1 /*
2  * Copyright © 2014 Red Hat
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/bitfield.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/random.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/iopoll.h>
33 
34 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
35 #include <linux/stacktrace.h>
36 #include <linux/sort.h>
37 #include <linux/timekeeping.h>
38 #include <linux/math64.h>
39 #endif
40 
41 #include <drm/display/drm_dp_mst_helper.h>
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_drv.h>
45 #include <drm/drm_edid.h>
46 #include <drm/drm_print.h>
47 #include <drm/drm_probe_helper.h>
48 
49 #include "drm_dp_helper_internal.h"
50 #include "drm_dp_mst_topology_internal.h"
51 
52 /**
53  * DOC: dp mst helper
54  *
55  * These functions contain parts of the DisplayPort 1.2a MultiStream Transport
56  * protocol. The helpers contain a topology manager and bandwidth manager.
57  * The helpers encapsulate the sending and received of sideband msgs.
58  */
59 struct drm_dp_pending_up_req {
60 	struct drm_dp_sideband_msg_hdr hdr;
61 	struct drm_dp_sideband_msg_req_body msg;
62 	struct list_head next;
63 };
64 
65 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
66 				  char *buf);
67 
68 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port);
69 
70 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
71 				     int id,
72 				     struct drm_dp_payload *payload);
73 
74 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
75 				 struct drm_dp_mst_port *port,
76 				 int offset, int size, u8 *bytes);
77 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
78 				  struct drm_dp_mst_port *port,
79 				  int offset, int size, u8 *bytes);
80 
81 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
82 				    struct drm_dp_mst_branch *mstb);
83 
84 static void
85 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
86 				   struct drm_dp_mst_branch *mstb);
87 
88 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
89 					   struct drm_dp_mst_branch *mstb,
90 					   struct drm_dp_mst_port *port);
91 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
92 				 u8 *guid);
93 
94 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port);
95 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port);
96 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr);
97 
98 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
99 						 struct drm_dp_mst_branch *branch);
100 
101 #define DBG_PREFIX "[dp_mst]"
102 
103 #define DP_STR(x) [DP_ ## x] = #x
104 
105 static const char *drm_dp_mst_req_type_str(u8 req_type)
106 {
107 	static const char * const req_type_str[] = {
108 		DP_STR(GET_MSG_TRANSACTION_VERSION),
109 		DP_STR(LINK_ADDRESS),
110 		DP_STR(CONNECTION_STATUS_NOTIFY),
111 		DP_STR(ENUM_PATH_RESOURCES),
112 		DP_STR(ALLOCATE_PAYLOAD),
113 		DP_STR(QUERY_PAYLOAD),
114 		DP_STR(RESOURCE_STATUS_NOTIFY),
115 		DP_STR(CLEAR_PAYLOAD_ID_TABLE),
116 		DP_STR(REMOTE_DPCD_READ),
117 		DP_STR(REMOTE_DPCD_WRITE),
118 		DP_STR(REMOTE_I2C_READ),
119 		DP_STR(REMOTE_I2C_WRITE),
120 		DP_STR(POWER_UP_PHY),
121 		DP_STR(POWER_DOWN_PHY),
122 		DP_STR(SINK_EVENT_NOTIFY),
123 		DP_STR(QUERY_STREAM_ENC_STATUS),
124 	};
125 
126 	if (req_type >= ARRAY_SIZE(req_type_str) ||
127 	    !req_type_str[req_type])
128 		return "unknown";
129 
130 	return req_type_str[req_type];
131 }
132 
133 #undef DP_STR
134 #define DP_STR(x) [DP_NAK_ ## x] = #x
135 
136 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason)
137 {
138 	static const char * const nak_reason_str[] = {
139 		DP_STR(WRITE_FAILURE),
140 		DP_STR(INVALID_READ),
141 		DP_STR(CRC_FAILURE),
142 		DP_STR(BAD_PARAM),
143 		DP_STR(DEFER),
144 		DP_STR(LINK_FAILURE),
145 		DP_STR(NO_RESOURCES),
146 		DP_STR(DPCD_FAIL),
147 		DP_STR(I2C_NAK),
148 		DP_STR(ALLOCATE_FAIL),
149 	};
150 
151 	if (nak_reason >= ARRAY_SIZE(nak_reason_str) ||
152 	    !nak_reason_str[nak_reason])
153 		return "unknown";
154 
155 	return nak_reason_str[nak_reason];
156 }
157 
158 #undef DP_STR
159 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x
160 
161 static const char *drm_dp_mst_sideband_tx_state_str(int state)
162 {
163 	static const char * const sideband_reason_str[] = {
164 		DP_STR(QUEUED),
165 		DP_STR(START_SEND),
166 		DP_STR(SENT),
167 		DP_STR(RX),
168 		DP_STR(TIMEOUT),
169 	};
170 
171 	if (state >= ARRAY_SIZE(sideband_reason_str) ||
172 	    !sideband_reason_str[state])
173 		return "unknown";
174 
175 	return sideband_reason_str[state];
176 }
177 
178 static int
179 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len)
180 {
181 	int i;
182 	u8 unpacked_rad[16];
183 
184 	for (i = 0; i < lct; i++) {
185 		if (i % 2)
186 			unpacked_rad[i] = rad[i / 2] >> 4;
187 		else
188 			unpacked_rad[i] = rad[i / 2] & BIT_MASK(4);
189 	}
190 
191 	/* TODO: Eventually add something to printk so we can format the rad
192 	 * like this: 1.2.3
193 	 */
194 	return snprintf(out, len, "%*phC", lct, unpacked_rad);
195 }
196 
197 /* sideband msg handling */
198 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles)
199 {
200 	u8 bitmask = 0x80;
201 	u8 bitshift = 7;
202 	u8 array_index = 0;
203 	int number_of_bits = num_nibbles * 4;
204 	u8 remainder = 0;
205 
206 	while (number_of_bits != 0) {
207 		number_of_bits--;
208 		remainder <<= 1;
209 		remainder |= (data[array_index] & bitmask) >> bitshift;
210 		bitmask >>= 1;
211 		bitshift--;
212 		if (bitmask == 0) {
213 			bitmask = 0x80;
214 			bitshift = 7;
215 			array_index++;
216 		}
217 		if ((remainder & 0x10) == 0x10)
218 			remainder ^= 0x13;
219 	}
220 
221 	number_of_bits = 4;
222 	while (number_of_bits != 0) {
223 		number_of_bits--;
224 		remainder <<= 1;
225 		if ((remainder & 0x10) != 0)
226 			remainder ^= 0x13;
227 	}
228 
229 	return remainder;
230 }
231 
232 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes)
233 {
234 	u8 bitmask = 0x80;
235 	u8 bitshift = 7;
236 	u8 array_index = 0;
237 	int number_of_bits = number_of_bytes * 8;
238 	u16 remainder = 0;
239 
240 	while (number_of_bits != 0) {
241 		number_of_bits--;
242 		remainder <<= 1;
243 		remainder |= (data[array_index] & bitmask) >> bitshift;
244 		bitmask >>= 1;
245 		bitshift--;
246 		if (bitmask == 0) {
247 			bitmask = 0x80;
248 			bitshift = 7;
249 			array_index++;
250 		}
251 		if ((remainder & 0x100) == 0x100)
252 			remainder ^= 0xd5;
253 	}
254 
255 	number_of_bits = 8;
256 	while (number_of_bits != 0) {
257 		number_of_bits--;
258 		remainder <<= 1;
259 		if ((remainder & 0x100) != 0)
260 			remainder ^= 0xd5;
261 	}
262 
263 	return remainder & 0xff;
264 }
265 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr)
266 {
267 	u8 size = 3;
268 
269 	size += (hdr->lct / 2);
270 	return size;
271 }
272 
273 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
274 					   u8 *buf, int *len)
275 {
276 	int idx = 0;
277 	int i;
278 	u8 crc4;
279 
280 	buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf);
281 	for (i = 0; i < (hdr->lct / 2); i++)
282 		buf[idx++] = hdr->rad[i];
283 	buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) |
284 		(hdr->msg_len & 0x3f);
285 	buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4);
286 
287 	crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1);
288 	buf[idx - 1] |= (crc4 & 0xf);
289 
290 	*len = idx;
291 }
292 
293 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr,
294 					   struct drm_dp_sideband_msg_hdr *hdr,
295 					   u8 *buf, int buflen, u8 *hdrlen)
296 {
297 	u8 crc4;
298 	u8 len;
299 	int i;
300 	u8 idx;
301 
302 	if (buf[0] == 0)
303 		return false;
304 	len = 3;
305 	len += ((buf[0] & 0xf0) >> 4) / 2;
306 	if (len > buflen)
307 		return false;
308 	crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1);
309 
310 	if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) {
311 		drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]);
312 		return false;
313 	}
314 
315 	hdr->lct = (buf[0] & 0xf0) >> 4;
316 	hdr->lcr = (buf[0] & 0xf);
317 	idx = 1;
318 	for (i = 0; i < (hdr->lct / 2); i++)
319 		hdr->rad[i] = buf[idx++];
320 	hdr->broadcast = (buf[idx] >> 7) & 0x1;
321 	hdr->path_msg = (buf[idx] >> 6) & 0x1;
322 	hdr->msg_len = buf[idx] & 0x3f;
323 	idx++;
324 	hdr->somt = (buf[idx] >> 7) & 0x1;
325 	hdr->eomt = (buf[idx] >> 6) & 0x1;
326 	hdr->seqno = (buf[idx] >> 4) & 0x1;
327 	idx++;
328 	*hdrlen = idx;
329 	return true;
330 }
331 
332 void
333 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req,
334 			   struct drm_dp_sideband_msg_tx *raw)
335 {
336 	int idx = 0;
337 	int i;
338 	u8 *buf = raw->msg;
339 
340 	buf[idx++] = req->req_type & 0x7f;
341 
342 	switch (req->req_type) {
343 	case DP_ENUM_PATH_RESOURCES:
344 	case DP_POWER_DOWN_PHY:
345 	case DP_POWER_UP_PHY:
346 		buf[idx] = (req->u.port_num.port_number & 0xf) << 4;
347 		idx++;
348 		break;
349 	case DP_ALLOCATE_PAYLOAD:
350 		buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 |
351 			(req->u.allocate_payload.number_sdp_streams & 0xf);
352 		idx++;
353 		buf[idx] = (req->u.allocate_payload.vcpi & 0x7f);
354 		idx++;
355 		buf[idx] = (req->u.allocate_payload.pbn >> 8);
356 		idx++;
357 		buf[idx] = (req->u.allocate_payload.pbn & 0xff);
358 		idx++;
359 		for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) {
360 			buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) |
361 				(req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf);
362 			idx++;
363 		}
364 		if (req->u.allocate_payload.number_sdp_streams & 1) {
365 			i = req->u.allocate_payload.number_sdp_streams - 1;
366 			buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4;
367 			idx++;
368 		}
369 		break;
370 	case DP_QUERY_PAYLOAD:
371 		buf[idx] = (req->u.query_payload.port_number & 0xf) << 4;
372 		idx++;
373 		buf[idx] = (req->u.query_payload.vcpi & 0x7f);
374 		idx++;
375 		break;
376 	case DP_REMOTE_DPCD_READ:
377 		buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4;
378 		buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf;
379 		idx++;
380 		buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8;
381 		idx++;
382 		buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff);
383 		idx++;
384 		buf[idx] = (req->u.dpcd_read.num_bytes);
385 		idx++;
386 		break;
387 
388 	case DP_REMOTE_DPCD_WRITE:
389 		buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4;
390 		buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf;
391 		idx++;
392 		buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8;
393 		idx++;
394 		buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff);
395 		idx++;
396 		buf[idx] = (req->u.dpcd_write.num_bytes);
397 		idx++;
398 		memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes);
399 		idx += req->u.dpcd_write.num_bytes;
400 		break;
401 	case DP_REMOTE_I2C_READ:
402 		buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4;
403 		buf[idx] |= (req->u.i2c_read.num_transactions & 0x3);
404 		idx++;
405 		for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) {
406 			buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f;
407 			idx++;
408 			buf[idx] = req->u.i2c_read.transactions[i].num_bytes;
409 			idx++;
410 			memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes);
411 			idx += req->u.i2c_read.transactions[i].num_bytes;
412 
413 			buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4;
414 			buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf);
415 			idx++;
416 		}
417 		buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f;
418 		idx++;
419 		buf[idx] = (req->u.i2c_read.num_bytes_read);
420 		idx++;
421 		break;
422 
423 	case DP_REMOTE_I2C_WRITE:
424 		buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4;
425 		idx++;
426 		buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f;
427 		idx++;
428 		buf[idx] = (req->u.i2c_write.num_bytes);
429 		idx++;
430 		memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes);
431 		idx += req->u.i2c_write.num_bytes;
432 		break;
433 	case DP_QUERY_STREAM_ENC_STATUS: {
434 		const struct drm_dp_query_stream_enc_status *msg;
435 
436 		msg = &req->u.enc_status;
437 		buf[idx] = msg->stream_id;
438 		idx++;
439 		memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id));
440 		idx += sizeof(msg->client_id);
441 		buf[idx] = 0;
442 		buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event);
443 		buf[idx] |= msg->valid_stream_event ? BIT(2) : 0;
444 		buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior);
445 		buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0;
446 		idx++;
447 		}
448 		break;
449 	}
450 	raw->cur_len = idx;
451 }
452 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req);
453 
454 /* Decode a sideband request we've encoded, mainly used for debugging */
455 int
456 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw,
457 			   struct drm_dp_sideband_msg_req_body *req)
458 {
459 	const u8 *buf = raw->msg;
460 	int i, idx = 0;
461 
462 	req->req_type = buf[idx++] & 0x7f;
463 	switch (req->req_type) {
464 	case DP_ENUM_PATH_RESOURCES:
465 	case DP_POWER_DOWN_PHY:
466 	case DP_POWER_UP_PHY:
467 		req->u.port_num.port_number = (buf[idx] >> 4) & 0xf;
468 		break;
469 	case DP_ALLOCATE_PAYLOAD:
470 		{
471 			struct drm_dp_allocate_payload *a =
472 				&req->u.allocate_payload;
473 
474 			a->number_sdp_streams = buf[idx] & 0xf;
475 			a->port_number = (buf[idx] >> 4) & 0xf;
476 
477 			WARN_ON(buf[++idx] & 0x80);
478 			a->vcpi = buf[idx] & 0x7f;
479 
480 			a->pbn = buf[++idx] << 8;
481 			a->pbn |= buf[++idx];
482 
483 			idx++;
484 			for (i = 0; i < a->number_sdp_streams; i++) {
485 				a->sdp_stream_sink[i] =
486 					(buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf;
487 			}
488 		}
489 		break;
490 	case DP_QUERY_PAYLOAD:
491 		req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf;
492 		WARN_ON(buf[++idx] & 0x80);
493 		req->u.query_payload.vcpi = buf[idx] & 0x7f;
494 		break;
495 	case DP_REMOTE_DPCD_READ:
496 		{
497 			struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read;
498 
499 			r->port_number = (buf[idx] >> 4) & 0xf;
500 
501 			r->dpcd_address = (buf[idx] << 16) & 0xf0000;
502 			r->dpcd_address |= (buf[++idx] << 8) & 0xff00;
503 			r->dpcd_address |= buf[++idx] & 0xff;
504 
505 			r->num_bytes = buf[++idx];
506 		}
507 		break;
508 	case DP_REMOTE_DPCD_WRITE:
509 		{
510 			struct drm_dp_remote_dpcd_write *w =
511 				&req->u.dpcd_write;
512 
513 			w->port_number = (buf[idx] >> 4) & 0xf;
514 
515 			w->dpcd_address = (buf[idx] << 16) & 0xf0000;
516 			w->dpcd_address |= (buf[++idx] << 8) & 0xff00;
517 			w->dpcd_address |= buf[++idx] & 0xff;
518 
519 			w->num_bytes = buf[++idx];
520 
521 			w->bytes = kmemdup(&buf[++idx], w->num_bytes,
522 					   GFP_KERNEL);
523 			if (!w->bytes)
524 				return -ENOMEM;
525 		}
526 		break;
527 	case DP_REMOTE_I2C_READ:
528 		{
529 			struct drm_dp_remote_i2c_read *r = &req->u.i2c_read;
530 			struct drm_dp_remote_i2c_read_tx *tx;
531 			bool failed = false;
532 
533 			r->num_transactions = buf[idx] & 0x3;
534 			r->port_number = (buf[idx] >> 4) & 0xf;
535 			for (i = 0; i < r->num_transactions; i++) {
536 				tx = &r->transactions[i];
537 
538 				tx->i2c_dev_id = buf[++idx] & 0x7f;
539 				tx->num_bytes = buf[++idx];
540 				tx->bytes = kmemdup(&buf[++idx],
541 						    tx->num_bytes,
542 						    GFP_KERNEL);
543 				if (!tx->bytes) {
544 					failed = true;
545 					break;
546 				}
547 				idx += tx->num_bytes;
548 				tx->no_stop_bit = (buf[idx] >> 5) & 0x1;
549 				tx->i2c_transaction_delay = buf[idx] & 0xf;
550 			}
551 
552 			if (failed) {
553 				for (i = 0; i < r->num_transactions; i++) {
554 					tx = &r->transactions[i];
555 					kfree(tx->bytes);
556 				}
557 				return -ENOMEM;
558 			}
559 
560 			r->read_i2c_device_id = buf[++idx] & 0x7f;
561 			r->num_bytes_read = buf[++idx];
562 		}
563 		break;
564 	case DP_REMOTE_I2C_WRITE:
565 		{
566 			struct drm_dp_remote_i2c_write *w = &req->u.i2c_write;
567 
568 			w->port_number = (buf[idx] >> 4) & 0xf;
569 			w->write_i2c_device_id = buf[++idx] & 0x7f;
570 			w->num_bytes = buf[++idx];
571 			w->bytes = kmemdup(&buf[++idx], w->num_bytes,
572 					   GFP_KERNEL);
573 			if (!w->bytes)
574 				return -ENOMEM;
575 		}
576 		break;
577 	case DP_QUERY_STREAM_ENC_STATUS:
578 		req->u.enc_status.stream_id = buf[idx++];
579 		for (i = 0; i < sizeof(req->u.enc_status.client_id); i++)
580 			req->u.enc_status.client_id[i] = buf[idx++];
581 
582 		req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0),
583 							   buf[idx]);
584 		req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2),
585 								 buf[idx]);
586 		req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3),
587 							      buf[idx]);
588 		req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5),
589 								    buf[idx]);
590 		break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req);
596 
597 void
598 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req,
599 				  int indent, struct drm_printer *printer)
600 {
601 	int i;
602 
603 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__)
604 	if (req->req_type == DP_LINK_ADDRESS) {
605 		/* No contents to print */
606 		P("type=%s\n", drm_dp_mst_req_type_str(req->req_type));
607 		return;
608 	}
609 
610 	P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type));
611 	indent++;
612 
613 	switch (req->req_type) {
614 	case DP_ENUM_PATH_RESOURCES:
615 	case DP_POWER_DOWN_PHY:
616 	case DP_POWER_UP_PHY:
617 		P("port=%d\n", req->u.port_num.port_number);
618 		break;
619 	case DP_ALLOCATE_PAYLOAD:
620 		P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n",
621 		  req->u.allocate_payload.port_number,
622 		  req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn,
623 		  req->u.allocate_payload.number_sdp_streams,
624 		  req->u.allocate_payload.number_sdp_streams,
625 		  req->u.allocate_payload.sdp_stream_sink);
626 		break;
627 	case DP_QUERY_PAYLOAD:
628 		P("port=%d vcpi=%d\n",
629 		  req->u.query_payload.port_number,
630 		  req->u.query_payload.vcpi);
631 		break;
632 	case DP_REMOTE_DPCD_READ:
633 		P("port=%d dpcd_addr=%05x len=%d\n",
634 		  req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address,
635 		  req->u.dpcd_read.num_bytes);
636 		break;
637 	case DP_REMOTE_DPCD_WRITE:
638 		P("port=%d addr=%05x len=%d: %*ph\n",
639 		  req->u.dpcd_write.port_number,
640 		  req->u.dpcd_write.dpcd_address,
641 		  req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes,
642 		  req->u.dpcd_write.bytes);
643 		break;
644 	case DP_REMOTE_I2C_READ:
645 		P("port=%d num_tx=%d id=%d size=%d:\n",
646 		  req->u.i2c_read.port_number,
647 		  req->u.i2c_read.num_transactions,
648 		  req->u.i2c_read.read_i2c_device_id,
649 		  req->u.i2c_read.num_bytes_read);
650 
651 		indent++;
652 		for (i = 0; i < req->u.i2c_read.num_transactions; i++) {
653 			const struct drm_dp_remote_i2c_read_tx *rtx =
654 				&req->u.i2c_read.transactions[i];
655 
656 			P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n",
657 			  i, rtx->i2c_dev_id, rtx->num_bytes,
658 			  rtx->no_stop_bit, rtx->i2c_transaction_delay,
659 			  rtx->num_bytes, rtx->bytes);
660 		}
661 		break;
662 	case DP_REMOTE_I2C_WRITE:
663 		P("port=%d id=%d size=%d: %*ph\n",
664 		  req->u.i2c_write.port_number,
665 		  req->u.i2c_write.write_i2c_device_id,
666 		  req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes,
667 		  req->u.i2c_write.bytes);
668 		break;
669 	case DP_QUERY_STREAM_ENC_STATUS:
670 		P("stream_id=%u client_id=%*ph stream_event=%x "
671 		  "valid_event=%d stream_behavior=%x valid_behavior=%d",
672 		  req->u.enc_status.stream_id,
673 		  (int)ARRAY_SIZE(req->u.enc_status.client_id),
674 		  req->u.enc_status.client_id, req->u.enc_status.stream_event,
675 		  req->u.enc_status.valid_stream_event,
676 		  req->u.enc_status.stream_behavior,
677 		  req->u.enc_status.valid_stream_behavior);
678 		break;
679 	default:
680 		P("???\n");
681 		break;
682 	}
683 #undef P
684 }
685 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body);
686 
687 static inline void
688 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p,
689 				const struct drm_dp_sideband_msg_tx *txmsg)
690 {
691 	struct drm_dp_sideband_msg_req_body req;
692 	char buf[64];
693 	int ret;
694 	int i;
695 
696 	drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf,
697 			      sizeof(buf));
698 	drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n",
699 		   txmsg->cur_offset, txmsg->cur_len, txmsg->seqno,
700 		   drm_dp_mst_sideband_tx_state_str(txmsg->state),
701 		   txmsg->path_msg, buf);
702 
703 	ret = drm_dp_decode_sideband_req(txmsg, &req);
704 	if (ret) {
705 		drm_printf(p, "<failed to decode sideband req: %d>\n", ret);
706 		return;
707 	}
708 	drm_dp_dump_sideband_msg_req_body(&req, 1, p);
709 
710 	switch (req.req_type) {
711 	case DP_REMOTE_DPCD_WRITE:
712 		kfree(req.u.dpcd_write.bytes);
713 		break;
714 	case DP_REMOTE_I2C_READ:
715 		for (i = 0; i < req.u.i2c_read.num_transactions; i++)
716 			kfree(req.u.i2c_read.transactions[i].bytes);
717 		break;
718 	case DP_REMOTE_I2C_WRITE:
719 		kfree(req.u.i2c_write.bytes);
720 		break;
721 	}
722 }
723 
724 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len)
725 {
726 	u8 crc4;
727 
728 	crc4 = drm_dp_msg_data_crc4(msg, len);
729 	msg[len] = crc4;
730 }
731 
732 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep,
733 					 struct drm_dp_sideband_msg_tx *raw)
734 {
735 	int idx = 0;
736 	u8 *buf = raw->msg;
737 
738 	buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f);
739 
740 	raw->cur_len = idx;
741 }
742 
743 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg,
744 					  struct drm_dp_sideband_msg_hdr *hdr,
745 					  u8 hdrlen)
746 {
747 	/*
748 	 * ignore out-of-order messages or messages that are part of a
749 	 * failed transaction
750 	 */
751 	if (!hdr->somt && !msg->have_somt)
752 		return false;
753 
754 	/* get length contained in this portion */
755 	msg->curchunk_idx = 0;
756 	msg->curchunk_len = hdr->msg_len;
757 	msg->curchunk_hdrlen = hdrlen;
758 
759 	/* we have already gotten an somt - don't bother parsing */
760 	if (hdr->somt && msg->have_somt)
761 		return false;
762 
763 	if (hdr->somt) {
764 		memcpy(&msg->initial_hdr, hdr,
765 		       sizeof(struct drm_dp_sideband_msg_hdr));
766 		msg->have_somt = true;
767 	}
768 	if (hdr->eomt)
769 		msg->have_eomt = true;
770 
771 	return true;
772 }
773 
774 /* this adds a chunk of msg to the builder to get the final msg */
775 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg,
776 					   u8 *replybuf, u8 replybuflen)
777 {
778 	u8 crc4;
779 
780 	memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen);
781 	msg->curchunk_idx += replybuflen;
782 
783 	if (msg->curchunk_idx >= msg->curchunk_len) {
784 		/* do CRC */
785 		crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1);
786 		if (crc4 != msg->chunk[msg->curchunk_len - 1])
787 			print_hex_dump(KERN_DEBUG, "wrong crc",
788 				       DUMP_PREFIX_NONE, 16, 1,
789 				       msg->chunk,  msg->curchunk_len, false);
790 		/* copy chunk into bigger msg */
791 		memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1);
792 		msg->curlen += msg->curchunk_len - 1;
793 	}
794 	return true;
795 }
796 
797 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr,
798 					       struct drm_dp_sideband_msg_rx *raw,
799 					       struct drm_dp_sideband_msg_reply_body *repmsg)
800 {
801 	int idx = 1;
802 	int i;
803 
804 	memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16);
805 	idx += 16;
806 	repmsg->u.link_addr.nports = raw->msg[idx] & 0xf;
807 	idx++;
808 	if (idx > raw->curlen)
809 		goto fail_len;
810 	for (i = 0; i < repmsg->u.link_addr.nports; i++) {
811 		if (raw->msg[idx] & 0x80)
812 			repmsg->u.link_addr.ports[i].input_port = 1;
813 
814 		repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7;
815 		repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf);
816 
817 		idx++;
818 		if (idx > raw->curlen)
819 			goto fail_len;
820 		repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1;
821 		repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1;
822 		if (repmsg->u.link_addr.ports[i].input_port == 0)
823 			repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
824 		idx++;
825 		if (idx > raw->curlen)
826 			goto fail_len;
827 		if (repmsg->u.link_addr.ports[i].input_port == 0) {
828 			repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]);
829 			idx++;
830 			if (idx > raw->curlen)
831 				goto fail_len;
832 			memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16);
833 			idx += 16;
834 			if (idx > raw->curlen)
835 				goto fail_len;
836 			repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf;
837 			repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf);
838 			idx++;
839 
840 		}
841 		if (idx > raw->curlen)
842 			goto fail_len;
843 	}
844 
845 	return true;
846 fail_len:
847 	DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
848 	return false;
849 }
850 
851 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw,
852 						   struct drm_dp_sideband_msg_reply_body *repmsg)
853 {
854 	int idx = 1;
855 
856 	repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf;
857 	idx++;
858 	if (idx > raw->curlen)
859 		goto fail_len;
860 	repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx];
861 	idx++;
862 	if (idx > raw->curlen)
863 		goto fail_len;
864 
865 	memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes);
866 	return true;
867 fail_len:
868 	DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
869 	return false;
870 }
871 
872 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw,
873 						      struct drm_dp_sideband_msg_reply_body *repmsg)
874 {
875 	int idx = 1;
876 
877 	repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf;
878 	idx++;
879 	if (idx > raw->curlen)
880 		goto fail_len;
881 	return true;
882 fail_len:
883 	DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen);
884 	return false;
885 }
886 
887 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw,
888 						      struct drm_dp_sideband_msg_reply_body *repmsg)
889 {
890 	int idx = 1;
891 
892 	repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf);
893 	idx++;
894 	if (idx > raw->curlen)
895 		goto fail_len;
896 	repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx];
897 	idx++;
898 	/* TODO check */
899 	memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes);
900 	return true;
901 fail_len:
902 	DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen);
903 	return false;
904 }
905 
906 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw,
907 							  struct drm_dp_sideband_msg_reply_body *repmsg)
908 {
909 	int idx = 1;
910 
911 	repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf;
912 	repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1;
913 	idx++;
914 	if (idx > raw->curlen)
915 		goto fail_len;
916 	repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
917 	idx += 2;
918 	if (idx > raw->curlen)
919 		goto fail_len;
920 	repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
921 	idx += 2;
922 	if (idx > raw->curlen)
923 		goto fail_len;
924 	return true;
925 fail_len:
926 	DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen);
927 	return false;
928 }
929 
930 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw,
931 							  struct drm_dp_sideband_msg_reply_body *repmsg)
932 {
933 	int idx = 1;
934 
935 	repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
936 	idx++;
937 	if (idx > raw->curlen)
938 		goto fail_len;
939 	repmsg->u.allocate_payload.vcpi = raw->msg[idx];
940 	idx++;
941 	if (idx > raw->curlen)
942 		goto fail_len;
943 	repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
944 	idx += 2;
945 	if (idx > raw->curlen)
946 		goto fail_len;
947 	return true;
948 fail_len:
949 	DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen);
950 	return false;
951 }
952 
953 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw,
954 						    struct drm_dp_sideband_msg_reply_body *repmsg)
955 {
956 	int idx = 1;
957 
958 	repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
959 	idx++;
960 	if (idx > raw->curlen)
961 		goto fail_len;
962 	repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
963 	idx += 2;
964 	if (idx > raw->curlen)
965 		goto fail_len;
966 	return true;
967 fail_len:
968 	DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen);
969 	return false;
970 }
971 
972 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw,
973 						       struct drm_dp_sideband_msg_reply_body *repmsg)
974 {
975 	int idx = 1;
976 
977 	repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf;
978 	idx++;
979 	if (idx > raw->curlen) {
980 		DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n",
981 			      idx, raw->curlen);
982 		return false;
983 	}
984 	return true;
985 }
986 
987 static bool
988 drm_dp_sideband_parse_query_stream_enc_status(
989 				struct drm_dp_sideband_msg_rx *raw,
990 				struct drm_dp_sideband_msg_reply_body *repmsg)
991 {
992 	struct drm_dp_query_stream_enc_status_ack_reply *reply;
993 
994 	reply = &repmsg->u.enc_status;
995 
996 	reply->stream_id = raw->msg[3];
997 
998 	reply->reply_signed = raw->msg[2] & BIT(0);
999 
1000 	/*
1001 	 * NOTE: It's my impression from reading the spec that the below parsing
1002 	 * is correct. However I noticed while testing with an HDCP 1.4 display
1003 	 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I
1004 	 * would expect both bits to be set. So keep the parsing following the
1005 	 * spec, but beware reality might not match the spec (at least for some
1006 	 * configurations).
