1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 #include <linux/dynamic_debug.h>
34 
35 #include <drm/display/drm_dp_helper.h>
36 #include <drm/display/drm_dp_mst_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_print.h>
39 #include <drm/drm_vblank.h>
40 #include <drm/drm_panel.h>
41 
42 #include "drm_dp_helper_internal.h"
43 
44 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
45 			"DRM_UT_CORE",
46 			"DRM_UT_DRIVER",
47 			"DRM_UT_KMS",
48 			"DRM_UT_PRIME",
49 			"DRM_UT_ATOMIC",
50 			"DRM_UT_VBL",
51 			"DRM_UT_STATE",
52 			"DRM_UT_LEASE",
53 			"DRM_UT_DP",
54 			"DRM_UT_DRMRES");
55 
56 struct dp_aux_backlight {
57 	struct backlight_device *base;
58 	struct drm_dp_aux *aux;
59 	struct drm_edp_backlight_info info;
60 	bool enabled;
61 };
62 
63 /**
64  * DOC: dp helpers
65  *
66  * These functions contain some common logic and helpers at various abstraction
67  * levels to deal with Display Port sink devices and related things like DP aux
68  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
69  * blocks, ...
70  */
71 
72 /* Helpers for DP link training */
73 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
74 {
75 	return link_status[r - DP_LANE0_1_STATUS];
76 }
77 
78 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
79 			     int lane)
80 {
81 	int i = DP_LANE0_1_STATUS + (lane >> 1);
82 	int s = (lane & 1) * 4;
83 	u8 l = dp_link_status(link_status, i);
84 
85 	return (l >> s) & 0xf;
86 }
87 
88 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
89 			  int lane_count)
90 {
91 	u8 lane_align;
92 	u8 lane_status;
93 	int lane;
94 
95 	lane_align = dp_link_status(link_status,
96 				    DP_LANE_ALIGN_STATUS_UPDATED);
97 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
98 		return false;
99 	for (lane = 0; lane < lane_count; lane++) {
100 		lane_status = dp_get_lane_status(link_status, lane);
101 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
102 			return false;
103 	}
104 	return true;
105 }
106 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
107 
108 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
109 			      int lane_count)
110 {
111 	int lane;
112 	u8 lane_status;
113 
114 	for (lane = 0; lane < lane_count; lane++) {
115 		lane_status = dp_get_lane_status(link_status, lane);
116 		if ((lane_status & DP_LANE_CR_DONE) == 0)
117 			return false;
118 	}
119 	return true;
120 }
121 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
122 
123 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
124 				     int lane)
125 {
126 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127 	int s = ((lane & 1) ?
128 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
129 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
130 	u8 l = dp_link_status(link_status, i);
131 
132 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
133 }
134 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
135 
136 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
137 					  int lane)
138 {
139 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
140 	int s = ((lane & 1) ?
141 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
142 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
143 	u8 l = dp_link_status(link_status, i);
144 
145 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
146 }
147 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
148 
149 /* DP 2.0 128b/132b */
150 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
151 				   int lane)
152 {
153 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
154 	int s = ((lane & 1) ?
155 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
156 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
157 	u8 l = dp_link_status(link_status, i);
158 
159 	return (l >> s) & 0xf;
160 }
161 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
162 
163 /* DP 2.0 errata for 128b/132b */
164 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
165 					  int lane_count)
166 {
167 	u8 lane_align, lane_status;
168 	int lane;
169 
170 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
171 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
172 		return false;
173 
174 	for (lane = 0; lane < lane_count; lane++) {
175 		lane_status = dp_get_lane_status(link_status, lane);
176 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
177 			return false;
178 	}
179 	return true;
180 }
181 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
182 
183 /* DP 2.0 errata for 128b/132b */
184 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
185 					int lane_count)
186 {
187 	u8 lane_status;
188 	int lane;
189 
190 	for (lane = 0; lane < lane_count; lane++) {
191 		lane_status = dp_get_lane_status(link_status, lane);
192 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
193 			return false;
194 	}
195 	return true;
196 }
197 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
198 
199 /* DP 2.0 errata for 128b/132b */
200 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
201 {
202 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
203 
204 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
205 }
206 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
207 
208 /* DP 2.0 errata for 128b/132b */
209 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
210 {
211 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
212 
213 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
214 }
215 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
216 
217 /* DP 2.0 errata for 128b/132b */
218 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
219 {
220 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
221 
222 	return status & DP_128B132B_LT_FAILED;
223 }
224 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
225 
226 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
227 {
228 	if (rd_interval > 4)
229 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
230 			    aux->name, rd_interval);
231 
232 	if (rd_interval == 0)
233 		return 100;
234 
235 	return rd_interval * 4 * USEC_PER_MSEC;
236 }
237 
238 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
239 {
240 	if (rd_interval > 4)
241 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
242 			    aux->name, rd_interval);
243 
244 	if (rd_interval == 0)
245 		return 400;
246 
247 	return rd_interval * 4 * USEC_PER_MSEC;
248 }
249 
250 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
251 {
252 	switch (rd_interval) {
253 	default:
254 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
255 			    aux->name, rd_interval);
256 		fallthrough;
257 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
258 		return 400;
259 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
260 		return 4000;
261 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
262 		return 8000;
263 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
264 		return 12000;
265 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
266 		return 16000;
267 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
268 		return 32000;
269 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
270 		return 64000;
271 	}
272 }
273 
274 /*
275  * The link training delays are different for:
276  *
277  *  - Clock recovery vs. channel equalization
278  *  - DPRX vs. LTTPR
279  *  - 128b/132b vs. 8b/10b
280  *  - DPCD rev 1.3 vs. later
281  *
282  * Get the correct delay in us, reading DPCD if necessary.
283  */
284 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
285 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
286 {
287 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
288 	unsigned int offset;
289 	u8 rd_interval, mask;
290 
291 	if (dp_phy == DP_PHY_DPRX) {
292 		if (uhbr) {
293 			if (cr)
294 				return 100;
295 
296 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
297 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
298 			parse = __128b132b_channel_eq_delay_us;
299 		} else {
300 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
301 				return 100;
302 
303 			offset = DP_TRAINING_AUX_RD_INTERVAL;
304 			mask = DP_TRAINING_AUX_RD_MASK;
305 			if (cr)
306 				parse = __8b10b_clock_recovery_delay_us;
307 			else
308 				parse = __8b10b_channel_eq_delay_us;
309 		}
310 	} else {
311 		if (uhbr) {
312 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
313 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
314 			parse = __128b132b_channel_eq_delay_us;
315 		} else {
316 			if (cr)
317 				return 100;
318 
319 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
320 			mask = DP_TRAINING_AUX_RD_MASK;
321 			parse = __8b10b_channel_eq_delay_us;
322 		}
323 	}
324 
325 	if (offset < DP_RECEIVER_CAP_SIZE) {
326 		rd_interval = dpcd[offset];
327 	} else {
328 		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
329 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
330 				    aux->name);
331 			/* arbitrary default delay */
332 			return 400;
333 		}
334 	}
335 
336 	return parse(aux, rd_interval & mask);
337 }
338 
339 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
340 				     enum drm_dp_phy dp_phy, bool uhbr)
341 {
342 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
343 }
344 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
345 
346 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
347 				 enum drm_dp_phy dp_phy, bool uhbr)
348 {
349 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
350 }
351 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
352 
353 /* Per DP 2.0 Errata */
354 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
355 {
356 	int unit;
357 	u8 val;
358 
359 	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
360 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
361 			aux->name);
362 		/* default to max */
363 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
364 	}
365 
366 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
367 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
368 
369 	return (val + 1) * unit * 1000;
370 }
371 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
372 
373 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
374 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
375 {
376 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
377 		DP_TRAINING_AUX_RD_MASK;
378 	int delay_us;
379 
380 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
381 		delay_us = 100;
382 	else
383 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
384 
385 	usleep_range(delay_us, delay_us * 2);
386 }
387 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
388 
389 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
390 						 u8 rd_interval)
391 {
392 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
393 
394 	usleep_range(delay_us, delay_us * 2);
395 }
396 
397 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
398 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
399 {
400 	__drm_dp_link_train_channel_eq_delay(aux,
401 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
402 					     DP_TRAINING_AUX_RD_MASK);
403 }
404 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
405 
406 /**
407  * drm_dp_phy_name() - Get the name of the given DP PHY
408  * @dp_phy: The DP PHY identifier
409  *
410  * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
411  * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
412  * non-NULL and valid.
413  *
414  * Returns: Name of the DP PHY.
415  */
416 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
417 {
418 	static const char * const phy_names[] = {
419 		[DP_PHY_DPRX] = "DPRX",
420 		[DP_PHY_LTTPR1] = "LTTPR 1",
421 		[DP_PHY_LTTPR2] = "LTTPR 2",
422 		[DP_PHY_LTTPR3] = "LTTPR 3",
423 		[DP_PHY_LTTPR4] = "LTTPR 4",
424 		[DP_PHY_LTTPR5] = "LTTPR 5",
425 		[DP_PHY_LTTPR6] = "LTTPR 6",
426 		[DP_PHY_LTTPR7] = "LTTPR 7",
427 		[DP_PHY_LTTPR8] = "LTTPR 8",
428 	};
429 
430 	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
431 	    WARN_ON(!phy_names[dp_phy]))
432 		return "<INVALID DP PHY>";
433 
434 	return phy_names[dp_phy];
435 }
436 EXPORT_SYMBOL(drm_dp_phy_name);
437 
438 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
439 {
440 	usleep_range(100, 200);
441 }
442 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
443 
444 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
445 {
446 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
447 }
448 
449 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
450 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
451 {
452 	u8 interval = dp_lttpr_phy_cap(phy_cap,
453 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
454 		      DP_TRAINING_AUX_RD_MASK;
455 
456 	__drm_dp_link_train_channel_eq_delay(aux, interval);
457 }
458 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
459 
460 u8 drm_dp_link_rate_to_bw_code(int link_rate)
461 {
462 	switch (link_rate) {
463 	case 1000000:
464 		return DP_LINK_BW_10;
465 	case 1350000:
466 		return DP_LINK_BW_13_5;
467 	case 2000000:
468 		return DP_LINK_BW_20;
469 	default:
470 		/* Spec says link_bw = link_rate / 0.27Gbps */
471 		return link_rate / 27000;
472 	}
473 }
474 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
475 
476 int drm_dp_bw_code_to_link_rate(u8 link_bw)
477 {
478 	switch (link_bw) {
479 	case DP_LINK_BW_10:
480 		return 1000000;
481 	case DP_LINK_BW_13_5:
482 		return 1350000;
483 	case DP_LINK_BW_20:
484 		return 2000000;
485 	default:
486 		/* Spec says link_rate = link_bw * 0.27Gbps */
487 		return link_bw * 27000;
488 	}
489 }
490 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
491 
492 #define AUX_RETRY_INTERVAL 500 /* us */
493 
494 static inline void
495 drm_dp_dump_access(const struct drm_dp_aux *aux,
496 		   u8 request, uint offset, void *buffer, int ret)
497 {
498 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
499 
500 	if (ret > 0)
501 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
502 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
503 	else
504 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
505 			   aux->name, offset, arrow, ret);
506 }
507 
508 /**
509  * DOC: dp helpers
510  *
511  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
512  * independent access to AUX functionality. Drivers can take advantage of
513  * this by filling in the fields of the drm_dp_aux structure.
514  *
515  * Transactions are described using a hardware-independent drm_dp_aux_msg
516  * structure, which is passed into a driver's .transfer() implementation.
517  * Both native and I2C-over-AUX transactions are supported.
518  */
519 
520 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
521 			      unsigned int offset, void *buffer, size_t size)
522 {
523 	struct drm_dp_aux_msg msg;
524 	unsigned int retry, native_reply;
525 	int err = 0, ret = 0;
526 
527 	memset(&msg, 0, sizeof(msg));
528 	msg.address = offset;
529 	msg.request = request;
530 	msg.buffer = buffer;
531 	msg.size = size;
532 
533 	mutex_lock(&aux->hw_mutex);
534 
535 	/*
536 	 * If the device attached to the aux bus is powered down then there's
537 	 * no reason to attempt a transfer. Error out immediately.
