xref: /openbmc/linux/drivers/gpu/drm/bridge/ti-sn65dsi86.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/auxiliary_bus.h>
8 #include <linux/bits.h>
9 #include <linux/clk.h>
10 #include <linux/debugfs.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/gpio/driver.h>
13 #include <linux/i2c.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_graph.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 
21 #include <asm/unaligned.h>
22 
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_bridge.h>
26 #include <drm/drm_dp_aux_bus.h>
27 #include <drm/drm_dp_helper.h>
28 #include <drm/drm_mipi_dsi.h>
29 #include <drm/drm_of.h>
30 #include <drm/drm_panel.h>
31 #include <drm/drm_print.h>
32 #include <drm/drm_probe_helper.h>
33 
34 #define SN_DEVICE_REV_REG			0x08
35 #define SN_DPPLL_SRC_REG			0x0A
36 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
37 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
38 #define  REFCLK_FREQ(x)				((x) << 1)
39 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
40 #define SN_PLL_ENABLE_REG			0x0D
41 #define SN_DSI_LANES_REG			0x10
42 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
43 #define  CHA_DSI_LANES(x)			((x) << 3)
44 #define SN_DSIA_CLK_FREQ_REG			0x12
45 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
46 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
47 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
48 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
49 #define  CHA_HSYNC_POLARITY			BIT(7)
50 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
51 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
52 #define  CHA_VSYNC_POLARITY			BIT(7)
53 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
54 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
55 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
56 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
57 #define SN_LN_ASSIGN_REG			0x59
58 #define  LN_ASSIGN_WIDTH			2
59 #define SN_ENH_FRAME_REG			0x5A
60 #define  VSTREAM_ENABLE				BIT(3)
61 #define  LN_POLRS_OFFSET			4
62 #define  LN_POLRS_MASK				0xf0
63 #define SN_DATA_FORMAT_REG			0x5B
64 #define  BPP_18_RGB				BIT(0)
65 #define SN_HPD_DISABLE_REG			0x5C
66 #define  HPD_DISABLE				BIT(0)
67 #define SN_GPIO_IO_REG				0x5E
68 #define  SN_GPIO_INPUT_SHIFT			4
69 #define  SN_GPIO_OUTPUT_SHIFT			0
70 #define SN_GPIO_CTRL_REG			0x5F
71 #define  SN_GPIO_MUX_INPUT			0
72 #define  SN_GPIO_MUX_OUTPUT			1
73 #define  SN_GPIO_MUX_SPECIAL			2
74 #define  SN_GPIO_MUX_MASK			0x3
75 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
76 #define SN_AUX_ADDR_19_16_REG			0x74
77 #define SN_AUX_ADDR_15_8_REG			0x75
78 #define SN_AUX_ADDR_7_0_REG			0x76
79 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
80 #define SN_AUX_LENGTH_REG			0x77
81 #define SN_AUX_CMD_REG				0x78
82 #define  AUX_CMD_SEND				BIT(0)
83 #define  AUX_CMD_REQ(x)				((x) << 4)
84 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
85 #define SN_SSC_CONFIG_REG			0x93
86 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
87 #define  DP_NUM_LANES(x)			((x) << 4)
88 #define SN_DATARATE_CONFIG_REG			0x94
89 #define  DP_DATARATE_MASK			GENMASK(7, 5)
90 #define  DP_DATARATE(x)				((x) << 5)
91 #define SN_ML_TX_MODE_REG			0x96
92 #define  ML_TX_MAIN_LINK_OFF			0
93 #define  ML_TX_NORMAL_MODE			BIT(0)
94 #define SN_AUX_CMD_STATUS_REG			0xF4
95 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
96 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
97 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
98 
99 #define MIN_DSI_CLK_FREQ_MHZ	40
100 
101 /* fudge factor required to account for 8b/10b encoding */
102 #define DP_CLK_FUDGE_NUM	10
103 #define DP_CLK_FUDGE_DEN	8
104 
105 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
106 #define SN_AUX_MAX_PAYLOAD_BYTES	16
107 
108 #define SN_REGULATOR_SUPPLY_NUM		4
109 
110 #define SN_MAX_DP_LANES			4
111 #define SN_NUM_GPIOS			4
112 #define SN_GPIO_PHYSICAL_OFFSET		1
113 
114 #define SN_LINK_TRAINING_TRIES		10
115 
116 /**
117  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
118  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
119  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
120  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
121  *
122  * @dev:          Pointer to the top level (i2c) device.