1007 	 */
1008 	reply->hdcp_1x_device_present = raw->msg[2] & BIT(4);
1009 	reply->hdcp_2x_device_present = raw->msg[2] & BIT(3);
1010 
1011 	reply->query_capable_device_present = raw->msg[2] & BIT(5);
1012 	reply->legacy_device_present = raw->msg[2] & BIT(6);
1013 	reply->unauthorizable_device_present = raw->msg[2] & BIT(7);
1014 
1015 	reply->auth_completed = !!(raw->msg[1] & BIT(3));
1016 	reply->encryption_enabled = !!(raw->msg[1] & BIT(4));
1017 	reply->repeater_present = !!(raw->msg[1] & BIT(5));
1018 	reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6;
1019 
1020 	return true;
1021 }
1022 
1023 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr,
1024 					struct drm_dp_sideband_msg_rx *raw,
1025 					struct drm_dp_sideband_msg_reply_body *msg)
1026 {
1027 	memset(msg, 0, sizeof(*msg));
1028 	msg->reply_type = (raw->msg[0] & 0x80) >> 7;
1029 	msg->req_type = (raw->msg[0] & 0x7f);
1030 
1031 	if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) {
1032 		memcpy(msg->u.nak.guid, &raw->msg[1], 16);
1033 		msg->u.nak.reason = raw->msg[17];
1034 		msg->u.nak.nak_data = raw->msg[18];
1035 		return false;
1036 	}
1037 
1038 	switch (msg->req_type) {
1039 	case DP_LINK_ADDRESS:
1040 		return drm_dp_sideband_parse_link_address(mgr, raw, msg);
1041 	case DP_QUERY_PAYLOAD:
1042 		return drm_dp_sideband_parse_query_payload_ack(raw, msg);
1043 	case DP_REMOTE_DPCD_READ:
1044 		return drm_dp_sideband_parse_remote_dpcd_read(raw, msg);
1045 	case DP_REMOTE_DPCD_WRITE:
1046 		return drm_dp_sideband_parse_remote_dpcd_write(raw, msg);
1047 	case DP_REMOTE_I2C_READ:
1048 		return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg);
1049 	case DP_REMOTE_I2C_WRITE:
1050 		return true; /* since there's nothing to parse */
1051 	case DP_ENUM_PATH_RESOURCES:
1052 		return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg);
1053 	case DP_ALLOCATE_PAYLOAD:
1054 		return drm_dp_sideband_parse_allocate_payload_ack(raw, msg);
1055 	case DP_POWER_DOWN_PHY:
1056 	case DP_POWER_UP_PHY:
1057 		return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg);
1058 	case DP_CLEAR_PAYLOAD_ID_TABLE:
1059 		return true; /* since there's nothing to parse */
1060 	case DP_QUERY_STREAM_ENC_STATUS:
1061 		return drm_dp_sideband_parse_query_stream_enc_status(raw, msg);
1062 	default:
1063 		drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n",
1064 			msg->req_type, drm_dp_mst_req_type_str(msg->req_type));
1065 		return false;
1066 	}
1067 }
1068 
1069 static bool
1070 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr,
1071 					       struct drm_dp_sideband_msg_rx *raw,
1072 					       struct drm_dp_sideband_msg_req_body *msg)
1073 {
1074 	int idx = 1;
1075 
1076 	msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1077 	idx++;
1078 	if (idx > raw->curlen)
1079 		goto fail_len;
1080 
1081 	memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16);
1082 	idx += 16;
1083 	if (idx > raw->curlen)
1084 		goto fail_len;
1085 
1086 	msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1;
1087 	msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
1088 	msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1;
1089 	msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1;
1090 	msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7);
1091 	idx++;
1092 	return true;
1093 fail_len:
1094 	drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n",
1095 		    idx, raw->curlen);
1096 	return false;
1097 }
1098 
1099 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr,
1100 							 struct drm_dp_sideband_msg_rx *raw,
1101 							 struct drm_dp_sideband_msg_req_body *msg)
1102 {
1103 	int idx = 1;
1104 
1105 	msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1106 	idx++;
1107 	if (idx > raw->curlen)
1108 		goto fail_len;
1109 
1110 	memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16);
1111 	idx += 16;
1112 	if (idx > raw->curlen)
1113 		goto fail_len;
1114 
1115 	msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
1116 	idx++;
1117 	return true;
1118 fail_len:
1119 	drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen);
1120 	return false;
1121 }
1122 
1123 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr,
1124 				      struct drm_dp_sideband_msg_rx *raw,
1125 				      struct drm_dp_sideband_msg_req_body *msg)
1126 {
1127 	memset(msg, 0, sizeof(*msg));
1128 	msg->req_type = (raw->msg[0] & 0x7f);
1129 
1130 	switch (msg->req_type) {
1131 	case DP_CONNECTION_STATUS_NOTIFY:
1132 		return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg);
1133 	case DP_RESOURCE_STATUS_NOTIFY:
1134 		return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg);
1135 	default:
1136 		drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n",
1137 			msg->req_type, drm_dp_mst_req_type_str(msg->req_type));
1138 		return false;
1139 	}
1140 }
1141 
1142 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg,
1143 			     u8 port_num, u32 offset, u8 num_bytes, u8 *bytes)
1144 {
1145 	struct drm_dp_sideband_msg_req_body req;
1146 
1147 	req.req_type = DP_REMOTE_DPCD_WRITE;
1148 	req.u.dpcd_write.port_number = port_num;
1149 	req.u.dpcd_write.dpcd_address = offset;
1150 	req.u.dpcd_write.num_bytes = num_bytes;
1151 	req.u.dpcd_write.bytes = bytes;
1152 	drm_dp_encode_sideband_req(&req, msg);
1153 }
1154 
1155 static void build_link_address(struct drm_dp_sideband_msg_tx *msg)
1156 {
1157 	struct drm_dp_sideband_msg_req_body req;
1158 
1159 	req.req_type = DP_LINK_ADDRESS;
1160 	drm_dp_encode_sideband_req(&req, msg);
1161 }
1162 
1163 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg)
1164 {
1165 	struct drm_dp_sideband_msg_req_body req;
1166 
1167 	req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE;
1168 	drm_dp_encode_sideband_req(&req, msg);
1169 	msg->path_msg = true;
1170 }
1171 
1172 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg,
1173 				     int port_num)
1174 {
1175 	struct drm_dp_sideband_msg_req_body req;
1176 
1177 	req.req_type = DP_ENUM_PATH_RESOURCES;
1178 	req.u.port_num.port_number = port_num;
1179 	drm_dp_encode_sideband_req(&req, msg);
1180 	msg->path_msg = true;
1181 	return 0;
1182 }
1183 
1184 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg,
1185 				   int port_num,
1186 				   u8 vcpi, uint16_t pbn,
1187 				   u8 number_sdp_streams,
1188 				   u8 *sdp_stream_sink)
1189 {
1190 	struct drm_dp_sideband_msg_req_body req;
1191 
1192 	memset(&req, 0, sizeof(req));
1193 	req.req_type = DP_ALLOCATE_PAYLOAD;
1194 	req.u.allocate_payload.port_number = port_num;
1195 	req.u.allocate_payload.vcpi = vcpi;
1196 	req.u.allocate_payload.pbn = pbn;
1197 	req.u.allocate_payload.number_sdp_streams = number_sdp_streams;
1198 	memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink,
1199 		   number_sdp_streams);
1200 	drm_dp_encode_sideband_req(&req, msg);
1201 	msg->path_msg = true;
1202 }
1203 
1204 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg,
1205 				   int port_num, bool power_up)
1206 {
1207 	struct drm_dp_sideband_msg_req_body req;
1208 
1209 	if (power_up)
1210 		req.req_type = DP_POWER_UP_PHY;
1211 	else
1212 		req.req_type = DP_POWER_DOWN_PHY;
1213 
1214 	req.u.port_num.port_number = port_num;
1215 	drm_dp_encode_sideband_req(&req, msg);
1216 	msg->path_msg = true;
1217 }
1218 
1219 static int
1220 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id,
1221 			      u8 *q_id)
1222 {
1223 	struct drm_dp_sideband_msg_req_body req;
1224 
1225 	req.req_type = DP_QUERY_STREAM_ENC_STATUS;
1226 	req.u.enc_status.stream_id = stream_id;
1227 	memcpy(req.u.enc_status.client_id, q_id,
1228 	       sizeof(req.u.enc_status.client_id));
1229 	req.u.enc_status.stream_event = 0;
1230 	req.u.enc_status.valid_stream_event = false;
1231 	req.u.enc_status.stream_behavior = 0;
1232 	req.u.enc_status.valid_stream_behavior = false;
1233 
1234 	drm_dp_encode_sideband_req(&req, msg);
1235 	return 0;
1236 }
1237 
1238 static int drm_dp_mst_assign_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1239 					struct drm_dp_vcpi *vcpi)
1240 {
1241 	int ret, vcpi_ret;
1242 
1243 	mutex_lock(&mgr->payload_lock);
1244 	ret = find_first_zero_bit(&mgr->payload_mask, mgr->max_payloads + 1);
1245 	if (ret > mgr->max_payloads) {
1246 		ret = -EINVAL;
1247 		drm_dbg_kms(mgr->dev, "out of payload ids %d\n", ret);
1248 		goto out_unlock;
1249 	}
1250 
1251 	vcpi_ret = find_first_zero_bit(&mgr->vcpi_mask, mgr->max_payloads + 1);
1252 	if (vcpi_ret > mgr->max_payloads) {
1253 		ret = -EINVAL;
1254 		drm_dbg_kms(mgr->dev, "out of vcpi ids %d\n", ret);
1255 		goto out_unlock;
1256 	}
1257 
1258 	set_bit(ret, &mgr->payload_mask);
1259 	set_bit(vcpi_ret, &mgr->vcpi_mask);
1260 	vcpi->vcpi = vcpi_ret + 1;
1261 	mgr->proposed_vcpis[ret - 1] = vcpi;
1262 out_unlock:
1263 	mutex_unlock(&mgr->payload_lock);
1264 	return ret;
1265 }
1266 
1267 static void drm_dp_mst_put_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1268 				      int vcpi)
1269 {
1270 	int i;
1271 
1272 	if (vcpi == 0)
1273 		return;
1274 
1275 	mutex_lock(&mgr->payload_lock);
1276 	drm_dbg_kms(mgr->dev, "putting payload %d\n", vcpi);
1277 	clear_bit(vcpi - 1, &mgr->vcpi_mask);
1278 
1279 	for (i = 0; i < mgr->max_payloads; i++) {
1280 		if (mgr->proposed_vcpis[i] &&
1281 		    mgr->proposed_vcpis[i]->vcpi == vcpi) {
1282 			mgr->proposed_vcpis[i] = NULL;
1283 			clear_bit(i + 1, &mgr->payload_mask);
1284 		}
1285 	}
1286 	mutex_unlock(&mgr->payload_lock);
1287 }
1288 
1289 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr,
1290 			      struct drm_dp_sideband_msg_tx *txmsg)
1291 {
1292 	unsigned int state;
1293 
1294 	/*
1295 	 * All updates to txmsg->state are protected by mgr->qlock, and the two
1296 	 * cases we check here are terminal states. For those the barriers
1297 	 * provided by the wake_up/wait_event pair are enough.
1298 	 */
1299 	state = READ_ONCE(txmsg->state);
1300 	return (state == DRM_DP_SIDEBAND_TX_RX ||
1301 		state == DRM_DP_SIDEBAND_TX_TIMEOUT);
1302 }
1303 
1304 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb,
1305 				    struct drm_dp_sideband_msg_tx *txmsg)
1306 {
1307 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1308 	unsigned long wait_timeout = msecs_to_jiffies(4000);
1309 	unsigned long wait_expires = jiffies + wait_timeout;
1310 	int ret;
1311 
1312 	for (;;) {
1313 		/*
1314 		 * If the driver provides a way for this, change to
1315 		 * poll-waiting for the MST reply interrupt if we didn't receive
1316 		 * it for 50 msec. This would cater for cases where the HPD
1317 		 * pulse signal got lost somewhere, even though the sink raised
1318 		 * the corresponding MST interrupt correctly. One example is the
1319 		 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason
1320 		 * filters out short pulses with a duration less than ~540 usec.
1321 		 *
1322 		 * The poll period is 50 msec to avoid missing an interrupt
1323 		 * after the sink has cleared it (after a 110msec timeout
1324 		 * since it raised the interrupt).
1325 		 */
1326 		ret = wait_event_timeout(mgr->tx_waitq,
1327 					 check_txmsg_state(mgr, txmsg),
1328 					 mgr->cbs->poll_hpd_irq ?
1329 						msecs_to_jiffies(50) :
1330 						wait_timeout);
1331 
1332 		if (ret || !mgr->cbs->poll_hpd_irq ||
1333 		    time_after(jiffies, wait_expires))
1334 			break;
1335 
1336 		mgr->cbs->poll_hpd_irq(mgr);
1337 	}
1338 
1339 	mutex_lock(&mgr->qlock);
1340 	if (ret > 0) {
1341 		if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) {
1342 			ret = -EIO;
1343 			goto out;
1344 		}
1345 	} else {
1346 		drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n",
1347 			    txmsg, txmsg->state, txmsg->seqno);
1348 
1349 		/* dump some state */
1350 		ret = -EIO;
1351 
1352 		/* remove from q */
1353 		if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED ||
1354 		    txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND ||
1355 		    txmsg->state == DRM_DP_SIDEBAND_TX_SENT)
1356 			list_del(&txmsg->next);
1357 	}
1358 out:
1359 	if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) {
1360 		struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1361 
1362 		drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
1363 	}
1364 	mutex_unlock(&mgr->qlock);
1365 
1366 	drm_dp_mst_kick_tx(mgr);
1367 	return ret;
1368 }
1369 
1370 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad)
1371 {
1372 	struct drm_dp_mst_branch *mstb;
1373 
1374 	mstb = kzalloc(sizeof(*mstb), GFP_KERNEL);
1375 	if (!mstb)
1376 		return NULL;
1377 
1378 	mstb->lct = lct;
1379 	if (lct > 1)
1380 		memcpy(mstb->rad, rad, lct / 2);
1381 	INIT_LIST_HEAD(&mstb->ports);
1382 	kref_init(&mstb->topology_kref);
1383 	kref_init(&mstb->malloc_kref);
1384 	return mstb;
1385 }
1386 
1387 static void drm_dp_free_mst_branch_device(struct kref *kref)
1388 {
1389 	struct drm_dp_mst_branch *mstb =
1390 		container_of(kref, struct drm_dp_mst_branch, malloc_kref);
1391 
1392 	if (mstb->port_parent)
1393 		drm_dp_mst_put_port_malloc(mstb->port_parent);
1394 
1395 	kfree(mstb);
1396 }
1397 
1398 /**
1399  * DOC: Branch device and port refcounting
1400  *
1401  * Topology refcount overview
1402  * ~~~~~~~~~~~~~~~~~~~~~~~~~~
1403  *
1404  * The refcounting schemes for &struct drm_dp_mst_branch and &struct
1405  * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have
1406  * two different kinds of refcounts: topology refcounts, and malloc refcounts.
1407  *
1408  * Topology refcounts are not exposed to drivers, and are handled internally
1409  * by the DP MST helpers. The helpers use them in order to prevent the
1410  * in-memory topology state from being changed in the middle of critical
1411  * operations like changing the internal state of payload allocations. This
1412  * means each branch and port will be considered to be connected to the rest
1413  * of the topology until its topology refcount reaches zero. Additionally,
1414  * for ports this means that their associated &struct drm_connector will stay
1415  * registered with userspace until the port's refcount reaches 0.
1416  *
1417  * Malloc refcount overview
1418  * ~~~~~~~~~~~~~~~~~~~~~~~~
1419  *
1420  * Malloc references are used to keep a &struct drm_dp_mst_port or &struct
1421  * drm_dp_mst_branch allocated even after all of its topology references have
1422  * been dropped, so that the driver or MST helpers can safely access each
1423  * branch's last known state before it was disconnected from the topology.
1424  * When the malloc refcount of a port or branch reaches 0, the memory
1425  * allocation containing the &struct drm_dp_mst_branch or &struct
1426  * drm_dp_mst_port respectively will be freed.
1427  *
1428  * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed
1429  * to drivers. As of writing this documentation, there are no drivers that
1430  * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST
1431  * helpers. Exposing this API to drivers in a race-free manner would take more
1432  * tweaking of the refcounting scheme, however patches are welcome provided
1433  * there is a legitimate driver usecase for this.
1434  *
1435  * Refcount relationships in a topology
1436  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1437  *
1438  * Let's take a look at why the relationship between topology and malloc
1439  * refcounts is designed the way it is.
1440  *
1441  * .. kernel-figure:: dp-mst/topology-figure-1.dot
1442  *
1443  *    An example of topology and malloc refs in a DP MST topology with two
1444  *    active payloads. Topology refcount increments are indicated by solid
1445  *    lines, and malloc refcount increments are indicated by dashed lines.
1446  *    Each starts from the branch which incremented the refcount, and ends at
1447  *    the branch to which the refcount belongs to, i.e. the arrow points the
1448  *    same way as the C pointers used to reference a structure.
1449  *
1450  * As you can see in the above figure, every branch increments the topology
1451  * refcount of its children, and increments the malloc refcount of its
1452  * parent. Additionally, every payload increments the malloc refcount of its
1453  * assigned port by 1.
1454  *
1455  * So, what would happen if MSTB #3 from the above figure was unplugged from
1456  * the system, but the driver hadn't yet removed payload #2 from port #3? The
1457  * topology would start to look like the figure below.
1458  *
1459  * .. kernel-figure:: dp-mst/topology-figure-2.dot
1460  *
1461  *    Ports and branch devices which have been released from memory are
1462  *    colored grey, and references which have been removed are colored red.
1463  *
1464  * Whenever a port or branch device's topology refcount reaches zero, it will
1465  * decrement the topology refcounts of all its children, the malloc refcount
1466  * of its parent, and finally its own malloc refcount. For MSTB #4 and port
1467  * #4, this means they both have been disconnected from the topology and freed
1468  * from memory. But, because payload #2 is still holding a reference to port
1469  * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port
1470  * is still accessible from memory. This also means port #3 has not yet
1471  * decremented the malloc refcount of MSTB #3, so its &struct
1472  * drm_dp_mst_branch will also stay allocated in memory until port #3's
1473  * malloc refcount reaches 0.
1474  *
1475  * This relationship is necessary because in order to release payload #2, we
1476  * need to be able to figure out the last relative of port #3 that's still
1477  * connected to the topology. In this case, we would travel up the topology as
1478  * shown below.
1479  *
1480  * .. kernel-figure:: dp-mst/topology-figure-3.dot
1481  *
1482  * And finally, remove payload #2 by communicating with port #2 through
1483  * sideband transactions.
1484  */
1485 
1486 /**
1487  * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch
1488  * device
1489  * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of
1490  *
1491  * Increments &drm_dp_mst_branch.malloc_kref. When
1492  * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1493  * will be released and @mstb may no longer be used.
1494  *
1495  * See also: drm_dp_mst_put_mstb_malloc()
1496  */
1497 static void
1498 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb)
1499 {
1500 	kref_get(&mstb->malloc_kref);
1501 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref));
1502 }
1503 
1504 /**
1505  * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch
1506  * device
1507  * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of
1508  *
1509  * Decrements &drm_dp_mst_branch.malloc_kref. When
1510  * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1511  * will be released and @mstb may no longer be used.
