1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/auxiliary_bus.h> 9 #include <linux/bitfield.h> 10 #include <linux/bits.h> 11 #include <linux/clk.h> 12 #include <linux/debugfs.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/gpio/driver.h> 15 #include <linux/i2c.h> 16 #include <linux/iopoll.h> 17 #include <linux/module.h> 18 #include <linux/of_graph.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/pwm.h> 21 #include <linux/regmap.h> 22 #include <linux/regulator/consumer.h> 23 24 #include <asm/unaligned.h> 25 26 #include <drm/display/drm_dp_aux_bus.h> 27 #include <drm/display/drm_dp_helper.h> 28 #include <drm/drm_atomic.h> 29 #include <drm/drm_atomic_helper.h> 30 #include <drm/drm_bridge.h> 31 #include <drm/drm_bridge_connector.h> 32 #include <drm/drm_edid.h> 33 #include <drm/drm_mipi_dsi.h> 34 #include <drm/drm_of.h> 35 #include <drm/drm_panel.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_probe_helper.h> 38 39 #define SN_DEVICE_REV_REG 0x08 40 #define SN_DPPLL_SRC_REG 0x0A 41 #define DPPLL_CLK_SRC_DSICLK BIT(0) 42 #define REFCLK_FREQ_MASK GENMASK(3, 1) 43 #define REFCLK_FREQ(x) ((x) << 1) 44 #define DPPLL_SRC_DP_PLL_LOCK BIT(7) 45 #define SN_PLL_ENABLE_REG 0x0D 46 #define SN_DSI_LANES_REG 0x10 47 #define CHA_DSI_LANES_MASK GENMASK(4, 3) 48 #define CHA_DSI_LANES(x) ((x) << 3) 49 #define SN_DSIA_CLK_FREQ_REG 0x12 50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20 51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24 52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C 53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D 54 #define CHA_HSYNC_POLARITY BIT(7) 55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30 56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31 57 #define CHA_VSYNC_POLARITY BIT(7) 58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34 59 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36 60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38 61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A 62 #define SN_LN_ASSIGN_REG 0x59 63 #define LN_ASSIGN_WIDTH 2 64 #define SN_ENH_FRAME_REG 0x5A 65 #define VSTREAM_ENABLE BIT(3) 66 #define LN_POLRS_OFFSET 4 67 #define LN_POLRS_MASK 0xf0 68 #define SN_DATA_FORMAT_REG 0x5B 69 #define BPP_18_RGB BIT(0) 70 #define SN_HPD_DISABLE_REG 0x5C 71 #define HPD_DISABLE BIT(0) 72 #define HPD_DEBOUNCED_STATE BIT(4) 73 #define SN_GPIO_IO_REG 0x5E 74 #define SN_GPIO_INPUT_SHIFT 4 75 #define SN_GPIO_OUTPUT_SHIFT 0 76 #define SN_GPIO_CTRL_REG 0x5F 77 #define SN_GPIO_MUX_INPUT 0 78 #define SN_GPIO_MUX_OUTPUT 1 79 #define SN_GPIO_MUX_SPECIAL 2 80 #define SN_GPIO_MUX_MASK 0x3 81 #define SN_AUX_WDATA_REG(x) (0x64 + (x)) 82 #define SN_AUX_ADDR_19_16_REG 0x74 83 #define SN_AUX_ADDR_15_8_REG 0x75 84 #define SN_AUX_ADDR_7_0_REG 0x76 85 #define SN_AUX_ADDR_MASK GENMASK(19, 0) 86 #define SN_AUX_LENGTH_REG 0x77 87 #define SN_AUX_CMD_REG 0x78 88 #define AUX_CMD_SEND BIT(0) 89 #define AUX_CMD_REQ(x) ((x) << 4) 90 #define SN_AUX_RDATA_REG(x) (0x79 + (x)) 91 #define SN_SSC_CONFIG_REG 0x93 92 #define DP_NUM_LANES_MASK GENMASK(5, 4) 93 #define DP_NUM_LANES(x) ((x) << 4) 94 #define SN_DATARATE_CONFIG_REG 0x94 95 #define DP_DATARATE_MASK GENMASK(7, 5) 96 #define DP_DATARATE(x) ((x) << 5) 97 #define SN_TRAINING_SETTING_REG 0x95 98 #define SCRAMBLE_DISABLE BIT(4) 99 #define SN_ML_TX_MODE_REG 0x96 100 #define ML_TX_MAIN_LINK_OFF 0 101 #define ML_TX_NORMAL_MODE BIT(0) 102 #define SN_PWM_PRE_DIV_REG 0xA0 103 #define SN_BACKLIGHT_SCALE_REG 0xA1 104 #define BACKLIGHT_SCALE_MAX 0xFFFF 105 #define SN_BACKLIGHT_REG 0xA3 106 #define SN_PWM_EN_INV_REG 0xA5 107 #define SN_PWM_INV_MASK BIT(0) 108 #define SN_PWM_EN_MASK BIT(1) 109 #define SN_AUX_CMD_STATUS_REG 0xF4 110 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) 111 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) 112 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6) 113 114 #define MIN_DSI_CLK_FREQ_MHZ 40 115 116 /* fudge factor required to account for 8b/10b encoding */ 117 #define DP_CLK_FUDGE_NUM 10 118 #define DP_CLK_FUDGE_DEN 8 119 120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */ 121 #define SN_AUX_MAX_PAYLOAD_BYTES 16 122 123 #define SN_REGULATOR_SUPPLY_NUM 4 124 125 #define SN_MAX_DP_LANES 4 126 #define SN_NUM_GPIOS 4 127 #define SN_GPIO_PHYSICAL_OFFSET 1 128 129 #define SN_LINK_TRAINING_TRIES 10 130 131 #define SN_PWM_GPIO_IDX 3 /* 4th GPIO */ 132 133 /** 134 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver. 135 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality. 136 * @gpio_aux: AUX-bus sub device for GPIO controller functionality. 137 * @aux_aux: AUX-bus sub device for eDP AUX channel functionality. 138 * @pwm_aux: AUX-bus sub device for PWM controller functionality. 139 * 140 * @dev: Pointer to the top level (i2c) device. 141 * @regmap: Regmap for accessing i2c. 142 * @aux: Our aux channel. 143 * @bridge: Our bridge. 144 * @connector: Our connector. 145 * @host_node: Remote DSI node. 146 * @dsi: Our MIPI DSI source. 147 * @refclk: Our reference clock. 148 * @next_bridge: The bridge on the eDP side. 149 * @enable_gpio: The GPIO we toggle to enable the bridge. 150 * @supplies: Data for bulk enabling/disabling our regulators. 151 * @dp_lanes: Count of dp_lanes we're using. 152 * @ln_assign: Value to program to the LN_ASSIGN register. 153 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG. 154 * @comms_enabled: If true then communication over the aux channel is enabled. 155 * @comms_mutex: Protects modification of comms_enabled. 156 * 157 * @gchip: If we expose our GPIOs, this is used. 158 * @gchip_output: A cache of whether we've set GPIOs to output. This 159 * serves double-duty of keeping track of the direction and 160 * also keeping track of whether we've incremented the 161 * pm_runtime reference count for this pin, which we do 162 * whenever a pin is configured as an output. This is a 163 * bitmap so we can do atomic ops on it without an extra 164 * lock so concurrent users of our 4 GPIOs don't stomp on 165 * each other's read-modify-write. 166 * 167 * @pchip: pwm_chip if the PWM is exposed. 168 * @pwm_enabled: Used to track if the PWM signal is currently enabled. 169 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM. 170 * @pwm_refclk_freq: Cache for the reference clock input to the PWM. 171 */ 172 struct ti_sn65dsi86 { 173 struct auxiliary_device *bridge_aux; 174 struct auxiliary_device *gpio_aux; 175 struct auxiliary_device *aux_aux; 176 struct auxiliary_device *pwm_aux; 177 178 struct device *dev; 179 struct regmap *regmap; 180 struct drm_dp_aux aux; 181 struct drm_bridge bridge; 182 struct drm_connector *connector; 183 struct device_node *host_node; 184 struct mipi_dsi_device *dsi; 185 struct clk *refclk; 186 struct drm_bridge *next_bridge; 187 struct gpio_desc *enable_gpio; 188 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM]; 189 int dp_lanes; 190 u8 ln_assign; 191 u8 ln_polrs; 192 bool comms_enabled; 193 struct mutex comms_mutex; 194 195 #if defined(CONFIG_OF_GPIO) 196 struct gpio_chip gchip; 197 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); 198 #endif 199 #if defined(CONFIG_PWM) 200 struct pwm_chip pchip; 201 bool pwm_enabled; 202 atomic_t pwm_pin_busy; 203 #endif 204 unsigned int pwm_refclk_freq; 205 }; 206 207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = { 208 { .range_min = 0, .range_max = 0xFF }, 209 }; 210 211 static const struct regmap_access_table ti_sn_bridge_volatile_table = { 212 .yes_ranges = ti_sn65dsi86_volatile_ranges, 213 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges), 214 }; 215 216 static const struct regmap_config ti_sn65dsi86_regmap_config = { 217 .reg_bits = 8, 218 .val_bits = 8, 219 .volatile_table = &ti_sn_bridge_volatile_table, 220 .cache_type = REGCACHE_NONE, 221 .max_register = 0xFF, 222 }; 223 