538 	 */
539 	if (aux->powered_down) {
540 		ret = -EBUSY;
541 		goto unlock;
542 	}
543 
544 	/*
545 	 * The specification doesn't give any recommendation on how often to
546 	 * retry native transactions. We used to retry 7 times like for
547 	 * aux i2c transactions but real world devices this wasn't
548 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
549 	 */
550 	for (retry = 0; retry < 32; retry++) {
551 		if (ret != 0 && ret != -ETIMEDOUT) {
552 			usleep_range(AUX_RETRY_INTERVAL,
553 				     AUX_RETRY_INTERVAL + 100);
554 		}
555 
556 		ret = aux->transfer(aux, &msg);
557 		if (ret >= 0) {
558 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
559 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
560 				if (ret == size)
561 					goto unlock;
562 
563 				ret = -EPROTO;
564 			} else
565 				ret = -EIO;
566 		}
567 
568 		/*
569 		 * We want the error we return to be the error we received on
570 		 * the first transaction, since we may get a different error the
571 		 * next time we retry
572 		 */
573 		if (!err)
574 			err = ret;
575 	}
576 
577 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
578 		    aux->name, err);
579 	ret = err;
580 
581 unlock:
582 	mutex_unlock(&aux->hw_mutex);
583 	return ret;
584 }
585 
586 /**
587  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
588  * @aux: DisplayPort AUX channel (SST)
589  * @offset: address of the register to probe
590  *
591  * Probe the provided DPCD address by reading 1 byte from it. The function can
592  * be used to trigger some side-effect the read access has, like waking up the
593  * sink, without the need for the read-out value.
594  *
595  * Returns 0 if the read access suceeded, or a negative error code on failure.
596  */
597 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
598 {
599 	u8 buffer;
600 	int ret;
601 
602 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
603 	WARN_ON(ret == 0);
604 
605 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
606 
607 	return ret < 0 ? ret : 0;
608 }
609 EXPORT_SYMBOL(drm_dp_dpcd_probe);
610 
611 /**
612  * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
613  * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
614  *       and the function will be a no-op.
615  * @powered: true if powered; false if not
616  *
617  * If the endpoint device on the DP AUX bus is known to be powered down
618  * then this function can be called to make future transfers fail immediately
619  * instead of needing to time out.
620  *
621  * If this function is never called then a device defaults to being powered.
622  */
623 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
624 {
625 	if (!aux)
626 		return;
627 
628 	mutex_lock(&aux->hw_mutex);
629 	aux->powered_down = !powered;
630 	mutex_unlock(&aux->hw_mutex);
631 }
632 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
633 
634 /**
635  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
636  * @aux: DisplayPort AUX channel (SST or MST)
637  * @offset: address of the (first) register to read
638  * @buffer: buffer to store the register values
639  * @size: number of bytes in @buffer
640  *
641  * Returns the number of bytes transferred on success, or a negative error
642  * code on failure. -EIO is returned if the request was NAKed by the sink or
643  * if the retry count was exceeded. If not all bytes were transferred, this
644  * function returns -EPROTO. Errors from the underlying AUX channel transfer
645  * function, with the exception of -EBUSY (which causes the transaction to
646  * be retried), are propagated to the caller.
647  */
648 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
649 			 void *buffer, size_t size)
650 {
651 	int ret;
652 
653 	/*
654 	 * HP ZR24w corrupts the first DPCD access after entering power save
655 	 * mode. Eg. on a read, the entire buffer will be filled with the same
656 	 * byte. Do a throw away read to avoid corrupting anything we care
657 	 * about. Afterwards things will work correctly until the monitor
658 	 * gets woken up and subsequently re-enters power save mode.
659 	 *
660 	 * The user pressing any button on the monitor is enough to wake it
661 	 * up, so there is no particularly good place to do the workaround.
662 	 * We just have to do it before any DPCD access and hope that the
663 	 * monitor doesn't power down exactly after the throw away read.
664 	 */
665 	if (!aux->is_remote) {
666 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
667 		if (ret < 0)
668 			return ret;
669 	}
670 
671 	if (aux->is_remote)
672 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
673 	else
674 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
675 					 buffer, size);
676 
677 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
678 	return ret;
679 }
680 EXPORT_SYMBOL(drm_dp_dpcd_read);
681 
682 /**
683  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
684  * @aux: DisplayPort AUX channel (SST or MST)
685  * @offset: address of the (first) register to write
686  * @buffer: buffer containing the values to write
687  * @size: number of bytes in @buffer
688  *
689  * Returns the number of bytes transferred on success, or a negative error
690  * code on failure. -EIO is returned if the request was NAKed by the sink or
691  * if the retry count was exceeded. If not all bytes were transferred, this
692  * function returns -EPROTO. Errors from the underlying AUX channel transfer
693  * function, with the exception of -EBUSY (which causes the transaction to
694  * be retried), are propagated to the caller.
695  */
696 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
697 			  void *buffer, size_t size)
698 {
699 	int ret;
700 
701 	if (aux->is_remote)
702 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
703 	else
704 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
705 					 buffer, size);
706 
707 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
708 	return ret;
709 }
710 EXPORT_SYMBOL(drm_dp_dpcd_write);
711 
712 /**
713  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
714  * @aux: DisplayPort AUX channel
715  * @status: buffer to store the link status in (must be at least 6 bytes)
716  *
717  * Returns the number of bytes transferred on success or a negative error
718  * code on failure.
719  */
720 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
721 				 u8 status[DP_LINK_STATUS_SIZE])
722 {
723 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
724 				DP_LINK_STATUS_SIZE);
725 }
726 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
727 
728 /**
729  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
730  * @aux: DisplayPort AUX channel
731  * @dp_phy: the DP PHY to get the link status for
732  * @link_status: buffer to return the status in
733  *
734  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
735  * layout of the returned @link_status matches the DPCD register layout of the
736  * DPRX PHY link status.
737  *
738  * Returns 0 if the information was read successfully or a negative error code
739  * on failure.
740  */
741 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
742 				     enum drm_dp_phy dp_phy,
743 				     u8 link_status[DP_LINK_STATUS_SIZE])
744 {
745 	int ret;
746 
747 	if (dp_phy == DP_PHY_DPRX) {
748 		ret = drm_dp_dpcd_read(aux,
749 				       DP_LANE0_1_STATUS,
750 				       link_status,
751 				       DP_LINK_STATUS_SIZE);
752 
753 		if (ret < 0)
754 			return ret;
755 
756 		WARN_ON(ret != DP_LINK_STATUS_SIZE);
757 
758 		return 0;
759 	}
760 
761 	ret = drm_dp_dpcd_read(aux,
762 			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
763 			       link_status,
764 			       DP_LINK_STATUS_SIZE - 1);
765 
766 	if (ret < 0)
767 		return ret;
768 
769 	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
770 
771 	/* Convert the LTTPR to the sink PHY link status layout */
772 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
773 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
774 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
775 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
776 
777 	return 0;
778 }
779 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
780 
781 static bool is_edid_digital_input_dp(const struct edid *edid)
782 {
783 	return edid && edid->revision >= 4 &&
784 		edid->input & DRM_EDID_INPUT_DIGITAL &&
785 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
786 }
787 
788 /**
789  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
790  * @dpcd: DisplayPort configuration data
791  * @port_cap: port capabilities
792  * @type: port type to be checked. Can be:
793  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
794  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
795  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
796  *
797  * Caveat: Only works with DPCD 1.1+ port caps.
798  *
799  * Returns: whether the downstream facing port matches the type.
800  */
801 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
802 			       const u8 port_cap[4], u8 type)
803 {
804 	return drm_dp_is_branch(dpcd) &&
805 		dpcd[DP_DPCD_REV] >= 0x11 &&
806 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
807 }
808 EXPORT_SYMBOL(drm_dp_downstream_is_type);
809 
810 /**
811  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
812  * @dpcd: DisplayPort configuration data
813  * @port_cap: port capabilities
814  * @edid: EDID
815  *
816  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
817  */
818 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
819 			       const u8 port_cap[4],
820 			       const struct edid *edid)
821 {
822 	if (dpcd[DP_DPCD_REV] < 0x11) {
823 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
824 		case DP_DWN_STRM_PORT_TYPE_TMDS:
825 			return true;
826 		default:
827 			return false;
828 		}
829 	}
830 
831 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
832 	case DP_DS_PORT_TYPE_DP_DUALMODE:
833 		if (is_edid_digital_input_dp(edid))
834 			return false;
835 		fallthrough;
836 	case DP_DS_PORT_TYPE_DVI:
837 	case DP_DS_PORT_TYPE_HDMI:
838 		return true;
839 	default:
840 		return false;
841 	}
842 }
843 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
844 
845 /**
846  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
847  * @aux: DisplayPort AUX channel
848  * @real_edid_checksum: real edid checksum for the last block
849  *
850  * Returns:
851  * True on success
852  */
853 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
854 				    u8 real_edid_checksum)
855 {
856 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
857 
858 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
859 			     &auto_test_req, 1) < 1) {
860 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
861 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
862 		return false;
863 	}
864 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
865 
866 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
867 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
868 			aux->name, DP_TEST_REQUEST);
869 		return false;
870 	}
871 	link_edid_read &= DP_TEST_LINK_EDID_READ;
872 
873 	if (!auto_test_req || !link_edid_read) {
874 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
875 			    aux->name);
876 		return false;
877 	}
878 
879 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
880 			      &auto_test_req, 1) < 1) {
881 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
882 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
883 		return false;
884 	}
885 
886 	/* send back checksum for the last edid extension block data */
887 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
888 			      &real_edid_checksum, 1) < 1) {
889 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
890 			aux->name, DP_TEST_EDID_CHECKSUM);
891 		return false;
892 	}
893 
894 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
895 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
896 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
897 			aux->name, DP_TEST_RESPONSE);
898 		return false;
899 	}
900 
901 	return true;
902 }
903 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
904 
905 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
906 {
907 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
908 
909 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
910 		port_count = 4;
911 
912 	return port_count;
913 }
914 
915 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
916 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
917 {
918 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
919 	int ret;
920 
921 	/*
922 	 * Prior to DP1.3 the bit represented by
923 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
924 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
925 	 * the true capability of the panel. The only way to check is to
926 	 * then compare 0000h and 2200h.
927 	 */
928 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
929 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
930 		return 0;
931 
932 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
933 			       sizeof(dpcd_ext));
934 	if (ret < 0)
935 		return ret;
936 	if (ret != sizeof(dpcd_ext))
937 		return -EIO;
938 
939 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
940 		drm_dbg_kms(aux->drm_dev,
941 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
942 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
943 		return 0;
944 	}
945 
946 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
947 		return 0;
948 
949 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
950 
951 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
952 
953 	return 0;
954 }
955 
956 /**
957  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
958  * available
959  * @aux: DisplayPort AUX channel
960  * @dpcd: Buffer to store the resulting DPCD in
961  *
962  * Attempts to read the base DPCD caps for @aux. Additionally, this function
963  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
964  * present.
965  *
966  * Returns: %0 if the DPCD was read successfully, negative error code
967  * otherwise.
968  */
969 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
970 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
971 {
972 	int ret;
973 
974 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
975 	if (ret < 0)
976 		return ret;
977 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
978 		return -EIO;
979 
980 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
981 	if (ret < 0)
982 		return ret;
983 
984 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
985 
986 	return ret;
987 }
988 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
989 
990 /**
991  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
992  * @aux: DisplayPort AUX channel
993  * @dpcd: A cached copy of the port's DPCD
994  * @downstream_ports: buffer to store the downstream port info in
995  *
996  * See also:
997  * drm_dp_downstream_max_clock()
998  * drm_dp_downstream_max_bpc()
999  *
1000  * Returns: 0 if either the downstream port info was read successfully or
1001  * there was no downstream info to read, or a negative error code otherwise.
1002  */
1003 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1004 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1005 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1006 {
1007 	int ret;
1008 	u8 len;
1009 
1010 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1011 
1012 	/* No downstream info to read */
1013 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1014 		return 0;
1015 
1016 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1017 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1018 	 * some branches do it we need to handle it regardless.