1512  *
1513  * See also: drm_dp_mst_get_mstb_malloc()
1514  */
1515 static void
1516 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb)
1517 {
1518 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1);
1519 	kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device);
1520 }
1521 
1522 static void drm_dp_free_mst_port(struct kref *kref)
1523 {
1524 	struct drm_dp_mst_port *port =
1525 		container_of(kref, struct drm_dp_mst_port, malloc_kref);
1526 
1527 	drm_dp_mst_put_mstb_malloc(port->parent);
1528 	kfree(port);
1529 }
1530 
1531 /**
1532  * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port
1533  * @port: The &struct drm_dp_mst_port to increment the malloc refcount of
1534  *
1535  * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1536  * reaches 0, the memory allocation for @port will be released and @port may
1537  * no longer be used.
1538  *
1539  * Because @port could potentially be freed at any time by the DP MST helpers
1540  * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this
1541  * function, drivers that which to make use of &struct drm_dp_mst_port should
1542  * ensure that they grab at least one main malloc reference to their MST ports
1543  * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before
1544  * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0.
1545  *
1546  * See also: drm_dp_mst_put_port_malloc()
1547  */
1548 void
1549 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port)
1550 {
1551 	kref_get(&port->malloc_kref);
1552 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref));
1553 }
1554 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc);
1555 
1556 /**
1557  * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port
1558  * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of
1559  *
1560  * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1561  * reaches 0, the memory allocation for @port will be released and @port may
1562  * no longer be used.
1563  *
1564  * See also: drm_dp_mst_get_port_malloc()
1565  */
1566 void
1567 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port)
1568 {
1569 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1);
1570 	kref_put(&port->malloc_kref, drm_dp_free_mst_port);
1571 }
1572 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc);
1573 
1574 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
1575 
1576 #define STACK_DEPTH 8
1577 
1578 static noinline void
1579 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr,
1580 		    struct drm_dp_mst_topology_ref_history *history,
1581 		    enum drm_dp_mst_topology_ref_type type)
1582 {
1583 	struct drm_dp_mst_topology_ref_entry *entry = NULL;
1584 	depot_stack_handle_t backtrace;
1585 	ulong stack_entries[STACK_DEPTH];
1586 	uint n;
1587 	int i;
1588 
1589 	n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1);
1590 	backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL);
1591 	if (!backtrace)
1592 		return;
1593 
1594 	/* Try to find an existing entry for this backtrace */
1595 	for (i = 0; i < history->len; i++) {
1596 		if (history->entries[i].backtrace == backtrace) {
1597 			entry = &history->entries[i];
1598 			break;
1599 		}
1600 	}
1601 
1602 	/* Otherwise add one */
1603 	if (!entry) {
1604 		struct drm_dp_mst_topology_ref_entry *new;
1605 		int new_len = history->len + 1;
1606 
1607 		new = krealloc(history->entries, sizeof(*new) * new_len,
1608 			       GFP_KERNEL);
1609 		if (!new)
1610 			return;
1611 
1612 		entry = &new[history->len];
1613 		history->len = new_len;
1614 		history->entries = new;
1615 
1616 		entry->backtrace = backtrace;
1617 		entry->type = type;
1618 		entry->count = 0;
1619 	}
1620 	entry->count++;
1621 	entry->ts_nsec = ktime_get_ns();
1622 }
1623 
1624 static int
1625 topology_ref_history_cmp(const void *a, const void *b)
1626 {
1627 	const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b;
1628 
1629 	if (entry_a->ts_nsec > entry_b->ts_nsec)
1630 		return 1;
1631 	else if (entry_a->ts_nsec < entry_b->ts_nsec)
1632 		return -1;
1633 	else
1634 		return 0;
1635 }
1636 
1637 static inline const char *
1638 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type)
1639 {
1640 	if (type == DRM_DP_MST_TOPOLOGY_REF_GET)
1641 		return "get";
1642 	else
1643 		return "put";
1644 }
1645 
1646 static void
1647 __dump_topology_ref_history(struct drm_dp_mst_topology_ref_history *history,
1648 			    void *ptr, const char *type_str)
1649 {
1650 	struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1651 	char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1652 	int i;
1653 
1654 	if (!buf)
1655 		return;
1656 
1657 	if (!history->len)
1658 		goto out;
1659 
1660 	/* First, sort the list so that it goes from oldest to newest
1661 	 * reference entry
1662 	 */
1663 	sort(history->entries, history->len, sizeof(*history->entries),
1664 	     topology_ref_history_cmp, NULL);
1665 
1666 	drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n",
1667 		   type_str, ptr);
1668 
1669 	for (i = 0; i < history->len; i++) {
1670 		const struct drm_dp_mst_topology_ref_entry *entry =
1671 			&history->entries[i];
1672 		u64 ts_nsec = entry->ts_nsec;
1673 		u32 rem_nsec = do_div(ts_nsec, 1000000000);
1674 
1675 		stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4);
1676 
1677 		drm_printf(&p, "  %d %ss (last at %5llu.%06u):\n%s",
1678 			   entry->count,
1679 			   topology_ref_type_to_str(entry->type),
1680 			   ts_nsec, rem_nsec / 1000, buf);
1681 	}
1682 
1683 	/* Now free the history, since this is the only time we expose it */
1684 	kfree(history->entries);
1685 out:
1686 	kfree(buf);
1687 }
1688 
1689 static __always_inline void
1690 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb)
1691 {
1692 	__dump_topology_ref_history(&mstb->topology_ref_history, mstb,
1693 				    "MSTB");
1694 }
1695 
1696 static __always_inline void
1697 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port)
1698 {
1699 	__dump_topology_ref_history(&port->topology_ref_history, port,
1700 				    "Port");
1701 }
1702 
1703 static __always_inline void
1704 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb,
1705 		       enum drm_dp_mst_topology_ref_type type)
1706 {
1707 	__topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type);
1708 }
1709 
1710 static __always_inline void
1711 save_port_topology_ref(struct drm_dp_mst_port *port,
1712 		       enum drm_dp_mst_topology_ref_type type)
1713 {
1714 	__topology_ref_save(port->mgr, &port->topology_ref_history, type);
1715 }
1716 
1717 static inline void
1718 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr)
1719 {
1720 	mutex_lock(&mgr->topology_ref_history_lock);
1721 }
1722 
1723 static inline void
1724 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr)
1725 {
1726 	mutex_unlock(&mgr->topology_ref_history_lock);
1727 }
1728 #else
1729 static inline void
1730 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {}
1731 static inline void
1732 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {}
1733 static inline void
1734 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {}
1735 static inline void
1736 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {}
1737 #define save_mstb_topology_ref(mstb, type)
1738 #define save_port_topology_ref(port, type)
1739 #endif
1740 
1741 static void drm_dp_destroy_mst_branch_device(struct kref *kref)
1742 {
1743 	struct drm_dp_mst_branch *mstb =
1744 		container_of(kref, struct drm_dp_mst_branch, topology_kref);
1745 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1746 
1747 	drm_dp_mst_dump_mstb_topology_history(mstb);
1748 
1749 	INIT_LIST_HEAD(&mstb->destroy_next);
1750 
1751 	/*
1752 	 * This can get called under mgr->mutex, so we need to perform the
1753 	 * actual destruction of the mstb in another worker
1754 	 */
1755 	mutex_lock(&mgr->delayed_destroy_lock);
1756 	list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list);
1757 	mutex_unlock(&mgr->delayed_destroy_lock);
1758 	queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work);
1759 }
1760 
1761 /**
1762  * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a
1763  * branch device unless it's zero
1764  * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of
1765  *
1766  * Attempts to grab a topology reference to @mstb, if it hasn't yet been
1767  * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has
1768  * reached 0). Holding a topology reference implies that a malloc reference
1769  * will be held to @mstb as long as the user holds the topology reference.
1770  *
1771  * Care should be taken to ensure that the user has at least one malloc
1772  * reference to @mstb. If you already have a topology reference to @mstb, you
1773  * should use drm_dp_mst_topology_get_mstb() instead.
1774  *
1775  * See also:
1776  * drm_dp_mst_topology_get_mstb()
1777  * drm_dp_mst_topology_put_mstb()
1778  *
1779  * Returns:
1780  * * 1: A topology reference was grabbed successfully
1781  * * 0: @port is no longer in the topology, no reference was grabbed
1782  */
1783 static int __must_check
1784 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb)
1785 {
1786 	int ret;
1787 
1788 	topology_ref_history_lock(mstb->mgr);
1789 	ret = kref_get_unless_zero(&mstb->topology_kref);
1790 	if (ret) {
1791 		drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1792 		save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1793 	}
1794 
1795 	topology_ref_history_unlock(mstb->mgr);
1796 
1797 	return ret;
1798 }
1799 
1800 /**
1801  * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a
1802  * branch device
1803  * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of
1804  *
1805  * Increments &drm_dp_mst_branch.topology_refcount without checking whether or
1806  * not it's already reached 0. This is only valid to use in scenarios where
1807  * you are already guaranteed to have at least one active topology reference
1808  * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used.
1809  *
1810  * See also:
1811  * drm_dp_mst_topology_try_get_mstb()
1812  * drm_dp_mst_topology_put_mstb()
1813  */
1814 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb)
1815 {
1816 	topology_ref_history_lock(mstb->mgr);
1817 
1818 	save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1819 	WARN_ON(kref_read(&mstb->topology_kref) == 0);
1820 	kref_get(&mstb->topology_kref);
1821 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1822 
1823 	topology_ref_history_unlock(mstb->mgr);
1824 }
1825 
1826 /**
1827  * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch
1828  * device
1829  * @mstb: The &struct drm_dp_mst_branch to release the topology reference from
1830  *
1831  * Releases a topology reference from @mstb by decrementing
1832  * &drm_dp_mst_branch.topology_kref.
1833  *
1834  * See also:
1835  * drm_dp_mst_topology_try_get_mstb()
1836  * drm_dp_mst_topology_get_mstb()
1837  */
1838 static void
1839 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb)
1840 {
1841 	topology_ref_history_lock(mstb->mgr);
1842 
1843 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1);
1844 	save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT);
1845 
1846 	topology_ref_history_unlock(mstb->mgr);
1847 	kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device);
1848 }
1849 
1850 static void drm_dp_destroy_port(struct kref *kref)
1851 {
1852 	struct drm_dp_mst_port *port =
1853 		container_of(kref, struct drm_dp_mst_port, topology_kref);
1854 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
1855 
1856 	drm_dp_mst_dump_port_topology_history(port);
1857 
1858 	/* There's nothing that needs locking to destroy an input port yet */
1859 	if (port->input) {
1860 		drm_dp_mst_put_port_malloc(port);
1861 		return;
1862 	}
1863 
1864 	kfree(port->cached_edid);
1865 
1866 	/*
1867 	 * we can't destroy the connector here, as we might be holding the
1868 	 * mode_config.mutex from an EDID retrieval
1869 	 */
1870 	mutex_lock(&mgr->delayed_destroy_lock);
1871 	list_add(&port->next, &mgr->destroy_port_list);
1872 	mutex_unlock(&mgr->delayed_destroy_lock);
1873 	queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work);
1874 }
1875 
1876 /**
1877  * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a
1878  * port unless it's zero
1879  * @port: &struct drm_dp_mst_port to increment the topology refcount of
1880  *
1881  * Attempts to grab a topology reference to @port, if it hasn't yet been
1882  * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached
1883  * 0). Holding a topology reference implies that a malloc reference will be
1884  * held to @port as long as the user holds the topology reference.
1885  *
1886  * Care should be taken to ensure that the user has at least one malloc
1887  * reference to @port. If you already have a topology reference to @port, you
1888  * should use drm_dp_mst_topology_get_port() instead.
1889  *
1890  * See also:
1891  * drm_dp_mst_topology_get_port()
1892  * drm_dp_mst_topology_put_port()
1893  *
1894  * Returns:
1895  * * 1: A topology reference was grabbed successfully
1896  * * 0: @port is no longer in the topology, no reference was grabbed
1897  */
1898 static int __must_check
1899 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port)
1900 {
1901 	int ret;
1902 
1903 	topology_ref_history_lock(port->mgr);
1904 	ret = kref_get_unless_zero(&port->topology_kref);
1905 	if (ret) {
1906 		drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref));
1907 		save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1908 	}
1909 
1910 	topology_ref_history_unlock(port->mgr);
1911 	return ret;
1912 }
1913 
1914 /**
1915  * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port
1916  * @port: The &struct drm_dp_mst_port to increment the topology refcount of
1917  *
1918  * Increments &drm_dp_mst_port.topology_refcount without checking whether or
1919  * not it's already reached 0. This is only valid to use in scenarios where
1920  * you are already guaranteed to have at least one active topology reference
1921  * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used.
1922  *
1923  * See also:
1924  * drm_dp_mst_topology_try_get_port()
1925  * drm_dp_mst_topology_put_port()
1926  */
1927 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port)
1928 {
1929 	topology_ref_history_lock(port->mgr);
1930 
1931 	WARN_ON(kref_read(&port->topology_kref) == 0);
1932 	kref_get(&port->topology_kref);
1933 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref));
1934 	save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1935 
1936 	topology_ref_history_unlock(port->mgr);
1937 }
1938 
1939 /**
1940  * drm_dp_mst_topology_put_port() - release a topology reference to a port
1941  * @port: The &struct drm_dp_mst_port to release the topology reference from
1942  *
1943  * Releases a topology reference from @port by decrementing
1944  * &drm_dp_mst_port.topology_kref.
1945  *
1946  * See also:
1947  * drm_dp_mst_topology_try_get_port()
1948  * drm_dp_mst_topology_get_port()
1949  */
1950 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port)
1951 {
1952 	topology_ref_history_lock(port->mgr);
1953 
1954 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1);
1955 	save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT);
1956 
1957 	topology_ref_history_unlock(port->mgr);
1958 	kref_put(&port->topology_kref, drm_dp_destroy_port);
1959 }
1960 
1961 static struct drm_dp_mst_branch *
1962 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb,
1963 					      struct drm_dp_mst_branch *to_find)
1964 {
1965 	struct drm_dp_mst_port *port;
1966 	struct drm_dp_mst_branch *rmstb;
1967 
1968 	if (to_find == mstb)
1969 		return mstb;
1970 
1971 	list_for_each_entry(port, &mstb->ports, next) {
1972 		if (port->mstb) {
1973 			rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1974 			    port->mstb, to_find);
1975 			if (rmstb)
1976 				return rmstb;
1977 		}
1978 	}
1979 	return NULL;
1980 }
1981 
1982 static struct drm_dp_mst_branch *
1983 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr,
1984 				       struct drm_dp_mst_branch *mstb)
1985 {
1986 	struct drm_dp_mst_branch *rmstb = NULL;
1987 
1988 	mutex_lock(&mgr->lock);
1989 	if (mgr->mst_primary) {
1990 		rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1991 		    mgr->mst_primary, mstb);
1992 
1993 		if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb))
1994 			rmstb = NULL;
1995 	}
1996 	mutex_unlock(&mgr->lock);
1997 	return rmstb;
1998 }
1999 
2000 static struct drm_dp_mst_port *
2001 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb,
2002 					      struct drm_dp_mst_port *to_find)
2003 {
2004 	struct drm_dp_mst_port *port, *mport;
2005 
2006 	list_for_each_entry(port, &mstb->ports, next) {
2007 		if (port == to_find)
2008 			return port;
2009 
2010 		if (port->mstb) {
2011 			mport = drm_dp_mst_topology_get_port_validated_locked(
2012 			    port->mstb, to_find);
2013 			if (mport)
2014 				return mport;
2015 		}
2016 	}
2017 	return NULL;
2018 }
2019 
2020 static struct drm_dp_mst_port *
2021 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr,
2022 				       struct drm_dp_mst_port *port)
2023 {
2024 	struct drm_dp_mst_port *rport = NULL;
2025 
2026 	mutex_lock(&mgr->lock);
2027 	if (mgr->mst_primary) {
2028 		rport = drm_dp_mst_topology_get_port_validated_locked(
2029 		    mgr->mst_primary, port);
2030 
2031 		if (rport && !drm_dp_mst_topology_try_get_port(rport))
2032 			rport = NULL;
2033 	}
2034 	mutex_unlock(&mgr->lock);
2035 	return rport;
2036 }
2037 
2038 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num)
2039 {
2040 	struct drm_dp_mst_port *port;
2041 	int ret;
2042 
2043 	list_for_each_entry(port, &mstb->ports, next) {
2044 		if (port->port_num == port_num) {
2045 			ret = drm_dp_mst_topology_try_get_port(port);
2046 			return ret ? port : NULL;
2047 		}
2048 	}
2049 
2050 	return NULL;
2051 }
2052 
2053 /*
2054  * calculate a new RAD for this MST branch device
2055  * if parent has an LCT of 2 then it has 1 nibble of RAD,
2056  * if parent has an LCT of 3 then it has 2 nibbles of RAD,
2057  */
2058 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port,
2059 				 u8 *rad)
2060 {
2061 	int parent_lct = port->parent->lct;
2062 	int shift = 4;
2063 	int idx = (parent_lct - 1) / 2;
2064 
2065 	if (parent_lct > 1) {
2066 		memcpy(rad, port->parent->rad, idx + 1);
2067 		shift = (parent_lct % 2) ? 4 : 0;
2068 	} else
2069 		rad[0] = 0;
2070 
2071 	rad[idx] |= port->port_num << shift;
2072 	return parent_lct + 1;
2073 }
2074 
2075 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs)
2076 {
2077 	switch (pdt) {
2078 	case DP_PEER_DEVICE_DP_LEGACY_CONV:
2079 	case DP_PEER_DEVICE_SST_SINK:
2080 		return true;
2081 	case DP_PEER_DEVICE_MST_BRANCHING:
2082 		/* For sst branch device */
2083 		if (!mcs)
2084 			return true;
2085 
2086 		return false;
2087 	}
2088 	return true;
2089 }
2090 
2091 static int
2092 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt,
2093 		    bool new_mcs)
2094 {
2095 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2096 	struct drm_dp_mst_branch *mstb;
2097 	u8 rad[8], lct;
2098 	int ret = 0;
2099 
2100 	if (port->pdt == new_pdt && port->mcs == new_mcs)
2101 		return 0;
2102 
2103 	/* Teardown the old pdt, if there is one */
2104 	if (port->pdt != DP_PEER_DEVICE_NONE) {
2105 		if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
2106 			/*
2107 			 * If the new PDT would also have an i2c bus,
2108 			 * don't bother with reregistering it
2109 			 */
2110 			if (new_pdt != DP_PEER_DEVICE_NONE &&
2111 			    drm_dp_mst_is_end_device(new_pdt, new_mcs)) {
2112 				port->pdt = new_pdt;
2113 				port->mcs = new_mcs;
2114 				return 0;
2115 			}
2116 
2117 			/* remove i2c over sideband */
2118 			drm_dp_mst_unregister_i2c_bus(port);
2119 		} else {
2120 			mutex_lock(&mgr->lock);
2121 			drm_dp_mst_topology_put_mstb(port->mstb);
2122 			port->mstb = NULL;
2123 			mutex_unlock(&mgr->lock);
2124 		}
2125 	}
2126 
2127 	port->pdt = new_pdt;
2128 	port->mcs = new_mcs;
2129 
2130 	if (port->pdt != DP_PEER_DEVICE_NONE) {
2131 		if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
2132 			/* add i2c over sideband */
2133 			ret = drm_dp_mst_register_i2c_bus(port);
2134 		} else {
2135 			lct = drm_dp_calculate_rad(port, rad);
2136 			mstb = drm_dp_add_mst_branch_device(lct, rad);
2137 			if (!mstb) {
2138 				ret = -ENOMEM;
2139 				drm_err(mgr->dev, "Failed to create MSTB for port %p", port);
2140 				goto out;
2141 			}
2142 
2143 			mutex_lock(&mgr->lock);
2144 			port->mstb = mstb;
2145 			mstb->mgr = port->mgr;
2146 			mstb->port_parent = port;
2147 
2148 			/*
2149 			 * Make sure this port's memory allocation stays
2150 			 * around until its child MSTB releases it
2151 			 */
2152 			drm_dp_mst_get_port_malloc(port);
2153 			mutex_unlock(&mgr->lock);
2154 
2155 			/* And make sure we send a link address for this */
2156 			ret = 1;
2157 		}
2158 	}
2159 
2160 out:
2161 	if (ret < 0)
2162 		port->pdt = DP_PEER_DEVICE_NONE;
2163 	return ret;
2164 }
2165 
2166 /**
2167  * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband
2168  * @aux: Fake sideband AUX CH
2169  * @offset: address of the (first) register to read
2170  * @buffer: buffer to store the register values
2171  * @size: number of bytes in @buffer
2172  *
2173  * Performs the same functionality for remote devices via
2174  * sideband messaging as drm_dp_dpcd_read() does for local
2175  * devices via actual AUX CH.
2176  *
2177  * Return: Number of bytes read, or negative error code on failure.
2178  */
2179 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux,
2180 			     unsigned int offset, void *buffer, size_t size)
2181 {
2182 	struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2183 						    aux);
2184 
2185 	return drm_dp_send_dpcd_read(port->mgr, port,
2186 				     offset, size, buffer);
2187 }
2188 
2189 /**
2190  * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband
2191  * @aux: Fake sideband AUX CH
2192  * @offset: address of the (first) register to write
2193  * @buffer: buffer containing the values to write
2194  * @size: number of bytes in @buffer
2195  *
2196  * Performs the same functionality for remote devices via
2197  * sideband messaging as drm_dp_dpcd_write() does for local
2198  * devices via actual AUX CH.
2199  *
2200  * Return: number of bytes written on success, negative error code on failure.
2201  */
2202 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux,
2203 			      unsigned int offset, void *buffer, size_t size)
2204 {
2205 	struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2206 						    aux);
2207 
2208 	return drm_dp_send_dpcd_write(port->mgr, port,
2209 				      offset, size, buffer);
2210 }
2211 
2212 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid)
2213 {
2214 	int ret = 0;
2215 
2216 	memcpy(mstb->guid, guid, 16);
2217 
2218 	if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) {
2219 		if (mstb->port_parent) {
2220 			ret = drm_dp_send_dpcd_write(mstb->mgr,
2221 						     mstb->port_parent,
2222 						     DP_GUID, 16, mstb->guid);
2223 		} else {
2224 			ret = drm_dp_dpcd_write(mstb->mgr->aux,
2225 						DP_GUID, mstb->guid, 16);
2226 		}
2227 	}
2228 
2229 	if (ret < 16 && ret > 0)
2230 		return -EPROTO;
2231 
2232 	return ret == 16 ? 0 : ret;
2233 }
2234 
2235 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb,
2236 				int pnum,
2237 				char *proppath,
2238 				size_t proppath_size)
2239 {
2240 	int i;
2241 	char temp[8];
2242 
2243 	snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id);
2244 	for (i = 0; i < (mstb->lct - 1); i++) {
2245 		int shift = (i % 2) ? 0 : 4;
2246 		int port_num = (mstb->rad[i / 2] >> shift) & 0xf;
2247 
2248 		snprintf(temp, sizeof(temp), "-%d", port_num);
2249 		strlcat(proppath, temp, proppath_size);
2250 	}
2251 	snprintf(temp, sizeof(temp), "-%d", pnum);
2252 	strlcat(proppath, temp, proppath_size);
2253 }
2254 
2255 /**
2256  * drm_dp_mst_connector_late_register() - Late MST connector registration
2257  * @connector: The MST connector
2258  * @port: The MST port for this connector
2259  *
2260  * Helper to register the remote aux device for this MST port. Drivers should
2261  * call this from their mst connector's late_register hook to enable MST aux
2262  * devices.
2263  *
2264  * Return: 0 on success, negative error code on failure.
2265  */
2266 int drm_dp_mst_connector_late_register(struct drm_connector *connector,
2267 				       struct drm_dp_mst_port *port)
2268 {
2269 	drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n",
2270 		    port->aux.name, connector->kdev->kobj.name);
2271 
2272 	port->aux.dev = connector->kdev;
2273 	return drm_dp_aux_register_devnode(&port->aux);
2274 }
2275 EXPORT_SYMBOL(drm_dp_mst_connector_late_register);
2276 
2277 /**
2278  * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration
2279  * @connector: The MST connector
2280  * @port: The MST port for this connector
2281  *
2282  * Helper to unregister the remote aux device for this MST port, registered by
2283  * drm_dp_mst_connector_late_register(). Drivers should call this from their mst
2284  * connector's early_unregister hook.
