1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/auxiliary_bus.h> 9 #include <linux/bitfield.h> 10 #include <linux/bits.h> 11 #include <linux/clk.h> 12 #include <linux/debugfs.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/gpio/driver.h> 15 #include <linux/i2c.h> 16 #include <linux/iopoll.h> 17 #include <linux/module.h> 18 #include <linux/of_graph.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/pwm.h> 21 #include <linux/regmap.h> 22 #include <linux/regulator/consumer.h> 23 24 #include <asm/unaligned.h> 25 26 #include <drm/drm_atomic.h> 27 #include <drm/drm_atomic_helper.h> 28 #include <drm/drm_bridge.h> 29 #include <drm/drm_dp_aux_bus.h> 30 #include <drm/drm_dp_helper.h> 31 #include <drm/drm_mipi_dsi.h> 32 #include <drm/drm_of.h> 33 #include <drm/drm_panel.h> 34 #include <drm/drm_print.h> 35 #include <drm/drm_probe_helper.h> 36 37 #define SN_DEVICE_REV_REG 0x08 38 #define SN_DPPLL_SRC_REG 0x0A 39 #define DPPLL_CLK_SRC_DSICLK BIT(0) 40 #define REFCLK_FREQ_MASK GENMASK(3, 1) 41 #define REFCLK_FREQ(x) ((x) << 1) 42 #define DPPLL_SRC_DP_PLL_LOCK BIT(7) 43 #define SN_PLL_ENABLE_REG 0x0D 44 #define SN_DSI_LANES_REG 0x10 45 #define CHA_DSI_LANES_MASK GENMASK(4, 3) 46 #define CHA_DSI_LANES(x) ((x) << 3) 47 #define SN_DSIA_CLK_FREQ_REG 0x12 48 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20 49 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24 50 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C 51 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D 52 #define CHA_HSYNC_POLARITY BIT(7) 53 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30 54 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31 55 #define CHA_VSYNC_POLARITY BIT(7) 56 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34 57 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36 58 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38 59 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A 60 #define SN_LN_ASSIGN_REG 0x59 61 #define LN_ASSIGN_WIDTH 2 62 #define SN_ENH_FRAME_REG 0x5A 63 #define VSTREAM_ENABLE BIT(3) 64 #define LN_POLRS_OFFSET 4 65 #define LN_POLRS_MASK 0xf0 66 #define SN_DATA_FORMAT_REG 0x5B 67 #define BPP_18_RGB BIT(0) 68 #define SN_HPD_DISABLE_REG 0x5C 69 #define HPD_DISABLE BIT(0) 70 #define SN_GPIO_IO_REG 0x5E 71 #define SN_GPIO_INPUT_SHIFT 4 72 #define SN_GPIO_OUTPUT_SHIFT 0 73 #define SN_GPIO_CTRL_REG 0x5F 74 #define SN_GPIO_MUX_INPUT 0 75 #define SN_GPIO_MUX_OUTPUT 1 76 #define SN_GPIO_MUX_SPECIAL 2 77 #define SN_GPIO_MUX_MASK 0x3 78 #define SN_AUX_WDATA_REG(x) (0x64 + (x)) 79 #define SN_AUX_ADDR_19_16_REG 0x74 80 #define SN_AUX_ADDR_15_8_REG 0x75 81 #define SN_AUX_ADDR_7_0_REG 0x76 82 #define SN_AUX_ADDR_MASK GENMASK(19, 0) 83 #define SN_AUX_LENGTH_REG 0x77 84 #define SN_AUX_CMD_REG 0x78 85 #define AUX_CMD_SEND BIT(0) 86 #define AUX_CMD_REQ(x) ((x) << 4) 87 #define SN_AUX_RDATA_REG(x) (0x79 + (x)) 88 #define SN_SSC_CONFIG_REG 0x93 89 #define DP_NUM_LANES_MASK GENMASK(5, 4) 90 #define DP_NUM_LANES(x) ((x) << 4) 91 #define SN_DATARATE_CONFIG_REG 0x94 92 #define DP_DATARATE_MASK GENMASK(7, 5) 93 #define DP_DATARATE(x) ((x) << 5) 94 #define SN_ML_TX_MODE_REG 0x96 95 #define ML_TX_MAIN_LINK_OFF 0 96 #define ML_TX_NORMAL_MODE BIT(0) 97 #define SN_PWM_PRE_DIV_REG 0xA0 98 #define SN_BACKLIGHT_SCALE_REG 0xA1 99 #define BACKLIGHT_SCALE_MAX 0xFFFF 100 #define SN_BACKLIGHT_REG 0xA3 101 #define SN_PWM_EN_INV_REG 0xA5 102 #define SN_PWM_INV_MASK BIT(0) 103 #define SN_PWM_EN_MASK BIT(1) 104 #define SN_AUX_CMD_STATUS_REG 0xF4 105 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) 106 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) 107 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6) 108 109 #define MIN_DSI_CLK_FREQ_MHZ 40 110 111 /* fudge factor required to account for 8b/10b encoding */ 112 #define DP_CLK_FUDGE_NUM 10 113 #define DP_CLK_FUDGE_DEN 8 114 115 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */ 116 #define SN_AUX_MAX_PAYLOAD_BYTES 16 117 118 #define SN_REGULATOR_SUPPLY_NUM 4 119 120 #define SN_MAX_DP_LANES 4 121 #define SN_NUM_GPIOS 4 122 #define SN_GPIO_PHYSICAL_OFFSET 1 123 124 #define SN_LINK_TRAINING_TRIES 10 125 126 #define SN_PWM_GPIO_IDX 3 /* 4th GPIO */ 127 128 /** 129 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver. 130 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality. 131 * @gpio_aux: AUX-bus sub device for GPIO controller functionality. 132 * @aux_aux: AUX-bus sub device for eDP AUX channel functionality. 133 * @pwm_aux: AUX-bus sub device for PWM controller functionality. 134 * 135 * @dev: Pointer to the top level (i2c) device. 136 * @regmap: Regmap for accessing i2c. 137 * @aux: Our aux channel. 138 * @bridge: Our bridge. 139 * @connector: Our connector. 140 * @host_node: Remote DSI node. 141 * @dsi: Our MIPI DSI source. 142 * @refclk: Our reference clock. 143 * @next_bridge: The bridge on the eDP side. 144 * @enable_gpio: The GPIO we toggle to enable the bridge. 145 * @supplies: Data for bulk enabling/disabling our regulators. 146 * @dp_lanes: Count of dp_lanes we're using. 147 * @ln_assign: Value to program to the LN_ASSIGN register. 148 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG. 149 * @comms_enabled: If true then communication over the aux channel is enabled. 150 * @comms_mutex: Protects modification of comms_enabled. 151 * 152 * @gchip: If we expose our GPIOs, this is used. 153 * @gchip_output: A cache of whether we've set GPIOs to output. This 154 * serves double-duty of keeping track of the direction and 155 * also keeping track of whether we've incremented the 156 * pm_runtime reference count for this pin, which we do 157 * whenever a pin is configured as an output. This is a 158 * bitmap so we can do atomic ops on it without an extra 159 * lock so concurrent users of our 4 GPIOs don't stomp on 160 * each other's read-modify-write. 161 * 162 * @pchip: pwm_chip if the PWM is exposed. 163 * @pwm_enabled: Used to track if the PWM signal is currently enabled. 164 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM. 165 * @pwm_refclk_freq: Cache for the reference clock input to the PWM. 166 */ 167 struct ti_sn65dsi86 { 168 struct auxiliary_device bridge_aux; 169 struct auxiliary_device gpio_aux; 170 struct auxiliary_device aux_aux; 171 struct auxiliary_device pwm_aux; 172 173 struct device *dev; 174 struct regmap *regmap; 175 struct drm_dp_aux aux; 176 struct drm_bridge bridge; 177 struct drm_connector connector; 178 struct device_node *host_node; 179 struct mipi_dsi_device *dsi; 180 struct clk *refclk; 181 struct drm_bridge *next_bridge; 182 struct gpio_desc *enable_gpio; 183 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM]; 184 int dp_lanes; 185 u8 ln_assign; 186 u8 ln_polrs; 187 bool comms_enabled; 188 struct mutex comms_mutex; 189 190 #if defined(CONFIG_OF_GPIO) 191 struct gpio_chip gchip; 192 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); 193 #endif 194 #if defined(CONFIG_PWM) 195 struct pwm_chip pchip; 196 bool pwm_enabled; 197 atomic_t pwm_pin_busy; 198 #endif 199 unsigned int pwm_refclk_freq; 200 }; 201 202 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = { 203 { .range_min = 0, .range_max = 0xFF }, 204 }; 205 206 static const struct regmap_access_table ti_sn_bridge_volatile_table = { 207 .yes_ranges = ti_sn65dsi86_volatile_ranges, 208 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges), 209 }; 210 211 static const struct regmap_config ti_sn65dsi86_regmap_config = { 212 .reg_bits = 8, 213 .val_bits = 8, 214 .volatile_table = &ti_sn_bridge_volatile_table, 215 .cache_type = REGCACHE_NONE, 