224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata, 225 unsigned int reg, u16 *val) 226 { 227 u8 buf[2]; 228 int ret; 229 230 ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); 231 if (ret) 232 return ret; 233 234 *val = buf[0] | (buf[1] << 8); 235 236 return 0; 237 } 238 239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata, 240 unsigned int reg, u16 val) 241 { 242 u8 buf[2] = { val & 0xff, val >> 8 }; 243 244 regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); 245 } 246 247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata) 248 { 249 u32 bit_rate_khz, clk_freq_khz; 250 struct drm_display_mode *mode = 251 &pdata->bridge.encoder->crtc->state->adjusted_mode; 252 253 bit_rate_khz = mode->clock * 254 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 255 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2); 256 257 return clk_freq_khz; 258 } 259 260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */ 261 static const u32 ti_sn_bridge_refclk_lut[] = { 262 12000000, 263 19200000, 264 26000000, 265 27000000, 266 38400000, 267 }; 268 269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */ 270 static const u32 ti_sn_bridge_dsiclk_lut[] = { 271 468000000, 272 384000000, 273 416000000, 274 486000000, 275 460800000, 276 }; 277 278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata) 279 { 280 int i; 281 u32 refclk_rate; 282 const u32 *refclk_lut; 283 size_t refclk_lut_size; 284 285 if (pdata->refclk) { 286 refclk_rate = clk_get_rate(pdata->refclk); 287 refclk_lut = ti_sn_bridge_refclk_lut; 288 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut); 289 clk_prepare_enable(pdata->refclk); 290 } else { 291 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000; 292 refclk_lut = ti_sn_bridge_dsiclk_lut; 293 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut); 294 } 295 296 /* for i equals to refclk_lut_size means default frequency */ 297 for (i = 0; i < refclk_lut_size; i++) 298 if (refclk_lut[i] == refclk_rate) 299 break; 300 301 /* avoid buffer overflow and "1" is the default rate in the datasheet. */ 302 if (i >= refclk_lut_size) 303 i = 1; 304 305 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, 306 REFCLK_FREQ(i)); 307 308 /* 309 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG, 310 * regardless of its actual sourcing. 311 */ 312 pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i]; 313 } 314 315 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata) 316 { 317 mutex_lock(&pdata->comms_mutex); 318 319 /* configure bridge ref_clk */ 320 ti_sn_bridge_set_refclk_freq(pdata); 321 322 /* 323 * HPD on this bridge chip is a bit useless. This is an eDP bridge 324 * so the HPD is an internal signal that's only there to signal that 325 * the panel is done powering up. ...but the bridge chip debounces 326 * this signal by between 100 ms and 400 ms (depending on process, 327 * voltage, and temperate--I measured it at about 200 ms). One 328 * particular panel asserted HPD 84 ms after it was powered on meaning 329 * that we saw HPD 284 ms after power on. ...but the same panel said 330 * that instead of looking at HPD you could just hardcode a delay of 331 * 200 ms. We'll assume that the panel driver will have the hardcoded 332 * delay in its prepare and always disable HPD. 333 * 334 * If HPD somehow makes sense on some future panel we'll have to 335 * change this to be conditional on someone specifying that HPD should 336 * be used. 337 */ 338 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE, 339 HPD_DISABLE); 340 341 pdata->comms_enabled = true; 342 343 mutex_unlock(&pdata->comms_mutex); 344 } 345 346 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata) 347 { 348 mutex_lock(&pdata->comms_mutex); 349 350 pdata->comms_enabled = false; 351 clk_disable_unprepare(pdata->refclk); 352 353 mutex_unlock(&pdata->comms_mutex); 354 } 355 356 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev) 357 { 358 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 359 int ret; 360 361 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 362 if (ret) { 363 DRM_ERROR("failed to enable supplies %d\n", ret); 364 return ret; 365 } 366 367 /* td2: min 100 us after regulators before enabling the GPIO */ 368 usleep_range(100, 110); 369 370 gpiod_set_value_cansleep(pdata->enable_gpio, 1); 371 372 /* 373 * If we have a reference clock we can enable communication w/ the 374 * panel (including the aux channel) w/out any need for an input clock 375 * so we can do it in resume which lets us read the EDID before 376 * pre_enable(). Without a reference clock we need the MIPI reference 377 * clock so reading early doesn't work. 378 */ 379 if (pdata->refclk) 380 ti_sn65dsi86_enable_comms(pdata); 381 382 return ret; 383 } 384 385 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev) 386 { 387 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 388 int ret; 389 390 if (pdata->refclk) 391 ti_sn65dsi86_disable_comms(pdata); 392 393 gpiod_set_value_cansleep(pdata->enable_gpio, 0); 394 395 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 396 if (ret) 397 DRM_ERROR("failed to disable supplies %d\n", ret); 398 399 return ret; 400 } 401 402 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = { 403 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL) 404 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 405 pm_runtime_force_resume) 406 }; 407 408 static int status_show(struct seq_file *s, void *data) 409 { 410 struct ti_sn65dsi86 *pdata = s->private; 411 unsigned int reg, val; 412 413 seq_puts(s, "STATUS REGISTERS:\n"); 414 415 pm_runtime_get_sync(pdata->dev); 416 417 /* IRQ Status Registers, see Table 31 in datasheet */ 418 for (reg = 0xf0; reg <= 0xf8; reg++) { 419 regmap_read(pdata->regmap, reg, &val); 420 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val); 421 } 422 423 pm_runtime_put_autosuspend(pdata->dev); 424 425 return 0; 426 } 427 428 DEFINE_SHOW_ATTRIBUTE(status); 429 430 static void ti_sn65dsi86_debugfs_remove(void *data) 431 { 432 debugfs_remove_recursive(data); 433 } 434 435 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata) 436 { 437 struct device *dev = pdata->dev; 438 struct dentry *debugfs; 439 int ret; 440 441 debugfs = debugfs_create_dir(dev_name(dev), NULL); 442 443 /* 444 * We might get an error back if debugfs wasn't enabled in the kernel 445 * so let's just silently return upon failure. 446 */ 447 if (IS_ERR_OR_NULL(debugfs)) 448 return; 449 450 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs); 451 if (ret) 452 return; 453 454 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops); 455 } 456 457 /* ----------------------------------------------------------------------------- 458 * Auxiliary Devices (*not* AUX) 459 */ 460 461 static void ti_sn65dsi86_uninit_aux(void *data) 462 { 463 auxiliary_device_uninit(data); 464 } 465 466 static void ti_sn65dsi86_delete_aux(void *data) 467 { 468 auxiliary_device_delete(data); 469 } 470 471 static void ti_sn65dsi86_aux_device_release(struct device *dev) 472 { 473 struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev); 474 475 kfree(aux); 476 } 477 478 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata, 479 struct auxiliary_device **aux_out, 480 const char *name) 481 { 482 struct device *dev = pdata->dev; 483 struct auxiliary_device *aux; 484 int ret; 485 486 aux = kzalloc(sizeof(*aux), GFP_KERNEL); 487 if (!aux) 488 return -ENOMEM; 489 490 aux->name = name; 491 aux->dev.parent = dev; 492 aux->dev.release = ti_sn65dsi86_aux_device_release; 493 device_set_of_node_from_dev(&aux->dev, dev); 494 ret = auxiliary_device_init(aux); 495 if (ret) { 496 kfree(aux); 497 return ret; 498 } 499 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux); 500 if (ret) 501 return ret; 502 503 ret = auxiliary_device_add(aux); 504 if (ret) 505 return ret; 