123  * @regmap:       Regmap for accessing i2c.
124  * @aux:          Our aux channel.
125  * @bridge:       Our bridge.
126  * @connector:    Our connector.
127  * @host_node:    Remote DSI node.
128  * @dsi:          Our MIPI DSI source.
129  * @refclk:       Our reference clock.
130  * @next_bridge:  The bridge on the eDP side.
131  * @enable_gpio:  The GPIO we toggle to enable the bridge.
132  * @supplies:     Data for bulk enabling/disabling our regulators.
133  * @dp_lanes:     Count of dp_lanes we're using.
134  * @ln_assign:    Value to program to the LN_ASSIGN register.
135  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
136  * @comms_enabled: If true then communication over the aux channel is enabled.
137  * @comms_mutex:   Protects modification of comms_enabled.
138  *
139  * @gchip:        If we expose our GPIOs, this is used.
140  * @gchip_output: A cache of whether we've set GPIOs to output.  This
141  *                serves double-duty of keeping track of the direction and
142  *                also keeping track of whether we've incremented the
143  *                pm_runtime reference count for this pin, which we do
144  *                whenever a pin is configured as an output.  This is a
145  *                bitmap so we can do atomic ops on it without an extra
146  *                lock so concurrent users of our 4 GPIOs don't stomp on
147  *                each other's read-modify-write.
148  */
149 struct ti_sn65dsi86 {
150 	struct auxiliary_device		bridge_aux;
151 	struct auxiliary_device		gpio_aux;
152 	struct auxiliary_device		aux_aux;
153 
154 	struct device			*dev;
155 	struct regmap			*regmap;
156 	struct drm_dp_aux		aux;
157 	struct drm_bridge		bridge;
158 	struct drm_connector		connector;
159 	struct device_node		*host_node;
160 	struct mipi_dsi_device		*dsi;
161 	struct clk			*refclk;
162 	struct drm_bridge		*next_bridge;
163 	struct gpio_desc		*enable_gpio;
164 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
165 	int				dp_lanes;
166 	u8				ln_assign;
167 	u8				ln_polrs;
168 	bool				comms_enabled;
169 	struct mutex			comms_mutex;
170 
171 #if defined(CONFIG_OF_GPIO)
172 	struct gpio_chip		gchip;
173 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
174 #endif
175 };
176 
177 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
178 	{ .range_min = 0, .range_max = 0xFF },
179 };
180 
181 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
182 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
183 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
184 };
185 
186 static const struct regmap_config ti_sn65dsi86_regmap_config = {
187 	.reg_bits = 8,
188 	.val_bits = 8,
189 	.volatile_table = &ti_sn_bridge_volatile_table,
190 	.cache_type = REGCACHE_NONE,
191 };
192 
193 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
194 				   unsigned int reg, u16 val)
195 {
196 	regmap_write(pdata->regmap, reg, val & 0xFF);
197 	regmap_write(pdata->regmap, reg + 1, val >> 8);
198 }
199 
200 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
201 {
202 	u32 bit_rate_khz, clk_freq_khz;
203 	struct drm_display_mode *mode =
204 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
205 
206 	bit_rate_khz = mode->clock *
207 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
208 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
209 
210 	return clk_freq_khz;
211 }
212 
213 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
214 static const u32 ti_sn_bridge_refclk_lut[] = {
215 	12000000,
216 	19200000,
217 	26000000,
218 	27000000,
219 	38400000,
220 };
221 
222 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
223 static const u32 ti_sn_bridge_dsiclk_lut[] = {
224 	468000000,
225 	384000000,
226 	416000000,
227 	486000000,
228 	460800000,
229 };
230 
231 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
232 {
233 	int i;
234 	u32 refclk_rate;
235 	const u32 *refclk_lut;
236 	size_t refclk_lut_size;
237 
238 	if (pdata->refclk) {
239 		refclk_rate = clk_get_rate(pdata->refclk);
240 		refclk_lut = ti_sn_bridge_refclk_lut;
241 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
242 		clk_prepare_enable(pdata->refclk);
243 	} else {
244 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
245 		refclk_lut = ti_sn_bridge_dsiclk_lut;
246 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
247 	}
248 
249 	/* for i equals to refclk_lut_size means default frequency */
250 	for (i = 0; i < refclk_lut_size; i++)
251 		if (refclk_lut[i] == refclk_rate)
252 			break;
253 
254 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
255 			   REFCLK_FREQ(i));
256 }
257 
258 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
259 {
260 	mutex_lock(&pdata->comms_mutex);
261 
262 	/* configure bridge ref_clk */
263 	ti_sn_bridge_set_refclk_freq(pdata);
264 
265 	/*
266 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
267 	 * so the HPD is an internal signal that's only there to signal that
268 	 * the panel is done powering up.  ...but the bridge chip debounces
269 	 * this signal by between 100 ms and 400 ms (depending on process,
270 	 * voltage, and temperate--I measured it at about 200 ms).  One
271 	 * particular panel asserted HPD 84 ms after it was powered on meaning
272 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
273 	 * that instead of looking at HPD you could just hardcode a delay of
274 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
275 	 * delay in its prepare and always disable HPD.