1019 	 */
1020 	len = drm_dp_downstream_port_count(dpcd);
1021 	if (!len)
1022 		return 0;
1023 
1024 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1025 		len *= 4;
1026 
1027 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1028 	if (ret < 0)
1029 		return ret;
1030 	if (ret != len)
1031 		return -EIO;
1032 
1033 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1034 
1035 	return 0;
1036 }
1037 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1038 
1039 /**
1040  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1041  * @dpcd: DisplayPort configuration data
1042  * @port_cap: port capabilities
1043  *
1044  * Returns: Downstream facing port max dot clock in kHz on success,
1045  * or 0 if max clock not defined
1046  */
1047 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1048 				   const u8 port_cap[4])
1049 {
1050 	if (!drm_dp_is_branch(dpcd))
1051 		return 0;
1052 
1053 	if (dpcd[DP_DPCD_REV] < 0x11)
1054 		return 0;
1055 
1056 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1057 	case DP_DS_PORT_TYPE_VGA:
1058 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1059 			return 0;
1060 		return port_cap[1] * 8000;
1061 	default:
1062 		return 0;
1063 	}
1064 }
1065 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1066 
1067 /**
1068  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1069  * @dpcd: DisplayPort configuration data
1070  * @port_cap: port capabilities
1071  * @edid: EDID
1072  *
1073  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1074  * or 0 if max TMDS clock not defined
1075  */
1076 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1077 				     const u8 port_cap[4],
1078 				     const struct edid *edid)
1079 {
1080 	if (!drm_dp_is_branch(dpcd))
1081 		return 0;
1082 
1083 	if (dpcd[DP_DPCD_REV] < 0x11) {
1084 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1085 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1086 			return 165000;
1087 		default:
1088 			return 0;
1089 		}
1090 	}
1091 
1092 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1093 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1094 		if (is_edid_digital_input_dp(edid))
1095 			return 0;
1096 		/*
1097 		 * It's left up to the driver to check the
1098 		 * DP dual mode adapter's max TMDS clock.
1099 		 *
1100 		 * Unfortunately it looks like branch devices
1101 		 * may not fordward that the DP dual mode i2c
1102 		 * access so we just usually get i2c nak :(
1103 		 */
1104 		fallthrough;
1105 	case DP_DS_PORT_TYPE_HDMI:
1106 		 /*
1107 		  * We should perhaps assume 165 MHz when detailed cap
1108 		  * info is not available. But looks like many typical
1109 		  * branch devices fall into that category and so we'd
1110 		  * probably end up with users complaining that they can't
1111 		  * get high resolution modes with their favorite dongle.
1112 		  *
1113 		  * So let's limit to 300 MHz instead since DPCD 1.4
1114 		  * HDMI 2.0 DFPs are required to have the detailed cap
1115 		  * info. So it's more likely we're dealing with a HDMI 1.4
1116 		  * compatible* device here.
1117 		  */
1118 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1119 			return 300000;
1120 		return port_cap[1] * 2500;
1121 	case DP_DS_PORT_TYPE_DVI:
1122 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1123 			return 165000;
1124 		/* FIXME what to do about DVI dual link? */
1125 		return port_cap[1] * 2500;
1126 	default:
1127 		return 0;
1128 	}
1129 }
1130 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1131 
1132 /**
1133  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1134  * @dpcd: DisplayPort configuration data
1135  * @port_cap: port capabilities
1136  * @edid: EDID
1137  *
1138  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1139  * or 0 if max TMDS clock not defined
1140  */
1141 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1142 				     const u8 port_cap[4],
1143 				     const struct edid *edid)
1144 {
1145 	if (!drm_dp_is_branch(dpcd))
1146 		return 0;
1147 
1148 	if (dpcd[DP_DPCD_REV] < 0x11) {
1149 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1150 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1151 			return 25000;
1152 		default:
1153 			return 0;
1154 		}
1155 	}
1156 
1157 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1158 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1159 		if (is_edid_digital_input_dp(edid))
1160 			return 0;
1161 		fallthrough;
1162 	case DP_DS_PORT_TYPE_DVI:
1163 	case DP_DS_PORT_TYPE_HDMI:
1164 		/*
1165 		 * Unclear whether the protocol converter could
1166 		 * utilize pixel replication. Assume it won't.
1167 		 */
1168 		return 25000;
1169 	default:
1170 		return 0;
1171 	}
1172 }
1173 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1174 
1175 /**
1176  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1177  *                               bits per component
1178  * @dpcd: DisplayPort configuration data
1179  * @port_cap: downstream facing port capabilities
1180  * @edid: EDID
1181  *
1182  * Returns: Max bpc on success or 0 if max bpc not defined
1183  */
1184 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1185 			      const u8 port_cap[4],
1186 			      const struct edid *edid)
1187 {
1188 	if (!drm_dp_is_branch(dpcd))
1189 		return 0;
1190 
1191 	if (dpcd[DP_DPCD_REV] < 0x11) {
1192 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1193 		case DP_DWN_STRM_PORT_TYPE_DP:
1194 			return 0;
1195 		default:
1196 			return 8;
1197 		}
1198 	}
1199 
1200 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1201 	case DP_DS_PORT_TYPE_DP:
1202 		return 0;
1203 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1204 		if (is_edid_digital_input_dp(edid))
1205 			return 0;
1206 		fallthrough;
1207 	case DP_DS_PORT_TYPE_HDMI:
1208 	case DP_DS_PORT_TYPE_DVI:
1209 	case DP_DS_PORT_TYPE_VGA:
1210 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1211 			return 8;
1212 
1213 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1214 		case DP_DS_8BPC:
1215 			return 8;
1216 		case DP_DS_10BPC:
1217 			return 10;
1218 		case DP_DS_12BPC:
1219 			return 12;
1220 		case DP_DS_16BPC:
1221 			return 16;
1222 		default:
1223 			return 8;
1224 		}
1225 		break;
1226 	default:
1227 		return 8;
1228 	}
1229 }
1230 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1231 
1232 /**
1233  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1234  *                                       YCbCr 4:2:0 pass-through capability
1235  * @dpcd: DisplayPort configuration data
1236  * @port_cap: downstream facing port capabilities
1237  *
1238  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1239  */
1240 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1241 				       const u8 port_cap[4])
1242 {
1243 	if (!drm_dp_is_branch(dpcd))
1244 		return false;
1245 
1246 	if (dpcd[DP_DPCD_REV] < 0x13)
1247 		return false;
1248 
1249 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1250 	case DP_DS_PORT_TYPE_DP:
1251 		return true;
1252 	case DP_DS_PORT_TYPE_HDMI:
1253 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1254 			return false;
1255 
1256 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1257 	default:
1258 		return false;
1259 	}
1260 }
1261 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1262 
1263 /**
1264  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1265  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1266  * @dpcd: DisplayPort configuration data
1267  * @port_cap: downstream facing port capabilities
1268  *
1269  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1270  */
1271 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1272 					     const u8 port_cap[4])
1273 {
1274 	if (!drm_dp_is_branch(dpcd))
1275 		return false;
1276 
1277 	if (dpcd[DP_DPCD_REV] < 0x13)
1278 		return false;
1279 
1280 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1281 	case DP_DS_PORT_TYPE_HDMI:
1282 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1283 			return false;
1284 
1285 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1286 	default:
1287 		return false;
1288 	}
1289 }
1290 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1291 
1292 /**
1293  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1294  *                                               RGB->YCbCr conversion capability
1295  * @dpcd: DisplayPort configuration data
1296  * @port_cap: downstream facing port capabilities
1297  * @color_spc: Colorspace for which conversion cap is sought
1298  *
1299  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1300  * colorspace.
1301  */
1302 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1303 					       const u8 port_cap[4],
1304 					       u8 color_spc)
1305 {
1306 	if (!drm_dp_is_branch(dpcd))
1307 		return false;
1308 
1309 	if (dpcd[DP_DPCD_REV] < 0x13)
1310 		return false;
1311 
1312 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1313 	case DP_DS_PORT_TYPE_HDMI:
1314 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1315 			return false;
1316 
1317 		return port_cap[3] & color_spc;
1318 	default:
1319 		return false;
1320 	}
1321 }
1322 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1323 
1324 /**
1325  * drm_dp_downstream_mode() - return a mode for downstream facing port
1326  * @dev: DRM device
1327  * @dpcd: DisplayPort configuration data
1328  * @port_cap: port capabilities
1329  *
1330  * Provides a suitable mode for downstream facing ports without EDID.
1331  *
1332  * Returns: A new drm_display_mode on success or NULL on failure
1333  */
1334 struct drm_display_mode *
1335 drm_dp_downstream_mode(struct drm_device *dev,
1336 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1337 		       const u8 port_cap[4])
1338 
1339 {
1340 	u8 vic;
1341 
1342 	if (!drm_dp_is_branch(dpcd))
1343 		return NULL;
1344 
1345 	if (dpcd[DP_DPCD_REV] < 0x11)
1346 		return NULL;
1347 
1348 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1349 	case DP_DS_PORT_TYPE_NON_EDID:
1350 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1351 		case DP_DS_NON_EDID_720x480i_60:
1352 			vic = 6;
1353 			break;
1354 		case DP_DS_NON_EDID_720x480i_50:
1355 			vic = 21;
1356 			break;
1357 		case DP_DS_NON_EDID_1920x1080i_60:
1358 			vic = 5;
1359 			break;
1360 		case DP_DS_NON_EDID_1920x1080i_50:
1361 			vic = 20;
1362 			break;
1363 		case DP_DS_NON_EDID_1280x720_60:
1364 			vic = 4;
1365 			break;
1366 		case DP_DS_NON_EDID_1280x720_50:
1367 			vic = 19;
1368 			break;
1369 		default:
1370 			return NULL;
1371 		}
1372 		return drm_display_mode_from_cea_vic(dev, vic);
1373 	default:
1374 		return NULL;
1375 	}
1376 }
1377 EXPORT_SYMBOL(drm_dp_downstream_mode);
1378 
1379 /**
1380  * drm_dp_downstream_id() - identify branch device
1381  * @aux: DisplayPort AUX channel
1382  * @id: DisplayPort branch device id
1383  *
1384  * Returns branch device id on success or NULL on failure
1385  */
1386 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1387 {
1388 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1389 }
1390 EXPORT_SYMBOL(drm_dp_downstream_id);
1391 
1392 /**
1393  * drm_dp_downstream_debug() - debug DP branch devices
1394  * @m: pointer for debugfs file
1395  * @dpcd: DisplayPort configuration data
1396  * @port_cap: port capabilities
1397  * @edid: EDID
1398  * @aux: DisplayPort AUX channel
1399  *
1400  */
1401 void drm_dp_downstream_debug(struct seq_file *m,
1402 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1403 			     const u8 port_cap[4],
1404 			     const struct edid *edid,
1405 			     struct drm_dp_aux *aux)
1406 {
1407 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1408 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1409 	int clk;
1410 	int bpc;
1411 	char id[7];
1412 	int len;
1413 	uint8_t rev[2];
1414 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1415 	bool branch_device = drm_dp_is_branch(dpcd);
1416 
1417 	seq_printf(m, "\tDP branch device present: %s\n",
1418 		   str_yes_no(branch_device));
1419 
1420 	if (!branch_device)
1421 		return;
1422 
1423 	switch (type) {
1424 	case DP_DS_PORT_TYPE_DP:
1425 		seq_puts(m, "\t\tType: DisplayPort\n");
1426 		break;
1427 	case DP_DS_PORT_TYPE_VGA:
1428 		seq_puts(m, "\t\tType: VGA\n");
1429 		break;
1430 	case DP_DS_PORT_TYPE_DVI:
1431 		seq_puts(m, "\t\tType: DVI\n");
1432 		break;
1433 	case DP_DS_PORT_TYPE_HDMI:
1434 		seq_puts(m, "\t\tType: HDMI\n");
1435 		break;
1436 	case DP_DS_PORT_TYPE_NON_EDID:
1437 		seq_puts(m, "\t\tType: others without EDID support\n");
1438 		break;
1439 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1440 		seq_puts(m, "\t\tType: DP++\n");
1441 		break;
1442 	case DP_DS_PORT_TYPE_WIRELESS:
1443 		seq_puts(m, "\t\tType: Wireless\n");
1444 		break;
1445 	default:
1446 		seq_puts(m, "\t\tType: N/A\n");
1447 	}
1448 
1449 	memset(id, 0, sizeof(id));
1450 	drm_dp_downstream_id(aux, id);
1451 	seq_printf(m, "\t\tID: %s\n", id);
1452 
1453 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1454 	if (len > 0)
1455 		seq_printf(m, "\t\tHW: %d.%d\n",
1456 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1457 
1458 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1459 	if (len > 0)
1460 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1461 
1462 	if (detailed_cap_info) {
1463 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1464 		if (clk > 0)
1465 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1466 
1467 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1468 		if (clk > 0)
1469 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1470 
1471 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1472 		if (clk > 0)
1473 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1474 
1475 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1476 
1477 		if (bpc > 0)
1478 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1479 	}
1480 }
1481 EXPORT_SYMBOL(drm_dp_downstream_debug);
1482 
1483 /**
1484  * drm_dp_subconnector_type() - get DP branch device type
1485  * @dpcd: DisplayPort configuration data
1486  * @port_cap: port capabilities
1487  */
1488 enum drm_mode_subconnector
1489 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1490 			 const u8 port_cap[4])
1491 {
1492 	int type;
1493 	if (!drm_dp_is_branch(dpcd))
1494 		return DRM_MODE_SUBCONNECTOR_Native;
1495 	/* DP 1.0 approach */
1496 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1497 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1498 		       DP_DWN_STRM_PORT_TYPE_MASK;
1499 
1500 		switch (type) {
1501 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1502 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1503 			return DRM_MODE_SUBCONNECTOR_DVID;
1504 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1505 			/* Can be VGA or DVI-A, VGA is more popular */
1506 			return DRM_MODE_SUBCONNECTOR_VGA;
1507 		case DP_DWN_STRM_PORT_TYPE_DP:
1508 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1509 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1510 		default:
1511 			return DRM_MODE_SUBCONNECTOR_Unknown;
1512 		}
1513 	}
1514 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1515 
1516 	switch (type) {
1517 	case DP_DS_PORT_TYPE_DP:
1518 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1519 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1520 	case DP_DS_PORT_TYPE_VGA:
1521 		return DRM_MODE_SUBCONNECTOR_VGA;
1522 	case DP_DS_PORT_TYPE_DVI:
1523 		return DRM_MODE_SUBCONNECTOR_DVID;
1524 	case DP_DS_PORT_TYPE_HDMI:
1525 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1526 	case DP_DS_PORT_TYPE_WIRELESS:
1527 		return DRM_MODE_SUBCONNECTOR_Wireless;
1528 	case DP_DS_PORT_TYPE_NON_EDID:
1529 	default:
1530 		return DRM_MODE_SUBCONNECTOR_Unknown;
1531 	}
1532 }
1533 EXPORT_SYMBOL(drm_dp_subconnector_type);
1534 
1535 /**
1536  * drm_dp_set_subconnector_property - set subconnector for DP connector
1537  * @connector: connector to set property on
1538  * @status: connector status
1539  * @dpcd: DisplayPort configuration data
1540  * @port_cap: port capabilities
1541  *
1542  * Called by a driver on every detect event.