2285  */
2286 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector,
2287 					   struct drm_dp_mst_port *port)
2288 {
2289 	drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n",
2290 		    port->aux.name, connector->kdev->kobj.name);
2291 	drm_dp_aux_unregister_devnode(&port->aux);
2292 }
2293 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister);
2294 
2295 static void
2296 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb,
2297 			      struct drm_dp_mst_port *port)
2298 {
2299 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2300 	char proppath[255];
2301 	int ret;
2302 
2303 	build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath));
2304 	port->connector = mgr->cbs->add_connector(mgr, port, proppath);
2305 	if (!port->connector) {
2306 		ret = -ENOMEM;
2307 		goto error;
2308 	}
2309 
2310 	if (port->pdt != DP_PEER_DEVICE_NONE &&
2311 	    drm_dp_mst_is_end_device(port->pdt, port->mcs) &&
2312 	    port->port_num >= DP_MST_LOGICAL_PORT_0)
2313 		port->cached_edid = drm_get_edid(port->connector,
2314 						 &port->aux.ddc);
2315 
2316 	drm_connector_register(port->connector);
2317 	return;
2318 
2319 error:
2320 	drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret);
2321 }
2322 
2323 /*
2324  * Drop a topology reference, and unlink the port from the in-memory topology
2325  * layout
2326  */
2327 static void
2328 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr,
2329 				struct drm_dp_mst_port *port)
2330 {
2331 	mutex_lock(&mgr->lock);
2332 	port->parent->num_ports--;
2333 	list_del(&port->next);
2334 	mutex_unlock(&mgr->lock);
2335 	drm_dp_mst_topology_put_port(port);
2336 }
2337 
2338 static struct drm_dp_mst_port *
2339 drm_dp_mst_add_port(struct drm_device *dev,
2340 		    struct drm_dp_mst_topology_mgr *mgr,
2341 		    struct drm_dp_mst_branch *mstb, u8 port_number)
2342 {
2343 	struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL);
2344 
2345 	if (!port)
2346 		return NULL;
2347 
2348 	kref_init(&port->topology_kref);
2349 	kref_init(&port->malloc_kref);
2350 	port->parent = mstb;
2351 	port->port_num = port_number;
2352 	port->mgr = mgr;
2353 	port->aux.name = "DPMST";
2354 	port->aux.dev = dev->dev;
2355 	port->aux.is_remote = true;
2356 
2357 	/* initialize the MST downstream port's AUX crc work queue */
2358 	port->aux.drm_dev = dev;
2359 	drm_dp_remote_aux_init(&port->aux);
2360 
2361 	/*
2362 	 * Make sure the memory allocation for our parent branch stays
2363 	 * around until our own memory allocation is released
2364 	 */
2365 	drm_dp_mst_get_mstb_malloc(mstb);
2366 
2367 	return port;
2368 }
2369 
2370 static int
2371 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb,
2372 				    struct drm_device *dev,
2373 				    struct drm_dp_link_addr_reply_port *port_msg)
2374 {
2375 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2376 	struct drm_dp_mst_port *port;
2377 	int old_ddps = 0, ret;
2378 	u8 new_pdt = DP_PEER_DEVICE_NONE;
2379 	bool new_mcs = 0;
2380 	bool created = false, send_link_addr = false, changed = false;
2381 
2382 	port = drm_dp_get_port(mstb, port_msg->port_number);
2383 	if (!port) {
2384 		port = drm_dp_mst_add_port(dev, mgr, mstb,
2385 					   port_msg->port_number);
2386 		if (!port)
2387 			return -ENOMEM;
2388 		created = true;
2389 		changed = true;
2390 	} else if (!port->input && port_msg->input_port && port->connector) {
2391 		/* Since port->connector can't be changed here, we create a
2392 		 * new port if input_port changes from 0 to 1
2393 		 */
2394 		drm_dp_mst_topology_unlink_port(mgr, port);
2395 		drm_dp_mst_topology_put_port(port);
2396 		port = drm_dp_mst_add_port(dev, mgr, mstb,
2397 					   port_msg->port_number);
2398 		if (!port)
2399 			return -ENOMEM;
2400 		changed = true;
2401 		created = true;
2402 	} else if (port->input && !port_msg->input_port) {
2403 		changed = true;
2404 	} else if (port->connector) {
2405 		/* We're updating a port that's exposed to userspace, so do it
2406 		 * under lock
2407 		 */
2408 		drm_modeset_lock(&mgr->base.lock, NULL);
2409 
2410 		old_ddps = port->ddps;
2411 		changed = port->ddps != port_msg->ddps ||
2412 			(port->ddps &&
2413 			 (port->ldps != port_msg->legacy_device_plug_status ||
2414 			  port->dpcd_rev != port_msg->dpcd_revision ||
2415 			  port->mcs != port_msg->mcs ||
2416 			  port->pdt != port_msg->peer_device_type ||
2417 			  port->num_sdp_stream_sinks !=
2418 			  port_msg->num_sdp_stream_sinks));
2419 	}
2420 
2421 	port->input = port_msg->input_port;
2422 	if (!port->input)
2423 		new_pdt = port_msg->peer_device_type;
2424 	new_mcs = port_msg->mcs;
2425 	port->ddps = port_msg->ddps;
2426 	port->ldps = port_msg->legacy_device_plug_status;
2427 	port->dpcd_rev = port_msg->dpcd_revision;
2428 	port->num_sdp_streams = port_msg->num_sdp_streams;
2429 	port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks;
2430 
2431 	/* manage mstb port lists with mgr lock - take a reference
2432 	   for this list */
2433 	if (created) {
2434 		mutex_lock(&mgr->lock);
2435 		drm_dp_mst_topology_get_port(port);
2436 		list_add(&port->next, &mstb->ports);
2437 		mstb->num_ports++;
2438 		mutex_unlock(&mgr->lock);
2439 	}
2440 
2441 	/*
2442 	 * Reprobe PBN caps on both hotplug, and when re-probing the link
2443 	 * for our parent mstb
2444 	 */
2445 	if (old_ddps != port->ddps || !created) {
2446 		if (port->ddps && !port->input) {
2447 			ret = drm_dp_send_enum_path_resources(mgr, mstb,
2448 							      port);
2449 			if (ret == 1)
2450 				changed = true;
2451 		} else {
2452 			port->full_pbn = 0;
2453 		}
2454 	}
2455 
2456 	ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2457 	if (ret == 1) {
2458 		send_link_addr = true;
2459 	} else if (ret < 0) {
2460 		drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret);
2461 		goto fail;
2462 	}
2463 
2464 	/*
2465 	 * If this port wasn't just created, then we're reprobing because
2466 	 * we're coming out of suspend. In this case, always resend the link
2467 	 * address if there's an MSTB on this port
2468 	 */
2469 	if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
2470 	    port->mcs)
2471 		send_link_addr = true;
2472 
2473 	if (port->connector)
2474 		drm_modeset_unlock(&mgr->base.lock);
2475 	else if (!port->input)
2476 		drm_dp_mst_port_add_connector(mstb, port);
2477 
2478 	if (send_link_addr && port->mstb) {
2479 		ret = drm_dp_send_link_address(mgr, port->mstb);
2480 		if (ret == 1) /* MSTB below us changed */
2481 			changed = true;
2482 		else if (ret < 0)
2483 			goto fail_put;
2484 	}
2485 
2486 	/* put reference to this port */
2487 	drm_dp_mst_topology_put_port(port);
2488 	return changed;
2489 
2490 fail:
2491 	drm_dp_mst_topology_unlink_port(mgr, port);
2492 	if (port->connector)
2493 		drm_modeset_unlock(&mgr->base.lock);
2494 fail_put:
2495 	drm_dp_mst_topology_put_port(port);
2496 	return ret;
2497 }
2498 
2499 static void
2500 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb,
2501 			    struct drm_dp_connection_status_notify *conn_stat)
2502 {
2503 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2504 	struct drm_dp_mst_port *port;
2505 	int old_ddps, ret;
2506 	u8 new_pdt;
2507 	bool new_mcs;
2508 	bool dowork = false, create_connector = false;
2509 
2510 	port = drm_dp_get_port(mstb, conn_stat->port_number);
2511 	if (!port)
2512 		return;
2513 
2514 	if (port->connector) {
2515 		if (!port->input && conn_stat->input_port) {
2516 			/*
2517 			 * We can't remove a connector from an already exposed
2518 			 * port, so just throw the port out and make sure we
2519 			 * reprobe the link address of it's parent MSTB
2520 			 */
2521 			drm_dp_mst_topology_unlink_port(mgr, port);
2522 			mstb->link_address_sent = false;
2523 			dowork = true;
2524 			goto out;
2525 		}
2526 
2527 		/* Locking is only needed if the port's exposed to userspace */
2528 		drm_modeset_lock(&mgr->base.lock, NULL);
2529 	} else if (port->input && !conn_stat->input_port) {
2530 		create_connector = true;
2531 		/* Reprobe link address so we get num_sdp_streams */
2532 		mstb->link_address_sent = false;
2533 		dowork = true;
2534 	}
2535 
2536 	old_ddps = port->ddps;
2537 	port->input = conn_stat->input_port;
2538 	port->ldps = conn_stat->legacy_device_plug_status;
2539 	port->ddps = conn_stat->displayport_device_plug_status;
2540 
2541 	if (old_ddps != port->ddps) {
2542 		if (port->ddps && !port->input)
2543 			drm_dp_send_enum_path_resources(mgr, mstb, port);
2544 		else
2545 			port->full_pbn = 0;
2546 	}
2547 
2548 	new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type;
2549 	new_mcs = conn_stat->message_capability_status;
2550 	ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2551 	if (ret == 1) {
2552 		dowork = true;
2553 	} else if (ret < 0) {
2554 		drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret);
2555 		dowork = false;
2556 	}
2557 
2558 	if (port->connector)
2559 		drm_modeset_unlock(&mgr->base.lock);
2560 	else if (create_connector)
2561 		drm_dp_mst_port_add_connector(mstb, port);
2562 
2563 out:
2564 	drm_dp_mst_topology_put_port(port);
2565 	if (dowork)
2566 		queue_work(system_long_wq, &mstb->mgr->work);
2567 }
2568 
2569 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr,
2570 							       u8 lct, u8 *rad)
2571 {
2572 	struct drm_dp_mst_branch *mstb;
2573 	struct drm_dp_mst_port *port;
2574 	int i, ret;
2575 	/* find the port by iterating down */
2576 
2577 	mutex_lock(&mgr->lock);
2578 	mstb = mgr->mst_primary;
2579 
2580 	if (!mstb)
2581 		goto out;
2582 
2583 	for (i = 0; i < lct - 1; i++) {
2584 		int shift = (i % 2) ? 0 : 4;
2585 		int port_num = (rad[i / 2] >> shift) & 0xf;
2586 
2587 		list_for_each_entry(port, &mstb->ports, next) {
2588 			if (port->port_num == port_num) {
2589 				mstb = port->mstb;
2590 				if (!mstb) {
2591 					drm_err(mgr->dev,
2592 						"failed to lookup MSTB with lct %d, rad %02x\n",
2593 						lct, rad[0]);
2594 					goto out;
2595 				}
2596 
2597 				break;
2598 			}
2599 		}
2600 	}
2601 	ret = drm_dp_mst_topology_try_get_mstb(mstb);
2602 	if (!ret)
2603 		mstb = NULL;
2604 out:
2605 	mutex_unlock(&mgr->lock);
2606 	return mstb;
2607 }
2608 
2609 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper(
2610 	struct drm_dp_mst_branch *mstb,
2611 	const uint8_t *guid)
2612 {
2613 	struct drm_dp_mst_branch *found_mstb;
2614 	struct drm_dp_mst_port *port;
2615 
2616 	if (memcmp(mstb->guid, guid, 16) == 0)
2617 		return mstb;
2618 
2619 
2620 	list_for_each_entry(port, &mstb->ports, next) {
2621 		if (!port->mstb)
2622 			continue;
2623 
2624 		found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid);
2625 
2626 		if (found_mstb)
2627 			return found_mstb;
2628 	}
2629 
2630 	return NULL;
2631 }
2632 
2633 static struct drm_dp_mst_branch *
2634 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr,
2635 				     const uint8_t *guid)
2636 {
2637 	struct drm_dp_mst_branch *mstb;
2638 	int ret;
2639 
2640 	/* find the port by iterating down */
2641 	mutex_lock(&mgr->lock);
2642 
2643 	mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid);
2644 	if (mstb) {
2645 		ret = drm_dp_mst_topology_try_get_mstb(mstb);
2646 		if (!ret)
2647 			mstb = NULL;
2648 	}
2649 
2650 	mutex_unlock(&mgr->lock);
2651 	return mstb;
2652 }
2653 
2654 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2655 					       struct drm_dp_mst_branch *mstb)
2656 {
2657 	struct drm_dp_mst_port *port;
2658 	int ret;
2659 	bool changed = false;
2660 
2661 	if (!mstb->link_address_sent) {
2662 		ret = drm_dp_send_link_address(mgr, mstb);
2663 		if (ret == 1)
2664 			changed = true;
2665 		else if (ret < 0)
2666 			return ret;
2667 	}
2668 
2669 	list_for_each_entry(port, &mstb->ports, next) {
2670 		if (port->input || !port->ddps || !port->mstb)
2671 			continue;
2672 
2673 		ret = drm_dp_check_and_send_link_address(mgr, port->mstb);
2674 		if (ret == 1)
2675 			changed = true;
2676 		else if (ret < 0)
2677 			return ret;
2678 	}
2679 
2680 	return changed;
2681 }
2682 
2683 static void drm_dp_mst_link_probe_work(struct work_struct *work)
2684 {
2685 	struct drm_dp_mst_topology_mgr *mgr =
2686 		container_of(work, struct drm_dp_mst_topology_mgr, work);
2687 	struct drm_device *dev = mgr->dev;
2688 	struct drm_dp_mst_branch *mstb;
2689 	int ret;
2690 	bool clear_payload_id_table;
2691 
2692 	mutex_lock(&mgr->probe_lock);
2693 
2694 	mutex_lock(&mgr->lock);
2695 	clear_payload_id_table = !mgr->payload_id_table_cleared;
2696 	mgr->payload_id_table_cleared = true;
2697 
2698 	mstb = mgr->mst_primary;
2699 	if (mstb) {
2700 		ret = drm_dp_mst_topology_try_get_mstb(mstb);
2701 		if (!ret)
2702 			mstb = NULL;
2703 	}
2704 	mutex_unlock(&mgr->lock);
2705 	if (!mstb) {
2706 		mutex_unlock(&mgr->probe_lock);
2707 		return;
2708 	}
2709 
2710 	/*
2711 	 * Certain branch devices seem to incorrectly report an available_pbn
2712 	 * of 0 on downstream sinks, even after clearing the
2713 	 * DP_PAYLOAD_ALLOCATE_* registers in
2714 	 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C
2715 	 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make
2716 	 * things work again.
2717 	 */
2718 	if (clear_payload_id_table) {
2719 		drm_dbg_kms(dev, "Clearing payload ID table\n");
2720 		drm_dp_send_clear_payload_id_table(mgr, mstb);
2721 	}
2722 
2723 	ret = drm_dp_check_and_send_link_address(mgr, mstb);
2724 	drm_dp_mst_topology_put_mstb(mstb);
2725 
2726 	mutex_unlock(&mgr->probe_lock);
2727 	if (ret > 0)
2728 		drm_kms_helper_hotplug_event(dev);
2729 }
2730 
2731 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
2732 				 u8 *guid)
2733 {
2734 	u64 salt;
2735 
2736 	if (memchr_inv(guid, 0, 16))
2737 		return true;
2738 
2739 	salt = get_jiffies_64();
2740 
2741 	memcpy(&guid[0], &salt, sizeof(u64));
2742 	memcpy(&guid[8], &salt, sizeof(u64));
2743 
2744 	return false;
2745 }
2746 
2747 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg,
2748 			    u8 port_num, u32 offset, u8 num_bytes)
2749 {
2750 	struct drm_dp_sideband_msg_req_body req;
2751 
2752 	req.req_type = DP_REMOTE_DPCD_READ;
2753 	req.u.dpcd_read.port_number = port_num;
2754 	req.u.dpcd_read.dpcd_address = offset;
2755 	req.u.dpcd_read.num_bytes = num_bytes;
2756 	drm_dp_encode_sideband_req(&req, msg);
2757 }
2758 
2759 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr,
2760 				    bool up, u8 *msg, int len)
2761 {
2762 	int ret;
2763 	int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE;
2764 	int tosend, total, offset;
2765 	int retries = 0;
2766 
2767 retry:
2768 	total = len;
2769 	offset = 0;
2770 	do {
2771 		tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total);
2772 
2773 		ret = drm_dp_dpcd_write(mgr->aux, regbase + offset,
2774 					&msg[offset],
2775 					tosend);
2776 		if (ret != tosend) {
2777 			if (ret == -EIO && retries < 5) {
2778 				retries++;
2779 				goto retry;
2780 			}
2781 			drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret);
2782 
2783 			return -EIO;
2784 		}
2785 		offset += tosend;
2786 		total -= tosend;
2787 	} while (total > 0);
2788 	return 0;
2789 }
2790 
2791 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr,
2792 				  struct drm_dp_sideband_msg_tx *txmsg)
2793 {
2794 	struct drm_dp_mst_branch *mstb = txmsg->dst;
2795 	u8 req_type;
2796 
2797 	req_type = txmsg->msg[0] & 0x7f;
2798 	if (req_type == DP_CONNECTION_STATUS_NOTIFY ||
2799 		req_type == DP_RESOURCE_STATUS_NOTIFY ||
2800 		req_type == DP_CLEAR_PAYLOAD_ID_TABLE)
2801 		hdr->broadcast = 1;
2802 	else
2803 		hdr->broadcast = 0;
2804 	hdr->path_msg = txmsg->path_msg;
2805 	if (hdr->broadcast) {
2806 		hdr->lct = 1;
2807 		hdr->lcr = 6;
2808 	} else {
2809 		hdr->lct = mstb->lct;
2810 		hdr->lcr = mstb->lct - 1;
2811 	}
2812 
2813 	memcpy(hdr->rad, mstb->rad, hdr->lct / 2);
2814 
2815 	return 0;
2816 }
2817 /*
2818  * process a single block of the next message in the sideband queue
2819  */
2820 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
2821 				   struct drm_dp_sideband_msg_tx *txmsg,
2822 				   bool up)
2823 {
2824 	u8 chunk[48];
2825 	struct drm_dp_sideband_msg_hdr hdr;
2826 	int len, space, idx, tosend;
2827 	int ret;
2828 
2829 	if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT)
2830 		return 0;
2831 
2832 	memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr));
2833 
2834 	if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED)
2835 		txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND;
2836 
2837 	/* make hdr from dst mst */
2838 	ret = set_hdr_from_dst_qlock(&hdr, txmsg);
2839 	if (ret < 0)
2840 		return ret;
2841 
2842 	/* amount left to send in this message */
2843 	len = txmsg->cur_len - txmsg->cur_offset;
2844 
2845 	/* 48 - sideband msg size - 1 byte for data CRC, x header bytes */
2846 	space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr);
2847 
2848 	tosend = min(len, space);
2849 	if (len == txmsg->cur_len)
2850 		hdr.somt = 1;
2851 	if (space >= len)
2852 		hdr.eomt = 1;
2853 
2854 
2855 	hdr.msg_len = tosend + 1;
2856 	drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx);
2857 	memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend);
2858 	/* add crc at end */
2859 	drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend);
2860 	idx += tosend + 1;
2861 
2862 	ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx);
2863 	if (ret) {
2864 		if (drm_debug_enabled(DRM_UT_DP)) {
2865 			struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2866 
2867 			drm_printf(&p, "sideband msg failed to send\n");
2868 			drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2869 		}
2870 		return ret;
2871 	}
2872 
2873 	txmsg->cur_offset += tosend;
2874 	if (txmsg->cur_offset == txmsg->cur_len) {
2875 		txmsg->state = DRM_DP_SIDEBAND_TX_SENT;
2876 		return 1;
2877 	}
2878 	return 0;
2879 }
2880 
2881 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr)
2882 {
2883 	struct drm_dp_sideband_msg_tx *txmsg;
2884 	int ret;
2885 
2886 	WARN_ON(!mutex_is_locked(&mgr->qlock));
2887 
2888 	/* construct a chunk from the first msg in the tx_msg queue */
2889 	if (list_empty(&mgr->tx_msg_downq))
2890 		return;
2891 
2892 	txmsg = list_first_entry(&mgr->tx_msg_downq,
2893 				 struct drm_dp_sideband_msg_tx, next);
2894 	ret = process_single_tx_qlock(mgr, txmsg, false);
2895 	if (ret < 0) {
2896 		drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret);
2897 		list_del(&txmsg->next);
2898 		txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
2899 		wake_up_all(&mgr->tx_waitq);
2900 	}
2901 }
2902 
2903 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr,
2904 				 struct drm_dp_sideband_msg_tx *txmsg)
2905 {
2906 	mutex_lock(&mgr->qlock);
2907 	list_add_tail(&txmsg->next, &mgr->tx_msg_downq);
2908 
2909 	if (drm_debug_enabled(DRM_UT_DP)) {
2910 		struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2911 
2912 		drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2913 	}
2914 
2915 	if (list_is_singular(&mgr->tx_msg_downq))
2916 		process_single_down_tx_qlock(mgr);
2917 	mutex_unlock(&mgr->qlock);
2918 }
2919 
2920 static void
2921 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr,
2922 			 struct drm_dp_link_address_ack_reply *reply)
2923 {
2924 	struct drm_dp_link_addr_reply_port *port_reply;
2925 	int i;
2926 
2927 	for (i = 0; i < reply->nports; i++) {
2928 		port_reply = &reply->ports[i];
2929 		drm_dbg_kms(mgr->dev,
2930 			    "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n",
2931 			    i,
2932 			    port_reply->input_port,
2933 			    port_reply->peer_device_type,
2934 			    port_reply->port_number,
2935 			    port_reply->dpcd_revision,
2936 			    port_reply->mcs,
2937 			    port_reply->ddps,
2938 			    port_reply->legacy_device_plug_status,
2939 			    port_reply->num_sdp_streams,
2940 			    port_reply->num_sdp_stream_sinks);
2941 	}
2942 }
2943 
2944 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2945 				     struct drm_dp_mst_branch *mstb)
2946 {
2947 	struct drm_dp_sideband_msg_tx *txmsg;
2948 	struct drm_dp_link_address_ack_reply *reply;
2949 	struct drm_dp_mst_port *port, *tmp;
2950 	int i, ret, port_mask = 0;
2951 	bool changed = false;
2952 
2953 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2954 	if (!txmsg)
2955 		return -ENOMEM;
2956 
2957 	txmsg->dst = mstb;
2958 	build_link_address(txmsg);
2959 
2960 	mstb->link_address_sent = true;
2961 	drm_dp_queue_down_tx(mgr, txmsg);
2962 
2963 	/* FIXME: Actually do some real error handling here */
2964 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2965 	if (ret <= 0) {
2966 		drm_err(mgr->dev, "Sending link address failed with %d\n", ret);
2967 		goto out;
2968 	}
2969 	if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
2970 		drm_err(mgr->dev, "link address NAK received\n");
2971 		ret = -EIO;
2972 		goto out;
2973 	}
2974 
2975 	reply = &txmsg->reply.u.link_addr;
2976 	drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports);
2977 	drm_dp_dump_link_address(mgr, reply);
2978 
2979 	ret = drm_dp_check_mstb_guid(mstb, reply->guid);
2980 	if (ret) {
2981 		char buf[64];
2982 
2983 		drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf));
2984 		drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret);
2985 		goto out;
2986 	}
2987 
2988 	for (i = 0; i < reply->nports; i++) {
2989 		port_mask |= BIT(reply->ports[i].port_number);
2990 		ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev,
2991 							  &reply->ports[i]);
2992 		if (ret == 1)
2993 			changed = true;
2994 		else if (ret < 0)
2995 			goto out;
2996 	}
2997 
2998 	/* Prune any ports that are currently a part of mstb in our in-memory
2999 	 * topology, but were not seen in this link address. Usually this
3000 	 * means that they were removed while the topology was out of sync,
3001 	 * e.g. during suspend/resume
3002 	 */
3003 	mutex_lock(&mgr->lock);
3004 	list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
3005 		if (port_mask & BIT(port->port_num))
3006 			continue;
3007 
3008 		drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n",
3009 			    port->port_num);
3010 		list_del(&port->next);
3011 		drm_dp_mst_topology_put_port(port);
3012 		changed = true;
3013 	}
3014 	mutex_unlock(&mgr->lock);
3015 
3016 out:
3017 	if (ret <= 0)
3018 		mstb->link_address_sent = false;
3019 	kfree(txmsg);
3020 	return ret < 0 ? ret : changed;
3021 }
3022 
3023 static void
3024 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
3025 				   struct drm_dp_mst_branch *mstb)
3026 {
3027 	struct drm_dp_sideband_msg_tx *txmsg;
3028 	int ret;
3029 
3030 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3031 	if (!txmsg)
3032 		return;
3033 
3034 	txmsg->dst = mstb;
3035 	build_clear_payload_id_table(txmsg);
3036 
3037 	drm_dp_queue_down_tx(mgr, txmsg);
3038 
3039 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3040 	if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3041 		drm_dbg_kms(mgr->dev, "clear payload table id nak received\n");
3042 
3043 	kfree(txmsg);
3044 }
3045 
3046 static int
3047 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
3048 				struct drm_dp_mst_branch *mstb,
3049 				struct drm_dp_mst_port *port)
3050 {
3051 	struct drm_dp_enum_path_resources_ack_reply *path_res;
3052 	struct drm_dp_sideband_msg_tx *txmsg;
3053 	int ret;
3054 
3055 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3056 	if (!txmsg)
3057 		return -ENOMEM;
3058 
3059 	txmsg->dst = mstb;
3060 	build_enum_path_resources(txmsg, port->port_num);
3061 
3062 	drm_dp_queue_down_tx(mgr, txmsg);
3063 
3064 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3065 	if (ret > 0) {
3066 		ret = 0;
3067 		path_res = &txmsg->reply.u.path_resources;
3068 
3069 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3070 			drm_dbg_kms(mgr->dev, "enum path resources nak received\n");
3071 		} else {
3072 			if (port->port_num != path_res->port_number)
3073 				DRM_ERROR("got incorrect port in response\n");
3074 
3075 			drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n",
3076 				    path_res->port_number,
3077 				    path_res->full_payload_bw_number,
3078 				    path_res->avail_payload_bw_number);
3079 
3080 			/*
3081 			 * If something changed, make sure we send a
3082 			 * hotplug
3083 			 */
3084 			if (port->full_pbn != path_res->full_payload_bw_number ||
3085 			    port->fec_capable != path_res->fec_capable)
3086 				ret = 1;
3087 
3088 			port->full_pbn = path_res->full_payload_bw_number;
3089 			port->fec_capable = path_res->fec_capable;
3090 		}
3091 	}
3092 
3093 	kfree(txmsg);
3094 	return ret;
3095 }
3096 
3097 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb)
3098 {
3099 	if (!mstb->port_parent)
3100 		return NULL;
3101 
3102 	if (mstb->port_parent->mstb != mstb)
3103 		return mstb->port_parent;
3104 
3105 	return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent);
3106 }
3107 
3108 /*
3109  * Searches upwards in the topology starting from mstb to try to find the
3110  * closest available parent of mstb that's still connected to the rest of the
3111  * topology. This can be used in order to perform operations like releasing
3112  * payloads, where the branch device which owned the payload may no longer be
3113  * around and thus would require that the payload on the last living relative
3114  * be freed instead.