506 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux); 507 if (!ret) 508 *aux_out = aux; 509 510 return ret; 511 } 512 513 /* ----------------------------------------------------------------------------- 514 * AUX Adapter 515 */ 516 517 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux) 518 { 519 return container_of(aux, struct ti_sn65dsi86, aux); 520 } 521 522 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux, 523 struct drm_dp_aux_msg *msg) 524 { 525 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux); 526 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE); 527 u32 request_val = AUX_CMD_REQ(msg->request); 528 u8 *buf = msg->buffer; 529 unsigned int len = msg->size; 530 unsigned int val; 531 int ret; 532 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG]; 533 534 if (len > SN_AUX_MAX_PAYLOAD_BYTES) 535 return -EINVAL; 536 537 pm_runtime_get_sync(pdata->dev); 538 mutex_lock(&pdata->comms_mutex); 539 540 /* 541 * If someone tries to do a DDC over AUX transaction before pre_enable() 542 * on a device without a dedicated reference clock then we just can't 543 * do it. Fail right away. This prevents non-refclk users from reading 544 * the EDID before enabling the panel but such is life. 545 */ 546 if (!pdata->comms_enabled) { 547 ret = -EIO; 548 goto exit; 549 } 550 551 switch (request) { 552 case DP_AUX_NATIVE_WRITE: 553 case DP_AUX_I2C_WRITE: 554 case DP_AUX_NATIVE_READ: 555 case DP_AUX_I2C_READ: 556 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val); 557 /* Assume it's good */ 558 msg->reply = 0; 559 break; 560 default: 561 ret = -EINVAL; 562 goto exit; 563 } 564 565 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32)); 566 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len, 567 addr_len); 568 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len, 569 ARRAY_SIZE(addr_len)); 570 571 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) 572 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len); 573 574 /* Clear old status bits before start so we don't get confused */ 575 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG, 576 AUX_IRQ_STATUS_NAT_I2C_FAIL | 577 AUX_IRQ_STATUS_AUX_RPLY_TOUT | 578 AUX_IRQ_STATUS_AUX_SHORT); 579 580 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND); 581 582 /* Zero delay loop because i2c transactions are slow already */ 583 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val, 584 !(val & AUX_CMD_SEND), 0, 50 * 1000); 585 if (ret) 586 goto exit; 587 588 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val); 589 if (ret) 590 goto exit; 591 592 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) { 593 /* 594 * The hardware tried the message seven times per the DP spec 595 * but it hit a timeout. We ignore defers here because they're 596 * handled in hardware. 597 */ 598 ret = -ETIMEDOUT; 599 goto exit; 600 } 601 602 if (val & AUX_IRQ_STATUS_AUX_SHORT) { 603 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len); 604 if (ret) 605 goto exit; 606 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) { 607 switch (request) { 608 case DP_AUX_I2C_WRITE: 609 case DP_AUX_I2C_READ: 610 msg->reply |= DP_AUX_I2C_REPLY_NACK; 611 break; 612 case DP_AUX_NATIVE_READ: 613 case DP_AUX_NATIVE_WRITE: 614 msg->reply |= DP_AUX_NATIVE_REPLY_NACK; 615 break; 616 } 617 len = 0; 618 goto exit; 619 } 620 621 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0) 622 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len); 623 624 exit: 625 mutex_unlock(&pdata->comms_mutex); 626 pm_runtime_mark_last_busy(pdata->dev); 627 pm_runtime_put_autosuspend(pdata->dev); 628 629 if (ret) 630 return ret; 631 return len; 632 } 633 634 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us) 635 { 636 /* 637 * The HPD in this chip is a bit useless (See comment in 638 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait 639 * for HPD, we just assume it's asserted after the wait_us delay. 640 * 641 * In case we are asked to wait forever (wait_us=0) take conservative 642 * 500ms delay. 643 */ 644 if (wait_us == 0) 645 wait_us = 500000; 646 647 usleep_range(wait_us, wait_us + 1000); 648 649 return 0; 650 } 651 652 static int ti_sn_aux_probe(struct auxiliary_device *adev, 653 const struct auxiliary_device_id *id) 654 { 655 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 656 int ret; 657 658 pdata->aux.name = "ti-sn65dsi86-aux"; 659 pdata->aux.dev = &adev->dev; 660 pdata->aux.transfer = ti_sn_aux_transfer; 661 pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted; 662 drm_dp_aux_init(&pdata->aux); 663 664 ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux); 665 if (ret) 666 return ret; 667 668 /* 669 * The eDP to MIPI bridge parts don't work until the AUX channel is 670 * setup so we don't add it in the main driver probe, we add it now. 671 */ 672 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge"); 673 } 674 675 static const struct auxiliary_device_id ti_sn_aux_id_table[] = { 676 { .name = "ti_sn65dsi86.aux", }, 677 {}, 678 }; 679 680 static struct auxiliary_driver ti_sn_aux_driver = { 681 .name = "aux", 682 .probe = ti_sn_aux_probe, 683 .id_table = ti_sn_aux_id_table, 684 }; 685 686 /*------------------------------------------------------------------------------ 687 * DRM Bridge 688 */ 689 690 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge) 691 { 692 return container_of(bridge, struct ti_sn65dsi86, bridge); 693 } 694 695 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata) 696 { 697 int val; 698 struct mipi_dsi_host *host; 699 struct mipi_dsi_device *dsi; 700 struct device *dev = pdata->dev; 701 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge", 702 .channel = 0, 703 .node = NULL, 704 }; 705 706 host = of_find_mipi_dsi_host_by_node(pdata->host_node); 707 if (!host) 708 return -EPROBE_DEFER; 709 710 dsi = devm_mipi_dsi_device_register_full(dev, host, &info); 711 if (IS_ERR(dsi)) 712 return PTR_ERR(dsi); 713 714 /* TODO: setting to 4 MIPI lanes always for now */ 715 dsi->lanes = 4; 716 dsi->format = MIPI_DSI_FMT_RGB888; 717 dsi->mode_flags = MIPI_DSI_MODE_VIDEO; 718 719 /* check if continuous dsi clock is required or not */ 720 pm_runtime_get_sync(dev); 721 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val); 722 pm_runtime_put_autosuspend(dev); 723 if (!(val & DPPLL_CLK_SRC_DSICLK)) 724 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS; 725 726 pdata->dsi = dsi; 727 728 return devm_mipi_dsi_attach(dev, dsi); 729 } 730 731 static int ti_sn_bridge_attach(struct drm_bridge *bridge, 732 enum drm_bridge_attach_flags flags) 733 { 734 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 735 int ret; 736 737 pdata->aux.drm_dev = bridge->dev; 738 ret = drm_dp_aux_register(&pdata->aux); 739 if (ret < 0) { 740 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret); 741 return ret; 742 } 743 744 /* 745 * Attach the next bridge. 746 * We never want the next bridge to *also* create a connector. 747 */ 748 ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge, 749 &pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR); 750 if (ret < 0) 751 goto err_initted_aux; 752 753 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) 754 return 0; 755 756 pdata->connector = drm_bridge_connector_init(pdata->bridge.dev, 757 pdata->bridge.encoder); 758 if (IS_ERR(pdata->connector)) { 759 ret = PTR_ERR(pdata->connector); 760 goto err_initted_aux; 761 } 762 763 drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder); 764 765 return 0; 766 767 err_initted_aux: 768 drm_dp_aux_unregister(&pdata->aux); 769 return ret; 770 } 771 772 static void ti_sn_bridge_detach(struct drm_bridge *bridge) 773 { 774 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux); 775 } 776 777 static enum drm_mode_status 778 ti_sn_bridge_mode_valid(struct drm_bridge *bridge, 779 const struct drm_display_info *info, 780 const struct drm_display_mode *mode) 781 { 782 /* maximum supported resolution is 4K at 60 fps */ 783 if (mode->clock > 594000) 784 return MODE_CLOCK_HIGH; 785 786 /* 787 * The front and back porch registers are 8 bits, and pulse width 788 * registers are 15 bits, so reject any modes with larger periods. 