276 	 *
277 	 * If HPD somehow makes sense on some future panel we'll have to
278 	 * change this to be conditional on someone specifying that HPD should
279 	 * be used.
280 	 */
281 	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
282 			   HPD_DISABLE);
283 
284 	pdata->comms_enabled = true;
285 
286 	mutex_unlock(&pdata->comms_mutex);
287 }
288 
289 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
290 {
291 	mutex_lock(&pdata->comms_mutex);
292 
293 	pdata->comms_enabled = false;
294 	clk_disable_unprepare(pdata->refclk);
295 
296 	mutex_unlock(&pdata->comms_mutex);
297 }
298 
299 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
300 {
301 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
302 	int ret;
303 
304 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
305 	if (ret) {
306 		DRM_ERROR("failed to enable supplies %d\n", ret);
307 		return ret;
308 	}
309 
310 	/* td2: min 100 us after regulators before enabling the GPIO */
311 	usleep_range(100, 110);
312 
313 	gpiod_set_value(pdata->enable_gpio, 1);
314 
315 	/*
316 	 * If we have a reference clock we can enable communication w/ the
317 	 * panel (including the aux channel) w/out any need for an input clock
318 	 * so we can do it in resume which lets us read the EDID before
319 	 * pre_enable(). Without a reference clock we need the MIPI reference
320 	 * clock so reading early doesn't work.
321 	 */
322 	if (pdata->refclk)
323 		ti_sn65dsi86_enable_comms(pdata);
324 
325 	return ret;
326 }
327 
328 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
329 {
330 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
331 	int ret;
332 
333 	if (pdata->refclk)
334 		ti_sn65dsi86_disable_comms(pdata);
335 
336 	gpiod_set_value(pdata->enable_gpio, 0);
337 
338 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
339 	if (ret)
340 		DRM_ERROR("failed to disable supplies %d\n", ret);
341 
342 	return ret;
343 }
344 
345 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
346 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
347 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
348 				pm_runtime_force_resume)
349 };
350 
351 static int status_show(struct seq_file *s, void *data)
352 {
353 	struct ti_sn65dsi86 *pdata = s->private;
354 	unsigned int reg, val;
355 
356 	seq_puts(s, "STATUS REGISTERS:\n");
357 
358 	pm_runtime_get_sync(pdata->dev);
359 
360 	/* IRQ Status Registers, see Table 31 in datasheet */
361 	for (reg = 0xf0; reg <= 0xf8; reg++) {
362 		regmap_read(pdata->regmap, reg, &val);
363 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
364 	}
365 
366 	pm_runtime_put_autosuspend(pdata->dev);
367 
368 	return 0;
369 }
370 
371 DEFINE_SHOW_ATTRIBUTE(status);
372 
373 static void ti_sn65dsi86_debugfs_remove(void *data)
374 {
375 	debugfs_remove_recursive(data);
376 }
377 
378 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
379 {
380 	struct device *dev = pdata->dev;
381 	struct dentry *debugfs;
382 	int ret;
383 
384 	debugfs = debugfs_create_dir(dev_name(dev), NULL);
385 
386 	/*
387 	 * We might get an error back if debugfs wasn't enabled in the kernel
388 	 * so let's just silently return upon failure.