3115  */
3116 static struct drm_dp_mst_branch *
3117 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr,
3118 					struct drm_dp_mst_branch *mstb,
3119 					int *port_num)
3120 {
3121 	struct drm_dp_mst_branch *rmstb = NULL;
3122 	struct drm_dp_mst_port *found_port;
3123 
3124 	mutex_lock(&mgr->lock);
3125 	if (!mgr->mst_primary)
3126 		goto out;
3127 
3128 	do {
3129 		found_port = drm_dp_get_last_connected_port_to_mstb(mstb);
3130 		if (!found_port)
3131 			break;
3132 
3133 		if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) {
3134 			rmstb = found_port->parent;
3135 			*port_num = found_port->port_num;
3136 		} else {
3137 			/* Search again, starting from this parent */
3138 			mstb = found_port->parent;
3139 		}
3140 	} while (!rmstb);
3141 out:
3142 	mutex_unlock(&mgr->lock);
3143 	return rmstb;
3144 }
3145 
3146 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr,
3147 				   struct drm_dp_mst_port *port,
3148 				   int id,
3149 				   int pbn)
3150 {
3151 	struct drm_dp_sideband_msg_tx *txmsg;
3152 	struct drm_dp_mst_branch *mstb;
3153 	int ret, port_num;
3154 	u8 sinks[DRM_DP_MAX_SDP_STREAMS];
3155 	int i;
3156 
3157 	port_num = port->port_num;
3158 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3159 	if (!mstb) {
3160 		mstb = drm_dp_get_last_connected_port_and_mstb(mgr,
3161 							       port->parent,
3162 							       &port_num);
3163 
3164 		if (!mstb)
3165 			return -EINVAL;
3166 	}
3167 
3168 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3169 	if (!txmsg) {
3170 		ret = -ENOMEM;
3171 		goto fail_put;
3172 	}
3173 
3174 	for (i = 0; i < port->num_sdp_streams; i++)
3175 		sinks[i] = i;
3176 
3177 	txmsg->dst = mstb;
3178 	build_allocate_payload(txmsg, port_num,
3179 			       id,
3180 			       pbn, port->num_sdp_streams, sinks);
3181 
3182 	drm_dp_queue_down_tx(mgr, txmsg);
3183 
3184 	/*
3185 	 * FIXME: there is a small chance that between getting the last
3186 	 * connected mstb and sending the payload message, the last connected
3187 	 * mstb could also be removed from the topology. In the future, this
3188 	 * needs to be fixed by restarting the
3189 	 * drm_dp_get_last_connected_port_and_mstb() search in the event of a
3190 	 * timeout if the topology is still connected to the system.
3191 	 */
3192 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3193 	if (ret > 0) {
3194 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3195 			ret = -EINVAL;
3196 		else
3197 			ret = 0;
3198 	}
3199 	kfree(txmsg);
3200 fail_put:
3201 	drm_dp_mst_topology_put_mstb(mstb);
3202 	return ret;
3203 }
3204 
3205 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr,
3206 				 struct drm_dp_mst_port *port, bool power_up)
3207 {
3208 	struct drm_dp_sideband_msg_tx *txmsg;
3209 	int ret;
3210 
3211 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
3212 	if (!port)
3213 		return -EINVAL;
3214 
3215 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3216 	if (!txmsg) {
3217 		drm_dp_mst_topology_put_port(port);
3218 		return -ENOMEM;
3219 	}
3220 
3221 	txmsg->dst = port->parent;
3222 	build_power_updown_phy(txmsg, port->port_num, power_up);
3223 	drm_dp_queue_down_tx(mgr, txmsg);
3224 
3225 	ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg);
3226 	if (ret > 0) {
3227 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3228 			ret = -EINVAL;
3229 		else
3230 			ret = 0;
3231 	}
3232 	kfree(txmsg);
3233 	drm_dp_mst_topology_put_port(port);
3234 
3235 	return ret;
3236 }
3237 EXPORT_SYMBOL(drm_dp_send_power_updown_phy);
3238 
3239 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr,
3240 		struct drm_dp_mst_port *port,
3241 		struct drm_dp_query_stream_enc_status_ack_reply *status)
3242 {
3243 	struct drm_dp_sideband_msg_tx *txmsg;
3244 	u8 nonce[7];
3245 	int ret;
3246 
3247 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3248 	if (!txmsg)
3249 		return -ENOMEM;
3250 
3251 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
3252 	if (!port) {
3253 		ret = -EINVAL;
3254 		goto out_get_port;
3255 	}
3256 
3257 	get_random_bytes(nonce, sizeof(nonce));
3258 
3259 	/*
3260 	 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message
3261 	 *  transaction at the MST Branch device directly connected to the
3262 	 *  Source"
3263 	 */
3264 	txmsg->dst = mgr->mst_primary;
3265 
3266 	build_query_stream_enc_status(txmsg, port->vcpi.vcpi, nonce);
3267 
3268 	drm_dp_queue_down_tx(mgr, txmsg);
3269 
3270 	ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg);
3271 	if (ret < 0) {
3272 		goto out;
3273 	} else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3274 		drm_dbg_kms(mgr->dev, "query encryption status nak received\n");
3275 		ret = -ENXIO;
3276 		goto out;
3277 	}
3278 
3279 	ret = 0;
3280 	memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status));
3281 
3282 out:
3283 	drm_dp_mst_topology_put_port(port);
3284 out_get_port:
3285 	kfree(txmsg);
3286 	return ret;
3287 }
3288 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status);
3289 
3290 static int drm_dp_create_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3291 				       int id,
3292 				       struct drm_dp_payload *payload)
3293 {
3294 	int ret;
3295 
3296 	ret = drm_dp_dpcd_write_payload(mgr, id, payload);
3297 	if (ret < 0) {
3298 		payload->payload_state = 0;
3299 		return ret;
3300 	}
3301 	payload->payload_state = DP_PAYLOAD_LOCAL;
3302 	return 0;
3303 }
3304 
3305 static int drm_dp_create_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3306 				       struct drm_dp_mst_port *port,
3307 				       int id,
3308 				       struct drm_dp_payload *payload)
3309 {
3310 	int ret;
3311 
3312 	ret = drm_dp_payload_send_msg(mgr, port, id, port->vcpi.pbn);
3313 	if (ret < 0)
3314 		return ret;
3315 	payload->payload_state = DP_PAYLOAD_REMOTE;
3316 	return ret;
3317 }
3318 
3319 static int drm_dp_destroy_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3320 					struct drm_dp_mst_port *port,
3321 					int id,
3322 					struct drm_dp_payload *payload)
3323 {
3324 	drm_dbg_kms(mgr->dev, "\n");
3325 	/* it's okay for these to fail */
3326 	if (port) {
3327 		drm_dp_payload_send_msg(mgr, port, id, 0);
3328 	}
3329 
3330 	drm_dp_dpcd_write_payload(mgr, id, payload);
3331 	payload->payload_state = DP_PAYLOAD_DELETE_LOCAL;
3332 	return 0;
3333 }
3334 
3335 static int drm_dp_destroy_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3336 					int id,
3337 					struct drm_dp_payload *payload)
3338 {
3339 	payload->payload_state = 0;
3340 	return 0;
3341 }
3342 
3343 /**
3344  * drm_dp_update_payload_part1() - Execute payload update part 1
3345  * @mgr: manager to use.
3346  * @start_slot: this is the cur slot
3347  *
3348  * NOTE: start_slot is a temporary workaround for non-atomic drivers,
3349  * this will be removed when non-atomic mst helpers are moved out of the helper
3350  *
3351  * This iterates over all proposed virtual channels, and tries to
3352  * allocate space in the link for them. For 0->slots transitions,
3353  * this step just writes the VCPI to the MST device. For slots->0
3354  * transitions, this writes the updated VCPIs and removes the
3355  * remote VC payloads.
3356  *
3357  * after calling this the driver should generate ACT and payload
3358  * packets.
3359  */
3360 int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr *mgr, int start_slot)
3361 {
3362 	struct drm_dp_payload req_payload;
3363 	struct drm_dp_mst_port *port;
3364 	int i, j;
3365 	int cur_slots = start_slot;
3366 	bool skip;
3367 
3368 	mutex_lock(&mgr->payload_lock);
3369 	for (i = 0; i < mgr->max_payloads; i++) {
3370 		struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
3371 		struct drm_dp_payload *payload = &mgr->payloads[i];
3372 		bool put_port = false;
3373 
3374 		/* solve the current payloads - compare to the hw ones
3375 		   - update the hw view */
3376 		req_payload.start_slot = cur_slots;
3377 		if (vcpi) {
3378 			port = container_of(vcpi, struct drm_dp_mst_port,
3379 					    vcpi);
3380 
3381 			mutex_lock(&mgr->lock);
3382 			skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary);
3383 			mutex_unlock(&mgr->lock);
3384 
3385 			if (skip) {
3386 				drm_dbg_kms(mgr->dev,
3387 					    "Virtual channel %d is not in current topology\n",
3388 					    i);
3389 				continue;
3390 			}
3391 			/* Validated ports don't matter if we're releasing
3392 			 * VCPI
3393 			 */
3394 			if (vcpi->num_slots) {
3395 				port = drm_dp_mst_topology_get_port_validated(
3396 				    mgr, port);
3397 				if (!port) {
3398 					if (vcpi->num_slots == payload->num_slots) {
3399 						cur_slots += vcpi->num_slots;
3400 						payload->start_slot = req_payload.start_slot;
3401 						continue;
3402 					} else {
3403 						drm_dbg_kms(mgr->dev,
3404 							    "Fail:set payload to invalid sink");
3405 						mutex_unlock(&mgr->payload_lock);
3406 						return -EINVAL;
3407 					}
3408 				}
3409 				put_port = true;
3410 			}
3411 
3412 			req_payload.num_slots = vcpi->num_slots;
3413 			req_payload.vcpi = vcpi->vcpi;
3414 		} else {
3415 			port = NULL;
3416 			req_payload.num_slots = 0;
3417 		}
3418 
3419 		payload->start_slot = req_payload.start_slot;
3420 		/* work out what is required to happen with this payload */
3421 		if (payload->num_slots != req_payload.num_slots) {
3422 
3423 			/* need to push an update for this payload */
3424 			if (req_payload.num_slots) {
3425 				drm_dp_create_payload_step1(mgr, vcpi->vcpi,
3426 							    &req_payload);
3427 				payload->num_slots = req_payload.num_slots;
3428 				payload->vcpi = req_payload.vcpi;
3429 
3430 			} else if (payload->num_slots) {
3431 				payload->num_slots = 0;
3432 				drm_dp_destroy_payload_step1(mgr, port,
3433 							     payload->vcpi,
3434 							     payload);
3435 				req_payload.payload_state =
3436 					payload->payload_state;
3437 				payload->start_slot = 0;
3438 			}
3439 			payload->payload_state = req_payload.payload_state;
3440 		}
3441 		cur_slots += req_payload.num_slots;
3442 
3443 		if (put_port)
3444 			drm_dp_mst_topology_put_port(port);
3445 	}
3446 
3447 	for (i = 0; i < mgr->max_payloads; /* do nothing */) {
3448 		if (mgr->payloads[i].payload_state != DP_PAYLOAD_DELETE_LOCAL) {
3449 			i++;
3450 			continue;
3451 		}
3452 
3453 		drm_dbg_kms(mgr->dev, "removing payload %d\n", i);
3454 		for (j = i; j < mgr->max_payloads - 1; j++) {
3455 			mgr->payloads[j] = mgr->payloads[j + 1];
3456 			mgr->proposed_vcpis[j] = mgr->proposed_vcpis[j + 1];
3457 
3458 			if (mgr->proposed_vcpis[j] &&
3459 			    mgr->proposed_vcpis[j]->num_slots) {
3460 				set_bit(j + 1, &mgr->payload_mask);
3461 			} else {
3462 				clear_bit(j + 1, &mgr->payload_mask);
3463 			}
3464 		}
3465 
3466 		memset(&mgr->payloads[mgr->max_payloads - 1], 0,
3467 		       sizeof(struct drm_dp_payload));
3468 		mgr->proposed_vcpis[mgr->max_payloads - 1] = NULL;
3469 		clear_bit(mgr->max_payloads, &mgr->payload_mask);
3470 	}
3471 	mutex_unlock(&mgr->payload_lock);
3472 
3473 	return 0;
3474 }
3475 EXPORT_SYMBOL(drm_dp_update_payload_part1);
3476 
3477 /**
3478  * drm_dp_update_payload_part2() - Execute payload update part 2
3479  * @mgr: manager to use.
3480  *
3481  * This iterates over all proposed virtual channels, and tries to
3482  * allocate space in the link for them. For 0->slots transitions,
3483  * this step writes the remote VC payload commands. For slots->0
3484  * this just resets some internal state.
3485  */
3486 int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr *mgr)
3487 {
3488 	struct drm_dp_mst_port *port;
3489 	int i;
3490 	int ret = 0;
3491 	bool skip;
3492 
3493 	mutex_lock(&mgr->payload_lock);
3494 	for (i = 0; i < mgr->max_payloads; i++) {
3495 
3496 		if (!mgr->proposed_vcpis[i])
3497 			continue;
3498 
3499 		port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
3500 
3501 		mutex_lock(&mgr->lock);
3502 		skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary);
3503 		mutex_unlock(&mgr->lock);
3504 
3505 		if (skip)
3506 			continue;
3507 
3508 		drm_dbg_kms(mgr->dev, "payload %d %d\n", i, mgr->payloads[i].payload_state);
3509 		if (mgr->payloads[i].payload_state == DP_PAYLOAD_LOCAL) {
3510 			ret = drm_dp_create_payload_step2(mgr, port, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3511 		} else if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) {
3512 			ret = drm_dp_destroy_payload_step2(mgr, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3513 		}
3514 		if (ret) {
3515 			mutex_unlock(&mgr->payload_lock);
3516 			return ret;
3517 		}
3518 	}
3519 	mutex_unlock(&mgr->payload_lock);
3520 	return 0;
3521 }
3522 EXPORT_SYMBOL(drm_dp_update_payload_part2);
3523 
3524 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
3525 				 struct drm_dp_mst_port *port,
3526 				 int offset, int size, u8 *bytes)
3527 {
3528 	int ret = 0;
3529 	struct drm_dp_sideband_msg_tx *txmsg;
3530 	struct drm_dp_mst_branch *mstb;
3531 
3532 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3533 	if (!mstb)
3534 		return -EINVAL;
3535 
3536 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3537 	if (!txmsg) {
3538 		ret = -ENOMEM;
3539 		goto fail_put;
3540 	}
3541 
3542 	build_dpcd_read(txmsg, port->port_num, offset, size);
3543 	txmsg->dst = port->parent;
3544 
3545 	drm_dp_queue_down_tx(mgr, txmsg);
3546 
3547 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3548 	if (ret < 0)
3549 		goto fail_free;
3550 
3551 	if (txmsg->reply.reply_type == 1) {
3552 		drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n",
3553 			    mstb, port->port_num, offset, size);
3554 		ret = -EIO;
3555 		goto fail_free;
3556 	}
3557 
3558 	if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) {
3559 		ret = -EPROTO;
3560 		goto fail_free;
3561 	}
3562 
3563 	ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes,
3564 		    size);
3565 	memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret);
3566 
3567 fail_free:
3568 	kfree(txmsg);
3569 fail_put:
3570 	drm_dp_mst_topology_put_mstb(mstb);
3571 
3572 	return ret;
3573 }
3574 
3575 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
3576 				  struct drm_dp_mst_port *port,
3577 				  int offset, int size, u8 *bytes)
3578 {
3579 	int ret;
3580 	struct drm_dp_sideband_msg_tx *txmsg;
3581 	struct drm_dp_mst_branch *mstb;
3582 
3583 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3584 	if (!mstb)
3585 		return -EINVAL;
3586 
3587 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3588 	if (!txmsg) {
3589 		ret = -ENOMEM;
3590 		goto fail_put;
3591 	}
3592 
3593 	build_dpcd_write(txmsg, port->port_num, offset, size, bytes);
3594 	txmsg->dst = mstb;
3595 
3596 	drm_dp_queue_down_tx(mgr, txmsg);
3597 
3598 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3599 	if (ret > 0) {
3600 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3601 			ret = -EIO;
3602 		else
3603 			ret = size;
3604 	}
3605 
3606 	kfree(txmsg);
3607 fail_put:
3608 	drm_dp_mst_topology_put_mstb(mstb);
3609 	return ret;
3610 }
3611 
3612 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type)
3613 {
3614 	struct drm_dp_sideband_msg_reply_body reply;
3615 
3616 	reply.reply_type = DP_SIDEBAND_REPLY_ACK;
3617 	reply.req_type = req_type;
3618 	drm_dp_encode_sideband_reply(&reply, msg);
3619 	return 0;
3620 }
3621 
3622 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr,
3623 				    struct drm_dp_mst_branch *mstb,
3624 				    int req_type, bool broadcast)
3625 {
3626 	struct drm_dp_sideband_msg_tx *txmsg;
3627 
3628 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3629 	if (!txmsg)
3630 		return -ENOMEM;
3631 
3632 	txmsg->dst = mstb;
3633 	drm_dp_encode_up_ack_reply(txmsg, req_type);
3634 
3635 	mutex_lock(&mgr->qlock);
3636 	/* construct a chunk from the first msg in the tx_msg queue */
3637 	process_single_tx_qlock(mgr, txmsg, true);
3638 	mutex_unlock(&mgr->qlock);
3639 
3640 	kfree(txmsg);
3641 	return 0;
3642 }
3643 
3644 /**
3645  * drm_dp_get_vc_payload_bw - get the VC payload BW for an MST link
3646  * @mgr: The &drm_dp_mst_topology_mgr to use
3647  * @link_rate: link rate in 10kbits/s units
3648  * @link_lane_count: lane count
3649  *
3650  * Calculate the total bandwidth of a MultiStream Transport link. The returned
3651  * value is in units of PBNs/(timeslots/1 MTP). This value can be used to
3652  * convert the number of PBNs required for a given stream to the number of
3653  * timeslots this stream requires in each MTP.
3654  */
3655 int drm_dp_get_vc_payload_bw(const struct drm_dp_mst_topology_mgr *mgr,
3656 			     int link_rate, int link_lane_count)
3657 {
3658 	if (link_rate == 0 || link_lane_count == 0)
3659 		drm_dbg_kms(mgr->dev, "invalid link rate/lane count: (%d / %d)\n",
3660 			    link_rate, link_lane_count);
3661 
3662 	/* See DP v2.0 2.6.4.2, VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */
3663 	return link_rate * link_lane_count / 54000;
3664 }
3665 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw);
3666 
3667 /**
3668  * drm_dp_read_mst_cap() - check whether or not a sink supports MST
3669  * @aux: The DP AUX channel to use
3670  * @dpcd: A cached copy of the DPCD capabilities for this sink
3671  *
3672  * Returns: %True if the sink supports MST, %false otherwise
3673  */
3674 bool drm_dp_read_mst_cap(struct drm_dp_aux *aux,
3675 			 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3676 {
3677 	u8 mstm_cap;
3678 
3679 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12)
3680 		return false;
3681 
3682 	if (drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &mstm_cap) != 1)
3683 		return false;
3684 
3685 	return mstm_cap & DP_MST_CAP;
3686 }
3687 EXPORT_SYMBOL(drm_dp_read_mst_cap);
3688 
3689 /**
3690  * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager
3691  * @mgr: manager to set state for
3692  * @mst_state: true to enable MST on this connector - false to disable.
3693  *
3694  * This is called by the driver when it detects an MST capable device plugged
3695  * into a DP MST capable port, or when a DP MST capable device is unplugged.
3696  */
3697 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state)
3698 {
3699 	int ret = 0;
3700 	struct drm_dp_mst_branch *mstb = NULL;
3701 
3702 	mutex_lock(&mgr->payload_lock);
3703 	mutex_lock(&mgr->lock);
3704 	if (mst_state == mgr->mst_state)
3705 		goto out_unlock;
3706 
3707 	mgr->mst_state = mst_state;
3708 	/* set the device into MST mode */
3709 	if (mst_state) {
3710 		struct drm_dp_payload reset_pay;
3711 		int lane_count;
3712 		int link_rate;
3713 
3714 		WARN_ON(mgr->mst_primary);
3715 
3716 		/* get dpcd info */
3717 		ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd);
3718 		if (ret < 0) {
3719 			drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n",
3720 				    mgr->aux->name, ret);
3721 			goto out_unlock;
3722 		}
3723 
3724 		lane_count = min_t(int, mgr->dpcd[2] & DP_MAX_LANE_COUNT_MASK, mgr->max_lane_count);
3725 		link_rate = min_t(int, drm_dp_bw_code_to_link_rate(mgr->dpcd[1]), mgr->max_link_rate);
3726 		mgr->pbn_div = drm_dp_get_vc_payload_bw(mgr,
3727 							link_rate,
3728 							lane_count);
3729 		if (mgr->pbn_div == 0) {
3730 			ret = -EINVAL;
3731 			goto out_unlock;
3732 		}
3733 
3734 		/* add initial branch device at LCT 1 */
3735 		mstb = drm_dp_add_mst_branch_device(1, NULL);
3736 		if (mstb == NULL) {
3737 			ret = -ENOMEM;
3738 			goto out_unlock;
3739 		}
3740 		mstb->mgr = mgr;
3741 
3742 		/* give this the main reference */
3743 		mgr->mst_primary = mstb;
3744 		drm_dp_mst_topology_get_mstb(mgr->mst_primary);
3745 
3746 		ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3747 					 DP_MST_EN |
3748 					 DP_UP_REQ_EN |
3749 					 DP_UPSTREAM_IS_SRC);
3750 		if (ret < 0)
3751 			goto out_unlock;
3752 
3753 		reset_pay.start_slot = 0;
3754 		reset_pay.num_slots = 0x3f;
3755 		drm_dp_dpcd_write_payload(mgr, 0, &reset_pay);
3756 
3757 		queue_work(system_long_wq, &mgr->work);
3758 
3759 		ret = 0;
3760 	} else {
3761 		/* disable MST on the device */
3762 		mstb = mgr->mst_primary;
3763 		mgr->mst_primary = NULL;
3764 		/* this can fail if the device is gone */
3765 		drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0);
3766 		ret = 0;
3767 		memset(mgr->payloads, 0,
3768 		       mgr->max_payloads * sizeof(mgr->payloads[0]));
3769 		memset(mgr->proposed_vcpis, 0,
3770 		       mgr->max_payloads * sizeof(mgr->proposed_vcpis[0]));
3771 		mgr->payload_mask = 0;
3772 		set_bit(0, &mgr->payload_mask);
3773 		mgr->vcpi_mask = 0;
3774 		mgr->payload_id_table_cleared = false;
3775 	}
3776 
3777 out_unlock:
3778 	mutex_unlock(&mgr->lock);
3779 	mutex_unlock(&mgr->payload_lock);
3780 	if (mstb)
3781 		drm_dp_mst_topology_put_mstb(mstb);
3782 	return ret;
3783 
3784 }
3785 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst);
3786 
3787 static void
3788 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb)
3789 {
3790 	struct drm_dp_mst_port *port;
3791 
3792 	/* The link address will need to be re-sent on resume */
3793 	mstb->link_address_sent = false;
3794 
3795 	list_for_each_entry(port, &mstb->ports, next)
3796 		if (port->mstb)
3797 			drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb);
3798 }
3799 
3800 /**
3801  * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager
3802  * @mgr: manager to suspend
3803  *
3804  * This function tells the MST device that we can't handle UP messages
3805  * anymore. This should stop it from sending any since we are suspended.
