) 5692 { 5693 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5694 unsigned int i; 5695 struct drm_dp_sideband_msg_req_body msg; 5696 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5697 int ret; 5698 5699 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5700 if (!txmsg) { 5701 ret = -ENOMEM; 5702 goto out; 5703 } 5704 for (i = 0; i < num; i++) { 5705 memset(&msg, 0, sizeof(msg)); 5706 msg.req_type = DP_REMOTE_I2C_WRITE; 5707 msg.u.i2c_write.port_number = port->port_num; 5708 msg.u.i2c_write.write_i2c_device_id = msgs[i].addr; 5709 msg.u.i2c_write.num_bytes = msgs[i].len; 5710 msg.u.i2c_write.bytes = msgs[i].buf; 5711 5712 memset(txmsg, 0, sizeof(*txmsg)); 5713 txmsg->dst = mstb; 5714 5715 drm_dp_encode_sideband_req(&msg, txmsg); 5716 drm_dp_queue_down_tx(mgr, txmsg); 5717 5718 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5719 if (ret > 0) { 5720 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5721 ret = -EREMOTEIO; 5722 goto out; 5723 } 5724 } else { 5725 goto out; 5726 } 5727 } 5728 ret = num; 5729 out: 5730 kfree(txmsg); 5731 return ret; 5732 } 5733 5734 /* I2C device */ 5735 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, 5736 struct i2c_msg *msgs, int num) 5737 { 5738 struct drm_dp_aux *aux = adapter->algo_data; 5739 struct drm_dp_mst_port *port = 5740 container_of(aux, struct drm_dp_mst_port, aux); 5741 struct drm_dp_mst_branch *mstb; 5742 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5743 int ret; 5744 5745 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 5746 if (!mstb) 5747 return -EREMOTEIO; 5748 5749 if (remote_i2c_read_ok(msgs, num)) { 5750 ret = drm_dp_mst_i2c_read(mstb, port, msgs, num); 5751 } else if (remote_i2c_write_ok(msgs, num)) { 5752 ret = drm_dp_mst_i2c_write(mstb, port, msgs, num); 5753 } else { 5754 drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n"); 5755 ret = -EIO; 5756 } 5757 5758 drm_dp_mst_topology_put_mstb(mstb); 5759 return ret; 5760 } 5761 5762 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter) 5763 { 5764 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 5765 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 5766 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 5767 I2C_FUNC_10BIT_ADDR; 5768 } 5769 5770 static const struct i2c_algorithm drm_dp_mst_i2c_algo = { 5771 .functionality = drm_dp_mst_i2c_functionality, 5772 .master_xfer = drm_dp_mst_i2c_xfer, 5773 }; 5774 5775 /** 5776 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX 5777 * @port: The port to add the I2C bus on 5778 * 5779 * Returns 0 on success or a negative error code on failure. 5780 */ 5781 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port) 5782 { 5783 struct drm_dp_aux *aux = &port->aux; 5784 struct device *parent_dev = port->mgr->dev->dev; 5785 5786 aux->ddc.algo = &drm_dp_mst_i2c_algo; 5787 aux->ddc.algo_data = aux; 5788 aux->ddc.retries = 3; 5789 5790 aux->ddc.class = I2C_CLASS_DDC; 5791 aux->ddc.owner = THIS_MODULE; 5792 /* FIXME: set the kdev of the port's connector as parent */ 5793 aux->ddc.dev.parent = parent_dev; 5794 aux->ddc.dev.of_node = parent_dev->of_node; 5795 5796 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev), 5797 sizeof(aux->ddc.name)); 5798 5799 return i2c_add_adapter(&aux->ddc); 5800 } 5801 5802 /** 5803 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter 5804 * @port: The port to remove the I2C bus from 5805 */ 5806 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port) 5807 { 5808 i2c_del_adapter(&port->aux.ddc); 5809 } 5810 5811 /** 5812 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device 5813 * @port: The port to check 5814 * 5815 * A single physical MST hub object can be represented in the topology 5816 * by multiple branches, with virtual ports between those branches. 5817 * 5818 * As of DP1.4, An MST hub with internal (virtual) ports must expose 5819 * certain DPCD registers over those ports. See sections 2.6.1.1.1 5820 * and 2.6.1.1.2 of Display Port specification v1.4 for details. 