389 	 */
390 	if (IS_ERR_OR_NULL(debugfs))
391 		return;
392 
393 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
394 	if (ret)
395 		return;
396 
397 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
398 }
399 
400 /* -----------------------------------------------------------------------------
401  * Auxiliary Devices (*not* AUX)
402  */
403 
404 static void ti_sn65dsi86_uninit_aux(void *data)
405 {
406 	auxiliary_device_uninit(data);
407 }
408 
409 static void ti_sn65dsi86_delete_aux(void *data)
410 {
411 	auxiliary_device_delete(data);
412 }
413 
414 /*
415  * AUX bus docs say that a non-NULL release is mandatory, but it makes no
416  * sense for the model used here where all of the aux devices are allocated
417  * in the single shared structure. We'll use this noop as a workaround.
418  */
419 static void ti_sn65dsi86_noop(struct device *dev) {}
420 
421 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
422 				       struct auxiliary_device *aux,
423 				       const char *name)
424 {
425 	struct device *dev = pdata->dev;
426 	int ret;
427 
428 	aux->name = name;
429 	aux->dev.parent = dev;
430 	aux->dev.release = ti_sn65dsi86_noop;
431 	device_set_of_node_from_dev(&aux->dev, dev);
432 	ret = auxiliary_device_init(aux);
433 	if (ret)
434 		return ret;
435 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
436 	if (ret)
437 		return ret;
438 
439 	ret = auxiliary_device_add(aux);
440 	if (ret)
441 		return ret;
442 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
443 
444 	return ret;
445 }
446 
447 /* -----------------------------------------------------------------------------
448  * AUX Adapter
449  */
450 
451 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
452 {
453 	return container_of(aux, struct ti_sn65dsi86, aux);
454 }
455 
456 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
457 				  struct drm_dp_aux_msg *msg)
458 {
459 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
460 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
461 	u32 request_val = AUX_CMD_REQ(msg->request);
462 	u8 *buf = msg->buffer;
463 	unsigned int len = msg->size;
464 	unsigned int val;
465 	int ret;
466 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
467 
468 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
469 		return -EINVAL;
470 
471 	pm_runtime_get_sync(pdata->dev);
472 	mutex_lock(&pdata->comms_mutex);
473 
474 	/*
475 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
476 	 * on a device without a dedicated reference clock then we just can't
477 	 * do it. Fail right away. This prevents non-refclk users from reading
478 	 * the EDID before enabling the panel but such is life.
479 	 */
480 	if (!pdata->comms_enabled) {
481 		ret = -EIO;
482 		goto exit;
483 	}
484 
485 	switch (request) {
486 	case DP_AUX_NATIVE_WRITE:
487 	case DP_AUX_I2C_WRITE:
488 	case DP_AUX_NATIVE_READ:
489 	case DP_AUX_I2C_READ:
490 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
491 		/* Assume it's good */
492 		msg->reply = 0;
493 		break;
494 	default:
495 		ret = -EINVAL;
496 		goto exit;
497 	}
498 
499 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
500 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
501 			   addr_len);
502 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
503 			  ARRAY_SIZE(addr_len));
504 
505 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
506 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
507 
508 	/* Clear old status bits before start so we don't get confused */
509 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
510 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
511 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
512 		     AUX_IRQ_STATUS_AUX_SHORT);
513 
514 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
515 
516 	/* Zero delay loop because i2c transactions are slow already */
517 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
518 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
519 	if (ret)
520 		goto exit;
521 
522 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
523 	if (ret)
524 		goto exit;
525 
526 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
527 		/*
528 		 * The hardware tried the message seven times per the DP spec
529 		 * but it hit a timeout. We ignore defers here because they're
530 		 * handled in hardware.
531 		 */
532 		ret = -ETIMEDOUT;
533 		goto exit;
534 	}
535 
536 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
537 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
538 		if (ret)
539 			goto exit;
540 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
541 		switch (request) {
542 		case DP_AUX_I2C_WRITE:
543 		case DP_AUX_I2C_READ:
544 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
545 			break;
546 		case DP_AUX_NATIVE_READ:
547 		case DP_AUX_NATIVE_WRITE:
548 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
549 			break;
550 		}
551 		len = 0;
552 		goto exit;
553 	}
554 
555 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
556 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
557 
558 exit:
559 	mutex_unlock(&pdata->comms_mutex);
560 	pm_runtime_mark_last_busy(pdata->dev);
561 	pm_runtime_put_autosuspend(pdata->dev);
562 
563 	if (ret)
564 		return ret;
565 	return len;
566 }
567 
568 static int ti_sn_aux_probe(struct auxiliary_device *adev,
569 			   const struct auxiliary_device_id *id)
570 {
571 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
572 	int ret;
573 
574 	pdata->aux.name = "ti-sn65dsi86-aux";
575 	pdata->aux.dev = &adev->dev;
576 	pdata->aux.transfer = ti_sn_aux_transfer;
577 	drm_dp_aux_init(&pdata->aux);
578 
579 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
580 	if (ret)
581 		return ret;
582 
583 	/*
584 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
585 	 * setup so we don't add it in the main driver probe, we add it now.