789 */ 790 791 if ((mode->hsync_start - mode->hdisplay) > 0xff) 792 return MODE_HBLANK_WIDE; 793 794 if ((mode->vsync_start - mode->vdisplay) > 0xff) 795 return MODE_VBLANK_WIDE; 796 797 if ((mode->hsync_end - mode->hsync_start) > 0x7fff) 798 return MODE_HSYNC_WIDE; 799 800 if ((mode->vsync_end - mode->vsync_start) > 0x7fff) 801 return MODE_VSYNC_WIDE; 802 803 if ((mode->htotal - mode->hsync_end) > 0xff) 804 return MODE_HBLANK_WIDE; 805 806 if ((mode->vtotal - mode->vsync_end) > 0xff) 807 return MODE_VBLANK_WIDE; 808 809 return MODE_OK; 810 } 811 812 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge, 813 struct drm_bridge_state *old_bridge_state) 814 { 815 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 816 817 /* disable video stream */ 818 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0); 819 } 820 821 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata) 822 { 823 unsigned int bit_rate_mhz, clk_freq_mhz; 824 unsigned int val; 825 struct drm_display_mode *mode = 826 &pdata->bridge.encoder->crtc->state->adjusted_mode; 827 828 /* set DSIA clk frequency */ 829 bit_rate_mhz = (mode->clock / 1000) * 830 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 831 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2); 832 833 /* for each increment in val, frequency increases by 5MHz */ 834 val = (MIN_DSI_CLK_FREQ_MHZ / 5) + 835 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF); 836 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val); 837 } 838 839 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector) 840 { 841 if (connector->display_info.bpc <= 6) 842 return 18; 843 else 844 return 24; 845 } 846 847 /* 848 * LUT index corresponds to register value and 849 * LUT values corresponds to dp data rate supported 850 * by the bridge in Mbps unit. 851 */ 852 static const unsigned int ti_sn_bridge_dp_rate_lut[] = { 853 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400 854 }; 855 856 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp) 857 { 858 unsigned int bit_rate_khz, dp_rate_mhz; 859 unsigned int i; 860 struct drm_display_mode *mode = 861 &pdata->bridge.encoder->crtc->state->adjusted_mode; 862 863 /* Calculate minimum bit rate based on our pixel clock. */ 864 bit_rate_khz = mode->clock * bpp; 865 866 /* Calculate minimum DP data rate, taking 80% as per DP spec */ 867 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM, 868 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN); 869 870 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++) 871 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz) 872 break; 873 874 return i; 875 } 876 877 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata) 878 { 879 unsigned int valid_rates = 0; 880 unsigned int rate_per_200khz; 881 unsigned int rate_mhz; 882 u8 dpcd_val; 883 int ret; 884 int i, j; 885 886 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val); 887 if (ret != 1) { 888 DRM_DEV_ERROR(pdata->dev, 889 "Can't read eDP rev (%d), assuming 1.1\n", ret); 890 dpcd_val = DP_EDP_11; 891 } 892 893 if (dpcd_val >= DP_EDP_14) { 894 /* eDP 1.4 devices must provide a custom table */ 895 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 896 897 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES, 898 sink_rates, sizeof(sink_rates)); 899 900 if (ret != sizeof(sink_rates)) { 901 DRM_DEV_ERROR(pdata->dev, 902 "Can't read supported rate table (%d)\n", ret); 903 904 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */ 905 memset(sink_rates, 0, sizeof(sink_rates)); 906 } 907 908 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 909 rate_per_200khz = le16_to_cpu(sink_rates[i]); 910 911 if (!rate_per_200khz) 912 break; 913 914 rate_mhz = rate_per_200khz * 200 / 1000; 915 for (j = 0; 916 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 917 j++) { 918 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz) 919 valid_rates |= BIT(j); 920 } 921 } 922 923 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) { 924 if (valid_rates & BIT(i)) 925 return valid_rates; 926 } 927 DRM_DEV_ERROR(pdata->dev, 928 "No matching eDP rates in table; falling back\n"); 929 } 930 931 /* On older versions best we can do is use DP_MAX_LINK_RATE */ 932 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val); 933 if (ret != 1) { 934 DRM_DEV_ERROR(pdata->dev, 935 "Can't read max rate (%d); assuming 5.4 GHz\n", 936 ret); 937 dpcd_val = DP_LINK_BW_5_4; 938 } 939 940 switch (dpcd_val) { 941 default: 942 DRM_DEV_ERROR(pdata->dev, 943 "Unexpected max rate (%#x); assuming 5.4 GHz\n", 944 (int)dpcd_val); 945 fallthrough; 946 case DP_LINK_BW_5_4: 947 valid_rates |= BIT(7); 948 fallthrough; 949 case DP_LINK_BW_2_7: 950 valid_rates |= BIT(4); 951 fallthrough; 952 case DP_LINK_BW_1_62: 953 valid_rates |= BIT(1); 954 break; 955 } 956 957 return valid_rates; 958 } 959 960 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata) 961 { 962 struct drm_display_mode *mode = 963 &pdata->bridge.encoder->crtc->state->adjusted_mode; 964 u8 hsync_polarity = 0, vsync_polarity = 0; 965 966 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 967 hsync_polarity = CHA_HSYNC_POLARITY; 968 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 969 vsync_polarity = CHA_VSYNC_POLARITY; 970 971 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG, 972 mode->hdisplay); 973 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG, 974 mode->vdisplay); 975 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG, 976 (mode->hsync_end - mode->hsync_start) & 0xFF); 977 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG, 978 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) | 979 hsync_polarity); 980 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG, 981 (mode->vsync_end - mode->vsync_start) & 0xFF); 982 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG, 983 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) | 984 vsync_polarity); 985 986 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG, 987 (mode->htotal - mode->hsync_end) & 0xFF); 988 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG, 989 (mode->vtotal - mode->vsync_end) & 0xFF); 990 991 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG, 992 (mode->hsync_start - mode->hdisplay) & 0xFF); 993 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG, 994 (mode->vsync_start - mode->vdisplay) & 0xFF); 995 996 usleep_range(10000, 10500); /* 10ms delay recommended by spec */ 997 } 998 999 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata) 1000 { 1001 u8 data; 1002 int ret; 1003 1004 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data); 1005 if (ret != 1) { 1006 DRM_DEV_ERROR(pdata->dev, 1007 "Can't read lane count (%d); assuming 4\n", ret); 1008 return 4; 1009 } 1010 1011 return data & DP_LANE_COUNT_MASK; 1012 } 1013 1014 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx, 1015 const char **last_err_str) 1016 { 1017 unsigned int val; 1018 int ret; 1019 int i; 1020 1021 /* set dp clk frequency value */ 1022 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG, 1023 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx)); 1024 1025 /* enable DP PLL */ 1026 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1); 1027 1028 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val, 1029 val & DPPLL_SRC_DP_PLL_LOCK, 1000, 1030 50 * 1000); 1031 if (ret) { 1032 *last_err_str = "DP_PLL_LOCK polling failed"; 1033 goto exit; 1034 } 1035 1036 /* 1037 * We'll try to link train several times. As part of link training 1038 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If 1039 * the panel isn't ready quite it might respond NAK here which means 1040 * we need to try again. 