3806  */
3807 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr)
3808 {
3809 	mutex_lock(&mgr->lock);
3810 	drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3811 			   DP_MST_EN | DP_UPSTREAM_IS_SRC);
3812 	mutex_unlock(&mgr->lock);
3813 	flush_work(&mgr->up_req_work);
3814 	flush_work(&mgr->work);
3815 	flush_work(&mgr->delayed_destroy_work);
3816 
3817 	mutex_lock(&mgr->lock);
3818 	if (mgr->mst_state && mgr->mst_primary)
3819 		drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary);
3820 	mutex_unlock(&mgr->lock);
3821 }
3822 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend);
3823 
3824 /**
3825  * drm_dp_mst_topology_mgr_resume() - resume the MST manager
3826  * @mgr: manager to resume
3827  * @sync: whether or not to perform topology reprobing synchronously
3828  *
3829  * This will fetch DPCD and see if the device is still there,
3830  * if it is, it will rewrite the MSTM control bits, and return.
3831  *
3832  * If the device fails this returns -1, and the driver should do
3833  * a full MST reprobe, in case we were undocked.
3834  *
3835  * During system resume (where it is assumed that the driver will be calling
3836  * drm_atomic_helper_resume()) this function should be called beforehand with
3837  * @sync set to true. In contexts like runtime resume where the driver is not
3838  * expected to be calling drm_atomic_helper_resume(), this function should be
3839  * called with @sync set to false in order to avoid deadlocking.
3840  *
3841  * Returns: -1 if the MST topology was removed while we were suspended, 0
3842  * otherwise.
3843  */
3844 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr,
3845 				   bool sync)
3846 {
3847 	int ret;
3848 	u8 guid[16];
3849 
3850 	mutex_lock(&mgr->lock);
3851 	if (!mgr->mst_primary)
3852 		goto out_fail;
3853 
3854 	if (drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd) < 0) {
3855 		drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n");
3856 		goto out_fail;
3857 	}
3858 
3859 	ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3860 				 DP_MST_EN |
3861 				 DP_UP_REQ_EN |
3862 				 DP_UPSTREAM_IS_SRC);
3863 	if (ret < 0) {
3864 		drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n");
3865 		goto out_fail;
3866 	}
3867 
3868 	/* Some hubs forget their guids after they resume */
3869 	ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16);
3870 	if (ret != 16) {
3871 		drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n");
3872 		goto out_fail;
3873 	}
3874 
3875 	ret = drm_dp_check_mstb_guid(mgr->mst_primary, guid);
3876 	if (ret) {
3877 		drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n");
3878 		goto out_fail;
3879 	}
3880 
3881 	/*
3882 	 * For the final step of resuming the topology, we need to bring the
3883 	 * state of our in-memory topology back into sync with reality. So,
3884 	 * restart the probing process as if we're probing a new hub
3885 	 */
3886 	queue_work(system_long_wq, &mgr->work);
3887 	mutex_unlock(&mgr->lock);
3888 
3889 	if (sync) {
3890 		drm_dbg_kms(mgr->dev,
3891 			    "Waiting for link probe work to finish re-syncing topology...\n");
3892 		flush_work(&mgr->work);
3893 	}
3894 
3895 	return 0;
3896 
3897 out_fail:
3898 	mutex_unlock(&mgr->lock);
3899 	return -1;
3900 }
3901 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume);
3902 
3903 static bool
3904 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up,
3905 		      struct drm_dp_mst_branch **mstb)
3906 {
3907 	int len;
3908 	u8 replyblock[32];
3909 	int replylen, curreply;
3910 	int ret;
3911 	u8 hdrlen;
3912 	struct drm_dp_sideband_msg_hdr hdr;
3913 	struct drm_dp_sideband_msg_rx *msg =
3914 		up ? &mgr->up_req_recv : &mgr->down_rep_recv;
3915 	int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE :
3916 			   DP_SIDEBAND_MSG_DOWN_REP_BASE;
3917 
3918 	if (!up)
3919 		*mstb = NULL;
3920 
3921 	len = min(mgr->max_dpcd_transaction_bytes, 16);
3922 	ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len);
3923 	if (ret != len) {
3924 		drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret);
3925 		return false;
3926 	}
3927 
3928 	ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen);
3929 	if (ret == false) {
3930 		print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16,
3931 			       1, replyblock, len, false);
3932 		drm_dbg_kms(mgr->dev, "ERROR: failed header\n");
3933 		return false;
3934 	}
3935 
3936 	if (!up) {
3937 		/* Caller is responsible for giving back this reference */
3938 		*mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad);
3939 		if (!*mstb) {
3940 			drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct);
3941 			return false;
3942 		}
3943 	}
3944 
3945 	if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) {
3946 		drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]);
3947 		return false;
3948 	}
3949 
3950 	replylen = min(msg->curchunk_len, (u8)(len - hdrlen));
3951 	ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen);
3952 	if (!ret) {
3953 		drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]);
3954 		return false;
3955 	}
3956 
3957 	replylen = msg->curchunk_len + msg->curchunk_hdrlen - len;
3958 	curreply = len;
3959 	while (replylen > 0) {
3960 		len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16);
3961 		ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply,
3962 				    replyblock, len);
3963 		if (ret != len) {
3964 			drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n",
3965 				    len, ret);
3966 			return false;
3967 		}
3968 
3969 		ret = drm_dp_sideband_append_payload(msg, replyblock, len);
3970 		if (!ret) {
3971 			drm_dbg_kms(mgr->dev, "failed to build sideband msg\n");
3972 			return false;
3973 		}
3974 
3975 		curreply += len;
3976 		replylen -= len;
3977 	}
3978 	return true;
3979 }
3980 
3981 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr)
3982 {
3983 	struct drm_dp_sideband_msg_tx *txmsg;
3984 	struct drm_dp_mst_branch *mstb = NULL;
3985 	struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv;
3986 
3987 	if (!drm_dp_get_one_sb_msg(mgr, false, &mstb))
3988 		goto out;
3989 
3990 	/* Multi-packet message transmission, don't clear the reply */
3991 	if (!msg->have_eomt)
3992 		goto out;
3993 
3994 	/* find the message */
3995 	mutex_lock(&mgr->qlock);
3996 	txmsg = list_first_entry_or_null(&mgr->tx_msg_downq,
3997 					 struct drm_dp_sideband_msg_tx, next);
3998 	mutex_unlock(&mgr->qlock);
3999 
4000 	/* Were we actually expecting a response, and from this mstb? */
4001 	if (!txmsg || txmsg->dst != mstb) {
4002 		struct drm_dp_sideband_msg_hdr *hdr;
4003 
4004 		hdr = &msg->initial_hdr;
4005 		drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n",
4006 			    mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]);
4007 		goto out_clear_reply;
4008 	}
4009 
4010 	drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply);
4011 
4012 	if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
4013 		drm_dbg_kms(mgr->dev,
4014 			    "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n",
4015 			    txmsg->reply.req_type,
4016 			    drm_dp_mst_req_type_str(txmsg->reply.req_type),
4017 			    txmsg->reply.u.nak.reason,
4018 			    drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason),
4019 			    txmsg->reply.u.nak.nak_data);
4020 	}
4021 
4022 	memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx));
4023 	drm_dp_mst_topology_put_mstb(mstb);
4024 
4025 	mutex_lock(&mgr->qlock);
4026 	txmsg->state = DRM_DP_SIDEBAND_TX_RX;
4027 	list_del(&txmsg->next);
4028 	mutex_unlock(&mgr->qlock);
4029 
4030 	wake_up_all(&mgr->tx_waitq);
4031 
4032 	return 0;
4033 
4034 out_clear_reply:
4035 	memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx));
4036 out:
4037 	if (mstb)
4038 		drm_dp_mst_topology_put_mstb(mstb);
4039 
4040 	return 0;
4041 }
4042 
4043 static inline bool
4044 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr,
4045 			  struct drm_dp_pending_up_req *up_req)
4046 {
4047 	struct drm_dp_mst_branch *mstb = NULL;
4048 	struct drm_dp_sideband_msg_req_body *msg = &up_req->msg;
4049 	struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr;
4050 	bool hotplug = false;
4051 
4052 	if (hdr->broadcast) {
4053 		const u8 *guid = NULL;
4054 
4055 		if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY)
4056 			guid = msg->u.conn_stat.guid;
4057 		else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY)
4058 			guid = msg->u.resource_stat.guid;
4059 
4060 		if (guid)
4061 			mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid);
4062 	} else {
4063 		mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad);
4064 	}
4065 
4066 	if (!mstb) {
4067 		drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct);
4068 		return false;
4069 	}
4070 
4071 	/* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */
4072 	if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) {
4073 		drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat);
4074 		hotplug = true;
4075 	}
4076 
4077 	drm_dp_mst_topology_put_mstb(mstb);
4078 	return hotplug;
4079 }
4080 
4081 static void drm_dp_mst_up_req_work(struct work_struct *work)
4082 {
4083 	struct drm_dp_mst_topology_mgr *mgr =
4084 		container_of(work, struct drm_dp_mst_topology_mgr,
4085 			     up_req_work);
4086 	struct drm_dp_pending_up_req *up_req;
4087 	bool send_hotplug = false;
4088 
4089 	mutex_lock(&mgr->probe_lock);
4090 	while (true) {
4091 		mutex_lock(&mgr->up_req_lock);
4092 		up_req = list_first_entry_or_null(&mgr->up_req_list,
4093 						  struct drm_dp_pending_up_req,
4094 						  next);
4095 		if (up_req)
4096 			list_del(&up_req->next);
4097 		mutex_unlock(&mgr->up_req_lock);
4098 
4099 		if (!up_req)
4100 			break;
4101 
4102 		send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req);
4103 		kfree(up_req);
4104 	}
4105 	mutex_unlock(&mgr->probe_lock);
4106 
4107 	if (send_hotplug)
4108 		drm_kms_helper_hotplug_event(mgr->dev);
4109 }
4110 
4111 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr)
4112 {
4113 	struct drm_dp_pending_up_req *up_req;
4114 
4115 	if (!drm_dp_get_one_sb_msg(mgr, true, NULL))
4116 		goto out;
4117 
4118 	if (!mgr->up_req_recv.have_eomt)
4119 		return 0;
4120 
4121 	up_req = kzalloc(sizeof(*up_req), GFP_KERNEL);
4122 	if (!up_req)
4123 		return -ENOMEM;
4124 
4125 	INIT_LIST_HEAD(&up_req->next);
4126 
4127 	drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg);
4128 
4129 	if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY &&
4130 	    up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) {
4131 		drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n",
4132 			    up_req->msg.req_type);
4133 		kfree(up_req);
4134 		goto out;
4135 	}
4136 
4137 	drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type,
4138 				 false);
4139 
4140 	if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) {
4141 		const struct drm_dp_connection_status_notify *conn_stat =
4142 			&up_req->msg.u.conn_stat;
4143 
4144 		drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n",
4145 			    conn_stat->port_number,
4146 			    conn_stat->legacy_device_plug_status,
4147 			    conn_stat->displayport_device_plug_status,
4148 			    conn_stat->message_capability_status,
4149 			    conn_stat->input_port,
4150 			    conn_stat->peer_device_type);
4151 	} else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) {
4152 		const struct drm_dp_resource_status_notify *res_stat =
4153 			&up_req->msg.u.resource_stat;
4154 
4155 		drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n",
4156 			    res_stat->port_number,
4157 			    res_stat->available_pbn);
4158 	}
4159 
4160 	up_req->hdr = mgr->up_req_recv.initial_hdr;
4161 	mutex_lock(&mgr->up_req_lock);
4162 	list_add_tail(&up_req->next, &mgr->up_req_list);
4163 	mutex_unlock(&mgr->up_req_lock);
4164 	queue_work(system_long_wq, &mgr->up_req_work);
4165 
4166 out:
4167 	memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
4168 	return 0;
4169 }
4170 
4171 /**
4172  * drm_dp_mst_hpd_irq() - MST hotplug IRQ notify
4173  * @mgr: manager to notify irq for.
4174  * @esi: 4 bytes from SINK_COUNT_ESI
4175  * @handled: whether the hpd interrupt was consumed or not
4176  *
4177  * This should be called from the driver when it detects a short IRQ,
4178  * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The
4179  * topology manager will process the sideband messages received as a result
4180  * of this.
4181  */
4182 int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr *mgr, u8 *esi, bool *handled)
4183 {
4184 	int ret = 0;
4185 	int sc;
4186 	*handled = false;
4187 	sc = DP_GET_SINK_COUNT(esi[0]);
4188 
4189 	if (sc != mgr->sink_count) {
4190 		mgr->sink_count = sc;
4191 		*handled = true;
4192 	}
4193 
4194 	if (esi[1] & DP_DOWN_REP_MSG_RDY) {
4195 		ret = drm_dp_mst_handle_down_rep(mgr);
4196 		*handled = true;
4197 	}
4198 
4199 	if (esi[1] & DP_UP_REQ_MSG_RDY) {
4200 		ret |= drm_dp_mst_handle_up_req(mgr);
4201 		*handled = true;
4202 	}
4203 
4204 	drm_dp_mst_kick_tx(mgr);
4205 	return ret;
4206 }
4207 EXPORT_SYMBOL(drm_dp_mst_hpd_irq);
4208 
4209 /**
4210  * drm_dp_mst_detect_port() - get connection status for an MST port
4211  * @connector: DRM connector for this port
4212  * @ctx: The acquisition context to use for grabbing locks
4213  * @mgr: manager for this port
4214  * @port: pointer to a port
4215  *
4216  * This returns the current connection state for a port.
4217  */
4218 int
4219 drm_dp_mst_detect_port(struct drm_connector *connector,
4220 		       struct drm_modeset_acquire_ctx *ctx,
4221 		       struct drm_dp_mst_topology_mgr *mgr,
4222 		       struct drm_dp_mst_port *port)
4223 {
4224 	int ret;
4225 
4226 	/* we need to search for the port in the mgr in case it's gone */
4227 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
4228 	if (!port)
4229 		return connector_status_disconnected;
4230 
4231 	ret = drm_modeset_lock(&mgr->base.lock, ctx);
4232 	if (ret)
4233 		goto out;
4234 
4235 	ret = connector_status_disconnected;
4236 
4237 	if (!port->ddps)
4238 		goto out;
4239 
4240 	switch (port->pdt) {
4241 	case DP_PEER_DEVICE_NONE:
4242 		break;
4243 	case DP_PEER_DEVICE_MST_BRANCHING:
4244 		if (!port->mcs)
4245 			ret = connector_status_connected;
4246 		break;
4247 
4248 	case DP_PEER_DEVICE_SST_SINK:
4249 		ret = connector_status_connected;
4250 		/* for logical ports - cache the EDID */
4251 		if (port->port_num >= DP_MST_LOGICAL_PORT_0 && !port->cached_edid)
4252 			port->cached_edid = drm_get_edid(connector, &port->aux.ddc);
4253 		break;
4254 	case DP_PEER_DEVICE_DP_LEGACY_CONV:
4255 		if (port->ldps)
4256 			ret = connector_status_connected;
4257 		break;
4258 	}
4259 out:
4260 	drm_dp_mst_topology_put_port(port);
4261 	return ret;
4262 }
4263 EXPORT_SYMBOL(drm_dp_mst_detect_port);
4264 
4265 /**
4266  * drm_dp_mst_get_edid() - get EDID for an MST port
4267  * @connector: toplevel connector to get EDID for
4268  * @mgr: manager for this port
4269  * @port: unverified pointer to a port.
4270  *
4271  * This returns an EDID for the port connected to a connector,
4272  * It validates the pointer still exists so the caller doesn't require a
4273  * reference.
4274  */
4275 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4276 {
4277 	struct edid *edid = NULL;
4278 
4279 	/* we need to search for the port in the mgr in case it's gone */
4280 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
4281 	if (!port)
4282 		return NULL;
4283 
4284 	if (port->cached_edid)
4285 		edid = drm_edid_duplicate(port->cached_edid);
4286 	else {
4287 		edid = drm_get_edid(connector, &port->aux.ddc);
4288 	}
4289 	port->has_audio = drm_detect_monitor_audio(edid);
4290 	drm_dp_mst_topology_put_port(port);
4291 	return edid;
4292 }
4293 EXPORT_SYMBOL(drm_dp_mst_get_edid);
4294 
4295 /**
4296  * drm_dp_find_vcpi_slots() - Find VCPI slots for this PBN value
4297  * @mgr: manager to use
4298  * @pbn: payload bandwidth to convert into slots.
4299  *
4300  * Calculate the number of VCPI slots that will be required for the given PBN
4301  * value. This function is deprecated, and should not be used in atomic
4302  * drivers.
4303  *
4304  * RETURNS:
4305  * The total slots required for this port, or error.
4306  */
4307 int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr,
4308 			   int pbn)
4309 {
4310 	int num_slots;
4311 
4312 	num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div);
4313 
4314 	/* max. time slots - one slot for MTP header */
4315 	if (num_slots > 63)
4316 		return -ENOSPC;
4317 	return num_slots;
4318 }
4319 EXPORT_SYMBOL(drm_dp_find_vcpi_slots);
4320 
4321 static int drm_dp_init_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4322 			    struct drm_dp_vcpi *vcpi, int pbn, int slots)
4323 {
4324 	int ret;
4325 
4326 	vcpi->pbn = pbn;
4327 	vcpi->aligned_pbn = slots * mgr->pbn_div;
4328 	vcpi->num_slots = slots;
4329 
4330 	ret = drm_dp_mst_assign_payload_id(mgr, vcpi);
4331 	if (ret < 0)
4332 		return ret;
4333 	return 0;
4334 }
4335 
4336 /**
4337  * drm_dp_atomic_find_vcpi_slots() - Find and add VCPI slots to the state
4338  * @state: global atomic state
4339  * @mgr: MST topology manager for the port
4340  * @port: port to find vcpi slots for
4341  * @pbn: bandwidth required for the mode in PBN
4342  * @pbn_div: divider for DSC mode that takes FEC into account
4343  *
4344  * Allocates VCPI slots to @port, replacing any previous VCPI allocations it
4345  * may have had. Any atomic drivers which support MST must call this function
4346  * in their &drm_encoder_helper_funcs.atomic_check() callback to change the
4347  * current VCPI allocation for the new state, but only when
4348  * &drm_crtc_state.mode_changed or &drm_crtc_state.connectors_changed is set
4349  * to ensure compatibility with userspace applications that still use the
4350  * legacy modesetting UAPI.
4351  *
4352  * Allocations set by this function are not checked against the bandwidth
4353  * restraints of @mgr until the driver calls drm_dp_mst_atomic_check().
4354  *
4355  * Additionally, it is OK to call this function multiple times on the same
4356  * @port as needed. It is not OK however, to call this function and
4357  * drm_dp_atomic_release_vcpi_slots() in the same atomic check phase.
4358  *
4359  * See also:
4360  * drm_dp_atomic_release_vcpi_slots()
4361  * drm_dp_mst_atomic_check()
4362  *
4363  * Returns:
4364  * Total slots in the atomic state assigned for this port, or a negative error
4365  * code if the port no longer exists
4366  */
4367 int drm_dp_atomic_find_vcpi_slots(struct drm_atomic_state *state,
4368 				  struct drm_dp_mst_topology_mgr *mgr,
4369 				  struct drm_dp_mst_port *port, int pbn,
4370 				  int pbn_div)
4371 {
4372 	struct drm_dp_mst_topology_state *topology_state;
4373 	struct drm_dp_vcpi_allocation *pos, *vcpi = NULL;
4374 	int prev_slots, prev_bw, req_slots;
4375 
4376 	topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4377 	if (IS_ERR(topology_state))
4378 		return PTR_ERR(topology_state);
4379 
4380 	/* Find the current allocation for this port, if any */
4381 	list_for_each_entry(pos, &topology_state->vcpis, next) {
4382 		if (pos->port == port) {
4383 			vcpi = pos;
4384 			prev_slots = vcpi->vcpi;
4385 			prev_bw = vcpi->pbn;
4386 
4387 			/*
4388 			 * This should never happen, unless the driver tries
4389 			 * releasing and allocating the same VCPI allocation,
4390 			 * which is an error
4391 			 */
4392 			if (WARN_ON(!prev_slots)) {
4393 				drm_err(mgr->dev,
4394 					"cannot allocate and release VCPI on [MST PORT:%p] in the same state\n",
4395 					port);
4396 				return -EINVAL;
4397 			}
4398 
4399 			break;
4400 		}
4401 	}
4402 	if (!vcpi) {
4403 		prev_slots = 0;
4404 		prev_bw = 0;
4405 	}
4406 
4407 	if (pbn_div <= 0)
4408 		pbn_div = mgr->pbn_div;
4409 
4410 	req_slots = DIV_ROUND_UP(pbn, pbn_div);
4411 
4412 	drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] VCPI %d -> %d\n",
4413 		       port->connector->base.id, port->connector->name,
4414 		       port, prev_slots, req_slots);
4415 	drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n",
4416 		       port->connector->base.id, port->connector->name,
4417 		       port, prev_bw, pbn);
4418 
4419 	/* Add the new allocation to the state */
4420 	if (!vcpi) {
4421 		vcpi = kzalloc(sizeof(*vcpi), GFP_KERNEL);
4422 		if (!vcpi)
4423 			return -ENOMEM;
4424 
4425 		drm_dp_mst_get_port_malloc(port);
4426 		vcpi->port = port;
4427 		list_add(&vcpi->next, &topology_state->vcpis);
4428 	}
4429 	vcpi->vcpi = req_slots;
4430 	vcpi->pbn = pbn;
4431 
4432 	return req_slots;
4433 }
4434 EXPORT_SYMBOL(drm_dp_atomic_find_vcpi_slots);
4435 
4436 /**
4437  * drm_dp_atomic_release_vcpi_slots() - Release allocated vcpi slots
4438  * @state: global atomic state
4439  * @mgr: MST topology manager for the port
4440  * @port: The port to release the VCPI slots from
4441  *
4442  * Releases any VCPI slots that have been allocated to a port in the atomic
4443  * state. Any atomic drivers which support MST must call this function in
4444  * their &drm_connector_helper_funcs.atomic_check() callback when the
4445  * connector will no longer have VCPI allocated (e.g. because its CRTC was
4446  * removed) when it had VCPI allocated in the previous atomic state.
4447  *
4448  * It is OK to call this even if @port has been removed from the system.
4449  * Additionally, it is OK to call this function multiple times on the same
4450  * @port as needed. It is not OK however, to call this function and
4451  * drm_dp_atomic_find_vcpi_slots() on the same @port in a single atomic check
4452  * phase.
4453  *
4454  * See also:
4455  * drm_dp_atomic_find_vcpi_slots()
4456  * drm_dp_mst_atomic_check()
4457  *
4458  * Returns:
4459  * 0 if all slots for this port were added back to
4460  * &drm_dp_mst_topology_state.avail_slots or negative error code
4461  */
4462 int drm_dp_atomic_release_vcpi_slots(struct drm_atomic_state *state,
4463 				     struct drm_dp_mst_topology_mgr *mgr,
4464 				     struct drm_dp_mst_port *port)
4465 {
4466 	struct drm_dp_mst_topology_state *topology_state;
4467 	struct drm_dp_vcpi_allocation *pos;
4468 	bool found = false;
4469 
4470 	topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4471 	if (IS_ERR(topology_state))
4472 		return PTR_ERR(topology_state);
4473 
4474 	list_for_each_entry(pos, &topology_state->vcpis, next) {
4475 		if (pos->port == port) {
4476 			found = true;
4477 			break;
4478 		}
4479 	}
4480 	if (WARN_ON(!found)) {
4481 		drm_err(mgr->dev, "no VCPI for [MST PORT:%p] found in mst state %p\n",
4482 			port, &topology_state->base);
4483 		return -EINVAL;
4484 	}
4485 
4486 	drm_dbg_atomic(mgr->dev, "[MST PORT:%p] VCPI %d -> 0\n", port, pos->vcpi);
4487 	if (pos->vcpi) {
4488 		drm_dp_mst_put_port_malloc(port);
4489 		pos->vcpi = 0;
4490 		pos->pbn = 0;
4491 	}
4492 
4493 	return 0;
4494 }
4495 EXPORT_SYMBOL(drm_dp_atomic_release_vcpi_slots);
4496 
4497 /**
4498  * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format
4499  * @mst_state: mst_state to update
4500  * @link_encoding_cap: the ecoding format on the link
4501  */
4502 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap)
4503 {
4504 	if (link_encoding_cap == DP_CAP_ANSI_128B132B) {
4505 		mst_state->total_avail_slots = 64;
4506 		mst_state->start_slot = 0;
4507 	} else {
4508 		mst_state->total_avail_slots = 63;
4509 		mst_state->start_slot = 1;
4510 	}
4511 
4512 	DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n",
4513 		      (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b",
4514 		      mst_state);
4515 }
4516 EXPORT_SYMBOL(drm_dp_mst_update_slots);
4517 
4518 /**
4519  * drm_dp_mst_allocate_vcpi() - Allocate a virtual channel
4520  * @mgr: manager for this port
4521  * @port: port to allocate a virtual channel for.
4522  * @pbn: payload bandwidth number to request
4523  * @slots: returned number of slots for this PBN.