586 	 */
587 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
588 }
589 
590 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
591 	{ .name = "ti_sn65dsi86.aux", },
592 	{},
593 };
594 
595 static struct auxiliary_driver ti_sn_aux_driver = {
596 	.name = "aux",
597 	.probe = ti_sn_aux_probe,
598 	.id_table = ti_sn_aux_id_table,
599 };
600 
601 /* -----------------------------------------------------------------------------
602  * DRM Connector Operations
603  */
604 
605 static struct ti_sn65dsi86 *
606 connector_to_ti_sn65dsi86(struct drm_connector *connector)
607 {
608 	return container_of(connector, struct ti_sn65dsi86, connector);
609 }
610 
611 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
612 {
613 	struct ti_sn65dsi86 *pdata = connector_to_ti_sn65dsi86(connector);
614 
615 	return drm_bridge_get_modes(pdata->next_bridge, connector);
616 }
617 
618 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
619 	.get_modes = ti_sn_bridge_connector_get_modes,
620 };
621 
622 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
623 	.fill_modes = drm_helper_probe_single_connector_modes,
624 	.destroy = drm_connector_cleanup,
625 	.reset = drm_atomic_helper_connector_reset,
626 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
627 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
628 };
629 
630 static int ti_sn_bridge_connector_init(struct ti_sn65dsi86 *pdata)
631 {
632 	int ret;
633 
634 	ret = drm_connector_init(pdata->bridge.dev, &pdata->connector,
635 				 &ti_sn_bridge_connector_funcs,
636 				 DRM_MODE_CONNECTOR_eDP);
637 	if (ret) {
638 		DRM_ERROR("Failed to initialize connector with drm\n");
639 		return ret;
640 	}
641 
642 	drm_connector_helper_add(&pdata->connector,
643 				 &ti_sn_bridge_connector_helper_funcs);
644 	drm_connector_attach_encoder(&pdata->connector, pdata->bridge.encoder);
645 
646 	return 0;
647 }
648 
649 /*------------------------------------------------------------------------------
650  * DRM Bridge
651  */
652 
653 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
654 {
655 	return container_of(bridge, struct ti_sn65dsi86, bridge);
656 }
657 
658 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
659 			       enum drm_bridge_attach_flags flags)
660 {
661 	int ret, val;
662 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
663 	struct mipi_dsi_host *host;
664 	struct mipi_dsi_device *dsi;
665 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
666 						   .channel = 0,
667 						   .node = NULL,
668 						 };
669 
670 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
671 		DRM_ERROR("Fix bridge driver to make connector optional!");
672 		return -EINVAL;
673 	}
674 
675 	pdata->aux.drm_dev = bridge->dev;
676 	ret = drm_dp_aux_register(&pdata->aux);
677 	if (ret < 0) {
678 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
679 		return ret;
680 	}
681 
682 	ret = ti_sn_bridge_connector_init(pdata);
683 	if (ret < 0)
684 		goto err_conn_init;
685 
686 	/*
687 	 * TODO: ideally finding host resource and dsi dev registration needs
688 	 * to be done in bridge probe. But some existing DSI host drivers will
689 	 * wait for any of the drm_bridge/drm_panel to get added to the global
690 	 * bridge/panel list, before completing their probe. So if we do the
691 	 * dsi dev registration part in bridge probe, before populating in
692 	 * the global bridge list, then it will cause deadlock as dsi host probe
693 	 * will never complete, neither our bridge probe. So keeping it here
694 	 * will satisfy most of the existing host drivers. Once the host driver
695 	 * is fixed we can move the below code to bridge probe safely.