1543  */
1544 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1545 				      enum drm_connector_status status,
1546 				      const u8 *dpcd,
1547 				      const u8 port_cap[4])
1548 {
1549 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1550 
1551 	if (status == connector_status_connected)
1552 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1553 	drm_object_property_set_value(&connector->base,
1554 			connector->dev->mode_config.dp_subconnector_property,
1555 			subconnector);
1556 }
1557 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1558 
1559 /**
1560  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1561  * count
1562  * @connector: The DRM connector to check
1563  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1564  * @desc: A cached copy of the connector's DP descriptor
1565  *
1566  * See also: drm_dp_read_sink_count()
1567  *
1568  * Returns: %True if the (e)DP connector has a valid sink count that should
1569  * be probed, %false otherwise.
1570  */
1571 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1572 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1573 				const struct drm_dp_desc *desc)
1574 {
1575 	/* Some eDP panels don't set a valid value for the sink count */
1576 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1577 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1578 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1579 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1580 }
1581 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1582 
1583 /**
1584  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1585  * @aux: The DP AUX channel to use
1586  *
1587  * See also: drm_dp_read_sink_count_cap()
1588  *
1589  * Returns: The current sink count reported by @aux, or a negative error code
1590  * otherwise.
1591  */
1592 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1593 {
1594 	u8 count;
1595 	int ret;
1596 
1597 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1598 	if (ret < 0)
1599 		return ret;
1600 	if (ret != 1)
1601 		return -EIO;
1602 
1603 	return DP_GET_SINK_COUNT(count);
1604 }
1605 EXPORT_SYMBOL(drm_dp_read_sink_count);
1606 
1607 /*
1608  * I2C-over-AUX implementation
1609  */
1610 
1611 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1612 {
1613 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1614 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1615 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1616 	       I2C_FUNC_10BIT_ADDR;
1617 }
1618 
1619 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1620 {
1621 	/*
1622 	 * In case of i2c defer or short i2c ack reply to a write,
1623 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1624 	 * rest of the message
1625 	 */
1626 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1627 		msg->request &= DP_AUX_I2C_MOT;
1628 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1629 	}
1630 }
1631 
1632 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1633 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1634 #define AUX_STOP_LEN 4
1635 #define AUX_CMD_LEN 4
1636 #define AUX_ADDRESS_LEN 20
1637 #define AUX_REPLY_PAD_LEN 4
1638 #define AUX_LENGTH_LEN 8
1639 
1640 /*
1641  * Calculate the duration of the AUX request/reply in usec. Gives the
1642  * "best" case estimate, ie. successful while as short as possible.
1643  */
1644 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1645 {
1646 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1647 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1648 
1649 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1650 		len += msg->size * 8;
1651 
1652 	return len;
1653 }
1654 
1655 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1656 {
1657 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1658 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1659 
1660 	/*
1661 	 * For read we expect what was asked. For writes there will
1662 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1663 	 */
1664 	if (msg->request & DP_AUX_I2C_READ)
1665 		len += msg->size * 8;
1666 
1667 	return len;
1668 }
1669 
1670 #define I2C_START_LEN 1
1671 #define I2C_STOP_LEN 1
1672 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1673 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1674 
1675 /*
1676  * Calculate the length of the i2c transfer in usec, assuming
1677  * the i2c bus speed is as specified. Gives the "worst"
1678  * case estimate, ie. successful while as long as possible.
1679  * Doesn't account the "MOT" bit, and instead assumes each
1680  * message includes a START, ADDRESS and STOP. Neither does it
1681  * account for additional random variables such as clock stretching.
1682  */
1683 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1684 				   int i2c_speed_khz)
1685 {
1686 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1687 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1688 			     msg->size * I2C_DATA_LEN +
1689 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1690 }
1691 
1692 /*
1693  * Determine how many retries should be attempted to successfully transfer
1694  * the specified message, based on the estimated durations of the
1695  * i2c and AUX transfers.
1696  */
1697 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1698 			      int i2c_speed_khz)
1699 {
1700 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1701 		drm_dp_aux_reply_duration(msg);
1702 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1703 
1704 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1705 }
1706 
1707 /*
1708  * FIXME currently assumes 10 kHz as some real world devices seem
1709  * to require it. We should query/set the speed via DPCD if supported.
1710  */
1711 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1712 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1713 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1714 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1715 
1716 /*
1717  * Transfer a single I2C-over-AUX message and handle various error conditions,
1718  * retrying the transaction as appropriate.  It is assumed that the
1719  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1720  * reply field.
1721  *
1722  * Returns bytes transferred on success, or a negative error code on failure.
1723  */
1724 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1725 {
1726 	unsigned int retry, defer_i2c;
1727 	int ret;
1728 	/*
1729 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1730 	 * is required to retry at least seven times upon receiving AUX_DEFER
1731 	 * before giving up the AUX transaction.
1732 	 *
1733 	 * We also try to account for the i2c bus speed.
1734 	 */
1735 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1736 
1737 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1738 		ret = aux->transfer(aux, msg);
1739 		if (ret < 0) {
1740 			if (ret == -EBUSY)
1741 				continue;
1742 
1743 			/*
1744 			 * While timeouts can be errors, they're usually normal
1745 			 * behavior (for instance, when a driver tries to
1746 			 * communicate with a non-existent DisplayPort device).
1747 			 * Avoid spamming the kernel log with timeout errors.
1748 			 */
1749 			if (ret == -ETIMEDOUT)
1750 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1751 							aux->name);
1752 			else
1753 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1754 					    aux->name, ret);
1755 			return ret;
1756 		}
1757 
1758 
1759 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1760 		case DP_AUX_NATIVE_REPLY_ACK:
1761 			/*
1762 			 * For I2C-over-AUX transactions this isn't enough, we
1763 			 * need to check for the I2C ACK reply.
1764 			 */
1765 			break;
1766 
1767 		case DP_AUX_NATIVE_REPLY_NACK:
1768 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1769 				    aux->name, ret, msg->size);
1770 			return -EREMOTEIO;
1771 
1772 		case DP_AUX_NATIVE_REPLY_DEFER:
1773 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1774 			/*
1775 			 * We could check for I2C bit rate capabilities and if
1776 			 * available adjust this interval. We could also be
1777 			 * more careful with DP-to-legacy adapters where a
1778 			 * long legacy cable may force very low I2C bit rates.
1779 			 *
1780 			 * For now just defer for long enough to hopefully be
1781 			 * safe for all use-cases.
1782 			 */
1783 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1784 			continue;
1785 
1786 		default:
1787 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1788 				aux->name, msg->reply);
1789 			return -EREMOTEIO;
1790 		}
1791 
1792 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1793 		case DP_AUX_I2C_REPLY_ACK:
1794 			/*
1795 			 * Both native ACK and I2C ACK replies received. We
1796 			 * can assume the transfer was successful.
1797 			 */
1798 			if (ret != msg->size)
1799 				drm_dp_i2c_msg_write_status_update(msg);
1800 			return ret;
1801 
1802 		case DP_AUX_I2C_REPLY_NACK:
1803 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1804 				    aux->name, ret, msg->size);
1805 			aux->i2c_nack_count++;
1806 			return -EREMOTEIO;
1807 
1808 		case DP_AUX_I2C_REPLY_DEFER:
1809 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1810 			/* DP Compliance Test 4.2.2.5 Requirement:
1811 			 * Must have at least 7 retries for I2C defers on the
1812 			 * transaction to pass this test
1813 			 */
1814 			aux->i2c_defer_count++;
1815 			if (defer_i2c < 7)
1816 				defer_i2c++;
1817 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1818 			drm_dp_i2c_msg_write_status_update(msg);
1819 
1820 			continue;
1821 
1822 		default:
1823 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1824 				aux->name, msg->reply);
1825 			return -EREMOTEIO;
1826 		}
1827 	}
1828 
1829 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1830 	return -EREMOTEIO;
1831 }
1832 
1833 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1834 				       const struct i2c_msg *i2c_msg)
1835 {
1836 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1837 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1838 	if (!(i2c_msg->flags & I2C_M_STOP))
1839 		msg->request |= DP_AUX_I2C_MOT;
1840 }
1841 
1842 /*
1843  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1844  *
1845  * Returns an error code on failure, or a recommended transfer size on success.
1846  */
1847 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1848 {
1849 	int err, ret = orig_msg->size;
1850 	struct drm_dp_aux_msg msg = *orig_msg;
1851 
1852 	while (msg.size > 0) {
1853 		err = drm_dp_i2c_do_msg(aux, &msg);
1854 		if (err <= 0)
1855 			return err == 0 ? -EPROTO : err;
1856 
1857 		if (err < msg.size && err < ret) {
1858 			drm_dbg_kms(aux->drm_dev,
1859 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1860 				    aux->name, msg.size, err);
1861 			ret = err;
1862 		}
1863 
1864 		msg.size -= err;
1865 		msg.buffer += err;
1866 	}
1867 
1868 	return ret;
1869 }
1870 
1871 /*
1872  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1873  * packets to be as large as possible. If not, the I2C transactions never
1874  * succeed. Hence the default is maximum.
1875  */
1876 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1877 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1878 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1879 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1880 
1881 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1882 			   int num)
1883 {
1884 	struct drm_dp_aux *aux = adapter->algo_data;
1885 	unsigned int i, j;
1886 	unsigned transfer_size;
1887 	struct drm_dp_aux_msg msg;
1888 	int err = 0;
1889 
1890 	if (aux->powered_down)
1891 		return -EBUSY;
1892 
1893 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1894 
1895 	memset(&msg, 0, sizeof(msg));
1896 
1897 	for (i = 0; i < num; i++) {
1898 		msg.address = msgs[i].addr;
1899 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1900 		/* Send a bare address packet to start the transaction.
1901 		 * Zero sized messages specify an address only (bare
1902 		 * address) transaction.
1903 		 */
1904 		msg.buffer = NULL;
1905 		msg.size = 0;
1906 		err = drm_dp_i2c_do_msg(aux, &msg);
1907 
1908 		/*
1909 		 * Reset msg.request in case in case it got
1910 		 * changed into a WRITE_STATUS_UPDATE.
1911 		 */
1912 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1913 
1914 		if (err < 0)
1915 			break;
1916 		/* We want each transaction to be as large as possible, but
1917 		 * we'll go to smaller sizes if the hardware gives us a
1918 		 * short reply.