4524  */
4525 bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4526 			      struct drm_dp_mst_port *port, int pbn, int slots)
4527 {
4528 	int ret;
4529 
4530 	if (slots < 0)
4531 		return false;
4532 
4533 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
4534 	if (!port)
4535 		return false;
4536 
4537 	if (port->vcpi.vcpi > 0) {
4538 		drm_dbg_kms(mgr->dev,
4539 			    "payload: vcpi %d already allocated for pbn %d - requested pbn %d\n",
4540 			    port->vcpi.vcpi, port->vcpi.pbn, pbn);
4541 		if (pbn == port->vcpi.pbn) {
4542 			drm_dp_mst_topology_put_port(port);
4543 			return true;
4544 		}
4545 	}
4546 
4547 	ret = drm_dp_init_vcpi(mgr, &port->vcpi, pbn, slots);
4548 	if (ret) {
4549 		drm_dbg_kms(mgr->dev, "failed to init vcpi slots=%d ret=%d\n",
4550 			    DIV_ROUND_UP(pbn, mgr->pbn_div), ret);
4551 		drm_dp_mst_topology_put_port(port);
4552 		goto out;
4553 	}
4554 	drm_dbg_kms(mgr->dev, "initing vcpi for pbn=%d slots=%d\n", pbn, port->vcpi.num_slots);
4555 
4556 	/* Keep port allocated until its payload has been removed */
4557 	drm_dp_mst_get_port_malloc(port);
4558 	drm_dp_mst_topology_put_port(port);
4559 	return true;
4560 out:
4561 	return false;
4562 }
4563 EXPORT_SYMBOL(drm_dp_mst_allocate_vcpi);
4564 
4565 int drm_dp_mst_get_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4566 {
4567 	int slots = 0;
4568 
4569 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
4570 	if (!port)
4571 		return slots;
4572 
4573 	slots = port->vcpi.num_slots;
4574 	drm_dp_mst_topology_put_port(port);
4575 	return slots;
4576 }
4577 EXPORT_SYMBOL(drm_dp_mst_get_vcpi_slots);
4578 
4579 /**
4580  * drm_dp_mst_reset_vcpi_slots() - Reset number of slots to 0 for VCPI
4581  * @mgr: manager for this port
4582  * @port: unverified pointer to a port.
4583  *
4584  * This just resets the number of slots for the ports VCPI for later programming.
4585  */
4586 void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4587 {
4588 	/*
4589 	 * A port with VCPI will remain allocated until its VCPI is
4590 	 * released, no verified ref needed
4591 	 */
4592 
4593 	port->vcpi.num_slots = 0;
4594 }
4595 EXPORT_SYMBOL(drm_dp_mst_reset_vcpi_slots);
4596 
4597 /**
4598  * drm_dp_mst_deallocate_vcpi() - deallocate a VCPI
4599  * @mgr: manager for this port
4600  * @port: port to deallocate vcpi for
4601  *
4602  * This can be called unconditionally, regardless of whether
4603  * drm_dp_mst_allocate_vcpi() succeeded or not.
4604  */
4605 void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4606 				struct drm_dp_mst_port *port)
4607 {
4608 	bool skip;
4609 
4610 	if (!port->vcpi.vcpi)
4611 		return;
4612 
4613 	mutex_lock(&mgr->lock);
4614 	skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary);
4615 	mutex_unlock(&mgr->lock);
4616 
4617 	if (skip)
4618 		return;
4619 
4620 	drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi);
4621 	port->vcpi.num_slots = 0;
4622 	port->vcpi.pbn = 0;
4623 	port->vcpi.aligned_pbn = 0;
4624 	port->vcpi.vcpi = 0;
4625 	drm_dp_mst_put_port_malloc(port);
4626 }
4627 EXPORT_SYMBOL(drm_dp_mst_deallocate_vcpi);
4628 
4629 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
4630 				     int id, struct drm_dp_payload *payload)
4631 {
4632 	u8 payload_alloc[3], status;
4633 	int ret;
4634 	int retries = 0;
4635 
4636 	drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
4637 			   DP_PAYLOAD_TABLE_UPDATED);
4638 
4639 	payload_alloc[0] = id;
4640 	payload_alloc[1] = payload->start_slot;
4641 	payload_alloc[2] = payload->num_slots;
4642 
4643 	ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
4644 	if (ret != 3) {
4645 		drm_dbg_kms(mgr->dev, "failed to write payload allocation %d\n", ret);
4646 		goto fail;
4647 	}
4648 
4649 retry:
4650 	ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4651 	if (ret < 0) {
4652 		drm_dbg_kms(mgr->dev, "failed to read payload table status %d\n", ret);
4653 		goto fail;
4654 	}
4655 
4656 	if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
4657 		retries++;
4658 		if (retries < 20) {
4659 			usleep_range(10000, 20000);
4660 			goto retry;
4661 		}
4662 		drm_dbg_kms(mgr->dev, "status not set after read payload table status %d\n",
4663 			    status);
4664 		ret = -EINVAL;
4665 		goto fail;
4666 	}
4667 	ret = 0;
4668 fail:
4669 	return ret;
4670 }
4671 
4672 static int do_get_act_status(struct drm_dp_aux *aux)
4673 {
4674 	int ret;
4675 	u8 status;
4676 
4677 	ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4678 	if (ret < 0)
4679 		return ret;
4680 
4681 	return status;
4682 }
4683 
4684 /**
4685  * drm_dp_check_act_status() - Polls for ACT handled status.
4686  * @mgr: manager to use
4687  *
4688  * Tries waiting for the MST hub to finish updating it's payload table by
4689  * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really
4690  * take that long).
4691  *
4692  * Returns:
4693  * 0 if the ACT was handled in time, negative error code on failure.
4694  */
4695 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr)
4696 {
4697 	/*
4698 	 * There doesn't seem to be any recommended retry count or timeout in
4699 	 * the MST specification. Since some hubs have been observed to take
4700 	 * over 1 second to update their payload allocations under certain
4701 	 * conditions, we use a rather large timeout value.
4702 	 */
4703 	const int timeout_ms = 3000;
4704 	int ret, status;
4705 
4706 	ret = readx_poll_timeout(do_get_act_status, mgr->aux, status,
4707 				 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
4708 				 200, timeout_ms * USEC_PER_MSEC);
4709 	if (ret < 0 && status >= 0) {
4710 		drm_err(mgr->dev, "Failed to get ACT after %dms, last status: %02x\n",
4711 			timeout_ms, status);
4712 		return -EINVAL;
4713 	} else if (status < 0) {
4714 		/*
4715 		 * Failure here isn't unexpected - the hub may have
4716 		 * just been unplugged
4717 		 */
4718 		drm_dbg_kms(mgr->dev, "Failed to read payload table status: %d\n", status);
4719 		return status;
4720 	}
4721 
4722 	return 0;
4723 }
4724 EXPORT_SYMBOL(drm_dp_check_act_status);
4725 
4726 /**
4727  * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode.
4728  * @clock: dot clock for the mode
4729  * @bpp: bpp for the mode.
4730  * @dsc: DSC mode. If true, bpp has units of 1/16 of a bit per pixel
4731  *
4732  * This uses the formula in the spec to calculate the PBN value for a mode.
4733  */
4734 int drm_dp_calc_pbn_mode(int clock, int bpp, bool dsc)
4735 {
4736 	/*
4737 	 * margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006
4738 	 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on
4739 	 * common multiplier to render an integer PBN for all link rate/lane
4740 	 * counts combinations
4741 	 * calculate
4742 	 * peak_kbps *= (1006/1000)
4743 	 * peak_kbps *= (64/54)
4744 	 * peak_kbps *= 8    convert to bytes
4745 	 *
4746 	 * If the bpp is in units of 1/16, further divide by 16. Put this
4747 	 * factor in the numerator rather than the denominator to avoid
4748 	 * integer overflow
4749 	 */
4750 
4751 	if (dsc)
4752 		return DIV_ROUND_UP_ULL(mul_u32_u32(clock * (bpp / 16), 64 * 1006),
4753 					8 * 54 * 1000 * 1000);
4754 
4755 	return DIV_ROUND_UP_ULL(mul_u32_u32(clock * bpp, 64 * 1006),
4756 				8 * 54 * 1000 * 1000);
4757 }
4758 EXPORT_SYMBOL(drm_dp_calc_pbn_mode);
4759 
4760 /* we want to kick the TX after we've ack the up/down IRQs. */
4761 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr)
4762 {
4763 	queue_work(system_long_wq, &mgr->tx_work);
4764 }
4765 
4766 /*
4767  * Helper function for parsing DP device types into convenient strings
4768  * for use with dp_mst_topology
4769  */
4770 static const char *pdt_to_string(u8 pdt)
4771 {
4772 	switch (pdt) {
4773 	case DP_PEER_DEVICE_NONE:
4774 		return "NONE";
4775 	case DP_PEER_DEVICE_SOURCE_OR_SST:
4776 		return "SOURCE OR SST";
4777 	case DP_PEER_DEVICE_MST_BRANCHING:
4778 		return "MST BRANCHING";
4779 	case DP_PEER_DEVICE_SST_SINK:
4780 		return "SST SINK";
4781 	case DP_PEER_DEVICE_DP_LEGACY_CONV:
4782 		return "DP LEGACY CONV";
4783 	default:
4784 		return "ERR";
4785 	}
4786 }
4787 
4788 static void drm_dp_mst_dump_mstb(struct seq_file *m,
4789 				 struct drm_dp_mst_branch *mstb)
4790 {
4791 	struct drm_dp_mst_port *port;
4792 	int tabs = mstb->lct;
4793 	char prefix[10];
4794 	int i;
4795 
4796 	for (i = 0; i < tabs; i++)
4797 		prefix[i] = '\t';
4798 	prefix[i] = '\0';
4799 
4800 	seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports);
4801 	list_for_each_entry(port, &mstb->ports, next) {
4802 		seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n",
4803 			   prefix,
4804 			   port->port_num,
4805 			   port,
4806 			   port->input ? "input" : "output",
4807 			   pdt_to_string(port->pdt),
4808 			   port->ddps,
4809 			   port->ldps,
4810 			   port->num_sdp_streams,
4811 			   port->num_sdp_stream_sinks,
4812 			   port->fec_capable ? "true" : "false",
4813 			   port->connector);
4814 		if (port->mstb)
4815 			drm_dp_mst_dump_mstb(m, port->mstb);
4816 	}
4817 }
4818 
4819 #define DP_PAYLOAD_TABLE_SIZE		64
4820 
4821 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
4822 				  char *buf)
4823 {
4824 	int i;
4825 
4826 	for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) {
4827 		if (drm_dp_dpcd_read(mgr->aux,
4828 				     DP_PAYLOAD_TABLE_UPDATE_STATUS + i,
4829 				     &buf[i], 16) != 16)
4830 			return false;
4831 	}
4832 	return true;
4833 }
4834 
4835 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr,
4836 			       struct drm_dp_mst_port *port, char *name,
4837 			       int namelen)
4838 {
4839 	struct edid *mst_edid;
4840 
4841 	mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port);
4842 	drm_edid_get_monitor_name(mst_edid, name, namelen);
4843 	kfree(mst_edid);
4844 }
4845 
4846 /**
4847  * drm_dp_mst_dump_topology(): dump topology to seq file.
4848  * @m: seq_file to dump output to
4849  * @mgr: manager to dump current topology for.
4850  *
4851  * helper to dump MST topology to a seq file for debugfs.
4852  */
4853 void drm_dp_mst_dump_topology(struct seq_file *m,
4854 			      struct drm_dp_mst_topology_mgr *mgr)
4855 {
4856 	int i;
4857 	struct drm_dp_mst_port *port;
4858 
4859 	mutex_lock(&mgr->lock);
4860 	if (mgr->mst_primary)
4861 		drm_dp_mst_dump_mstb(m, mgr->mst_primary);
4862 
4863 	/* dump VCPIs */
4864 	mutex_unlock(&mgr->lock);
4865 
4866 	mutex_lock(&mgr->payload_lock);
4867 	seq_printf(m, "\n*** VCPI Info ***\n");
4868 	seq_printf(m, "payload_mask: %lx, vcpi_mask: %lx, max_payloads: %d\n", mgr->payload_mask, mgr->vcpi_mask, mgr->max_payloads);
4869 
4870 	seq_printf(m, "\n|   idx   |  port # |  vcp_id | # slots |     sink name     |\n");
4871 	for (i = 0; i < mgr->max_payloads; i++) {
4872 		if (mgr->proposed_vcpis[i]) {
4873 			char name[14];
4874 
4875 			port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
4876 			fetch_monitor_name(mgr, port, name, sizeof(name));
4877 			seq_printf(m, "%10d%10d%10d%10d%20s\n",
4878 				   i,
4879 				   port->port_num,
4880 				   port->vcpi.vcpi,
4881 				   port->vcpi.num_slots,
4882 				   (*name != 0) ? name : "Unknown");
4883 		} else
4884 			seq_printf(m, "%6d - Unused\n", i);
4885 	}
4886 	seq_printf(m, "\n*** Payload Info ***\n");
4887 	seq_printf(m, "|   idx   |  state  |  start slot  | # slots |\n");
4888 	for (i = 0; i < mgr->max_payloads; i++) {
4889 		seq_printf(m, "%10d%10d%15d%10d\n",
4890 			   i,
4891 			   mgr->payloads[i].payload_state,
4892 			   mgr->payloads[i].start_slot,
4893 			   mgr->payloads[i].num_slots);
4894 	}
4895 	mutex_unlock(&mgr->payload_lock);
4896 
4897 	seq_printf(m, "\n*** DPCD Info ***\n");
4898 	mutex_lock(&mgr->lock);
4899 	if (mgr->mst_primary) {
4900 		u8 buf[DP_PAYLOAD_TABLE_SIZE];
4901 		int ret;
4902 
4903 		if (drm_dp_read_dpcd_caps(mgr->aux, buf) < 0) {
4904 			seq_printf(m, "dpcd read failed\n");
4905 			goto out;
4906 		}
4907 		seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf);
4908 
4909 		ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2);
4910 		if (ret) {
4911 			seq_printf(m, "faux/mst read failed\n");
4912 			goto out;
4913 		}
4914 		seq_printf(m, "faux/mst: %*ph\n", 2, buf);
4915 
4916 		ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1);
4917 		if (ret) {
4918 			seq_printf(m, "mst ctrl read failed\n");
4919 			goto out;
4920 		}
4921 		seq_printf(m, "mst ctrl: %*ph\n", 1, buf);
4922 
4923 		/* dump the standard OUI branch header */
4924 		ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE);
4925 		if (ret) {
4926 			seq_printf(m, "branch oui read failed\n");
4927 			goto out;
4928 		}
4929 		seq_printf(m, "branch oui: %*phN devid: ", 3, buf);
4930 
4931 		for (i = 0x3; i < 0x8 && buf[i]; i++)
4932 			seq_printf(m, "%c", buf[i]);
4933 		seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n",
4934 			   buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]);
4935 		if (dump_dp_payload_table(mgr, buf))
4936 			seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf);
4937 	}
4938 
4939 out:
4940 	mutex_unlock(&mgr->lock);
4941 
4942 }
4943 EXPORT_SYMBOL(drm_dp_mst_dump_topology);
4944 
4945 static void drm_dp_tx_work(struct work_struct *work)
4946 {
4947 	struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work);
4948 
4949 	mutex_lock(&mgr->qlock);
4950 	if (!list_empty(&mgr->tx_msg_downq))
4951 		process_single_down_tx_qlock(mgr);
4952 	mutex_unlock(&mgr->qlock);
4953 }
4954 
4955 static inline void
4956 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port)
4957 {
4958 	drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs);
4959 
4960 	if (port->connector) {
4961 		drm_connector_unregister(port->connector);
4962 		drm_connector_put(port->connector);
4963 	}
4964 
4965 	drm_dp_mst_put_port_malloc(port);
4966 }
4967 
4968 static inline void
4969 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb)
4970 {
4971 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
4972 	struct drm_dp_mst_port *port, *port_tmp;
4973 	struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp;
4974 	bool wake_tx = false;
4975 
4976 	mutex_lock(&mgr->lock);
4977 	list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) {
4978 		list_del(&port->next);
4979 		drm_dp_mst_topology_put_port(port);
4980 	}
4981 	mutex_unlock(&mgr->lock);
4982 
4983 	/* drop any tx slot msg */
4984 	mutex_lock(&mstb->mgr->qlock);
4985 	list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) {
4986 		if (txmsg->dst != mstb)
4987 			continue;
4988 
4989 		txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
4990 		list_del(&txmsg->next);
4991 		wake_tx = true;
4992 	}
4993 	mutex_unlock(&mstb->mgr->qlock);
4994 
4995 	if (wake_tx)
4996 		wake_up_all(&mstb->mgr->tx_waitq);
4997 
4998 	drm_dp_mst_put_mstb_malloc(mstb);
4999 }
5000 
5001 static void drm_dp_delayed_destroy_work(struct work_struct *work)
5002 {
5003 	struct drm_dp_mst_topology_mgr *mgr =
5004 		container_of(work, struct drm_dp_mst_topology_mgr,
5005 			     delayed_destroy_work);
5006 	bool send_hotplug = false, go_again;
5007 
5008 	/*
5009 	 * Not a regular list traverse as we have to drop the destroy
5010 	 * connector lock before destroying the mstb/port, to avoid AB->BA
5011 	 * ordering between this lock and the config mutex.
5012 	 */
5013 	do {
5014 		go_again = false;
5015 
5016 		for (;;) {
5017 			struct drm_dp_mst_branch *mstb;
5018 
5019 			mutex_lock(&mgr->delayed_destroy_lock);
5020 			mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list,
5021 							struct drm_dp_mst_branch,
5022 							destroy_next);
5023 			if (mstb)
5024 				list_del(&mstb->destroy_next);
5025 			mutex_unlock(&mgr->delayed_destroy_lock);
5026 
5027 			if (!mstb)
5028 				break;
5029 
5030 			drm_dp_delayed_destroy_mstb(mstb);
5031 			go_again = true;
5032 		}
5033 
5034 		for (;;) {
5035 			struct drm_dp_mst_port *port;
5036 
5037 			mutex_lock(&mgr->delayed_destroy_lock);
5038 			port = list_first_entry_or_null(&mgr->destroy_port_list,
5039 							struct drm_dp_mst_port,
5040 							next);
5041 			if (port)
5042 				list_del(&port->next);
5043 			mutex_unlock(&mgr->delayed_destroy_lock);
5044 
5045 			if (!port)
5046 				break;
5047 
5048 			drm_dp_delayed_destroy_port(port);
5049 			send_hotplug = true;
5050 			go_again = true;
5051 		}
5052 	} while (go_again);
5053 
5054 	if (send_hotplug)
5055 		drm_kms_helper_hotplug_event(mgr->dev);
5056 }
5057 
5058 static struct drm_private_state *
5059 drm_dp_mst_duplicate_state(struct drm_private_obj *obj)
5060 {
5061 	struct drm_dp_mst_topology_state *state, *old_state =
5062 		to_dp_mst_topology_state(obj->state);
5063 	struct drm_dp_vcpi_allocation *pos, *vcpi;
5064 
5065 	state = kmemdup(old_state, sizeof(*state), GFP_KERNEL);
5066 	if (!state)
5067 		return NULL;
5068 
5069 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
5070 
5071 	INIT_LIST_HEAD(&state->vcpis);
5072 
5073 	list_for_each_entry(pos, &old_state->vcpis, next) {
5074 		/* Prune leftover freed VCPI allocations */
5075 		if (!pos->vcpi)
5076 			continue;
5077 
5078 		vcpi = kmemdup(pos, sizeof(*vcpi), GFP_KERNEL);
5079 		if (!vcpi)
5080 			goto fail;
5081 
5082 		drm_dp_mst_get_port_malloc(vcpi->port);
5083 		list_add(&vcpi->next, &state->vcpis);
5084 	}
5085 
5086 	return &state->base;
5087 
5088 fail:
5089 	list_for_each_entry_safe(pos, vcpi, &state->vcpis, next) {
5090 		drm_dp_mst_put_port_malloc(pos->port);
5091 		kfree(pos);
5092 	}
5093 	kfree(state);
5094 
5095 	return NULL;
5096 }
5097 
5098 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj,
5099 				     struct drm_private_state *state)
5100 {
5101 	struct drm_dp_mst_topology_state *mst_state =
5102 		to_dp_mst_topology_state(state);
5103 	struct drm_dp_vcpi_allocation *pos, *tmp;
5104 
5105 	list_for_each_entry_safe(pos, tmp, &mst_state->vcpis, next) {
5106 		/* We only keep references to ports with non-zero VCPIs */
5107 		if (pos->vcpi)
5108 			drm_dp_mst_put_port_malloc(pos->port);
5109 		kfree(pos);
5110 	}
5111 
5112 	kfree(mst_state);
5113 }
5114 
5115 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
5116 						 struct drm_dp_mst_branch *branch)
5117 {
5118 	while (port->parent) {
5119 		if (port->parent == branch)
5120 			return true;
5121 
5122 		if (port->parent->port_parent)
5123 			port = port->parent->port_parent;
5124 		else
5125 			break;
5126 	}
5127 	return false;
5128 }
5129 
5130 static int
5131 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port,
5132 				      struct drm_dp_mst_topology_state *state);
5133 
5134 static int
5135 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb,
5136 				      struct drm_dp_mst_topology_state *state)
5137 {
5138 	struct drm_dp_vcpi_allocation *vcpi;
5139 	struct drm_dp_mst_port *port;
5140 	int pbn_used = 0, ret;
5141 	bool found = false;
5142 
5143 	/* Check that we have at least one port in our state that's downstream
5144 	 * of this branch, otherwise we can skip this branch
5145 	 */
5146 	list_for_each_entry(vcpi, &state->vcpis, next) {
5147 		if (!vcpi->pbn ||
5148 		    !drm_dp_mst_port_downstream_of_branch(vcpi->port, mstb))
5149 			continue;
5150 
5151 		found = true;
5152 		break;
5153 	}
5154 	if (!found)
5155 		return 0;
5156 
5157 	if (mstb->port_parent)
5158 		drm_dbg_atomic(mstb->mgr->dev,
5159 			       "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n",
5160 			       mstb->port_parent->parent, mstb->port_parent, mstb);
5161 	else
5162 		drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb);
5163 
5164 	list_for_each_entry(port, &mstb->ports, next) {
5165 		ret = drm_dp_mst_atomic_check_port_bw_limit(port, state);
5166 		if (ret < 0)
5167 			return ret;
5168 
5169 		pbn_used += ret;
5170 	}
5171 
5172 	return pbn_used;
5173 }
5174 
5175 static int
5176 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port,
5177 				      struct drm_dp_mst_topology_state *state)
5178 {
5179 	struct drm_dp_vcpi_allocation *vcpi;
5180 	int pbn_used = 0;
5181 
5182 	if (port->pdt == DP_PEER_DEVICE_NONE)
5183 		return 0;
5184 
5185 	if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
5186 		bool found = false;
5187 
5188 		list_for_each_entry(vcpi, &state->vcpis, next) {
5189 			if (vcpi->port != port)
5190 				continue;
5191 			if (!vcpi->pbn)
5192 				return 0;
5193 
5194 			found = true;
5195 			break;
5196 		}
5197 		if (!found)
5198 			return 0;
5199 
5200 		/*
5201 		 * This could happen if the sink deasserted its HPD line, but
5202 		 * the branch device still reports it as attached (PDT != NONE).