216 .max_register = 0xFF, 217 }; 218 219 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata, 220 unsigned int reg, u16 *val) 221 { 222 u8 buf[2]; 223 int ret; 224 225 ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); 226 if (ret) 227 return ret; 228 229 *val = buf[0] | (buf[1] << 8); 230 231 return 0; 232 } 233 234 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata, 235 unsigned int reg, u16 val) 236 { 237 u8 buf[2] = { val & 0xff, val >> 8 }; 238 239 regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); 240 } 241 242 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata) 243 { 244 u32 bit_rate_khz, clk_freq_khz; 245 struct drm_display_mode *mode = 246 &pdata->bridge.encoder->crtc->state->adjusted_mode; 247 248 bit_rate_khz = mode->clock * 249 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 250 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2); 251 252 return clk_freq_khz; 253 } 254 255 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */ 256 static const u32 ti_sn_bridge_refclk_lut[] = { 257 12000000, 258 19200000, 259 26000000, 260 27000000, 261 38400000, 262 }; 263 264 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */ 265 static const u32 ti_sn_bridge_dsiclk_lut[] = { 266 468000000, 267 384000000, 268 416000000, 269 486000000, 270 460800000, 271 }; 272 273 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata) 274 { 275 int i; 276 u32 refclk_rate; 277 const u32 *refclk_lut; 278 size_t refclk_lut_size; 279 280 if (pdata->refclk) { 281 refclk_rate = clk_get_rate(pdata->refclk); 282 refclk_lut = ti_sn_bridge_refclk_lut; 283 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut); 284 clk_prepare_enable(pdata->refclk); 285 } else { 286 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000; 287 refclk_lut = ti_sn_bridge_dsiclk_lut; 288 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut); 289 } 290 291 /* for i equals to refclk_lut_size means default frequency */ 292 for (i = 0; i < refclk_lut_size; i++) 293 if (refclk_lut[i] == refclk_rate) 294 break; 295 296 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, 297 REFCLK_FREQ(i)); 298 299 /* 300 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG, 301 * regardless of its actual sourcing. 302 */ 303 pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i]; 304 } 305 306 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata) 307 { 308 mutex_lock(&pdata->comms_mutex); 309 310 /* configure bridge ref_clk */ 311 ti_sn_bridge_set_refclk_freq(pdata); 312 313 /* 314 * HPD on this bridge chip is a bit useless. This is an eDP bridge 315 * so the HPD is an internal signal that's only there to signal that 316 * the panel is done powering up. ...but the bridge chip debounces 317 * this signal by between 100 ms and 400 ms (depending on process, 318 * voltage, and temperate--I measured it at about 200 ms). One 319 * particular panel asserted HPD 84 ms after it was powered on meaning 320 * that we saw HPD 284 ms after power on. ...but the same panel said 321 * that instead of looking at HPD you could just hardcode a delay of 322 * 200 ms. We'll assume that the panel driver will have the hardcoded 323 * delay in its prepare and always disable HPD. 324 * 325 * If HPD somehow makes sense on some future panel we'll have to 326 * change this to be conditional on someone specifying that HPD should 327 * be used. 328 */ 329 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE, 330 HPD_DISABLE); 331 332 pdata->comms_enabled = true; 333 334 mutex_unlock(&pdata->comms_mutex); 335 } 336 337 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata) 338 { 339 mutex_lock(&pdata->comms_mutex); 340 341 pdata->comms_enabled = false; 342 clk_disable_unprepare(pdata->refclk); 343 344 mutex_unlock(&pdata->comms_mutex); 345 } 346 347 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev) 348 { 349 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 350 int ret; 351 352 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 353 if (ret) { 354 DRM_ERROR("failed to enable supplies %d\n", ret); 355 return ret; 356 } 357 358 /* td2: min 100 us after regulators before enabling the GPIO */ 359 usleep_range(100, 110); 360 361 gpiod_set_value(pdata->enable_gpio, 1); 362 363 /* 364 * If we have a reference clock we can enable communication w/ the 365 * panel (including the aux channel) w/out any need for an input clock 366 * so we can do it in resume which lets us read the EDID before 367 * pre_enable(). Without a reference clock we need the MIPI reference 368 * clock so reading early doesn't work. 369 */ 370 if (pdata->refclk) 371 ti_sn65dsi86_enable_comms(pdata); 372 373 return ret; 374 } 375 376 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev) 377 { 378 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 379 int ret; 380 381 if (pdata->refclk) 382 ti_sn65dsi86_disable_comms(pdata); 383 384 gpiod_set_value(pdata->enable_gpio, 0); 385 386 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 387 if (ret) 388 DRM_ERROR("failed to disable supplies %d\n", ret); 389 390 return ret; 391 } 392 393 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = { 394 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL) 395 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 396 pm_runtime_force_resume) 397 }; 398 399 static int status_show(struct seq_file *s, void *data) 400 { 401 struct ti_sn65dsi86 *pdata = s->private; 402 unsigned int reg, val; 403 404 seq_puts(s, "STATUS REGISTERS:\n"); 405 406 pm_runtime_get_sync(pdata->dev); 407 408 /* IRQ Status Registers, see Table 31 in datasheet */ 409 for (reg = 0xf0; reg <= 0xf8; reg++) { 410 regmap_read(pdata->regmap, reg, &val); 411 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val); 412 } 413 414 pm_runtime_put_autosuspend(pdata->dev); 415 416 return 0; 417 } 418 419 DEFINE_SHOW_ATTRIBUTE(status); 420 421 static void ti_sn65dsi86_debugfs_remove(void *data) 422 { 423 debugfs_remove_recursive(data); 424 } 425 426 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata) 427 { 428 struct device *dev = pdata->dev; 429 struct dentry *debugfs; 430 int ret; 431 432 debugfs = debugfs_create_dir(dev_name(dev), NULL); 433 434 /* 435 * We might get an error back if debugfs wasn't enabled in the kernel 436 * so let's just silently return upon failure. 437 */ 438 if (IS_ERR_OR_NULL(debugfs)) 439 return; 440 441 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs); 442 if (ret) 443 return; 444 445 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops); 446 } 447 448 /* ----------------------------------------------------------------------------- 449 * Auxiliary Devices (*not* AUX) 450 */ 451 452 static void ti_sn65dsi86_uninit_aux(void *data) 453 { 454 auxiliary_device_uninit(data); 455 } 456 457 static void ti_sn65dsi86_delete_aux(void *data) 458 { 459 auxiliary_device_delete(data); 460 } 461 462 /* 463 * AUX bus docs say that a non-NULL release is mandatory, but it makes no 464 * sense for the model used here where all of the aux devices are allocated 465 * in the single shared structure. We'll use this noop as a workaround. 