1919 		 */
1920 		transfer_size = dp_aux_i2c_transfer_size;
1921 		for (j = 0; j < msgs[i].len; j += msg.size) {
1922 			msg.buffer = msgs[i].buf + j;
1923 			msg.size = min(transfer_size, msgs[i].len - j);
1924 
1925 			err = drm_dp_i2c_drain_msg(aux, &msg);
1926 
1927 			/*
1928 			 * Reset msg.request in case in case it got
1929 			 * changed into a WRITE_STATUS_UPDATE.
1930 			 */
1931 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1932 
1933 			if (err < 0)
1934 				break;
1935 			transfer_size = err;
1936 		}
1937 		if (err < 0)
1938 			break;
1939 	}
1940 	if (err >= 0)
1941 		err = num;
1942 	/* Send a bare address packet to close out the transaction.
1943 	 * Zero sized messages specify an address only (bare
1944 	 * address) transaction.
1945 	 */
1946 	msg.request &= ~DP_AUX_I2C_MOT;
1947 	msg.buffer = NULL;
1948 	msg.size = 0;
1949 	(void)drm_dp_i2c_do_msg(aux, &msg);
1950 
1951 	return err;
1952 }
1953 
1954 static const struct i2c_algorithm drm_dp_i2c_algo = {
1955 	.functionality = drm_dp_i2c_functionality,
1956 	.master_xfer = drm_dp_i2c_xfer,
1957 };
1958 
1959 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1960 {
1961 	return container_of(i2c, struct drm_dp_aux, ddc);
1962 }
1963 
1964 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1965 {
1966 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1967 }
1968 
1969 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1970 {
1971 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1972 }
1973 
1974 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1975 {
1976 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1977 }
1978 
1979 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1980 	.lock_bus = lock_bus,
1981 	.trylock_bus = trylock_bus,
1982 	.unlock_bus = unlock_bus,
1983 };
1984 
1985 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1986 {
1987 	u8 buf, count;
1988 	int ret;
1989 
1990 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1991 	if (ret < 0)
1992 		return ret;
1993 
1994 	WARN_ON(!(buf & DP_TEST_SINK_START));
1995 
1996 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1997 	if (ret < 0)
1998 		return ret;
1999 
2000 	count = buf & DP_TEST_COUNT_MASK;
2001 	if (count == aux->crc_count)
2002 		return -EAGAIN; /* No CRC yet */
2003 
2004 	aux->crc_count = count;
2005 
2006 	/*
2007 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2008 	 * per component (RGB or CrYCb).
2009 	 */
2010 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2011 	if (ret < 0)
2012 		return ret;
2013 
2014 	return 0;
2015 }
2016 
2017 static void drm_dp_aux_crc_work(struct work_struct *work)
2018 {
2019 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2020 					      crc_work);
2021 	struct drm_crtc *crtc;
2022 	u8 crc_bytes[6];
2023 	uint32_t crcs[3];
2024 	int ret;
2025 
2026 	if (WARN_ON(!aux->crtc))
2027 		return;
2028 
2029 	crtc = aux->crtc;
2030 	while (crtc->crc.opened) {
2031 		drm_crtc_wait_one_vblank(crtc);
2032 		if (!crtc->crc.opened)
2033 			break;
2034 
2035 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2036 		if (ret == -EAGAIN) {
2037 			usleep_range(1000, 2000);
2038 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2039 		}
2040 
2041 		if (ret == -EAGAIN) {
2042 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2043 				    aux->name, ret);
2044 			continue;
2045 		} else if (ret) {
2046 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2047 			continue;
2048 		}
2049 
2050 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2051 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2052 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2053 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2054 	}
2055 }
2056 
2057 /**
2058  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2059  * @aux: DisplayPort AUX channel
2060  *
2061  * Used for remote aux channel in general. Merely initialize the crc work
2062  * struct.
2063  */
2064 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2065 {
2066 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2067 }
2068 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2069 
2070 /**
2071  * drm_dp_aux_init() - minimally initialise an aux channel
2072  * @aux: DisplayPort AUX channel
2073  *
2074  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2075  * the outside world, call drm_dp_aux_init() first. For drivers which are
2076  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2077  * &drm_connector), you must still call drm_dp_aux_register() once the connector
2078  * has been registered to allow userspace access to the auxiliary DP channel.
2079  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2080  * early as possible so that the &drm_device that corresponds to the AUX adapter
2081  * may be mentioned in debugging output from the DRM DP helpers.
2082  *
2083  * For devices which use a separate platform device for their AUX adapters, this
2084  * may be called as early as required by the driver.
2085  *
2086  */
2087 void drm_dp_aux_init(struct drm_dp_aux *aux)
2088 {
2089 	mutex_init(&aux->hw_mutex);
2090 	mutex_init(&aux->cec.lock);
2091 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2092 
2093 	aux->ddc.algo = &drm_dp_i2c_algo;
2094 	aux->ddc.algo_data = aux;
2095 	aux->ddc.retries = 3;
2096 
2097 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2098 }
2099 EXPORT_SYMBOL(drm_dp_aux_init);
2100 
2101 /**
2102  * drm_dp_aux_register() - initialise and register aux channel
2103  * @aux: DisplayPort AUX channel
2104  *
2105  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2106  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2107  * initialized. For devices which are grandparents of their AUX channels,
2108  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2109  * corresponds to @aux. For these devices, it's advised to call
2110  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2111  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2112  * Functions which don't follow this will likely Oops when
2113  * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2114  *
2115  * For devices where the AUX channel is a device that exists independently of
2116  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2117  * recommended to call drm_dp_aux_register() after a &drm_device has been
2118  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2119  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2120  * with the AUX channel (e.g. on bridge detach).
2121  *
2122  * Drivers which need to use the aux channel before either of the two points
2123  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2124  * channel before registration.
2125  *
2126  * Returns 0 on success or a negative error code on failure.
2127  */
2128 int drm_dp_aux_register(struct drm_dp_aux *aux)
2129 {
2130 	int ret;
2131 
2132 	WARN_ON_ONCE(!aux->drm_dev);
2133 
2134 	if (!aux->ddc.algo)
2135 		drm_dp_aux_init(aux);
2136 
2137 	aux->ddc.class = I2C_CLASS_DDC;
2138 	aux->ddc.owner = THIS_MODULE;
2139 	aux->ddc.dev.parent = aux->dev;
2140 
2141 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2142 		sizeof(aux->ddc.name));
2143 
2144 	ret = drm_dp_aux_register_devnode(aux);
2145 	if (ret)
2146 		return ret;
2147 
2148 	ret = i2c_add_adapter(&aux->ddc);
2149 	if (ret) {
2150 		drm_dp_aux_unregister_devnode(aux);
2151 		return ret;
2152 	}
2153 
2154 	return 0;
2155 }
2156 EXPORT_SYMBOL(drm_dp_aux_register);
2157 
2158 /**
2159  * drm_dp_aux_unregister() - unregister an AUX adapter
2160  * @aux: DisplayPort AUX channel
2161  */
2162 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2163 {
2164 	drm_dp_aux_unregister_devnode(aux);
2165 	i2c_del_adapter(&aux->ddc);
2166 }
2167 EXPORT_SYMBOL(drm_dp_aux_unregister);
2168 
2169 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2170 
2171 /**
2172  * drm_dp_psr_setup_time() - PSR setup in time usec
2173  * @psr_cap: PSR capabilities from DPCD
2174  *
2175  * Returns:
2176  * PSR setup time for the panel in microseconds,  negative
2177  * error code on failure.
2178  */
2179 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2180 {
2181 	static const u16 psr_setup_time_us[] = {
2182 		PSR_SETUP_TIME(330),
2183 		PSR_SETUP_TIME(275),
2184 		PSR_SETUP_TIME(220),
2185 		PSR_SETUP_TIME(165),
2186 		PSR_SETUP_TIME(110),
2187 		PSR_SETUP_TIME(55),
2188 		PSR_SETUP_TIME(0),
2189 	};
2190 	int i;
2191 
2192 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2193 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2194 		return -EINVAL;
2195 
2196 	return psr_setup_time_us[i];
2197 }
2198 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2199 
2200 #undef PSR_SETUP_TIME
2201 
2202 /**
2203  * drm_dp_start_crc() - start capture of frame CRCs
2204  * @aux: DisplayPort AUX channel
2205  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2206  *
2207  * Returns 0 on success or a negative error code on failure.
2208  */
2209 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2210 {
2211 	u8 buf;
2212 	int ret;
2213 
2214 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2215 	if (ret < 0)
2216 		return ret;
2217 
2218 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2219 	if (ret < 0)
2220 		return ret;
2221 
2222 	aux->crc_count = 0;
2223 	aux->crtc = crtc;
2224 	schedule_work(&aux->crc_work);
2225 
2226 	return 0;
2227 }
2228 EXPORT_SYMBOL(drm_dp_start_crc);
2229 
2230 /**
2231  * drm_dp_stop_crc() - stop capture of frame CRCs
2232  * @aux: DisplayPort AUX channel
2233  *
2234  * Returns 0 on success or a negative error code on failure.
2235  */
2236 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2237 {
2238 	u8 buf;
2239 	int ret;
2240 
2241 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2242 	if (ret < 0)
2243 		return ret;
2244 
2245 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2246 	if (ret < 0)
2247 		return ret;
2248 
2249 	flush_work(&aux->crc_work);
2250 	aux->crtc = NULL;
2251 
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL(drm_dp_stop_crc);
2255 
2256 struct dpcd_quirk {
2257 	u8 oui[3];
2258 	u8 device_id[6];
2259 	bool is_branch;
2260 	u32 quirks;
2261 };
2262 
2263 #define OUI(first, second, third) { (first), (second), (third) }
2264 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2265 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2266 
2267 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2268 
2269 static const struct dpcd_quirk dpcd_quirk_list[] = {
2270 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2271 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2272 	/* LG LP140WF6-SPM1 eDP panel */
2273 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2274 	/* Apple panels need some additional handling to support PSR */
2275 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2276 	/* CH7511 seems to leave SINK_COUNT zeroed */
2277 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2278 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2279 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2280 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2281 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2282 };
2283 
2284 #undef OUI
2285 
2286 /*
2287  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2288  * ident. The quirk data is shared but it's up to the drivers to act on the
2289  * data.
2290  *
2291  * For now, only the OUI (first three bytes) is used, but this may be extended
2292  * to device identification string and hardware/firmware revisions later.
2293  */
2294 static u32
2295 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2296 {
2297 	const struct dpcd_quirk *quirk;
2298 	u32 quirks = 0;
2299 	int i;
2300 	u8 any_device[] = DEVICE_ID_ANY;
2301 
2302 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2303 		quirk = &dpcd_quirk_list[i];
2304 
2305 		if (quirk->is_branch != is_branch)
2306 			continue;
2307 
2308 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2309 			continue;
2310 
2311 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2312 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2313 			continue;
2314 
2315 		quirks |= quirk->quirks;
2316 	}
2317 
2318 	return quirks;
2319 }
2320 
2321 #undef DEVICE_ID_ANY
2322 #undef DEVICE_ID
2323 
2324 /**
2325  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2326  * @aux: DisplayPort AUX channel
2327  * @desc: Device descriptor to fill from DPCD
2328  * @is_branch: true for branch devices, false for sink devices
2329  *
2330  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2331  * identification.
2332  *
2333  * Returns 0 on success or a negative error code on failure.
2334  */
2335 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2336 		     bool is_branch)
2337 {
2338 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2339 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2340 	int ret, dev_id_len;
2341 
2342 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2343 	if (ret < 0)
2344 		return ret;
2345 
2346 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2347 
2348 	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2349 
2350 	drm_dbg_kms(aux->drm_dev,
2351 		    "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2352 		    aux->name, is_branch ? "branch" : "sink",
2353 		    (int)sizeof(ident->oui), ident->oui, dev_id_len,
2354 		    ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2355 		    ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2356 
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(drm_dp_read_desc);
2360 
2361 /**
2362  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2363  * supported by the DSC sink.
2364  * @dsc_dpcd: DSC capabilities from DPCD
2365  * @is_edp: true if its eDP, false for DP
2366  *
2367  * Read the slice capabilities DPCD register from DSC sink to get
2368  * the maximum slice count supported. This is used to populate
2369  * the DSC parameters in the &struct drm_dsc_config by the driver.