5203 		 */
5204 		if (!port->full_pbn) {
5205 			drm_dbg_atomic(port->mgr->dev,
5206 				       "[MSTB:%p] [MST PORT:%p] no BW available for the port\n",
5207 				       port->parent, port);
5208 			return -EINVAL;
5209 		}
5210 
5211 		pbn_used = vcpi->pbn;
5212 	} else {
5213 		pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb,
5214 								 state);
5215 		if (pbn_used <= 0)
5216 			return pbn_used;
5217 	}
5218 
5219 	if (pbn_used > port->full_pbn) {
5220 		drm_dbg_atomic(port->mgr->dev,
5221 			       "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n",
5222 			       port->parent, port, pbn_used, port->full_pbn);
5223 		return -ENOSPC;
5224 	}
5225 
5226 	drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n",
5227 		       port->parent, port, pbn_used, port->full_pbn);
5228 
5229 	return pbn_used;
5230 }
5231 
5232 static inline int
5233 drm_dp_mst_atomic_check_vcpi_alloc_limit(struct drm_dp_mst_topology_mgr *mgr,
5234 					 struct drm_dp_mst_topology_state *mst_state)
5235 {
5236 	struct drm_dp_vcpi_allocation *vcpi;
5237 	int avail_slots = mst_state->total_avail_slots, payload_count = 0;
5238 
5239 	list_for_each_entry(vcpi, &mst_state->vcpis, next) {
5240 		/* Releasing VCPI is always OK-even if the port is gone */
5241 		if (!vcpi->vcpi) {
5242 			drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all VCPI slots\n",
5243 				       vcpi->port);
5244 			continue;
5245 		}
5246 
5247 		drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d vcpi slots\n",
5248 			       vcpi->port, vcpi->vcpi);
5249 
5250 		avail_slots -= vcpi->vcpi;
5251 		if (avail_slots < 0) {
5252 			drm_dbg_atomic(mgr->dev,
5253 				       "[MST PORT:%p] not enough VCPI slots in mst state %p (avail=%d)\n",
5254 				       vcpi->port, mst_state, avail_slots + vcpi->vcpi);
5255 			return -ENOSPC;
5256 		}
5257 
5258 		if (++payload_count > mgr->max_payloads) {
5259 			drm_dbg_atomic(mgr->dev,
5260 				       "[MST MGR:%p] state %p has too many payloads (max=%d)\n",
5261 				       mgr, mst_state, mgr->max_payloads);
5262 			return -EINVAL;
5263 		}
5264 	}
5265 	drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p VCPI avail=%d used=%d\n",
5266 		       mgr, mst_state, avail_slots, mst_state->total_avail_slots - avail_slots);
5267 
5268 	return 0;
5269 }
5270 
5271 /**
5272  * drm_dp_mst_add_affected_dsc_crtcs
5273  * @state: Pointer to the new struct drm_dp_mst_topology_state
5274  * @mgr: MST topology manager
5275  *
5276  * Whenever there is a change in mst topology
5277  * DSC configuration would have to be recalculated
5278  * therefore we need to trigger modeset on all affected
5279  * CRTCs in that topology
5280  *
5281  * See also:
5282  * drm_dp_mst_atomic_enable_dsc()
5283  */
5284 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr)
5285 {
5286 	struct drm_dp_mst_topology_state *mst_state;
5287 	struct drm_dp_vcpi_allocation *pos;
5288 	struct drm_connector *connector;
5289 	struct drm_connector_state *conn_state;
5290 	struct drm_crtc *crtc;
5291 	struct drm_crtc_state *crtc_state;
5292 
5293 	mst_state = drm_atomic_get_mst_topology_state(state, mgr);
5294 
5295 	if (IS_ERR(mst_state))
5296 		return -EINVAL;
5297 
5298 	list_for_each_entry(pos, &mst_state->vcpis, next) {
5299 
5300 		connector = pos->port->connector;
5301 
5302 		if (!connector)
5303 			return -EINVAL;
5304 
5305 		conn_state = drm_atomic_get_connector_state(state, connector);
5306 
5307 		if (IS_ERR(conn_state))
5308 			return PTR_ERR(conn_state);
5309 
5310 		crtc = conn_state->crtc;
5311 
5312 		if (!crtc)
5313 			continue;
5314 
5315 		if (!drm_dp_mst_dsc_aux_for_port(pos->port))
5316 			continue;
5317 
5318 		crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc);
5319 
5320 		if (IS_ERR(crtc_state))
5321 			return PTR_ERR(crtc_state);
5322 
5323 		drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n",
5324 			       mgr, crtc);
5325 
5326 		crtc_state->mode_changed = true;
5327 	}
5328 	return 0;
5329 }
5330 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs);
5331 
5332 /**
5333  * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off
5334  * @state: Pointer to the new drm_atomic_state
5335  * @port: Pointer to the affected MST Port
5336  * @pbn: Newly recalculated bw required for link with DSC enabled
5337  * @pbn_div: Divider to calculate correct number of pbn per slot
5338  * @enable: Boolean flag to enable or disable DSC on the port
5339  *
5340  * This function enables DSC on the given Port
5341  * by recalculating its vcpi from pbn provided
5342  * and sets dsc_enable flag to keep track of which
5343  * ports have DSC enabled
5344  *
5345  */
5346 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state,
5347 				 struct drm_dp_mst_port *port,
5348 				 int pbn, int pbn_div,
5349 				 bool enable)
5350 {
5351 	struct drm_dp_mst_topology_state *mst_state;
5352 	struct drm_dp_vcpi_allocation *pos;
5353 	bool found = false;
5354 	int vcpi = 0;
5355 
5356 	mst_state = drm_atomic_get_mst_topology_state(state, port->mgr);
5357 
5358 	if (IS_ERR(mst_state))
5359 		return PTR_ERR(mst_state);
5360 
5361 	list_for_each_entry(pos, &mst_state->vcpis, next) {
5362 		if (pos->port == port) {
5363 			found = true;
5364 			break;
5365 		}
5366 	}
5367 
5368 	if (!found) {
5369 		drm_dbg_atomic(state->dev,
5370 			       "[MST PORT:%p] Couldn't find VCPI allocation in mst state %p\n",
5371 			       port, mst_state);
5372 		return -EINVAL;
5373 	}
5374 
5375 	if (pos->dsc_enabled == enable) {
5376 		drm_dbg_atomic(state->dev,
5377 			       "[MST PORT:%p] DSC flag is already set to %d, returning %d VCPI slots\n",
5378 			       port, enable, pos->vcpi);
5379 		vcpi = pos->vcpi;
5380 	}
5381 
5382 	if (enable) {
5383 		vcpi = drm_dp_atomic_find_vcpi_slots(state, port->mgr, port, pbn, pbn_div);
5384 		drm_dbg_atomic(state->dev,
5385 			       "[MST PORT:%p] Enabling DSC flag, reallocating %d VCPI slots on the port\n",
5386 			       port, vcpi);
5387 		if (vcpi < 0)
5388 			return -EINVAL;
5389 	}
5390 
5391 	pos->dsc_enabled = enable;
5392 
5393 	return vcpi;
5394 }
5395 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc);
5396 /**
5397  * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an
5398  * atomic update is valid
5399  * @state: Pointer to the new &struct drm_dp_mst_topology_state
5400  *
5401  * Checks the given topology state for an atomic update to ensure that it's
5402  * valid. This includes checking whether there's enough bandwidth to support
5403  * the new VCPI allocations in the atomic update.
5404  *
5405  * Any atomic drivers supporting DP MST must make sure to call this after
5406  * checking the rest of their state in their
5407  * &drm_mode_config_funcs.atomic_check() callback.
5408  *
5409  * See also:
5410  * drm_dp_atomic_find_vcpi_slots()
5411  * drm_dp_atomic_release_vcpi_slots()
5412  *
5413  * Returns:
5414  *
5415  * 0 if the new state is valid, negative error code otherwise.
5416  */
5417 int drm_dp_mst_atomic_check(struct drm_atomic_state *state)
5418 {
5419 	struct drm_dp_mst_topology_mgr *mgr;
5420 	struct drm_dp_mst_topology_state *mst_state;
5421 	int i, ret = 0;
5422 
5423 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
5424 		if (!mgr->mst_state)
5425 			continue;
5426 
5427 		ret = drm_dp_mst_atomic_check_vcpi_alloc_limit(mgr, mst_state);
5428 		if (ret)
5429 			break;
5430 
5431 		mutex_lock(&mgr->lock);
5432 		ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary,
5433 							    mst_state);
5434 		mutex_unlock(&mgr->lock);
5435 		if (ret < 0)
5436 			break;
5437 		else
5438 			ret = 0;
5439 	}
5440 
5441 	return ret;
5442 }
5443 EXPORT_SYMBOL(drm_dp_mst_atomic_check);
5444 
5445 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = {
5446 	.atomic_duplicate_state = drm_dp_mst_duplicate_state,
5447 	.atomic_destroy_state = drm_dp_mst_destroy_state,
5448 };
5449 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs);
5450 
5451 /**
5452  * drm_atomic_get_mst_topology_state: get MST topology state
5453  *
5454  * @state: global atomic state
5455  * @mgr: MST topology manager, also the private object in this case
5456  *
5457  * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic
5458  * state vtable so that the private object state returned is that of a MST
5459  * topology object.
5460  *
5461  * RETURNS:
5462  *
5463  * The MST topology state or error pointer.
5464  */
5465 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state,
5466 								    struct drm_dp_mst_topology_mgr *mgr)
5467 {
5468 	return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base));
5469 }
5470 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state);
5471 
5472 /**
5473  * drm_dp_mst_topology_mgr_init - initialise a topology manager
5474  * @mgr: manager struct to initialise
5475  * @dev: device providing this structure - for i2c addition.
5476  * @aux: DP helper aux channel to talk to this device
5477  * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit
5478  * @max_payloads: maximum number of payloads this GPU can source
5479  * @max_lane_count: maximum number of lanes this GPU supports
5480  * @max_link_rate: maximum link rate per lane this GPU supports in kHz
5481  * @conn_base_id: the connector object ID the MST device is connected to.
5482  *
5483  * Return 0 for success, or negative error code on failure
5484  */
5485 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr,
5486 				 struct drm_device *dev, struct drm_dp_aux *aux,
5487 				 int max_dpcd_transaction_bytes, int max_payloads,
5488 				 int max_lane_count, int max_link_rate,
5489 				 int conn_base_id)
5490 {
5491 	struct drm_dp_mst_topology_state *mst_state;
5492 
5493 	mutex_init(&mgr->lock);
5494 	mutex_init(&mgr->qlock);
5495 	mutex_init(&mgr->payload_lock);
5496 	mutex_init(&mgr->delayed_destroy_lock);
5497 	mutex_init(&mgr->up_req_lock);
5498 	mutex_init(&mgr->probe_lock);
5499 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5500 	mutex_init(&mgr->topology_ref_history_lock);
5501 	stack_depot_init();
5502 #endif
5503 	INIT_LIST_HEAD(&mgr->tx_msg_downq);
5504 	INIT_LIST_HEAD(&mgr->destroy_port_list);
5505 	INIT_LIST_HEAD(&mgr->destroy_branch_device_list);
5506 	INIT_LIST_HEAD(&mgr->up_req_list);
5507 
5508 	/*
5509 	 * delayed_destroy_work will be queued on a dedicated WQ, so that any
5510 	 * requeuing will be also flushed when deiniting the topology manager.
5511 	 */
5512 	mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0);
5513 	if (mgr->delayed_destroy_wq == NULL)
5514 		return -ENOMEM;
5515 
5516 	INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work);
5517 	INIT_WORK(&mgr->tx_work, drm_dp_tx_work);
5518 	INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work);
5519 	INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work);
5520 	init_waitqueue_head(&mgr->tx_waitq);
5521 	mgr->dev = dev;
5522 	mgr->aux = aux;
5523 	mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes;
5524 	mgr->max_payloads = max_payloads;
5525 	mgr->max_lane_count = max_lane_count;
5526 	mgr->max_link_rate = max_link_rate;
5527 	mgr->conn_base_id = conn_base_id;
5528 	if (max_payloads + 1 > sizeof(mgr->payload_mask) * 8 ||
5529 	    max_payloads + 1 > sizeof(mgr->vcpi_mask) * 8)
5530 		return -EINVAL;
5531 	mgr->payloads = kcalloc(max_payloads, sizeof(struct drm_dp_payload), GFP_KERNEL);
5532 	if (!mgr->payloads)
5533 		return -ENOMEM;
5534 	mgr->proposed_vcpis = kcalloc(max_payloads, sizeof(struct drm_dp_vcpi *), GFP_KERNEL);
5535 	if (!mgr->proposed_vcpis)
5536 		return -ENOMEM;
5537 	set_bit(0, &mgr->payload_mask);
5538 
5539 	mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL);
5540 	if (mst_state == NULL)
5541 		return -ENOMEM;
5542 
5543 	mst_state->total_avail_slots = 63;
5544 	mst_state->start_slot = 1;
5545 
5546 	mst_state->mgr = mgr;
5547 	INIT_LIST_HEAD(&mst_state->vcpis);
5548 
5549 	drm_atomic_private_obj_init(dev, &mgr->base,
5550 				    &mst_state->base,
5551 				    &drm_dp_mst_topology_state_funcs);
5552 
5553 	return 0;
5554 }
5555 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init);
5556 
5557 /**
5558  * drm_dp_mst_topology_mgr_destroy() - destroy topology manager.
5559  * @mgr: manager to destroy
5560  */
5561 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr)
5562 {
5563 	drm_dp_mst_topology_mgr_set_mst(mgr, false);
5564 	flush_work(&mgr->work);
5565 	/* The following will also drain any requeued work on the WQ. */
5566 	if (mgr->delayed_destroy_wq) {
5567 		destroy_workqueue(mgr->delayed_destroy_wq);
5568 		mgr->delayed_destroy_wq = NULL;
5569 	}
5570 	mutex_lock(&mgr->payload_lock);
5571 	kfree(mgr->payloads);
5572 	mgr->payloads = NULL;
5573 	kfree(mgr->proposed_vcpis);
5574 	mgr->proposed_vcpis = NULL;
5575 	mutex_unlock(&mgr->payload_lock);
5576 	mgr->dev = NULL;
5577 	mgr->aux = NULL;
5578 	drm_atomic_private_obj_fini(&mgr->base);
5579 	mgr->funcs = NULL;
5580 
5581 	mutex_destroy(&mgr->delayed_destroy_lock);
5582 	mutex_destroy(&mgr->payload_lock);
5583 	mutex_destroy(&mgr->qlock);
5584 	mutex_destroy(&mgr->lock);
5585 	mutex_destroy(&mgr->up_req_lock);
5586 	mutex_destroy(&mgr->probe_lock);
5587 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5588 	mutex_destroy(&mgr->topology_ref_history_lock);
5589 #endif
5590 }
5591 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy);
5592 
5593 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num)
5594 {
5595 	int i;
5596 
5597 	if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS)
5598 		return false;
5599 
5600 	for (i = 0; i < num - 1; i++) {
5601 		if (msgs[i].flags & I2C_M_RD ||
5602 		    msgs[i].len > 0xff)
5603 			return false;
5604 	}
5605 
5606 	return msgs[num - 1].flags & I2C_M_RD &&
5607 		msgs[num - 1].len <= 0xff;
5608 }
5609 
5610 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num)
5611 {
5612 	int i;
5613 
5614 	for (i = 0; i < num - 1; i++) {
5615 		if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) ||
5616 		    msgs[i].len > 0xff)
5617 			return false;
5618 	}
5619 
5620 	return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff;
5621 }
5622 
5623 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb,
5624 			       struct drm_dp_mst_port *port,
5625 			       struct i2c_msg *msgs, int num)
5626 {
5627 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5628 	unsigned int i;
5629 	struct drm_dp_sideband_msg_req_body msg;
5630 	struct drm_dp_sideband_msg_tx *txmsg = NULL;
5631 	int ret;
5632 
5633 	memset(&msg, 0, sizeof(msg));
5634 	msg.req_type = DP_REMOTE_I2C_READ;
5635 	msg.u.i2c_read.num_transactions = num - 1;
5636 	msg.u.i2c_read.port_number = port->port_num;
5637 	for (i = 0; i < num - 1; i++) {
5638 		msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr;
5639 		msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len;
5640 		msg.u.i2c_read.transactions[i].bytes = msgs[i].buf;
5641 		msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP);
5642 	}
5643 	msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr;
5644 	msg.u.i2c_read.num_bytes_read = msgs[num - 1].len;
5645 
5646 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5647 	if (!txmsg) {
5648 		ret = -ENOMEM;
5649 		goto out;
5650 	}
5651 
5652 	txmsg->dst = mstb;
5653 	drm_dp_encode_sideband_req(&msg, txmsg);
5654 
5655 	drm_dp_queue_down_tx(mgr, txmsg);
5656 
5657 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5658 	if (ret > 0) {
5659 
5660 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5661 			ret = -EREMOTEIO;
5662 			goto out;
5663 		}
5664 		if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) {
5665 			ret = -EIO;
5666 			goto out;
5667 		}
5668 		memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len);
5669 		ret = num;
5670 	}
5671 out:
5672 	kfree(txmsg);
5673 	return ret;
5674 }
5675 
5676 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb,
5677 				struct drm_dp_mst_port *port,
5678 				struct i2c_msg *msgs, int num)
5679 {
5680 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5681 	unsigned int i;
5682 	struct drm_dp_sideband_msg_req_body msg;
5683 	struct drm_dp_sideband_msg_tx *txmsg = NULL;
5684 	int ret;
5685 
5686 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5687 	if (!txmsg) {
5688 		ret = -ENOMEM;
5689 		goto out;
5690 	}
5691 	for (i = 0; i < num; i++) {
5692 		memset(&msg, 0, sizeof(msg));
5693 		msg.req_type = DP_REMOTE_I2C_WRITE;
5694 		msg.u.i2c_write.port_number = port->port_num;
5695 		msg.u.i2c_write.write_i2c_device_id = msgs[i].addr;
5696 		msg.u.i2c_write.num_bytes = msgs[i].len;
5697 		msg.u.i2c_write.bytes = msgs[i].buf;
5698 
5699 		memset(txmsg, 0, sizeof(*txmsg));
5700 		txmsg->dst = mstb;
5701 
5702 		drm_dp_encode_sideband_req(&msg, txmsg);
5703 		drm_dp_queue_down_tx(mgr, txmsg);
5704 
5705 		ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5706 		if (ret > 0) {
5707 			if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5708 				ret = -EREMOTEIO;
5709 				goto out;
5710 			}
5711 		} else {
5712 			goto out;
5713 		}
5714 	}
5715 	ret = num;
5716 out:
5717 	kfree(txmsg);
5718 	return ret;
5719 }
5720 
5721 /* I2C device */
5722 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter,
5723 			       struct i2c_msg *msgs, int num)
5724 {
5725 	struct drm_dp_aux *aux = adapter->algo_data;
5726 	struct drm_dp_mst_port *port =
5727 		container_of(aux, struct drm_dp_mst_port, aux);
5728 	struct drm_dp_mst_branch *mstb;
5729 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5730 	int ret;
5731 
5732 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
5733 	if (!mstb)
5734 		return -EREMOTEIO;
5735 
5736 	if (remote_i2c_read_ok(msgs, num)) {
5737 		ret = drm_dp_mst_i2c_read(mstb, port, msgs, num);
5738 	} else if (remote_i2c_write_ok(msgs, num)) {
5739 		ret = drm_dp_mst_i2c_write(mstb, port, msgs, num);
5740 	} else {
5741 		drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n");
5742 		ret = -EIO;
5743 	}
5744 
5745 	drm_dp_mst_topology_put_mstb(mstb);
5746 	return ret;
5747 }
5748 
5749 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter)
5750 {
5751 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
5752 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
5753 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
5754 	       I2C_FUNC_10BIT_ADDR;
5755 }
5756 
5757 static const struct i2c_algorithm drm_dp_mst_i2c_algo = {
5758 	.functionality = drm_dp_mst_i2c_functionality,
5759 	.master_xfer = drm_dp_mst_i2c_xfer,
5760 };
5761 
5762 /**
5763  * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX
5764  * @port: The port to add the I2C bus on
5765  *
5766  * Returns 0 on success or a negative error code on failure.
5767  */
5768 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port)
5769 {
5770 	struct drm_dp_aux *aux = &port->aux;
5771 	struct device *parent_dev = port->mgr->dev->dev;
5772 
5773 	aux->ddc.algo = &drm_dp_mst_i2c_algo;
5774 	aux->ddc.algo_data = aux;
5775 	aux->ddc.retries = 3;
5776 
5777 	aux->ddc.class = I2C_CLASS_DDC;
5778 	aux->ddc.owner = THIS_MODULE;
5779 	/* FIXME: set the kdev of the port's connector as parent */
5780 	aux->ddc.dev.parent = parent_dev;
5781 	aux->ddc.dev.of_node = parent_dev->of_node;
5782 
5783 	strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev),
5784 		sizeof(aux->ddc.name));
5785 
5786 	return i2c_add_adapter(&aux->ddc);
5787 }
5788 
5789 /**
5790  * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter
5791  * @port: The port to remove the I2C bus from
5792  */
5793 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port)
5794 {
5795 	i2c_del_adapter(&port->aux.ddc);
5796 }
5797 
5798 /**
5799  * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device
5800  * @port: The port to check
5801  *
5802  * A single physical MST hub object can be represented in the topology
5803  * by multiple branches, with virtual ports between those branches.
5804  *
5805  * As of DP1.4, An MST hub with internal (virtual) ports must expose
5806  * certain DPCD registers over those ports. See sections 2.6.1.1.1
5807  * and 2.6.1.1.2 of Display Port specification v1.4 for details.
5808  *
5809  * May acquire mgr->lock
5810  *
5811  * Returns:
5812  * true if the port is a virtual DP peer device, false otherwise
5813  */
5814 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port)
5815 {
5816 	struct drm_dp_mst_port *downstream_port;
5817 
5818 	if (!port || port->dpcd_rev < DP_DPCD_REV_14)
5819 		return false;
5820 
5821 	/* Virtual DP Sink (Internal Display Panel) */
5822 	if (port->port_num >= 8)
5823 		return true;
5824 
5825 	/* DP-to-HDMI Protocol Converter */
5826 	if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV &&
5827 	    !port->mcs &&
5828 	    port->ldps)
5829 		return true;
5830 
5831 	/* DP-to-DP */
5832 	mutex_lock(&port->mgr->lock);
5833 	if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
5834 	    port->mstb &&
5835 	    port->mstb->num_ports == 2) {
5836 		list_for_each_entry(downstream_port, &port->mstb->ports, next) {
5837 			if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK &&
5838 			    !downstream_port->input) {
5839 				mutex_unlock(&port->mgr->lock);
5840 				return true;
5841 			}
5842 		}
5843 	}
5844 	mutex_unlock(&port->mgr->lock);
5845 
5846 	return false;
5847 }
5848 
5849 /**
5850  * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC
5851  * @port: The port to check. A leaf of the MST tree with an attached display.
5852  *
5853  * Depending on the situation, DSC may be enabled via the endpoint aux,
5854  * the immediately upstream aux, or the connector's physical aux.
5855  *
5856  * This is both the correct aux to read DSC_CAPABILITY and the
5857  * correct aux to write DSC_ENABLED.
5858  *
5859  * This operation can be expensive (up to four aux reads), so
5860  * the caller should cache the return.
5861  *
5862  * Returns:
5863  * NULL if DSC cannot be enabled on this port, otherwise the aux device
5864  */
5865 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port)
5866 {
5867 	struct drm_dp_mst_port *immediate_upstream_port;
5868 	struct drm_dp_mst_port *fec_port;
5869 	struct drm_dp_desc desc = {};
5870 	u8 endpoint_fec;
5871 	u8 endpoint_dsc;
5872 
5873 	if (!port)
5874 		return NULL;
5875 
5876 	if (port->parent->port_parent)
5877 		immediate_upstream_port = port->parent->port_parent;
5878 	else
5879 		immediate_upstream_port = NULL;
5880 
5881 	fec_port = immediate_upstream_port;
5882 	while (fec_port) {
5883 		/*
5884 		 * Each physical link (i.e. not a virtual port) between the
5885 		 * output and the primary device must support FEC
5886 		 */
5887 		if (!drm_dp_mst_is_virtual_dpcd(fec_port) &&
5888 		    !fec_port->fec_capable)
5889 			return NULL;
5890 
5891 		fec_port = fec_port->parent->port_parent;
5892 	}
5893 
5894 	/* DP-to-DP peer device */
5895 	if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) {
5896 		u8 upstream_dsc;
5897 
5898 		if (drm_dp_dpcd_read(&port->aux,
5899 				     DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5900 			return NULL;
5901 		if (drm_dp_dpcd_read(&port->aux,
5902 				     DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5903 			return NULL;
5904 		if (drm_dp_dpcd_read(&immediate_upstream_port->aux,
5905 				     DP_DSC_SUPPORT, &upstream_dsc, 1) != 1)
5906 			return NULL;
5907 
5908 		/* Enpoint decompression with DP-to-DP peer device */
5909 		if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5910 		    (endpoint_fec & DP_FEC_CAPABLE) &&
5911 		    (upstream_dsc & 0x2) /* DSC passthrough */)
5912 			return &port->aux;
5913 
5914 		/* Virtual DPCD decompression with DP-to-DP peer device */
5915 		return &immediate_upstream_port->aux;
5916 	}
5917 
5918 	/* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */
5919 	if (drm_dp_mst_is_virtual_dpcd(port))
5920 		return &port->aux;
5921 
5922 	/*
5923 	 * Synaptics quirk
5924 	 * Applies to ports for which:
5925 	 * - Physical aux has Synaptics OUI
5926 	 * - DPv1.4 or higher
5927 	 * - Port is on primary branch device
5928 	 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG)
5929 	 */
5930 	if (drm_dp_read_desc(port->mgr->aux, &desc, true))
5931 		return NULL;
5932 
5933 	if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) &&
5934 	    port->mgr->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14 &&
5935 	    port->parent == port->mgr->mst_primary) {
5936 		u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
5937 
5938 		if (drm_dp_read_dpcd_caps(port->mgr->aux, dpcd_ext) < 0)
5939 			return NULL;
5940 
5941 		if ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) &&
5942 		    ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK)
5943 		     != DP_DWN_STRM_PORT_TYPE_ANALOG))
5944 			return port->mgr->aux;
5945 	}
5946 
5947 	/*
5948 	 * The check below verifies if the MST sink
5949 	 * connected to the GPU is capable of DSC -
5950 	 * therefore the endpoint needs to be
5951 	 * both DSC and FEC capable.
5952 	 */
5953 	if (drm_dp_dpcd_read(&port->aux,
5954 	   DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5955 		return NULL;
5956 	if (drm_dp_dpcd_read(&port->aux,
5957 	   DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5958 		return NULL;
5959 	if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5960 	   (endpoint_fec & DP_FEC_CAPABLE))
5961 		return &port->aux;
5962 
5963 	return NULL;
5964 }
5965 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port);
5966