466 */ 467 static void ti_sn65dsi86_noop(struct device *dev) {} 468 469 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata, 470 struct auxiliary_device *aux, 471 const char *name) 472 { 473 struct device *dev = pdata->dev; 474 int ret; 475 476 aux->name = name; 477 aux->dev.parent = dev; 478 aux->dev.release = ti_sn65dsi86_noop; 479 device_set_of_node_from_dev(&aux->dev, dev); 480 ret = auxiliary_device_init(aux); 481 if (ret) 482 return ret; 483 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux); 484 if (ret) 485 return ret; 486 487 ret = auxiliary_device_add(aux); 488 if (ret) 489 return ret; 490 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux); 491 492 return ret; 493 } 494 495 /* ----------------------------------------------------------------------------- 496 * AUX Adapter 497 */ 498 499 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux) 500 { 501 return container_of(aux, struct ti_sn65dsi86, aux); 502 } 503 504 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux, 505 struct drm_dp_aux_msg *msg) 506 { 507 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux); 508 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE); 509 u32 request_val = AUX_CMD_REQ(msg->request); 510 u8 *buf = msg->buffer; 511 unsigned int len = msg->size; 512 unsigned int val; 513 int ret; 514 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG]; 515 516 if (len > SN_AUX_MAX_PAYLOAD_BYTES) 517 return -EINVAL; 518 519 pm_runtime_get_sync(pdata->dev); 520 mutex_lock(&pdata->comms_mutex); 521 522 /* 523 * If someone tries to do a DDC over AUX transaction before pre_enable() 524 * on a device without a dedicated reference clock then we just can't 525 * do it. Fail right away. This prevents non-refclk users from reading 526 * the EDID before enabling the panel but such is life. 527 */ 528 if (!pdata->comms_enabled) { 529 ret = -EIO; 530 goto exit; 531 } 532 533 switch (request) { 534 case DP_AUX_NATIVE_WRITE: 535 case DP_AUX_I2C_WRITE: 536 case DP_AUX_NATIVE_READ: 537 case DP_AUX_I2C_READ: 538 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val); 539 /* Assume it's good */ 540 msg->reply = 0; 541 break; 542 default: 543 ret = -EINVAL; 544 goto exit; 545 } 546 547 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32)); 548 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len, 549 addr_len); 550 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len, 551 ARRAY_SIZE(addr_len)); 552 553 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) 554 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len); 555 556 /* Clear old status bits before start so we don't get confused */ 557 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG, 558 AUX_IRQ_STATUS_NAT_I2C_FAIL | 559 AUX_IRQ_STATUS_AUX_RPLY_TOUT | 560 AUX_IRQ_STATUS_AUX_SHORT); 561 562 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND); 563 564 /* Zero delay loop because i2c transactions are slow already */ 565 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val, 566 !(val & AUX_CMD_SEND), 0, 50 * 1000); 567 if (ret) 568 goto exit; 569 570 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val); 571 if (ret) 572 goto exit; 573 574 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) { 575 /* 576 * The hardware tried the message seven times per the DP spec 577 * but it hit a timeout. We ignore defers here because they're 578 * handled in hardware. 579 */ 580 ret = -ETIMEDOUT; 581 goto exit; 582 } 583 584 if (val & AUX_IRQ_STATUS_AUX_SHORT) { 585 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len); 586 if (ret) 587 goto exit; 588 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) { 589 switch (request) { 590 case DP_AUX_I2C_WRITE: 591 case DP_AUX_I2C_READ: 592 msg->reply |= DP_AUX_I2C_REPLY_NACK; 593 break; 594 case DP_AUX_NATIVE_READ: 595 case DP_AUX_NATIVE_WRITE: 596 msg->reply |= DP_AUX_NATIVE_REPLY_NACK; 597 break; 598 } 599 len = 0; 600 goto exit; 601 } 602 603 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0) 604 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len); 605 606 exit: 607 mutex_unlock(&pdata->comms_mutex); 608 pm_runtime_mark_last_busy(pdata->dev); 609 pm_runtime_put_autosuspend(pdata->dev); 610 611 if (ret) 612 return ret; 613 return len; 614 } 615 616 static int ti_sn_aux_probe(struct auxiliary_device *adev, 617 const struct auxiliary_device_id *id) 618 { 619 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 620 int ret; 621 622 pdata->aux.name = "ti-sn65dsi86-aux"; 623 pdata->aux.dev = &adev->dev; 624 pdata->aux.transfer = ti_sn_aux_transfer; 625 drm_dp_aux_init(&pdata->aux); 626 627 ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux); 628 if (ret) 629 return ret; 630 631 /* 632 * The eDP to MIPI bridge parts don't work until the AUX channel is 633 * setup so we don't add it in the main driver probe, we add it now. 634 */ 635 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge"); 636 } 637 638 static const struct auxiliary_device_id ti_sn_aux_id_table[] = { 639 { .name = "ti_sn65dsi86.aux", }, 640 {}, 641 }; 642 643 static struct auxiliary_driver ti_sn_aux_driver = { 644 .name = "aux", 645 .probe = ti_sn_aux_probe, 646 .id_table = ti_sn_aux_id_table, 647 }; 648 649 /* ----------------------------------------------------------------------------- 650 * DRM Connector Operations 651 */ 652 653 static struct ti_sn65dsi86 * 654 connector_to_ti_sn65dsi86(struct drm_connector *connector) 655 { 656 return container_of(connector, struct ti_sn65dsi86, connector); 657 } 658 659 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector) 660 { 661 struct ti_sn65dsi86 *pdata = connector_to_ti_sn65dsi86(connector); 662 663 return drm_bridge_get_modes(pdata->next_bridge, connector); 664 } 665 666 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = { 667 .get_modes = ti_sn_bridge_connector_get_modes, 668 }; 669 670 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = { 671 .fill_modes = drm_helper_probe_single_connector_modes, 672 .destroy = drm_connector_cleanup, 673 .reset = drm_atomic_helper_connector_reset, 674 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 675 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 676 }; 677 678 static int ti_sn_bridge_connector_init(struct ti_sn65dsi86 *pdata) 679 { 680 int ret; 681 682 ret = drm_connector_init(pdata->bridge.dev, &pdata->connector, 683 &ti_sn_bridge_connector_funcs, 684 DRM_MODE_CONNECTOR_eDP); 685 if (ret) { 686 DRM_ERROR("Failed to initialize connector with drm\n"); 687 return ret; 688 } 689 690 drm_connector_helper_add(&pdata->connector, 691 &ti_sn_bridge_connector_helper_funcs); 692 drm_connector_attach_encoder(&pdata->connector, pdata->bridge.encoder); 693 694 return 0; 695 } 696 697 /*------------------------------------------------------------------------------ 698 * DRM Bridge 699 */ 700 701 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge) 702 { 703 return container_of(bridge, struct ti_sn65dsi86, bridge); 704 } 705 706 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata) 707 { 708 int val; 709 struct mipi_dsi_host *host; 710 struct mipi_dsi_device *dsi; 711 struct device *dev = pdata->dev; 712 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge", 713 .channel = 0, 714 .node = NULL, 715 }; 716 717 host = of_find_mipi_dsi_host_by_node(pdata->host_node); 718 if (!host) 719 return -EPROBE_DEFER; 720 721 dsi = devm_mipi_dsi_device_register_full(dev, host, &info); 722 if (IS_ERR(dsi)) 723 return PTR_ERR(dsi); 724 725 /* TODO: setting to 4 MIPI lanes always for now */ 726 dsi->lanes = 4; 727 dsi->format = MIPI_DSI_FMT_RGB888; 728 dsi->mode_flags = MIPI_DSI_MODE_VIDEO; 729 730 /* check if continuous dsi clock is required or not */ 731 pm_runtime_get_sync(dev); 732 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val); 733 pm_runtime_put_autosuspend(dev); 734 if (!