1041 */ 1042 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) { 1043 /* Semi auto link training mode */ 1044 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A); 1045 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val, 1046 val == ML_TX_MAIN_LINK_OFF || 1047 val == ML_TX_NORMAL_MODE, 1000, 1048 500 * 1000); 1049 if (ret) { 1050 *last_err_str = "Training complete polling failed"; 1051 } else if (val == ML_TX_MAIN_LINK_OFF) { 1052 *last_err_str = "Link training failed, link is off"; 1053 ret = -EIO; 1054 continue; 1055 } 1056 1057 break; 1058 } 1059 1060 /* If we saw quite a few retries, add a note about it */ 1061 if (!ret && i > SN_LINK_TRAINING_TRIES / 2) 1062 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i); 1063 1064 exit: 1065 /* Disable the PLL if we failed */ 1066 if (ret) 1067 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1068 1069 return ret; 1070 } 1071 1072 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge, 1073 struct drm_bridge_state *old_bridge_state) 1074 { 1075 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1076 struct drm_connector *connector; 1077 const char *last_err_str = "No supported DP rate"; 1078 unsigned int valid_rates; 1079 int dp_rate_idx; 1080 unsigned int val; 1081 int ret = -EINVAL; 1082 int max_dp_lanes; 1083 unsigned int bpp; 1084 1085 connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state, 1086 bridge->encoder); 1087 if (!connector) { 1088 dev_err_ratelimited(pdata->dev, "Could not get the connector\n"); 1089 return; 1090 } 1091 1092 max_dp_lanes = ti_sn_get_max_lanes(pdata); 1093 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes); 1094 1095 /* DSI_A lane config */ 1096 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes); 1097 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG, 1098 CHA_DSI_LANES_MASK, val); 1099 1100 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign); 1101 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK, 1102 pdata->ln_polrs << LN_POLRS_OFFSET); 1103 1104 /* set dsi clk frequency value */ 1105 ti_sn_bridge_set_dsi_rate(pdata); 1106 1107 /* 1108 * The SN65DSI86 only supports ASSR Display Authentication method and 1109 * this method is enabled for eDP panels. An eDP panel must support this 1110 * authentication method. We need to enable this method in the eDP panel 1111 * at DisplayPort address 0x0010A prior to link training. 1112 * 1113 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays 1114 * we need to disable the scrambler. 1115 */ 1116 if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) { 1117 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET, 1118 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE); 1119 1120 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, 1121 SCRAMBLE_DISABLE, 0); 1122 } else { 1123 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, 1124 SCRAMBLE_DISABLE, SCRAMBLE_DISABLE); 1125 } 1126 1127 bpp = ti_sn_bridge_get_bpp(connector); 1128 /* Set the DP output format (18 bpp or 24 bpp) */ 1129 val = bpp == 18 ? BPP_18_RGB : 0; 1130 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val); 1131 1132 /* DP lane config */ 1133 val = DP_NUM_LANES(min(pdata->dp_lanes, 3)); 1134 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 1135 val); 1136 1137 valid_rates = ti_sn_bridge_read_valid_rates(pdata); 1138 1139 /* Train until we run out of rates */ 1140 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp); 1141 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 1142 dp_rate_idx++) { 1143 if (!(valid_rates & BIT(dp_rate_idx))) 1144 continue; 1145 1146 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str); 1147 if (!ret) 1148 break; 1149 } 1150 if (ret) { 1151 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret); 1152 return; 1153 } 1154 1155 /* config video parameters */ 1156 ti_sn_bridge_set_video_timings(pdata); 1157 1158 /* enable video stream */ 1159 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 1160 VSTREAM_ENABLE); 1161 } 1162 1163 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge, 1164 struct drm_bridge_state *old_bridge_state) 1165 { 1166 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1167 1168 pm_runtime_get_sync(pdata->dev); 1169 1170 if (!pdata->refclk) 1171 ti_sn65dsi86_enable_comms(pdata); 1172 1173 /* td7: min 100 us after enable before DSI data */ 1174 usleep_range(100, 110); 1175 } 1176 1177 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge, 1178 struct drm_bridge_state *old_bridge_state) 1179 { 1180 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1181 1182 /* semi auto link training mode OFF */ 1183 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0); 1184 /* Num lanes to 0 as per power sequencing in data sheet */ 1185 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0); 1186 /* disable DP PLL */ 1187 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1188 1189 if (!pdata->refclk) 1190 ti_sn65dsi86_disable_comms(pdata); 1191 1192 pm_runtime_put_sync(pdata->dev); 1193 } 1194 1195 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge) 1196 { 1197 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1198 int val = 0; 1199 1200 pm_runtime_get_sync(pdata->dev); 1201 regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val); 1202 pm_runtime_put_autosuspend(pdata->dev); 1203 1204 return val & HPD_DEBOUNCED_STATE ? connector_status_connected 1205 : connector_status_disconnected; 1206 } 1207 1208 static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge, 1209 struct drm_connector *connector) 1210 { 1211 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1212 1213 return drm_get_edid(connector, &pdata->aux.ddc); 1214 } 1215 1216 static const struct drm_bridge_funcs ti_sn_bridge_funcs = { 1217 .attach = ti_sn_bridge_attach, 1218 .detach = ti_sn_bridge_detach, 1219 .mode_valid = ti_sn_bridge_mode_valid, 1220 .get_edid = ti_sn_bridge_get_edid, 1221 .detect = ti_sn_bridge_detect, 1222 .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable, 1223 .atomic_enable = ti_sn_bridge_atomic_enable, 1224 .atomic_disable = ti_sn_bridge_atomic_disable, 1225 .atomic_post_disable = ti_sn_bridge_atomic_post_disable, 1226 .atomic_reset = drm_atomic_helper_bridge_reset, 1227 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 1228 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 1229 }; 1230 1231 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata, 1232 struct device_node *np) 1233 { 1234 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 }; 1235 u32 lane_polarities[SN_MAX_DP_LANES] = { }; 1236 struct device_node *endpoint; 1237 u8 ln_assign = 0; 1238 u8 ln_polrs = 0; 1239 int dp_lanes; 1240 int i; 1241 1242 /* 1243 * Read config from the device tree about lane remapping and lane 1244 * polarities. These are optional and we assume identity map and 1245 * normal polarity if nothing is specified. It's OK to specify just 1246 * data-lanes but not lane-polarities but not vice versa. 1247 * 1248 * Error checking is light (we just make sure we don't crash or 1249 * buffer overrun) and we assume dts is well formed and specifying 1250 * mappings that the hardware supports. 1251 */ 1252 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1253 dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES); 1254 if (dp_lanes > 0) { 1255 of_property_read_u32_array(endpoint, "data-lanes", 1256 lane_assignments, dp_lanes); 1257 of_property_read_u32_array(endpoint, "lane-polarities", 1258 lane_polarities, dp_lanes); 1259 } else { 1260 dp_lanes = SN_MAX_DP_LANES; 1261 } 1262 of_node_put(endpoint); 1263 1264 /* 1265 * Convert into register format. Loop over all lanes even if 1266 * data-lanes had fewer elements so that we nicely initialize 1267 * the LN_ASSIGN register. 