5821 * 5822 * May acquire mgr->lock 5823 * 5824 * Returns: 5825 * true if the port is a virtual DP peer device, false otherwise 5826 */ 5827 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port) 5828 { 5829 struct drm_dp_mst_port *downstream_port; 5830 5831 if (!port || port->dpcd_rev < DP_DPCD_REV_14) 5832 return false; 5833 5834 /* Virtual DP Sink (Internal Display Panel) */ 5835 if (port->port_num >= 8) 5836 return true; 5837 5838 /* DP-to-HDMI Protocol Converter */ 5839 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV && 5840 !port->mcs && 5841 port->ldps) 5842 return true; 5843 5844 /* DP-to-DP */ 5845 mutex_lock(&port->mgr->lock); 5846 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 5847 port->mstb && 5848 port->mstb->num_ports == 2) { 5849 list_for_each_entry(downstream_port, &port->mstb->ports, next) { 5850 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK && 5851 !downstream_port->input) { 5852 mutex_unlock(&port->mgr->lock); 5853 return true; 5854 } 5855 } 5856 } 5857 mutex_unlock(&port->mgr->lock); 5858 5859 return false; 5860 } 5861 5862 /** 5863 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC 5864 * @port: The port to check. A leaf of the MST tree with an attached display. 5865 * 5866 * Depending on the situation, DSC may be enabled via the endpoint aux, 5867 * the immediately upstream aux, or the connector's physical aux. 5868 * 5869 * This is both the correct aux to read DSC_CAPABILITY and the 5870 * correct aux to write DSC_ENABLED. 5871 * 5872 * This operation can be expensive (up to four aux reads), so 5873 * the caller should cache the return. 5874 * 5875 * Returns: 5876 * NULL if DSC cannot be enabled on this port, otherwise the aux device 5877 */ 5878 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port) 5879 { 5880 struct drm_dp_mst_port *immediate_upstream_port; 5881 struct drm_dp_mst_port *fec_port; 5882 struct drm_dp_desc desc = {}; 5883 u8 endpoint_fec; 5884 u8 endpoint_dsc; 5885 5886 if (!port) 5887 return NULL; 5888 5889 if (port->parent->port_parent) 5890 immediate_upstream_port = port->parent->port_parent; 5891 else 5892 immediate_upstream_port = NULL; 5893 5894 fec_port = immediate_upstream_port; 5895 while (fec_port) { 5896 /* 5897 * Each physical link (i.e. not a virtual port) between the 5898 * output and the primary device must support FEC 5899 */ 5900 if (!drm_dp_mst_is_virtual_dpcd(fec_port) && 5901 !fec_port->fec_capable) 5902 return NULL; 5903 5904 fec_port = fec_port->parent->port_parent; 5905 } 5906 5907 /* DP-to-DP peer device */ 5908 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) { 5909 u8 upstream_dsc; 5910 5911 if (drm_dp_dpcd_read(&port->aux, 5912 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 5913 return NULL; 5914 if (drm_dp_dpcd_read(&port->aux, 5915 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 5916 return NULL; 5917 if (drm_dp_dpcd_read(&immediate_upstream_port->aux, 5918 DP_DSC_SUPPORT, &upstream_dsc, 1) != 1) 5919 return NULL; 5920 5921 /* Enpoint decompression with DP-to-DP peer device */ 5922 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 5923 (endpoint_fec & DP_FEC_CAPABLE) && 5924 (upstream_dsc & 0x2) /* DSC passthrough */) 5925 return &port->aux; 5926 5927 /* Virtual DPCD decompression with DP-to-DP peer device */ 5928 return &immediate_upstream_port->aux; 5929 } 5930 5931 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */ 5932 if (drm_dp_mst_is_virtual_dpcd(port)) 5933 return &port->aux; 5934 5935 /* 5936 * Synaptics quirk 5937 * Applies to ports for which: 5938 * - Physical aux has Synaptics OUI 5939 * - DPv1.4 or higher 5940 * - Port is on primary branch device 5941 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG) 5942 */ 5943 if (drm_dp_read_desc(port->mgr->aux, &desc, true)) 5944 return NULL; 5945 5946 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) && 5947 port->mgr->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14 && 5948 port->parent == port->mgr->mst_primary) { 5949 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 5950 5951 if (drm_dp_read_dpcd_caps(port->mgr->aux, dpcd_ext) < 0) 5952 return NULL; 5953 5954 if ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) && 5955 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) 5956 != DP_DWN_STRM_PORT_TYPE_ANALOG)) 5957 return port->mgr->aux; 5958 } 5959 5960 /* 5961 * The check below verifies if the MST sink 5962 * connected to the GPU is capable of DSC - 5963 * therefore the endpoint needs to be 5964 * both DSC and FEC capable. 5965 */ 5966 if (drm_dp_dpcd_read(&port->aux, 5967 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 5968 return NULL; 5969 if (drm_dp_dpcd_read(&port->aux, 5970 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 5971 return NULL; 5972 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 5973 (endpoint_fec & DP_FEC_CAPABLE)) 5974 return &port->aux; 5975 5976 return NULL; 5977 } 5978 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port); 5979