(val & DPPLL_CLK_SRC_DSICLK)) 735 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS; 736 737 pdata->dsi = dsi; 738 739 return devm_mipi_dsi_attach(dev, dsi); 740 } 741 742 static int ti_sn_bridge_attach(struct drm_bridge *bridge, 743 enum drm_bridge_attach_flags flags) 744 { 745 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 746 int ret; 747 748 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) { 749 DRM_ERROR("Fix bridge driver to make connector optional!"); 750 return -EINVAL; 751 } 752 753 pdata->aux.drm_dev = bridge->dev; 754 ret = drm_dp_aux_register(&pdata->aux); 755 if (ret < 0) { 756 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret); 757 return ret; 758 } 759 760 ret = ti_sn_bridge_connector_init(pdata); 761 if (ret < 0) 762 goto err_conn_init; 763 764 /* We never want the next bridge to *also* create a connector: */ 765 flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR; 766 767 /* Attach the next bridge */ 768 ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge, 769 &pdata->bridge, flags); 770 if (ret < 0) 771 goto err_dsi_host; 772 773 return 0; 774 775 err_dsi_host: 776 drm_connector_cleanup(&pdata->connector); 777 err_conn_init: 778 drm_dp_aux_unregister(&pdata->aux); 779 return ret; 780 } 781 782 static void ti_sn_bridge_detach(struct drm_bridge *bridge) 783 { 784 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux); 785 } 786 787 static enum drm_mode_status 788 ti_sn_bridge_mode_valid(struct drm_bridge *bridge, 789 const struct drm_display_info *info, 790 const struct drm_display_mode *mode) 791 { 792 /* maximum supported resolution is 4K at 60 fps */ 793 if (mode->clock > 594000) 794 return MODE_CLOCK_HIGH; 795 796 return MODE_OK; 797 } 798 799 static void ti_sn_bridge_disable(struct drm_bridge *bridge) 800 { 801 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 802 803 /* disable video stream */ 804 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0); 805 } 806 807 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata) 808 { 809 unsigned int bit_rate_mhz, clk_freq_mhz; 810 unsigned int val; 811 struct drm_display_mode *mode = 812 &pdata->bridge.encoder->crtc->state->adjusted_mode; 813 814 /* set DSIA clk frequency */ 815 bit_rate_mhz = (mode->clock / 1000) * 816 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 817 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2); 818 819 /* for each increment in val, frequency increases by 5MHz */ 820 val = (MIN_DSI_CLK_FREQ_MHZ / 5) + 821 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF); 822 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val); 823 } 824 825 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata) 826 { 827 if (pdata->connector.display_info.bpc <= 6) 828 return 18; 829 else 830 return 24; 831 } 832 833 /* 834 * LUT index corresponds to register value and 835 * LUT values corresponds to dp data rate supported 836 * by the bridge in Mbps unit. 837 */ 838 static const unsigned int ti_sn_bridge_dp_rate_lut[] = { 839 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400 840 }; 841 842 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata) 843 { 844 unsigned int bit_rate_khz, dp_rate_mhz; 845 unsigned int i; 846 struct drm_display_mode *mode = 847 &pdata->bridge.encoder->crtc->state->adjusted_mode; 848 849 /* Calculate minimum bit rate based on our pixel clock. */ 850 bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata); 851 852 /* Calculate minimum DP data rate, taking 80% as per DP spec */ 853 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM, 854 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN); 855 856 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++) 857 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz) 858 break; 859 860 return i; 861 } 862 863 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata) 864 { 865 unsigned int valid_rates = 0; 866 unsigned int rate_per_200khz; 867 unsigned int rate_mhz; 868 u8 dpcd_val; 869 int ret; 870 int i, j; 871 872 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val); 873 if (ret != 1) { 874 DRM_DEV_ERROR(pdata->dev, 875 "Can't read eDP rev (%d), assuming 1.1\n", ret); 876 dpcd_val = DP_EDP_11; 877 } 878 879 if (dpcd_val >= DP_EDP_14) { 880 /* eDP 1.4 devices must provide a custom table */ 881 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 882 883 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES, 884 sink_rates, sizeof(sink_rates)); 885 886 if (ret != sizeof(sink_rates)) { 887 DRM_DEV_ERROR(pdata->dev, 888 "Can't read supported rate table (%d)\n", ret); 889 890 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */ 891 memset(sink_rates, 0, sizeof(sink_rates)); 892 } 893 894 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 895 rate_per_200khz = le16_to_cpu(sink_rates[i]); 896 897 if (!rate_per_200khz) 898 break; 899 900 rate_mhz = rate_per_200khz * 200 / 1000; 901 for (j = 0; 902 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 903 j++) { 904 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz) 905 valid_rates |= BIT(j); 906 } 907 } 908 909 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) { 910 if (valid_rates & BIT(i)) 911 return valid_rates; 912 } 913 DRM_DEV_ERROR(pdata->dev, 914 "No matching eDP rates in table; falling back\n"); 915 } 916 917 /* On older versions best we can do is use DP_MAX_LINK_RATE */ 918 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val); 919 if (ret != 1) { 920 DRM_DEV_ERROR(pdata->dev, 921 "Can't read max rate (%d); assuming 5.4 GHz\n", 922 ret); 923 dpcd_val = DP_LINK_BW_5_4; 924 } 925 926 switch (dpcd_val) { 927 default: 928 DRM_DEV_ERROR(pdata->dev, 929 "Unexpected max rate (%#x); assuming 5.4 GHz\n", 930 (int)dpcd_val); 931 fallthrough; 932 case DP_LINK_BW_5_4: 933 valid_rates |= BIT(7); 934 fallthrough; 935 case DP_LINK_BW_2_7: 936 valid_rates |= BIT(4); 937 fallthrough; 938 case DP_LINK_BW_1_62: 939 valid_rates |= BIT(1); 940 break; 941 } 942 943 return valid_rates; 944 } 945 946 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata) 947 { 948 struct drm_display_mode *mode = 949 &pdata->bridge.encoder->crtc->state->adjusted_mode; 950 u8 hsync_polarity = 0, vsync_polarity = 0; 951 952 if (mode->flags & DRM_MODE_FLAG_PHSYNC) 953 hsync_polarity = CHA_HSYNC_POLARITY; 954 if (mode->flags & DRM_MODE_FLAG_PVSYNC) 955 vsync_polarity = CHA_VSYNC_POLARITY; 956 957 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG, 958 mode->hdisplay); 959 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG, 960 mode->vdisplay); 961 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG, 962 (mode->hsync_end - mode->hsync_start) & 0xFF); 963 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG, 964 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) | 965 hsync_polarity); 966 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG, 967 (mode->vsync_end - mode->vsync_start) & 0xFF); 968 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG, 969 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) | 970 vsync_polarity); 971 972 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG, 973 (mode->htotal - mode->hsync_end) & 0xFF); 974 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG, 975 (mode->vtotal - mode->vsync_end) & 0xFF); 976 977 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG, 978 (mode->hsync_start - mode->hdisplay) & 0xFF); 979 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG, 980 (mode->vsync_start - mode->vdisplay) & 0xFF); 981 982 usleep_range(10000, 10500); /* 10ms delay recommended by spec */ 983 } 984 985 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata) 986 { 987 u8 data; 988 int ret; 989 990 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data); 991 if (ret != 1) { 992 DRM_DEV_ERROR(pdata->dev, 993 "Can't read lane count (%d); assuming 4\n", ret); 994 return 4; 995 } 996 997 return data & DP_LANE_COUNT_MASK; 998 } 999 1000 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx, 1001 const char **last_err_str) 1002 { 1003 unsigned int val; 1004 int ret; 1005 int i; 1006 1007 /* set dp clk frequency value */ 1008 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG, 1009 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx)); 1010 1011 /* enable DP PLL */ 1012 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1); 1013 1014 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val, 1015 val & DPPLL_SRC_DP_PLL_LOCK, 1000, 1016 50 * 1000); 1017 if (ret) { 1018 *last_err_str = "DP_PLL_LOCK polling failed"; 1019 goto exit; 1020 } 1021 1022 /* 1023 * We'll try to link train several times. As part of link training 1024 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If 1025 * the panel isn't ready quite it might respond NAK here which means 1026 * we need to try again. 