1268 */ 1269 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) { 1270 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i]; 1271 ln_polrs = ln_polrs << 1 | lane_polarities[i]; 1272 } 1273 1274 /* Stash in our struct for when we power on */ 1275 pdata->dp_lanes = dp_lanes; 1276 pdata->ln_assign = ln_assign; 1277 pdata->ln_polrs = ln_polrs; 1278 } 1279 1280 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata) 1281 { 1282 struct device_node *np = pdata->dev->of_node; 1283 1284 pdata->host_node = of_graph_get_remote_node(np, 0, 0); 1285 1286 if (!pdata->host_node) { 1287 DRM_ERROR("remote dsi host node not found\n"); 1288 return -ENODEV; 1289 } 1290 1291 return 0; 1292 } 1293 1294 static int ti_sn_bridge_probe(struct auxiliary_device *adev, 1295 const struct auxiliary_device_id *id) 1296 { 1297 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1298 struct device_node *np = pdata->dev->of_node; 1299 int ret; 1300 1301 pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0); 1302 if (IS_ERR(pdata->next_bridge)) 1303 return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge), 1304 "failed to create panel bridge\n"); 1305 1306 ti_sn_bridge_parse_lanes(pdata, np); 1307 1308 ret = ti_sn_bridge_parse_dsi_host(pdata); 1309 if (ret) 1310 return ret; 1311 1312 pdata->bridge.funcs = &ti_sn_bridge_funcs; 1313 pdata->bridge.of_node = np; 1314 pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort 1315 ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP; 1316 1317 if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) 1318 pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT; 1319 1320 drm_bridge_add(&pdata->bridge); 1321 1322 ret = ti_sn_attach_host(pdata); 1323 if (ret) { 1324 dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n"); 1325 goto err_remove_bridge; 1326 } 1327 1328 return 0; 1329 1330 err_remove_bridge: 1331 drm_bridge_remove(&pdata->bridge); 1332 return ret; 1333 } 1334 1335 static void ti_sn_bridge_remove(struct auxiliary_device *adev) 1336 { 1337 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1338 1339 if (!pdata) 1340 return; 1341 1342 drm_bridge_remove(&pdata->bridge); 1343 1344 of_node_put(pdata->host_node); 1345 } 1346 1347 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = { 1348 { .name = "ti_sn65dsi86.bridge", }, 1349 {}, 1350 }; 1351 1352 static struct auxiliary_driver ti_sn_bridge_driver = { 1353 .name = "bridge", 1354 .probe = ti_sn_bridge_probe, 1355 .remove = ti_sn_bridge_remove, 1356 .id_table = ti_sn_bridge_id_table, 1357 }; 1358 1359 /* ----------------------------------------------------------------------------- 1360 * PWM Controller 1361 */ 1362 #if defined(CONFIG_PWM) 1363 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) 1364 { 1365 return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0; 1366 } 1367 1368 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) 1369 { 1370 atomic_set(&pdata->pwm_pin_busy, 0); 1371 } 1372 1373 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip) 1374 { 1375 return container_of(chip, struct ti_sn65dsi86, pchip); 1376 } 1377 1378 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) 1379 { 1380 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1381 1382 return ti_sn_pwm_pin_request(pdata); 1383 } 1384 1385 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) 1386 { 1387 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1388 1389 ti_sn_pwm_pin_release(pdata); 1390 } 1391 1392 /* 1393 * Limitations: 1394 * - The PWM signal is not driven when the chip is powered down, or in its 1395 * reset state and the driver does not implement the "suspend state" 1396 * described in the documentation. In order to save power, state->enabled is 1397 * interpreted as denoting if the signal is expected to be valid, and is used 1398 * to determine if the chip needs to be kept powered. 1399 * - Changing both period and duty_cycle is not done atomically, neither is the 1400 * multi-byte register updates, so the output might briefly be undefined 1401 * during update. 1402 */ 1403 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 1404 const struct pwm_state *state) 1405 { 1406 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1407 unsigned int pwm_en_inv; 1408 unsigned int backlight; 1409 unsigned int pre_div; 1410 unsigned int scale; 1411 u64 period_max; 1412 u64 period; 1413 int ret; 1414 1415 if (!pdata->pwm_enabled) { 1416 ret = pm_runtime_get_sync(pdata->dev); 1417 if (ret < 0) { 1418 pm_runtime_put_sync(pdata->dev); 1419 return ret; 1420 } 1421 } 1422 1423 if (state->enabled) { 1424 if (!pdata->pwm_enabled) { 1425 /* 1426 * The chip might have been powered down while we 1427 * didn't hold a PM runtime reference, so mux in the 1428 * PWM function on the GPIO pin again. 1429 */ 1430 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1431 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX), 1432 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX)); 1433 if (ret) { 1434 dev_err(pdata->dev, "failed to mux in PWM function\n"); 1435 goto out; 1436 } 1437 } 1438 1439 /* 1440 * Per the datasheet the PWM frequency is given by: 1441 * 1442 * REFCLK_FREQ 1443 * PWM_FREQ = ----------------------------------- 1444 * PWM_PRE_DIV * BACKLIGHT_SCALE + 1 1445 * 1446 * However, after careful review the author is convinced that 1447 * the documentation has lost some parenthesis around 1448 * "BACKLIGHT_SCALE + 1". 1449 * 1450 * With the period T_pwm = 1/PWM_FREQ this can be written: 1451 * 1452 * T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1) 1453 * 1454 * In order to keep BACKLIGHT_SCALE within its 16 bits, 1455 * PWM_PRE_DIV must be: 1456 * 1457 * T_pwm * REFCLK_FREQ 1458 * PWM_PRE_DIV >= ------------------------- 1459 * BACKLIGHT_SCALE_MAX + 1 1460 * 1461 * To simplify the search and to favour higher resolution of 1462 * the duty cycle over accuracy of the period, the lowest 1463 * possible PWM_PRE_DIV is used. Finally the scale is 1464 * calculated as: 1465 * 1466 * T_pwm * REFCLK_FREQ 1467 * BACKLIGHT_SCALE = ---------------------- - 1 1468 * PWM_PRE_DIV 1469 * 1470 * Here T_pwm is represented in seconds, so appropriate scaling 1471 * to nanoseconds is necessary. 1472 */ 1473 1474 /* Minimum T_pwm is 1 / REFCLK_FREQ */ 1475 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) { 1476 ret = -EINVAL; 1477 goto out; 1478 } 1479 1480 /* 1481 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ 1482 * Limit period to this to avoid overflows 1483 */ 1484 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1), 1485 pdata->pwm_refclk_freq); 1486 period = min(state->period, period_max); 1487 1488 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq, 1489 (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1)); 1490 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1; 1491 1492 /* 1493 * The documentation has the duty ratio given as: 1494 * 1495 * duty BACKLIGHT 1496 * ------- = --------------------- 1497 * period BACKLIGHT_SCALE + 1 1498 * 1499 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according 1500 * to definition above and adjusting for nanosecond 1501 * representation of duty cycle gives us: 1502 */ 1503 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq, 1504 (u64)NSEC_PER_SEC * pre_div); 1505 if (backlight > scale) 1506 backlight = scale; 1507 1508 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div); 1509 if (ret) { 1510 dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n"); 1511 goto out; 1512 } 1513 1514 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale); 1515 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight); 1516 } 1517 1518 pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) | 1519 FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED); 1520 ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv); 1521 if (ret) { 1522 dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n"); 1523 goto out; 1524 } 1525 1526 pdata->pwm_enabled = state->enabled; 1527 out: 1528 1529 if (!pdata->pwm_enabled) 1530 pm_runtime_put_sync(pdata->dev); 1531 1532 return ret; 1533 } 1534 1535 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, 1536 struct pwm_state *state) 1537 { 1538 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1539 unsigned int pwm_en_inv; 1540 unsigned int pre_div; 1541 u16 backlight; 1542 u16 scale; 1543 int ret; 1544 1545 ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv); 1546 if (ret) 1547 return ret; 1548 1549 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale); 1550 if (ret) 1551 return ret; 1552 1553 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight); 1554 if (ret) 1555 return ret; 1556 1557 ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div); 1558 if (ret) 1559 return ret; 1560 1561 state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv); 1562 if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv)) 1563 state->polarity = PWM_POLARITY_INVERSED; 1564 else 1565 state->polarity = PWM_POLARITY_NORMAL; 1566 1567 state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1), 1568 pdata->pwm_refclk_freq); 1569 state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight, 1570 pdata->pwm_refclk_freq); 1571 1572 if (state->duty_cycle > state->period) 1573 state->duty_cycle = state->period; 1574 1575 return 0; 1576 } 1577 1578 static const struct pwm_ops ti_sn_pwm_ops = { 1579 .request = ti_sn_pwm_request, 1580 .free = ti_sn_pwm_free, 1581 .apply = ti_sn_pwm_apply, 1582 .get_state = ti_sn_pwm_get_state, 1583 .owner = THIS_MODULE, 1584 }; 1585 1586 static int ti_sn_pwm_probe(struct auxiliary_device *adev, 1587 const struct auxiliary_device_id *id) 1588 { 1589 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1590 1591 pdata->pchip.dev = pdata->dev; 1592 pdata->pchip.ops = &ti_sn_pwm_ops; 1593 pdata->pchip.npwm = 1; 1594 pdata->pchip.of_xlate = of_pwm_single_xlate; 1595 pdata->pchip.of_pwm_n_cells = 1; 1596 1597 return pwmchip_add(&pdata->pchip); 1598 } 1599 1600 static void ti_sn_pwm_remove(struct auxiliary_device *adev) 1601 { 1602 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1603 1604 pwmchip_remove(&pdata->pchip); 1605 1606 if (pdata->pwm_enabled) 1607 pm_runtime_put_sync(pdata->dev); 1608 } 1609 1610 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = { 1611 { .name = "ti_sn65dsi86.pwm", }, 1612 {}, 1613 }; 1614 1615 static struct auxiliary_driver ti_sn_pwm_driver = { 1616 .name = "pwm", 1617 .probe = ti_sn_pwm_probe, 1618 .remove = ti_sn_pwm_remove, 1619 .id_table = ti_sn_pwm_id_table, 1620 }; 1621 1622 static int __init ti_sn_pwm_register(void) 1623 { 1624 return auxiliary_driver_register(&ti_sn_pwm_driver); 1625 } 1626 1627 static void ti_sn_pwm_unregister(void) 1628 { 1629 auxiliary_driver_unregister(&ti_sn_pwm_driver); 1630 } 1631 1632 #else 1633 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; } 1634 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {} 1635 1636 static inline int ti_sn_pwm_register(void) { return 0; } 1637 static inline void ti_sn_pwm_unregister(void) {} 1638 #endif 1639 1640 /* ----------------------------------------------------------------------------- 1641 * GPIO Controller 1642 */ 1643 #if defined(CONFIG_OF_GPIO) 1644 1645 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip, 1646 const struct of_phandle_args *gpiospec, 1647 u32 *flags) 1648 { 1649 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells)) 1650 return -EINVAL; 1651 1652 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1) 1653 return -EINVAL; 1654 1655 if (flags) 1656 *flags = gpiospec->args[1]; 1657 1658 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET; 1659 } 1660 1661 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip, 1662 unsigned int offset) 1663 { 1664 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1665 1666 /* 1667 * We already have to keep track of the direction because we use 1668 * that to figure out whether we've powered the device. We can 1669 * just return that rather than (maybe) powering up the device 1670 * to ask its direction. 1671 */ 1672 return test_bit(offset, pdata->gchip_output) ? 1673 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1674 } 1675 1676 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset) 1677 { 1678 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1679 unsigned int val; 1680 int ret; 1681 1682 /* 1683 * When the pin is an input we don't forcibly keep the bridge 1684 * powered--we just power it on to read the pin. NOTE: part of 1685 * the reason this works is that the bridge defaults (when 1686 * powered back on) to all 4 GPIOs being configured as GPIO input. 1687 * Also note that if something else is keeping the chip powered the 1688 * pm_runtime functions are lightweight increments of a refcount. 1689 */ 1690 pm_runtime_get_sync(pdata->dev); 1691 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val); 1692 pm_runtime_put_autosuspend(pdata->dev); 1693 1694 if (ret) 1695 return ret; 1696 1697 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset)); 1698 } 1699 1700 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset, 1701 int val) 1702 { 1703 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1704 int ret; 1705 1706 if (!test_bit(offset, pdata->gchip_output)) { 1707 dev_err(pdata->dev, "Ignoring GPIO set while input\n"); 1708 return; 1709 } 1710 1711 val &= 1; 1712 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG, 1713 BIT(SN_GPIO_OUTPUT_SHIFT + offset), 1714 val << (SN_GPIO_OUTPUT_SHIFT + offset)); 1715 if (ret) 1716 dev_warn(pdata->dev, 1717 "Failed to set bridge GPIO %u: %d\n", offset, ret); 1718 } 1719 1720 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip, 1721 unsigned int offset) 1722 { 1723 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1724 int shift = offset * 2; 1725 int ret; 1726 1727 if (!test_and_clear_bit(offset, pdata->gchip_output)) 1728 return 0; 1729 1730 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1731 SN_GPIO_MUX_MASK << shift, 1732 SN_GPIO_MUX_INPUT << shift); 1733 if (ret) { 1734 set_bit(offset, pdata->gchip_output); 1735 return ret; 1736 } 1737 1738 /* 1739 * NOTE: if nobody else is powering the device this may fully power 1740 * it off and when it comes back it will have lost all state, but 1741 * that's OK because the default is input and we're now an input. 1742 */ 1743 pm_runtime_put_autosuspend(pdata->dev); 1744 1745 return 0; 1746 } 1747 1748 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip, 1749 unsigned int offset, int val) 1750 { 1751 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1752 int shift = offset * 2; 1753 int ret; 1754 1755 if (test_and_set_bit(offset, pdata->gchip_output)) 1756 return 0; 1757 1758 pm_runtime_get_sync(pdata->dev); 1759 1760 /* Set value first to avoid glitching */ 1761 ti_sn_bridge_gpio_set(chip, offset, val); 1762 1763 /* Set direction */ 1764 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1765 SN_GPIO_MUX_MASK << shift, 1766 SN_GPIO_MUX_OUTPUT << shift); 1767 if (ret) { 1768 clear_bit(offset, pdata->gchip_output); 1769 pm_runtime_put_autosuspend(pdata->dev); 1770 } 1771 1772 return ret; 1773 } 1774 1775 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset) 1776 { 1777 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1778 1779 if (offset == SN_PWM_GPIO_IDX) 1780 return ti_sn_pwm_pin_request(pdata); 1781 1782 return 0; 1783 } 1784 1785 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset) 1786 { 1787 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1788 1789 /* We won't keep pm_runtime