2370  * Driver creates an infoframe using these parameters to populate
2371  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2372  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2373  *
2374  * Returns:
2375  * Maximum slice count supported by DSC sink or 0 its invalid
2376  */
2377 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2378 				   bool is_edp)
2379 {
2380 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2381 
2382 	if (is_edp) {
2383 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2384 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2385 			return 4;
2386 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2387 			return 2;
2388 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2389 			return 1;
2390 	} else {
2391 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2392 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2393 
2394 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2395 			return 24;
2396 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2397 			return 20;
2398 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2399 			return 16;
2400 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2401 			return 12;
2402 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2403 			return 10;
2404 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2405 			return 8;
2406 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2407 			return 6;
2408 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2409 			return 4;
2410 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2411 			return 2;
2412 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2413 			return 1;
2414 	}
2415 
2416 	return 0;
2417 }
2418 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2419 
2420 /**
2421  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2422  * @dsc_dpcd: DSC capabilities from DPCD
2423  *
2424  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2425  * number of bits of precision within the decoder line buffer supported by
2426  * the DSC sink. This is used to populate the DSC parameters in the
2427  * &struct drm_dsc_config by the driver.
2428  * Driver creates an infoframe using these parameters to populate
2429  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2430  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2431  *
2432  * Returns:
2433  * Line buffer depth supported by DSC panel or 0 its invalid
2434  */
2435 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2436 {
2437 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2438 
2439 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2440 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2441 		return 9;
2442 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2443 		return 10;
2444 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2445 		return 11;
2446 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2447 		return 12;
2448 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2449 		return 13;
2450 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2451 		return 14;
2452 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2453 		return 15;
2454 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2455 		return 16;
2456 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2457 		return 8;
2458 	}
2459 
2460 	return 0;
2461 }
2462 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2463 
2464 /**
2465  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2466  * values supported by the DSC sink.
2467  * @dsc_dpcd: DSC capabilities from DPCD
2468  * @dsc_bpc: An array to be filled by this helper with supported
2469  *           input bpcs.
2470  *
2471  * Read the DSC DPCD from the sink device to parse the supported bits per
2472  * component values. This is used to populate the DSC parameters
2473  * in the &struct drm_dsc_config by the driver.
2474  * Driver creates an infoframe using these parameters to populate
2475  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2476  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2477  *
2478  * Returns:
2479  * Number of input BPC values parsed from the DPCD
2480  */
2481 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2482 					 u8 dsc_bpc[3])
2483 {
2484 	int num_bpc = 0;
2485 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2486 
2487 	if (color_depth & DP_DSC_12_BPC)
2488 		dsc_bpc[num_bpc++] = 12;
2489 	if (color_depth & DP_DSC_10_BPC)
2490 		dsc_bpc[num_bpc++] = 10;
2491 	if (color_depth & DP_DSC_8_BPC)
2492 		dsc_bpc[num_bpc++] = 8;
2493 
2494 	return num_bpc;
2495 }
2496 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2497 
2498 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2499 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2500 				  u8 *buf, int buf_size)
2501 {
2502 	/*
2503 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2504 	 * corrupted values when reading from the 0xF0000- range with a block
2505 	 * size bigger than 1.
2506 	 */
2507 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2508 	int offset;
2509 	int ret;
2510 
2511 	for (offset = 0; offset < buf_size; offset += block_size) {
2512 		ret = drm_dp_dpcd_read(aux,
2513 				       address + offset,
2514 				       &buf[offset], block_size);
2515 		if (ret < 0)
2516 			return ret;
2517 
2518 		WARN_ON(ret != block_size);
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 /**
2525  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2526  * @aux: DisplayPort AUX channel
2527  * @dpcd: DisplayPort configuration data
2528  * @caps: buffer to return the capability info in
2529  *
2530  * Read capabilities common to all LTTPRs.
2531  *
2532  * Returns 0 on success or a negative error code on failure.
2533  */
2534 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2535 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2536 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2537 {
2538 	return drm_dp_read_lttpr_regs(aux, dpcd,
2539 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2540 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2541 }
2542 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2543 
2544 /**
2545  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2546  * @aux: DisplayPort AUX channel
2547  * @dpcd: DisplayPort configuration data
2548  * @dp_phy: LTTPR PHY to read the capabilities for
2549  * @caps: buffer to return the capability info in
2550  *
2551  * Read the capabilities for the given LTTPR PHY.
2552  *
2553  * Returns 0 on success or a negative error code on failure.
2554  */
2555 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2556 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2557 			       enum drm_dp_phy dp_phy,
2558 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2559 {
2560 	return drm_dp_read_lttpr_regs(aux, dpcd,
2561 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2562 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2563 }
2564 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2565 
2566 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2567 {
2568 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2569 }
2570 
2571 /**
2572  * drm_dp_lttpr_count - get the number of detected LTTPRs
2573  * @caps: LTTPR common capabilities
2574  *
2575  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2576  *
2577  * Returns:
2578  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2579  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2580  *   otherwise the number of detected LTTPRs
2581  */
2582 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2583 {
2584 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2585 
2586 	switch (hweight8(count)) {
2587 	case 0:
2588 		return 0;
2589 	case 1:
2590 		return 8 - ilog2(count);
2591 	case 8:
2592 		return -ERANGE;
2593 	default:
2594 		return -EINVAL;
2595 	}
2596 }
2597 EXPORT_SYMBOL(drm_dp_lttpr_count);
2598 
2599 /**
2600  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2601  * @caps: LTTPR common capabilities
2602  *
2603  * Returns the maximum link rate supported by all detected LTTPRs.
2604  */
2605 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2606 {
2607 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2608 
2609 	return drm_dp_bw_code_to_link_rate(rate);
2610 }
2611 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2612 
2613 /**
2614  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2615  * @caps: LTTPR common capabilities
2616  *
2617  * Returns the maximum lane count supported by all detected LTTPRs.
2618  */
2619 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2620 {
2621 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2622 
2623 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2624 }
2625 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2626 
2627 /**
2628  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2629  * @caps: LTTPR PHY capabilities
2630  *
2631  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2632  * voltage swing level 3.
2633  */
2634 bool
2635 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2636 {
2637 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2638 
2639 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2640 }
2641 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2642 
2643 /**
2644  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2645  * @caps: LTTPR PHY capabilities
2646  *
2647  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2648  * pre-emphasis level 3.
2649  */
2650 bool
2651 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2652 {
2653 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2654 
2655 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2656 }
2657 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2658 
2659 /**
2660  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2661  * @aux: DisplayPort AUX channel
2662  * @data: DP phy compliance test parameters.
2663  *
2664  * Returns 0 on success or a negative error code on failure.
2665  */
2666 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2667 				struct drm_dp_phy_test_params *data)
2668 {
2669 	int err;
2670 	u8 rate, lanes;
2671 
2672 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2673 	if (err < 0)
2674 		return err;
2675 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2676 
2677 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2678 	if (err < 0)
2679 		return err;
2680 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2681 
2682 	if (lanes & DP_ENHANCED_FRAME_CAP)
2683 		data->enhanced_frame_cap = true;
2684 
2685 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2686 	if (err < 0)
2687 		return err;
2688 
2689 	switch (data->phy_pattern) {
2690 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2691 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2692 				       &data->custom80, sizeof(data->custom80));
2693 		if (err < 0)
2694 			return err;
2695 
2696 		break;
2697 	case DP_PHY_TEST_PATTERN_CP2520:
2698 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2699 				       &data->hbr2_reset,
2700 				       sizeof(data->hbr2_reset));
2701 		if (err < 0)
2702 			return err;
2703 	}
2704 
2705 	return 0;
2706 }
2707 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2708 
2709 /**
2710  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2711  * @aux: DisplayPort AUX channel
2712  * @data: DP phy compliance test parameters.
2713  * @dp_rev: DP revision to use for compliance testing
2714  *
2715  * Returns 0 on success or a negative error code on failure.
2716  */
2717 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2718 				struct drm_dp_phy_test_params *data, u8 dp_rev)
2719 {
2720 	int err, i;
2721 	u8 test_pattern;
2722 
2723 	test_pattern = data->phy_pattern;
2724 	if (dp_rev < 0x12) {
2725 		test_pattern = (test_pattern << 2) &
2726 			       DP_LINK_QUAL_PATTERN_11_MASK;
2727 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2728 					 test_pattern);
2729 		if (err < 0)
2730 			return err;
2731 	} else {
2732 		for (i = 0; i < data->num_lanes; i++) {
2733 			err = drm_dp_dpcd_writeb(aux,
2734 						 DP_LINK_QUAL_LANE0_SET + i,
2735 						 test_pattern);
2736 			if (err < 0)
2737 				return err;
2738 		}
2739 	}
2740 
2741 	return 0;
2742 }
2743 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2744 
2745 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2746 {
2747 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2748 		return "Invalid";
2749 
2750 	switch (pixelformat) {
2751 	case DP_PIXELFORMAT_RGB:
2752 		return "RGB";
2753 	case DP_PIXELFORMAT_YUV444:
2754 		return "YUV444";
2755 	case DP_PIXELFORMAT_YUV422:
2756 		return "YUV422";
2757 	case DP_PIXELFORMAT_YUV420:
2758 		return "YUV420";
2759 	case DP_PIXELFORMAT_Y_ONLY:
2760 		return "Y_ONLY";
2761 	case DP_PIXELFORMAT_RAW:
2762 		return "RAW";
2763 	default:
2764 		return "Reserved";
2765 	}
2766 }
2767 
2768 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2769 					   enum dp_colorimetry colorimetry)
2770 {
2771 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2772 		return "Invalid";
2773 
2774 	switch (colorimetry) {
2775 	case DP_COLORIMETRY_DEFAULT:
2776 		switch (pixelformat) {
2777 		case DP_PIXELFORMAT_RGB:
2778 			return "sRGB";
2779 		case DP_PIXELFORMAT_YUV444:
2780 		case DP_PIXELFORMAT_YUV422:
2781 		case DP_PIXELFORMAT_YUV420:
2782 			return "BT.601";
2783 		case DP_PIXELFORMAT_Y_ONLY:
2784 			return "DICOM PS3.14";
2785 		case DP_PIXELFORMAT_RAW:
2786 			return "Custom Color Profile";
2787 		default:
2788 			return "Reserved";
2789 		}
2790 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2791 		switch (pixelformat) {
2792 		case DP_PIXELFORMAT_RGB:
2793 			return "Wide Fixed";
2794 		case DP_PIXELFORMAT_YUV444:
2795 		case DP_PIXELFORMAT_YUV422:
2796 		case DP_PIXELFORMAT_YUV420:
2797 			return "BT.709";
2798 		default:
2799 			return "Reserved";
2800 		}
2801 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2802 		switch (pixelformat) {
2803 		case DP_PIXELFORMAT_RGB:
2804 			return "Wide Float";
2805 		case DP_PIXELFORMAT_YUV444:
2806 		case DP_PIXELFORMAT_YUV422:
2807 		case DP_PIXELFORMAT_YUV420:
2808 			return "xvYCC 601";
2809 		default:
2810 			return "Reserved";
2811 		}
2812 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2813 		switch (pixelformat) {
2814 		case DP_PIXELFORMAT_RGB:
2815 			return "OpRGB";
2816 		case DP_PIXELFORMAT_YUV444:
2817 		case DP_PIXELFORMAT_YUV422:
2818 		case DP_PIXELFORMAT_YUV420:
2819 			return "xvYCC 709";
2820 		default:
2821 			return "Reserved";
2822 		}
2823 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2824 		switch (pixelformat) {
2825 		case DP_PIXELFORMAT_RGB:
2826 			return "DCI-P3";
2827 		case DP_PIXELFORMAT_YUV444:
2828 		case DP_PIXELFORMAT_YUV422:
2829 		case DP_PIXELFORMAT_YUV420:
2830 			return "sYCC 601";
2831 		default:
2832 			return "Reserved";
2833 		}
2834 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2835 		switch (pixelformat) {
2836 		case DP_PIXELFORMAT_RGB:
2837 			return "Custom Profile";
2838 		case DP_PIXELFORMAT_YUV444:
2839 		case DP_PIXELFORMAT_YUV422:
2840 		case DP_PIXELFORMAT_YUV420:
2841 			return "OpYCC 601";
2842 		default:
2843 			return "Reserved";
2844 		}
2845 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2846 		switch (pixelformat) {
2847 		case DP_PIXELFORMAT_RGB:
2848 			return "BT.2020 RGB";
2849 		case DP_PIXELFORMAT_YUV444:
2850 		case DP_PIXELFORMAT_YUV422:
2851 		case DP_PIXELFORMAT_YUV420:
2852 			return "BT.2020 CYCC";
2853 		default:
2854 			return "Reserved";
2855 		}
2856 	case DP_COLORIMETRY_BT2020_YCC:
2857 		switch (pixelformat) {
2858 		case DP_PIXELFORMAT_YUV444:
2859 		case DP_PIXELFORMAT_YUV422:
2860 		case DP_PIXELFORMAT_YUV420:
2861 			return "BT.2020 YCC";
2862 		default:
2863 			return "Reserved";
2864 		}
2865 	default:
2866 		return "Invalid";
2867 	}
2868 }
2869 
2870 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2871 {
2872 	switch (dynamic_range) {
2873 	case DP_DYNAMIC_RANGE_VESA:
2874 		return "VESA range";
2875 	case DP_DYNAMIC_RANGE_CTA:
2876 		return "CTA range";
2877 	default:
2878 		return "Invalid";
2879 	}
2880 }
2881 
2882 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2883 {
2884 	switch (content_type) {
2885 	case DP_CONTENT_TYPE_NOT_DEFINED:
2886 		return "Not defined";
2887 	case DP_CONTENT_TYPE_GRAPHICS:
2888 		return "Graphics";
2889 	case DP_CONTENT_TYPE_PHOTO:
2890 		return "Photo";
2891 	case DP_CONTENT_TYPE_VIDEO:
2892 		return "Video";
2893 	case DP_CONTENT_TYPE_GAME:
2894 		return "Game";
2895 	default:
2896 		return "Reserved";
2897 	}
2898 }
2899 
2900 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2901 			const struct drm_dp_vsc_sdp *vsc)
2902 {
2903 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2904 	DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2905 		   vsc->revision, vsc->length);
2906 	DP_SDP_LOG("    pixelformat: %s\n",
2907 		   dp_pixelformat_get_name(vsc->pixelformat));
2908 	DP_SDP_LOG("    colorimetry: %s\n",
2909 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2910 	DP_SDP_LOG("    bpc: %u\n", vsc->bpc);
2911 	DP_SDP_LOG("    dynamic range: %s\n",
2912 		   dp_dynamic_range_get_name(vsc->dynamic_range));
2913 	DP_SDP_LOG("    content type: %s\n",
2914 		   dp_content_type_get_name(vsc->content_type));
2915 #undef DP_SDP_LOG
2916 }
2917 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2918 
2919 /**
2920  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2921  * @dpcd: DisplayPort configuration data
2922  * @port_cap: port capabilities
2923  *
2924  * Returns maximum frl bandwidth supported by PCON in GBPS,
2925  * returns 0 if not supported.