1027 */ 1028 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) { 1029 /* Semi auto link training mode */ 1030 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A); 1031 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val, 1032 val == ML_TX_MAIN_LINK_OFF || 1033 val == ML_TX_NORMAL_MODE, 1000, 1034 500 * 1000); 1035 if (ret) { 1036 *last_err_str = "Training complete polling failed"; 1037 } else if (val == ML_TX_MAIN_LINK_OFF) { 1038 *last_err_str = "Link training failed, link is off"; 1039 ret = -EIO; 1040 continue; 1041 } 1042 1043 break; 1044 } 1045 1046 /* If we saw quite a few retries, add a note about it */ 1047 if (!ret && i > SN_LINK_TRAINING_TRIES / 2) 1048 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i); 1049 1050 exit: 1051 /* Disable the PLL if we failed */ 1052 if (ret) 1053 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1054 1055 return ret; 1056 } 1057 1058 static void ti_sn_bridge_enable(struct drm_bridge *bridge) 1059 { 1060 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1061 const char *last_err_str = "No supported DP rate"; 1062 unsigned int valid_rates; 1063 int dp_rate_idx; 1064 unsigned int val; 1065 int ret = -EINVAL; 1066 int max_dp_lanes; 1067 1068 max_dp_lanes = ti_sn_get_max_lanes(pdata); 1069 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes); 1070 1071 /* DSI_A lane config */ 1072 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes); 1073 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG, 1074 CHA_DSI_LANES_MASK, val); 1075 1076 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign); 1077 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK, 1078 pdata->ln_polrs << LN_POLRS_OFFSET); 1079 1080 /* set dsi clk frequency value */ 1081 ti_sn_bridge_set_dsi_rate(pdata); 1082 1083 /* 1084 * The SN65DSI86 only supports ASSR Display Authentication method and 1085 * this method is enabled by default. An eDP panel must support this 1086 * authentication method. We need to enable this method in the eDP panel 1087 * at DisplayPort address 0x0010A prior to link training. 1088 */ 1089 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET, 1090 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE); 1091 1092 /* Set the DP output format (18 bpp or 24 bpp) */ 1093 val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0; 1094 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val); 1095 1096 /* DP lane config */ 1097 val = DP_NUM_LANES(min(pdata->dp_lanes, 3)); 1098 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 1099 val); 1100 1101 valid_rates = ti_sn_bridge_read_valid_rates(pdata); 1102 1103 /* Train until we run out of rates */ 1104 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata); 1105 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 1106 dp_rate_idx++) { 1107 if (!(valid_rates & BIT(dp_rate_idx))) 1108 continue; 1109 1110 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str); 1111 if (!ret) 1112 break; 1113 } 1114 if (ret) { 1115 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret); 1116 return; 1117 } 1118 1119 /* config video parameters */ 1120 ti_sn_bridge_set_video_timings(pdata); 1121 1122 /* enable video stream */ 1123 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 1124 VSTREAM_ENABLE); 1125 } 1126 1127 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge) 1128 { 1129 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1130 1131 pm_runtime_get_sync(pdata->dev); 1132 1133 if (!pdata->refclk) 1134 ti_sn65dsi86_enable_comms(pdata); 1135 1136 /* td7: min 100 us after enable before DSI data */ 1137 usleep_range(100, 110); 1138 } 1139 1140 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge) 1141 { 1142 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1143 1144 /* semi auto link training mode OFF */ 1145 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0); 1146 /* Num lanes to 0 as per power sequencing in data sheet */ 1147 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0); 1148 /* disable DP PLL */ 1149 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1150 1151 if (!pdata->refclk) 1152 ti_sn65dsi86_disable_comms(pdata); 1153 1154 pm_runtime_put_sync(pdata->dev); 1155 } 1156 1157 static const struct drm_bridge_funcs ti_sn_bridge_funcs = { 1158 .attach = ti_sn_bridge_attach, 1159 .detach = ti_sn_bridge_detach, 1160 .mode_valid = ti_sn_bridge_mode_valid, 1161 .pre_enable = ti_sn_bridge_pre_enable, 1162 .enable = ti_sn_bridge_enable, 1163 .disable = ti_sn_bridge_disable, 1164 .post_disable = ti_sn_bridge_post_disable, 1165 }; 1166 1167 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata, 1168 struct device_node *np) 1169 { 1170 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 }; 1171 u32 lane_polarities[SN_MAX_DP_LANES] = { }; 1172 struct device_node *endpoint; 1173 u8 ln_assign = 0; 1174 u8 ln_polrs = 0; 1175 int dp_lanes; 1176 int i; 1177 1178 /* 1179 * Read config from the device tree about lane remapping and lane 1180 * polarities. These are optional and we assume identity map and 1181 * normal polarity if nothing is specified. It's OK to specify just 1182 * data-lanes but not lane-polarities but not vice versa. 1183 * 1184 * Error checking is light (we just make sure we don't crash or 1185 * buffer overrun) and we assume dts is well formed and specifying 1186 * mappings that the hardware supports. 1187 */ 1188 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1189 dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes"); 1190 if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) { 1191 of_property_read_u32_array(endpoint, "data-lanes", 1192 lane_assignments, dp_lanes); 1193 of_property_read_u32_array(endpoint, "lane-polarities", 1194 lane_polarities, dp_lanes); 1195 } else { 1196 dp_lanes = SN_MAX_DP_LANES; 1197 } 1198 of_node_put(endpoint); 1199 1200 /* 1201 * Convert into register format. Loop over all lanes even if 1202 * data-lanes had fewer elements so that we nicely initialize 1203 * the LN_ASSIGN register. 