if we're input, so switch there on free */ 1790 ti_sn_bridge_gpio_direction_input(chip, offset); 1791 1792 if (offset == SN_PWM_GPIO_IDX) 1793 ti_sn_pwm_pin_release(pdata); 1794 } 1795 1796 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = { 1797 "GPIO1", "GPIO2", "GPIO3", "GPIO4" 1798 }; 1799 1800 static int ti_sn_gpio_probe(struct auxiliary_device *adev, 1801 const struct auxiliary_device_id *id) 1802 { 1803 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1804 int ret; 1805 1806 /* Only init if someone is going to use us as a GPIO controller */ 1807 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller")) 1808 return 0; 1809 1810 pdata->gchip.label = dev_name(pdata->dev); 1811 pdata->gchip.parent = pdata->dev; 1812 pdata->gchip.owner = THIS_MODULE; 1813 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate; 1814 pdata->gchip.of_gpio_n_cells = 2; 1815 pdata->gchip.request = ti_sn_bridge_gpio_request; 1816 pdata->gchip.free = ti_sn_bridge_gpio_free; 1817 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction; 1818 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input; 1819 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output; 1820 pdata->gchip.get = ti_sn_bridge_gpio_get; 1821 pdata->gchip.set = ti_sn_bridge_gpio_set; 1822 pdata->gchip.can_sleep = true; 1823 pdata->gchip.names = ti_sn_bridge_gpio_names; 1824 pdata->gchip.ngpio = SN_NUM_GPIOS; 1825 pdata->gchip.base = -1; 1826 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata); 1827 if (ret) 1828 dev_err(pdata->dev, "can't add gpio chip\n"); 1829 1830 return ret; 1831 } 1832 1833 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = { 1834 { .name = "ti_sn65dsi86.gpio", }, 1835 {}, 1836 }; 1837 1838 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table); 1839 1840 static struct auxiliary_driver ti_sn_gpio_driver = { 1841 .name = "gpio", 1842 .probe = ti_sn_gpio_probe, 1843 .id_table = ti_sn_gpio_id_table, 1844 }; 1845 1846 static int __init ti_sn_gpio_register(void) 1847 { 1848 return auxiliary_driver_register(&ti_sn_gpio_driver); 1849 } 1850 1851 static void ti_sn_gpio_unregister(void) 1852 { 1853 auxiliary_driver_unregister(&ti_sn_gpio_driver); 1854 } 1855 1856 #else 1857 1858 static inline int ti_sn_gpio_register(void) { return 0; } 1859 static inline void ti_sn_gpio_unregister(void) {} 1860 1861 #endif 1862 1863 /* ----------------------------------------------------------------------------- 1864 * Probe & Remove 1865 */ 1866 1867 static void ti_sn65dsi86_runtime_disable(void *data) 1868 { 1869 pm_runtime_dont_use_autosuspend(data); 1870 pm_runtime_disable(data); 1871 } 1872 1873 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata) 1874 { 1875 unsigned int i; 1876 const char * const ti_sn_bridge_supply_names[] = { 1877 "vcca", "vcc", "vccio", "vpll", 1878 }; 1879 1880 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++) 1881 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i]; 1882 1883 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM, 1884 pdata->supplies); 1885 } 1886 1887 static int ti_sn65dsi86_probe(struct i2c_client *client) 1888 { 1889 struct device *dev = &client->dev; 1890 struct ti_sn65dsi86 *pdata; 1891 int ret; 1892 1893 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 1894 DRM_ERROR("device doesn't support I2C\n"); 1895 return -ENODEV; 1896 } 1897 1898 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL); 1899 if (!pdata) 1900 return -ENOMEM; 1901 dev_set_drvdata(dev, pdata); 1902 pdata->dev = dev; 1903 1904 mutex_init(&pdata->comms_mutex); 1905 1906 pdata->regmap = devm_regmap_init_i2c(client, 1907 &ti_sn65dsi86_regmap_config); 1908 if (IS_ERR(pdata->regmap)) 1909 return dev_err_probe(dev, PTR_ERR(pdata->regmap), 1910 "regmap i2c init failed\n"); 1911 1912 pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable", 1913 GPIOD_OUT_LOW); 1914 if (IS_ERR(pdata->enable_gpio)) 1915 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio), 1916 "failed to get enable gpio from DT\n"); 1917 1918 ret = ti_sn65dsi86_parse_regulators(pdata); 1919 if (ret) 1920 return dev_err_probe(dev, ret, "failed to parse regulators\n"); 1921 1922 pdata->refclk = devm_clk_get_optional(dev, "refclk"); 1923 if (IS_ERR(pdata->refclk)) 1924 return dev_err_probe(dev, PTR_ERR(pdata->refclk), 1925 "failed to get reference clock\n"); 1926 1927 pm_runtime_enable(dev); 1928 pm_runtime_set_autosuspend_delay(pdata->dev, 500); 1929 pm_runtime_use_autosuspend(pdata->dev); 1930 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev); 1931 if (ret) 1932 return ret; 1933 1934 ti_sn65dsi86_debugfs_init(pdata); 1935 1936 /* 1937 * Break ourselves up into a collection of aux devices. The only real 1938 * motiviation here is to solve the chicken-and-egg problem of probe 1939 * ordering. The bridge wants the panel to be there when it probes. 1940 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards) 1941 * when it probes. The panel and maybe backlight might want the DDC 1942 * bus or the pwm_chip. Having sub-devices allows the some sub devices 1943 * to finish probing even if others return -EPROBE_DEFER and gets us 1944 * around the problems. 1945 */ 1946 1947 if (IS_ENABLED(CONFIG_OF_GPIO)) { 1948 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio"); 1949 if (ret) 1950 return ret; 1951 } 1952 1953 if (IS_ENABLED(CONFIG_PWM)) { 1954 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm"); 1955 if (ret) 1956 return ret; 1957 } 1958 1959 /* 1960 * NOTE: At the end of the AUX channel probe we'll add the aux device 1961 * for the bridge. This is because the bridge can't be used until the 1962 * AUX channel is there and this is a very simple solution to the 1963 * dependency problem. 1964 */ 1965 return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux"); 1966 } 1967 1968 static struct i2c_device_id ti_sn65dsi86_id[] = { 1969 { "ti,sn65dsi86", 0}, 1970 {}, 1971 }; 1972 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id); 1973 1974 static const struct of_device_id ti_sn65dsi86_match_table[] = { 1975 {.compatible = "ti,sn65dsi86"}, 1976 {}, 1977 }; 1978 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table); 1979 1980 static struct i2c_driver ti_sn65dsi86_driver = { 1981 .driver = { 1982 .name = "ti_sn65dsi86", 1983 .of_match_table = ti_sn65dsi86_match_table, 1984 .pm = &ti_sn65dsi86_pm_ops, 1985 }, 1986 .probe = ti_sn65dsi86_probe, 1987 .id_table = ti_sn65dsi86_id, 1988 }; 1989 1990 static int __init ti_sn65dsi86_init(void) 1991 { 1992 int ret; 1993 1994 ret = i2c_add_driver(&ti_sn65dsi86_driver); 1995 if (ret) 1996 return ret; 1997 1998 ret = ti_sn_gpio_register(); 1999 if (ret) 2000 goto err_main_was_registered; 2001 2002 ret = ti_sn_pwm_register(); 2003 if (ret) 2004 goto err_gpio_was_registered; 2005 2006 ret = auxiliary_driver_register(&ti_sn_aux_driver); 2007 if (ret) 2008 goto err_pwm_was_registered; 2009 2010 ret = auxiliary_driver_register(&ti_sn_bridge_driver); 2011 if (ret) 2012 goto err_aux_was_registered; 2013 2014 return 0; 2015 2016 err_aux_was_registered: 2017 auxiliary_driver_unregister(&ti_sn_aux_driver); 2018 err_pwm_was_registered: 2019 ti_sn_pwm_unregister(); 2020 err_gpio_was_registered: 2021 ti_sn_gpio_unregister(); 2022 err_main_was_registered: 2023 i2c_del_driver(&ti_sn65dsi86_driver); 2024 2025 return ret; 2026 } 2027 module_init(ti_sn65dsi86_init); 2028 2029 static void __exit ti_sn65dsi86_exit(void) 2030 { 2031 auxiliary_driver_unregister(&ti_sn_bridge_driver); 2032 auxiliary_driver_unregister(&ti_sn_aux_driver); 2033 ti_sn_pwm_unregister(); 2034 ti_sn_gpio_unregister(); 2035 i2c_del_driver(&ti_sn65dsi86_driver); 2036 } 2037 module_exit(ti_sn65dsi86_exit); 2038 2039 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>"); 2040 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver"); 2041 MODULE_LICENSE("GPL v2"); 2042