2926  */
2927 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2928 			       const u8 port_cap[4])
2929 {
2930 	int bw;
2931 	u8 buf;
2932 
2933 	buf = port_cap[2];
2934 	bw = buf & DP_PCON_MAX_FRL_BW;
2935 
2936 	switch (bw) {
2937 	case DP_PCON_MAX_9GBPS:
2938 		return 9;
2939 	case DP_PCON_MAX_18GBPS:
2940 		return 18;
2941 	case DP_PCON_MAX_24GBPS:
2942 		return 24;
2943 	case DP_PCON_MAX_32GBPS:
2944 		return 32;
2945 	case DP_PCON_MAX_40GBPS:
2946 		return 40;
2947 	case DP_PCON_MAX_48GBPS:
2948 		return 48;
2949 	case DP_PCON_MAX_0GBPS:
2950 	default:
2951 		return 0;
2952 	}
2953 
2954 	return 0;
2955 }
2956 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2957 
2958 /**
2959  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2960  * @aux: DisplayPort AUX channel
2961  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2962  *
2963  * Returns 0 if success, else returns negative error code.
2964  */
2965 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2966 {
2967 	int ret;
2968 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2969 		 DP_PCON_ENABLE_LINK_FRL_MODE;
2970 
2971 	if (enable_frl_ready_hpd)
2972 		buf |= DP_PCON_ENABLE_HPD_READY;
2973 
2974 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2975 
2976 	return ret;
2977 }
2978 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2979 
2980 /**
2981  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2982  * @aux: DisplayPort AUX channel
2983  *
2984  * Returns true if success, else returns false.
2985  */
2986 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2987 {
2988 	int ret;
2989 	u8 buf;
2990 
2991 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2992 	if (ret < 0)
2993 		return false;
2994 
2995 	if (buf & DP_PCON_FRL_READY)
2996 		return true;
2997 
2998 	return false;
2999 }
3000 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3001 
3002 /**
3003  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3004  * @aux: DisplayPort AUX channel
3005  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3006  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3007  * In Concurrent Mode, the FRL link bring up can be done along with
3008  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3009  * the DP Link training.
3010  *
3011  * Returns 0 if success, else returns negative error code.
3012  */
3013 
3014 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3015 				u8 frl_mode)
3016 {
3017 	int ret;
3018 	u8 buf;
3019 
3020 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3021 	if (ret < 0)
3022 		return ret;
3023 
3024 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3025 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3026 	else
3027 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3028 
3029 	switch (max_frl_gbps) {
3030 	case 9:
3031 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3032 		break;
3033 	case 18:
3034 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3035 		break;
3036 	case 24:
3037 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3038 		break;
3039 	case 32:
3040 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3041 		break;
3042 	case 40:
3043 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3044 		break;
3045 	case 48:
3046 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3047 		break;
3048 	case 0:
3049 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3050 		break;
3051 	default:
3052 		return -EINVAL;
3053 	}
3054 
3055 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3056 	if (ret < 0)
3057 		return ret;
3058 
3059 	return 0;
3060 }
3061 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3062 
3063 /**
3064  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3065  * @aux: DisplayPort AUX channel
3066  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3067  * @frl_type : FRL training type, can be Extended, or Normal.
3068  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3069  * starting from min, and stops when link training is successful. In Extended
3070  * FRL training, all frl bw selected in the mask are trained by the PCON.
3071  *
3072  * Returns 0 if success, else returns negative error code.
3073  */
3074 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3075 				u8 frl_type)
3076 {
3077 	int ret;
3078 	u8 buf = max_frl_mask;
3079 
3080 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3081 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3082 	else
3083 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3084 
3085 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3086 	if (ret < 0)
3087 		return ret;
3088 
3089 	return 0;
3090 }
3091 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3092 
3093 /**
3094  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3095  * @aux: DisplayPort AUX channel
3096  *
3097  * Returns 0 if success, else returns negative error code.
3098  */
3099 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3100 {
3101 	int ret;
3102 
3103 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3104 	if (ret < 0)
3105 		return ret;
3106 
3107 	return 0;
3108 }
3109 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3110 
3111 /**
3112  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3113  * @aux: DisplayPort AUX channel
3114  *
3115  * Returns 0 if success, else returns negative error code.
3116  */
3117 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3118 {
3119 	int ret;
3120 	u8 buf = 0;
3121 
3122 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3123 	if (ret < 0)
3124 		return ret;
3125 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3126 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3127 			    aux->name);
3128 		return -EINVAL;
3129 	}
3130 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3131 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3132 	if (ret < 0)
3133 		return ret;
3134 
3135 	return 0;
3136 }
3137 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3138 
3139 /**
3140  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3141  * @aux: DisplayPort AUX channel
3142  *
3143  * Returns true if link is active else returns false.
3144  */
3145 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3146 {
3147 	u8 buf;
3148 	int ret;
3149 
3150 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3151 	if (ret < 0)
3152 		return false;
3153 
3154 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3155 }
3156 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3157 
3158 /**
3159  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3160  * @aux: DisplayPort AUX channel
3161  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3162  * Valid only if the MODE returned is FRL. For Normal Link training mode
3163  * only 1 of the bits will be set, but in case of Extended mode, more than
3164  * one bits can be set.
3165  *
3166  * Returns the link mode : TMDS or FRL on success, else returns negative error
3167  * code.
3168  */
3169 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3170 {
3171 	u8 buf;
3172 	int mode;
3173 	int ret;
3174 
3175 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3176 	if (ret < 0)
3177 		return ret;
3178 
3179 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3180 
3181 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3182 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3183 
3184 	return mode;
3185 }
3186 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3187 
3188 /**
3189  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3190  * during link failure between PCON and HDMI sink
3191  * @aux: DisplayPort AUX channel
3192  * @connector: DRM connector
3193  * code.
3194  **/
3195 
3196 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3197 					   struct drm_connector *connector)
3198 {
3199 	u8 buf, error_count;
3200 	int i, num_error;
3201 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3202 
3203 	for (i = 0; i < hdmi->max_lanes; i++) {
3204 		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3205 			return;
3206 
3207 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3208 		switch (error_count) {
3209 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3210 			num_error = 100;
3211 			break;
3212 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3213 			num_error = 10;
3214 			break;
3215 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3216 			num_error = 3;
3217 			break;
3218 		default:
3219 			num_error = 0;
3220 		}
3221 
3222 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3223 			aux->name, num_error, i);
3224 	}
3225 }
3226 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3227 
3228 /*
3229  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3230  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3231  *
3232  * Returns true is PCON encoder is DSC 1.2 else returns false.
3233  */
3234 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3235 {
3236 	u8 buf;
3237 	u8 major_v, minor_v;
3238 
3239 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3240 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3241 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3242 
3243 	if (major_v == 1 && minor_v == 2)
3244 		return true;
3245 
3246 	return false;
3247 }
3248 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3249 
3250 /*
3251  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3252  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3253  *
3254  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3255  */
3256 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3257 {
3258 	u8 slice_cap1, slice_cap2;
3259 
3260 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3261 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3262 
3263 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3264 		return 24;
3265 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3266 		return 20;
3267 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3268 		return 16;
3269 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3270 		return 12;
3271 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3272 		return 10;
3273 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3274 		return 8;
3275 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3276 		return 6;
3277 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3278 		return 4;
3279 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3280 		return 2;
3281 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3282 		return 1;
3283 
3284 	return 0;
3285 }
3286 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3287 
3288 /*
3289  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3290  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3291  *
3292  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3293  */
3294 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3295 {
3296 	u8 buf;
3297 
3298 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3299 
3300 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3301 }
3302 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3303 
3304 /*
3305  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3306  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3307  *
3308  * Returns the bpp precision supported by the PCON encoder.
3309  */
3310 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3311 {
3312 	u8 buf;
3313 
3314 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3315 
3316 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3317 	case DP_PCON_DSC_ONE_16TH_BPP:
3318 		return 16;
3319 	case DP_PCON_DSC_ONE_8TH_BPP:
3320 		return 8;
3321 	case DP_PCON_DSC_ONE_4TH_BPP:
3322 		return 4;
3323 	case DP_PCON_DSC_ONE_HALF_BPP:
3324 		return 2;
3325 	case DP_PCON_DSC_ONE_BPP:
3326 		return 1;
3327 	}
3328 
3329 	return 0;
3330 }
3331 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3332 
3333 static
3334 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3335 {
3336 	u8 buf;
3337 	int ret;
3338 
3339 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3340 	if (ret < 0)
3341 		return ret;
3342 
3343 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3344 
3345 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3346 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3347 		buf |= pps_buf_config << 2;
3348 	}
3349 
3350 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3351 	if (ret < 0)
3352 		return ret;
3353 
3354 	return 0;
3355 }
3356 
3357 /**
3358  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3359  * for DSC1.2 between PCON & HDMI2.1 sink
3360  * @aux: DisplayPort AUX channel
3361  *
3362  * Returns 0 on success, else returns negative error code.
3363  */
3364 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3365 {
3366 	int ret;
3367 
3368 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3369 	if (ret < 0)
3370 		return ret;
3371 
3372 	return 0;
3373 }
3374 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3375 
3376 /**
3377  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3378  * HDMI sink
3379  * @aux: DisplayPort AUX channel
3380  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3381  *
3382  * Returns 0 on success, else returns negative error code.
3383  */
3384 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3385 {
3386 	int ret;
3387 
3388 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3389 	if (ret < 0)
3390 		return ret;
3391 
3392 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3393 	if (ret < 0)
3394 		return ret;
3395 
3396 	return 0;
3397 }
3398 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3399 
3400 /*
3401  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3402  * override registers
3403  * @aux: DisplayPort AUX channel
3404  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3405  * bits_per_pixel.
3406  *
3407  * Returns 0 on success, else returns negative error code.
3408  */
3409 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3410 {
3411 	int ret;
3412 
3413 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3414 	if (ret < 0)
3415 		return ret;
3416 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3417 	if (ret < 0)
3418 		return ret;
3419 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3420 	if (ret < 0)
3421 		return ret;
3422 
3423 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3424 	if (ret < 0)
3425 		return ret;
3426 
3427 	return 0;
3428 }
3429 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3430 
3431 /*
3432  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3433  * @aux: displayPort AUX channel
3434  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3435  *
3436  * Returns 0 on success, else returns negative error code.