1204 */ 1205 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) { 1206 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i]; 1207 ln_polrs = ln_polrs << 1 | lane_polarities[i]; 1208 } 1209 1210 /* Stash in our struct for when we power on */ 1211 pdata->dp_lanes = dp_lanes; 1212 pdata->ln_assign = ln_assign; 1213 pdata->ln_polrs = ln_polrs; 1214 } 1215 1216 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata) 1217 { 1218 struct device_node *np = pdata->dev->of_node; 1219 1220 pdata->host_node = of_graph_get_remote_node(np, 0, 0); 1221 1222 if (!pdata->host_node) { 1223 DRM_ERROR("remote dsi host node not found\n"); 1224 return -ENODEV; 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int ti_sn_bridge_probe(struct auxiliary_device *adev, 1231 const struct auxiliary_device_id *id) 1232 { 1233 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1234 struct device_node *np = pdata->dev->of_node; 1235 struct drm_panel *panel; 1236 int ret; 1237 1238 ret = drm_of_find_panel_or_bridge(np, 1, 0, &panel, NULL); 1239 if (ret) 1240 return dev_err_probe(&adev->dev, ret, 1241 "could not find any panel node\n"); 1242 1243 pdata->next_bridge = devm_drm_panel_bridge_add(pdata->dev, panel); 1244 if (IS_ERR(pdata->next_bridge)) { 1245 DRM_ERROR("failed to create panel bridge\n"); 1246 return PTR_ERR(pdata->next_bridge); 1247 } 1248 1249 ti_sn_bridge_parse_lanes(pdata, np); 1250 1251 ret = ti_sn_bridge_parse_dsi_host(pdata); 1252 if (ret) 1253 return ret; 1254 1255 pdata->bridge.funcs = &ti_sn_bridge_funcs; 1256 pdata->bridge.of_node = np; 1257 1258 drm_bridge_add(&pdata->bridge); 1259 1260 ret = ti_sn_attach_host(pdata); 1261 if (ret) { 1262 dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n"); 1263 goto err_remove_bridge; 1264 } 1265 1266 return 0; 1267 1268 err_remove_bridge: 1269 drm_bridge_remove(&pdata->bridge); 1270 return ret; 1271 } 1272 1273 static void ti_sn_bridge_remove(struct auxiliary_device *adev) 1274 { 1275 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1276 1277 if (!pdata) 1278 return; 1279 1280 drm_bridge_remove(&pdata->bridge); 1281 1282 of_node_put(pdata->host_node); 1283 } 1284 1285 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = { 1286 { .name = "ti_sn65dsi86.bridge", }, 1287 {}, 1288 }; 1289 1290 static struct auxiliary_driver ti_sn_bridge_driver = { 1291 .name = "bridge", 1292 .probe = ti_sn_bridge_probe, 1293 .remove = ti_sn_bridge_remove, 1294 .id_table = ti_sn_bridge_id_table, 1295 }; 1296 1297 /* ----------------------------------------------------------------------------- 1298 * PWM Controller 1299 */ 1300 #if defined(CONFIG_PWM) 1301 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) 1302 { 1303 return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0; 1304 } 1305 1306 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) 1307 { 1308 atomic_set(&pdata->pwm_pin_busy, 0); 1309 } 1310 1311 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip) 1312 { 1313 return container_of(chip, struct ti_sn65dsi86, pchip); 1314 } 1315 1316 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) 1317 { 1318 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1319 1320 return ti_sn_pwm_pin_request(pdata); 1321 } 1322 1323 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) 1324 { 1325 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1326 1327 ti_sn_pwm_pin_release(pdata); 1328 } 1329 1330 /* 1331 * Limitations: 1332 * - The PWM signal is not driven when the chip is powered down, or in its 1333 * reset state and the driver does not implement the "suspend state" 1334 * described in the documentation. In order to save power, state->enabled is 1335 * interpreted as denoting if the signal is expected to be valid, and is used 1336 * to determine if the chip needs to be kept powered. 1337 * - Changing both period and duty_cycle is not done atomically, neither is the 1338 * multi-byte register updates, so the output might briefly be undefined 1339 * during update. 1340 */ 1341 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 1342 const struct pwm_state *state) 1343 { 1344 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1345 unsigned int pwm_en_inv; 1346 unsigned int backlight; 1347 unsigned int pre_div; 1348 unsigned int scale; 1349 u64 period_max; 1350 u64 period; 1351 int ret; 1352 1353 if (!pdata->pwm_enabled) { 1354 ret = pm_runtime_get_sync(pdata->dev); 1355 if (ret < 0) { 1356 pm_runtime_put_sync(pdata->dev); 1357 return ret; 1358 } 1359 } 1360 1361 if (state->enabled) { 1362 if (!pdata->pwm_enabled) { 1363 /* 1364 * The chip might have been powered down while we 1365 * didn't hold a PM runtime reference, so mux in the 1366 * PWM function on the GPIO pin again. 1367 */ 1368 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1369 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX), 1370 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX)); 1371 if (ret) { 1372 dev_err(pdata->dev, "failed to mux in PWM function\n"); 1373 goto out; 1374 } 1375 } 1376 1377 /* 1378 * Per the datasheet the PWM frequency is given by: 1379 * 1380 * REFCLK_FREQ 1381 * PWM_FREQ = ----------------------------------- 1382 * PWM_PRE_DIV * BACKLIGHT_SCALE + 1 1383 * 1384 * However, after careful review the author is convinced that 1385 * the documentation has lost some parenthesis around 1386 * "BACKLIGHT_SCALE + 1". 1387 * 1388 * With the period T_pwm = 1/PWM_FREQ this can be written: 1389 * 1390 * T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1) 1391 * 1392 * In order to keep BACKLIGHT_SCALE within its 16 bits, 1393 * PWM_PRE_DIV must be: 1394 * 1395 * T_pwm * REFCLK_FREQ 1396 * PWM_PRE_DIV >= ------------------------- 1397 * BACKLIGHT_SCALE_MAX + 1 1398 * 1399 * To simplify the search and to favour higher resolution of 1400 * the duty cycle over accuracy of the period, the lowest 1401 * possible PWM_PRE_DIV is used. Finally the scale is 1402 * calculated as: 1403 * 1404 * T_pwm * REFCLK_FREQ 1405 * BACKLIGHT_SCALE = ---------------------- - 1 1406 * PWM_PRE_DIV 1407 * 1408 * Here T_pwm is represented in seconds, so appropriate scaling 1409 * to nanoseconds is necessary. 1410 */ 1411 1412 /* Minimum T_pwm is 1 / REFCLK_FREQ */ 1413 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) { 1414 ret = -EINVAL; 1415 goto out; 1416 } 1417 1418 /* 1419 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ 1420 * Limit period to this to avoid overflows 1421 */ 1422 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1), 1423 pdata->pwm_refclk_freq); 1424 period = min(state->period, period_max); 1425 1426 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq, 1427 (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1)); 1428 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1; 1429 1430 /* 1431 * The documentation has the duty ratio given as: 1432 * 1433 * duty BACKLIGHT 1434 * ------- = --------------------- 1435 * period BACKLIGHT_SCALE + 1 1436 * 1437 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according 1438 * to definition above and adjusting for nanosecond 1439 * representation of duty cycle gives us: 1440 */ 1441 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq, 1442 (u64)NSEC_PER_SEC * pre_div); 1443 if (backlight > scale) 1444 backlight = scale; 1445 1446 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div); 1447 if (ret) { 1448 dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n"); 1449 goto out; 1450 } 1451 1452 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale); 1453 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight); 1454 } 1455 1456 pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) | 1457 FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED); 1458 ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv); 1459 if (ret) { 1460 dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n"); 1461 goto out; 1462 } 1463 1464 pdata->pwm_enabled = state->enabled; 1465 out: 1466 1467 if (!pdata->pwm_enabled) 1468 pm_runtime_put_sync(pdata->dev); 1469 1470 return ret; 1471 } 1472 1473 static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, 1474 struct pwm_state *state) 1475 { 1476 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1477 unsigned int pwm_en_inv; 1478 unsigned int pre_div; 1479 u16 backlight; 1480 u16 scale; 1481 int ret; 1482 1483 ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv); 1484 if (ret) 1485 return; 1486 1487 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale); 1488 if (ret) 1489 return; 1490 1491 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight); 1492 if (ret) 1493 return; 1494 1495 ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div); 1496 if (ret) 1497 return; 1498 1499 state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv); 1500 if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv)) 1501 state->polarity = PWM_POLARITY_INVERSED; 1502 else 1503 state->polarity = PWM_POLARITY_NORMAL; 1504 1505 state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1), 1506 pdata->pwm_refclk_freq); 1507 state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight, 1508 pdata->pwm_refclk_freq); 1509 1510 if (state->duty_cycle > state->period) 1511 state->duty_cycle = state->period; 1512 } 1513 1514 static const struct pwm_ops ti_sn_pwm_ops = { 1515 .request = ti_sn_pwm_request, 1516 .free = ti_sn_pwm_free, 1517 .apply = ti_sn_pwm_apply, 1518 .get_state = ti_sn_pwm_get_state, 1519 .owner = THIS_MODULE, 1520 }; 1521 1522 static int ti_sn_pwm_probe(struct auxiliary_device *adev, 1523 const struct auxiliary_device_id *id) 1524 { 1525 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1526 1527 pdata->pchip.dev = pdata->dev; 1528 pdata->pchip.ops = &ti_sn_pwm_ops; 1529 pdata->pchip.npwm = 1; 1530 pdata->pchip.of_xlate = of_pwm_single_xlate; 1531 pdata->pchip.of_pwm_n_cells = 1; 1532 1533 return pwmchip_add(&pdata->pchip); 1534 } 1535 1536 static void ti_sn_pwm_remove(struct auxiliary_device *adev) 1537 { 1538 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1539 1540 pwmchip_remove(&pdata->pchip); 1541 1542 if (pdata->pwm_enabled) 1543 pm_runtime_put_sync(pdata->dev); 1544 } 1545 1546 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = { 1547 { .name = "ti_sn65dsi86.pwm", }, 1548 {}, 1549 }; 1550 1551 static struct auxiliary_driver ti_sn_pwm_driver = { 1552 .name = "pwm", 1553 .probe = ti_sn_pwm_probe, 1554 .remove = ti_sn_pwm_remove, 1555 .id_table = ti_sn_pwm_id_table, 1556 }; 1557 1558 static int __init ti_sn_pwm_register(void) 1559 { 1560 return auxiliary_driver_register(&ti_sn_pwm_driver); 1561 } 1562 1563 static void ti_sn_pwm_unregister(void) 1564 { 1565 auxiliary_driver_unregister(&ti_sn_pwm_driver); 1566 } 1567 1568 #else 1569 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; } 1570 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {} 1571 1572 static inline int ti_sn_pwm_register(void) { return 0; } 1573 static inline void ti_sn_pwm_unregister(void) {} 1574 #endif 1575 1576 /* ----------------------------------------------------------------------------- 1577 * GPIO Controller 1578 */ 1579 #if defined(CONFIG_OF_GPIO) 1580 1581 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip, 1582 const struct of_phandle_args *gpiospec, 1583 u32 *flags) 1584 { 1585 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells)) 1586 return -EINVAL; 1587 1588 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1) 1589 return -EINVAL; 1590 1591 if (flags) 1592 *flags = gpiospec->args[1]; 1593 1594 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET; 1595 } 1596 1597 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip, 1598 unsigned int offset) 1599 { 1600 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1601 1602 /* 1603 * We already have to keep track of the direction because we use 1604 * that to figure out whether we've powered the device. We can 1605 * just return that rather than (maybe) powering up the device 1606 * to ask its direction. 1607 */ 1608 return test_bit(offset, pdata->gchip_output) ? 1609 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1610 } 1611 1612 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset) 1613 { 1614 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1615 unsigned int val; 1616 int ret; 1617 1618 /* 1619 * When the pin is an input we don't forcibly keep the bridge 1620 * powered--we just power it on to read the pin. NOTE: part of 1621 * the reason this works is that the bridge defaults (when 1622 * powered back on) to all 4 GPIOs being configured as GPIO input. 1623 * Also note that if something else is keeping the chip powered the 1624 * pm_runtime functions are lightweight increments of a refcount. 1625 */ 1626 pm_runtime_get_sync(pdata->dev); 1627 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val); 1628 pm_runtime_put_autosuspend(pdata->dev); 1629 1630 if (ret) 1631 return ret; 1632 1633 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset)); 1634 } 1635 1636 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset, 1637 int val) 1638 { 1639 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1640 int ret; 1641 1642 if (!test_bit(offset, pdata->gchip_output)) { 1643 dev_err(pdata->dev, "Ignoring GPIO set while input\n"); 1644 return; 1645 } 1646 1647 val &= 1; 1648 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG, 1649 BIT(SN_GPIO_OUTPUT_SHIFT + offset), 1650 val << (SN_GPIO_OUTPUT_SHIFT + offset)); 1651 if (ret) 1652 dev_warn(pdata->dev, 1653 "Failed to set bridge GPIO %u: %d\n", offset, ret); 1654 } 1655 1656 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip, 1657 unsigned int offset) 1658 { 1659 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1660 int shift = offset * 2; 1661 int ret; 1662 1663 if (!test_and_clear_bit(offset, pdata->gchip_output)) 1664 return 0; 1665 1666 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1667 SN_GPIO_MUX_MASK << shift, 1668 SN_GPIO_MUX_INPUT << shift); 1669 if (ret) { 1670 set_bit(offset, pdata->gchip_output); 1671 return ret; 1672 } 1673 1674 /* 1675 * NOTE: if nobody else is powering the device this may fully power 1676 * it off and when it comes back it will have lost all state, but 1677 * that's OK because the default is input and we're now an input. 1678 */ 1679 pm_runtime_put_autosuspend(pdata->dev); 1680 1681 return 0; 1682 } 1683 1684 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip, 1685 unsigned int offset, int val) 1686 { 1687 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1688 int shift = offset * 2; 1689 int ret; 1690 1691 if (test_and_set_bit(offset, pdata->gchip_output)) 1692 return 0; 1693 1694 pm_runtime_get_sync(pdata->dev); 1695 1696 /* Set value first to avoid glitching */ 1697 ti_sn_bridge_gpio_set(chip, offset, val); 1698 1699 /* Set direction */ 1700 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1701 SN_GPIO_MUX_MASK << shift, 1702 SN_GPIO_MUX_OUTPUT << shift); 1703 if (ret) { 1704 clear_bit(offset, pdata->gchip_output); 1705 pm_runtime_put_autosuspend(pdata->dev); 1706 } 1707 1708 return ret; 1709 } 1710 1711 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset) 1712 { 1713 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1714 1715 if (offset == SN_PWM_GPIO_IDX) 1716 return ti_sn_pwm_pin_request(pdata); 1717 1718 return 0; 1719 } 1720 1721 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset) 1722 { 1723 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1724 1725 /* We won't keep pm_runtime if we're input, so switch there on free */ 1726 ti_sn_bridge_gpio_direction_input(chip, offset); 1727 1728 if (offset == SN_PWM_GPIO_IDX) 1729 ti_sn_pwm_pin_release(pdata); 1730 } 1731 1732 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = { 1733 "GPIO1", "GPIO2", "GPIO3", "GPIO4" 