3437  */
3438 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3439 {
3440 	int ret;
3441 	u8 buf;
3442 
3443 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3444 	if (ret < 0)
3445 		return ret;
3446 
3447 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3448 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3449 	else
3450 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3451 
3452 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3453 	if (ret < 0)
3454 		return ret;
3455 
3456 	return 0;
3457 }
3458 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3459 
3460 /**
3461  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3462  * @aux: The DP AUX channel to use
3463  * @bl: Backlight capability info from drm_edp_backlight_init()
3464  * @level: The brightness level to set
3465  *
3466  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3467  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3468  *
3469  * Returns: %0 on success, negative error code on failure
3470  */
3471 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3472 				u16 level)
3473 {
3474 	int ret;
3475 	u8 buf[2] = { 0 };
3476 
3477 	/* The panel uses the PWM for controlling brightness levels */
3478 	if (!bl->aux_set)
3479 		return 0;
3480 
3481 	if (bl->lsb_reg_used) {
3482 		buf[0] = (level & 0xff00) >> 8;
3483 		buf[1] = (level & 0x00ff);
3484 	} else {
3485 		buf[0] = level;
3486 	}
3487 
3488 	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3489 	if (ret != sizeof(buf)) {
3490 		drm_err(aux->drm_dev,
3491 			"%s: Failed to write aux backlight level: %d\n",
3492 			aux->name, ret);
3493 		return ret < 0 ? ret : -EIO;
3494 	}
3495 
3496 	return 0;
3497 }
3498 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3499 
3500 static int
3501 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3502 			     bool enable)
3503 {
3504 	int ret;
3505 	u8 buf;
3506 
3507 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3508 	if (!bl->aux_enable)
3509 		return 0;
3510 
3511 	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3512 	if (ret != 1) {
3513 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3514 			aux->name, ret);
3515 		return ret < 0 ? ret : -EIO;
3516 	}
3517 	if (enable)
3518 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3519 	else
3520 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3521 
3522 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3523 	if (ret != 1) {
3524 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3525 			aux->name, ret);
3526 		return ret < 0 ? ret : -EIO;
3527 	}
3528 
3529 	return 0;
3530 }
3531 
3532 /**
3533  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3534  * @aux: The DP AUX channel to use
3535  * @bl: Backlight capability info from drm_edp_backlight_init()
3536  * @level: The initial backlight level to set via AUX, if there is one
3537  *
3538  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3539  * restoring any important backlight state such as the given backlight level, the brightness byte
3540  * count, backlight frequency, etc.
3541  *
3542  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3543  * that the driver handle enabling/disabling the panel through implementation-specific means using
3544  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3545  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3546  * the EDP_BL_PWR GPIO.
3547  *
3548  * Returns: %0 on success, negative error code on failure.
3549  */
3550 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3551 			     const u16 level)
3552 {
3553 	int ret;
3554 	u8 dpcd_buf;
3555 
3556 	if (bl->aux_set)
3557 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3558 	else
3559 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3560 
3561 	if (bl->pwmgen_bit_count) {
3562 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3563 		if (ret != 1)
3564 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3565 				    aux->name, ret);
3566 	}
3567 
3568 	if (bl->pwm_freq_pre_divider) {
3569 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3570 		if (ret != 1)
3571 			drm_dbg_kms(aux->drm_dev,
3572 				    "%s: Failed to write aux backlight frequency: %d\n",
3573 				    aux->name, ret);
3574 		else
3575 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3576 	}
3577 
3578 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3579 	if (ret != 1) {
3580 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3581 			    aux->name, ret);
3582 		return ret < 0 ? ret : -EIO;
3583 	}
3584 
3585 	ret = drm_edp_backlight_set_level(aux, bl, level);
3586 	if (ret < 0)
3587 		return ret;
3588 	ret = drm_edp_backlight_set_enable(aux, bl, true);
3589 	if (ret < 0)
3590 		return ret;
3591 
3592 	return 0;
3593 }
3594 EXPORT_SYMBOL(drm_edp_backlight_enable);
3595 
3596 /**
3597  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3598  * @aux: The DP AUX channel to use
3599  * @bl: Backlight capability info from drm_edp_backlight_init()
3600  *
3601  * This function handles disabling DPCD backlight controls on a panel over AUX.
3602  *
3603  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3604  * that the driver handle enabling/disabling the panel through implementation-specific means using
3605  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3606  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3607  * the EDP_BL_PWR GPIO.
3608  *
3609  * Returns: %0 on success or no-op, negative error code on failure.
3610  */
3611 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3612 {
3613 	int ret;
3614 
3615 	ret = drm_edp_backlight_set_enable(aux, bl, false);
3616 	if (ret < 0)
3617 		return ret;
3618 
3619 	return 0;
3620 }
3621 EXPORT_SYMBOL(drm_edp_backlight_disable);
3622 
3623 static inline int
3624 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3625 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3626 {
3627 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3628 	int ret;
3629 	u8 pn, pn_min, pn_max;
3630 
3631 	if (!bl->aux_set)
3632 		return 0;
3633 
3634 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3635 	if (ret != 1) {
3636 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3637 			    aux->name, ret);
3638 		return -ENODEV;
3639 	}
3640 
3641 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3642 	bl->max = (1 << pn) - 1;
3643 	if (!driver_pwm_freq_hz)
3644 		return 0;
3645 
3646 	/*
3647 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3648 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3649 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3650 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3651 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3652 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3653 	 */
3654 
3655 	/* Find desired value of (F x P)
3656 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3657 	 * applied automatically. So no need to check that.
3658 	 */
3659 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3660 
3661 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3662 	 * satisfying the conditions below.
3663 	 * - Pn is in the range of Pn_min and Pn_max
3664 	 * - F is in the range of 1 and 255
3665 	 * - FxP is within 25% of desired value.
3666 	 *   Note: 25% is arbitrary value and may need some tweak.
3667 	 */
3668 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3669 	if (ret != 1) {
3670 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3671 			    aux->name, ret);
3672 		return 0;
3673 	}
3674 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3675 	if (ret != 1) {
3676 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3677 			    aux->name, ret);
3678 		return 0;
3679 	}
3680 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3681 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3682 
3683 	/* Ensure frequency is within 25% of desired value */
3684 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3685 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3686 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3687 		drm_dbg_kms(aux->drm_dev,
3688 			    "%s: Driver defined backlight frequency (%d) out of range\n",
3689 			    aux->name, driver_pwm_freq_hz);
3690 		return 0;
3691 	}
3692 
3693 	for (pn = pn_max; pn >= pn_min; pn--) {
3694 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3695 		fxp_actual = f << pn;
3696 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3697 			break;
3698 	}
3699 
3700 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3701 	if (ret != 1) {
3702 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3703 			    aux->name, ret);
3704 		return 0;
3705 	}
3706 	bl->pwmgen_bit_count = pn;
3707 	bl->max = (1 << pn) - 1;
3708 
3709 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3710 		bl->pwm_freq_pre_divider = f;
3711 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3712 			    aux->name, driver_pwm_freq_hz);
3713 	}
3714 
3715 	return 0;
3716 }
3717 
3718 static inline int
3719 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3720 			      u8 *current_mode)
3721 {
3722 	int ret;
3723 	u8 buf[2];
3724 	u8 mode_reg;
3725 
3726 	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3727 	if (ret != 1) {
3728 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3729 			    aux->name, ret);
3730 		return ret < 0 ? ret : -EIO;
3731 	}
3732 
3733 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3734 	if (!bl->aux_set)
3735 		return 0;
3736 
3737 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3738 		int size = 1 + bl->lsb_reg_used;
3739 
3740 		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3741 		if (ret != size) {
3742 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3743 				    aux->name, ret);
3744 			return ret < 0 ? ret : -EIO;
3745 		}
3746 
3747 		if (bl->lsb_reg_used)
3748 			return (buf[0] << 8) | buf[1];
3749 		else
3750 			return buf[0];
3751 	}
3752 
3753 	/*
3754 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3755 	 * the driver should assume max brightness
3756 	 */
3757 	return bl->max;
3758 }
3759 
3760 /**
3761  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3762  * interface.
3763  * @aux: The DP aux device to use for probing
3764  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3765  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3766  * @edp_dpcd: A cached copy of the eDP DPCD
3767  * @current_level: Where to store the probed brightness level, if any
3768  * @current_mode: Where to store the currently set backlight control mode
3769  *
3770  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3771  * along with also probing the current and maximum supported brightness levels.
3772  *
3773  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3774  * default frequency from the panel is used.
3775  *
3776  * Returns: %0 on success, negative error code on failure.
3777  */
3778 int
3779 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3780 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3781 		       u16 *current_level, u8 *current_mode)
3782 {
3783 	int ret;
3784 
3785 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3786 		bl->aux_enable = true;
3787 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3788 		bl->aux_set = true;
3789 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3790 		bl->lsb_reg_used = true;
3791 
3792 	/* Sanity check caps */
3793 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3794 		drm_dbg_kms(aux->drm_dev,
3795 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3796 			    aux->name);
3797 		return -EINVAL;
3798 	}
3799 
3800 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3801 	if (ret < 0)
3802 		return ret;
3803 
3804 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3805 	if (ret < 0)
3806 		return ret;
3807 	*current_level = ret;
3808 
3809 	drm_dbg_kms(aux->drm_dev,
3810 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3811 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3812 	if (bl->aux_set) {
3813 		drm_dbg_kms(aux->drm_dev,
3814 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3815 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3816 			    bl->lsb_reg_used);
3817 	}
3818 
3819 	return 0;
3820 }
3821 EXPORT_SYMBOL(drm_edp_backlight_init);
3822 
3823 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3824 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3825 
3826 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3827 {
3828 	struct dp_aux_backlight *bl = bl_get_data(bd);
3829 	u16 brightness = backlight_get_brightness(bd);
3830 	int ret = 0;
3831 
3832 	if (!backlight_is_blank(bd)) {
3833 		if (!bl->enabled) {
3834 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3835 			bl->enabled = true;
3836 			return 0;
3837 		}
3838 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3839 	} else {
3840 		if (bl->enabled) {
3841 			drm_edp_backlight_disable(bl->aux, &bl->info);
3842 			bl->enabled = false;
3843 		}
3844 	}
3845 
3846 	return ret;
3847 }
3848 
3849 static const struct backlight_ops dp_aux_bl_ops = {
3850 	.update_status = dp_aux_backlight_update_status,
3851 };
3852 
3853 /**
3854  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3855  * @panel: DRM panel
3856  * @aux: The DP AUX channel to use
3857  *
3858  * Use this function to create and handle backlight if your panel
3859  * supports backlight control over DP AUX channel using DPCD
3860  * registers as per VESA's standard backlight control interface.
3861  *
3862  * When the panel is enabled backlight will be enabled after a
3863  * successful call to &drm_panel_funcs.enable()
3864  *
3865  * When the panel is disabled backlight will be disabled before the
3866  * call to &drm_panel_funcs.disable().
3867  *
3868  * A typical implementation for a panel driver supporting backlight
3869  * control over DP AUX will call this function at probe time.
3870  * Backlight will then be handled transparently without requiring
3871  * any intervention from the driver.
3872  *
3873  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3874  *
3875  * Return: 0 on success or a negative error code on failure.
3876  */
3877 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3878 {
3879 	struct dp_aux_backlight *bl;
3880 	struct backlight_properties props = { 0 };
3881 	u16 current_level;
3882 	u8 current_mode;
3883 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3884 	int ret;
3885 
3886 	if (!panel || !panel->dev || !aux)
3887 		return -EINVAL;
3888 
3889 	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3890 			       EDP_DISPLAY_CTL_CAP_SIZE);
3891 	if (ret < 0)
3892 		return ret;
3893 
3894 	if (!drm_edp_backlight_supported(edp_dpcd)) {
3895 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3896 		return 0;
3897 	}
3898 
3899 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3900 	if (!bl)
3901 		return -ENOMEM;
3902 
3903 	bl->aux = aux;
3904 
3905 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3906 				     &current_level, &current_mode);
3907 	if (ret < 0)
3908 		return ret;
3909 
3910 	props.type = BACKLIGHT_RAW;
3911 	props.brightness = current_level;
3912 	props.max_brightness = bl->info.max;
3913 
3914 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3915 						  panel->dev, bl,
3916 						  &dp_aux_bl_ops, &props);
3917 	if (IS_ERR(bl->base))
3918 		return PTR_ERR(bl->base);
3919 
3920 	backlight_disable(bl->base);
3921 
3922 	panel->backlight = bl->base;
3923 
3924 	return 0;
3925 }
3926 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3927 
3928 #endif
3929