1734 }; 1735 1736 static int ti_sn_gpio_probe(struct auxiliary_device *adev, 1737 const struct auxiliary_device_id *id) 1738 { 1739 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1740 int ret; 1741 1742 /* Only init if someone is going to use us as a GPIO controller */ 1743 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller")) 1744 return 0; 1745 1746 pdata->gchip.label = dev_name(pdata->dev); 1747 pdata->gchip.parent = pdata->dev; 1748 pdata->gchip.owner = THIS_MODULE; 1749 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate; 1750 pdata->gchip.of_gpio_n_cells = 2; 1751 pdata->gchip.request = ti_sn_bridge_gpio_request; 1752 pdata->gchip.free = ti_sn_bridge_gpio_free; 1753 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction; 1754 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input; 1755 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output; 1756 pdata->gchip.get = ti_sn_bridge_gpio_get; 1757 pdata->gchip.set = ti_sn_bridge_gpio_set; 1758 pdata->gchip.can_sleep = true; 1759 pdata->gchip.names = ti_sn_bridge_gpio_names; 1760 pdata->gchip.ngpio = SN_NUM_GPIOS; 1761 pdata->gchip.base = -1; 1762 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata); 1763 if (ret) 1764 dev_err(pdata->dev, "can't add gpio chip\n"); 1765 1766 return ret; 1767 } 1768 1769 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = { 1770 { .name = "ti_sn65dsi86.gpio", }, 1771 {}, 1772 }; 1773 1774 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table); 1775 1776 static struct auxiliary_driver ti_sn_gpio_driver = { 1777 .name = "gpio", 1778 .probe = ti_sn_gpio_probe, 1779 .id_table = ti_sn_gpio_id_table, 1780 }; 1781 1782 static int __init ti_sn_gpio_register(void) 1783 { 1784 return auxiliary_driver_register(&ti_sn_gpio_driver); 1785 } 1786 1787 static void ti_sn_gpio_unregister(void) 1788 { 1789 auxiliary_driver_unregister(&ti_sn_gpio_driver); 1790 } 1791 1792 #else 1793 1794 static inline int ti_sn_gpio_register(void) { return 0; } 1795 static inline void ti_sn_gpio_unregister(void) {} 1796 1797 #endif 1798 1799 /* ----------------------------------------------------------------------------- 1800 * Probe & Remove 1801 */ 1802 1803 static void ti_sn65dsi86_runtime_disable(void *data) 1804 { 1805 pm_runtime_dont_use_autosuspend(data); 1806 pm_runtime_disable(data); 1807 } 1808 1809 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata) 1810 { 1811 unsigned int i; 1812 const char * const ti_sn_bridge_supply_names[] = { 1813 "vcca", "vcc", "vccio", "vpll", 1814 }; 1815 1816 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++) 1817 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i]; 1818 1819 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM, 1820 pdata->supplies); 1821 } 1822 1823 static int ti_sn65dsi86_probe(struct i2c_client *client, 1824 const struct i2c_device_id *id) 1825 { 1826 struct device *dev = &client->dev; 1827 struct ti_sn65dsi86 *pdata; 1828 int ret; 1829 1830 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 1831 DRM_ERROR("device doesn't support I2C\n"); 1832 return -ENODEV; 1833 } 1834 1835 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL); 1836 if (!pdata) 1837 return -ENOMEM; 1838 dev_set_drvdata(dev, pdata); 1839 pdata->dev = dev; 1840 1841 mutex_init(&pdata->comms_mutex); 1842 1843 pdata->regmap = devm_regmap_init_i2c(client, 1844 &ti_sn65dsi86_regmap_config); 1845 if (IS_ERR(pdata->regmap)) 1846 return dev_err_probe(dev, PTR_ERR(pdata->regmap), 1847 "regmap i2c init failed\n"); 1848 1849 pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable", 1850 GPIOD_OUT_LOW); 1851 if (IS_ERR(pdata->enable_gpio)) 1852 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio), 1853 "failed to get enable gpio from DT\n"); 1854 1855 ret = ti_sn65dsi86_parse_regulators(pdata); 1856 if (ret) 1857 return dev_err_probe(dev, ret, "failed to parse regulators\n"); 1858 1859 pdata->refclk = devm_clk_get_optional(dev, "refclk"); 1860 if (IS_ERR(pdata->refclk)) 1861 return dev_err_probe(dev, PTR_ERR(pdata->refclk), 1862 "failed to get reference clock\n"); 1863 1864 pm_runtime_enable(dev); 1865 pm_runtime_set_autosuspend_delay(pdata->dev, 500); 1866 pm_runtime_use_autosuspend(pdata->dev); 1867 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev); 1868 if (ret) 1869 return ret; 1870 1871 ti_sn65dsi86_debugfs_init(pdata); 1872 1873 /* 1874 * Break ourselves up into a collection of aux devices. The only real 1875 * motiviation here is to solve the chicken-and-egg problem of probe 1876 * ordering. The bridge wants the panel to be there when it probes. 1877 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards) 1878 * when it probes. The panel and maybe backlight might want the DDC 1879 * bus or the pwm_chip. Having sub-devices allows the some sub devices 1880 * to finish probing even if others return -EPROBE_DEFER and gets us 1881 * around the problems. 1882 */ 1883 1884 if (IS_ENABLED(CONFIG_OF_GPIO)) { 1885 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio"); 1886 if (ret) 1887 return ret; 1888 } 1889 1890 if (IS_ENABLED(CONFIG_PWM)) { 1891 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm"); 1892 if (ret) 1893 return ret; 1894 } 1895 1896 /* 1897 * NOTE: At the end of the AUX channel probe we'll add the aux device 1898 * for the bridge. This is because the bridge can't be used until the 1899 * AUX channel is there and this is a very simple solution to the 1900 * dependency problem. 1901 */ 1902 return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux"); 1903 } 1904 1905 static struct i2c_device_id ti_sn65dsi86_id[] = { 1906 { "ti,sn65dsi86", 0}, 1907 {}, 1908 }; 1909 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id); 1910 1911 static const struct of_device_id ti_sn65dsi86_match_table[] = { 1912 {.compatible = "ti,sn65dsi86"}, 1913 {}, 1914 }; 1915 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table); 1916 1917 static struct i2c_driver ti_sn65dsi86_driver = { 1918 .driver = { 1919 .name = "ti_sn65dsi86", 1920 .of_match_table = ti_sn65dsi86_match_table, 1921 .pm = &ti_sn65dsi86_pm_ops, 1922 }, 1923 .probe = ti_sn65dsi86_probe, 1924 .id_table = ti_sn65dsi86_id, 1925 }; 1926 1927 static int __init ti_sn65dsi86_init(void) 1928 { 1929 int ret; 1930 1931 ret = i2c_add_driver(&ti_sn65dsi86_driver); 1932 if (ret) 1933 return ret; 1934 1935 ret = ti_sn_gpio_register(); 1936 if (ret) 1937 goto err_main_was_registered; 1938 1939 ret = ti_sn_pwm_register(); 1940 if (ret) 1941 goto err_gpio_was_registered; 1942 1943 ret = auxiliary_driver_register(&ti_sn_aux_driver); 1944 if (ret) 1945 goto err_pwm_was_registered; 1946 1947 ret = auxiliary_driver_register(&ti_sn_bridge_driver); 1948 if (ret) 1949 goto err_aux_was_registered; 1950 1951 return 0; 1952 1953 err_aux_was_registered: 1954 auxiliary_driver_unregister(&ti_sn_aux_driver); 1955 err_pwm_was_registered: 1956 ti_sn_pwm_unregister(); 1957 err_gpio_was_registered: 1958 ti_sn_gpio_unregister(); 1959 err_main_was_registered: 1960 i2c_del_driver(&ti_sn65dsi86_driver); 1961 1962 return ret; 1963 } 1964 module_init(ti_sn65dsi86_init); 1965 1966 static void __exit ti_sn65dsi86_exit(void) 1967 { 1968 auxiliary_driver_unregister(&ti_sn_bridge_driver); 1969 auxiliary_driver_unregister(&ti_sn_aux_driver); 1970 ti_sn_pwm_unregister(); 1971 ti_sn_gpio_unregister(); 1972 i2c_del_driver(&ti_sn65dsi86_driver); 1973 } 1974 module_exit(ti_sn65dsi86_exit); 1975 1976 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>"); 1977 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver"); 1978 MODULE_LICENSE("GPL v2"); 1979