696 	 */
697 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
698 	if (!host) {
699 		DRM_ERROR("failed to find dsi host\n");
700 		ret = -ENODEV;
701 		goto err_dsi_host;
702 	}
703 
704 	dsi = mipi_dsi_device_register_full(host, &info);
705 	if (IS_ERR(dsi)) {
706 		DRM_ERROR("failed to create dsi device\n");
707 		ret = PTR_ERR(dsi);
708 		goto err_dsi_host;
709 	}
710 
711 	/* TODO: setting to 4 MIPI lanes always for now */
712 	dsi->lanes = 4;
713 	dsi->format = MIPI_DSI_FMT_RGB888;
714 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
715 
716 	/* check if continuous dsi clock is required or not */
717 	pm_runtime_get_sync(pdata->dev);
718 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
719 	pm_runtime_put_autosuspend(pdata->dev);
720 	if (!(val & DPPLL_CLK_SRC_DSICLK))
721 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
722 
723 	ret = mipi_dsi_attach(dsi);
724 	if (ret < 0) {
725 		DRM_ERROR("failed to attach dsi to host\n");
726 		goto err_dsi_attach;
727 	}
728 	pdata->dsi = dsi;
729 
730 	/* We never want the next bridge to *also* create a connector: */
731 	flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR;
732 
733 	/* Attach the next bridge */
734 	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
735 				&pdata->bridge, flags);
736 	if (ret < 0)
737 		goto err_dsi_detach;
738 
739 	return 0;
740 
741 err_dsi_detach:
742 	mipi_dsi_detach(dsi);
743 err_dsi_attach:
744 	mipi_dsi_device_unregister(dsi);
745 err_dsi_host:
746 	drm_connector_cleanup(&pdata->connector);
747 err_conn_init:
748 	drm_dp_aux_unregister(&pdata->aux);
749 	return ret;
750 }
751 
752 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
753 {
754 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
755 }
756 
757 static enum drm_mode_status
758 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
759 			const struct drm_display_info *info,
760 			const struct drm_display_mode *mode)
761 {
762 	/* maximum supported resolution is 4K at 60 fps */
763 	if (mode->clock > 594000)
764 		return MODE_CLOCK_HIGH;
765 
766 	return MODE_OK;
767 }
768 
769 static void ti_sn_bridge_disable(struct drm_bridge *bridge)
770 {
771 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
772 
773 	/* disable video stream */
774 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
775 }
776 
777 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
778 {
779 	unsigned int bit_rate_mhz, clk_freq_mhz;
780 	unsigned int val;
781 	struct drm_display_mode *mode =
782 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
783 
784 	/* set DSIA clk frequency */
785 	bit_rate_mhz = (mode->clock / 1000) *
786 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
787 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
788 
789 	/* for each increment in val, frequency increases by 5MHz */
790 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
791 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
792 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
793 }
794 
795 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata)
796 {
797 	if (pdata->connector.display_info.bpc <= 6)
798 		return 18;
799 	else
800 		return 24;
801 }
802 
803 /*
804  * LUT index corresponds to register value and
805  * LUT values corresponds to dp data rate supported
806  * by the bridge in Mbps unit.
807  */
808 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
809 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
810 };
811 
812 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata)
813 {
814 	unsigned int bit_rate_khz, dp_rate_mhz;
815 	unsigned int i;
816 	struct drm_display_mode *mode =
817 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
818 
819 	/* Calculate minimum bit rate based on our pixel clock. */
820 	bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
821 
822 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
823 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
824 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
825 
826 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
827 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
828 			break;
829 
830 	return i;
831 }
832 
833 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
834 {
835 	unsigned int valid_rates = 0;
836 	unsigned int rate_per_200khz;
837 	unsigned int rate_mhz;
838 	u8 dpcd_val;
839 	int ret;
840 	int i, j;
841 
842 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
843 	if (ret != 1) {
844 		DRM_DEV_ERROR(pdata->dev,
845 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
846 		dpcd_val = DP_EDP_11;
847 	}
848 
849 	if (dpcd_val >= DP_EDP_14) {
850 		/* eDP 1.4 devices must provide a custom table */
851 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
852 
853 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
854 				       sink_rates, sizeof(sink_rates));
855 
856 		if (ret != sizeof(sink_rates)) {
857 			DRM_DEV_ERROR(pdata->dev,
858 				"Can't read supported rate table (%d)\n", ret);
859 
860 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
861 			memset(sink_rates, 0, sizeof(sink_rates));
862 		}
863 
864 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
865 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
866 
867 			if (!rate_per_200khz)
868 				break;
869 
870 			rate_mhz = rate_per_200khz * 200 / 1000;
871 			for (j = 0;
872 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
873 			     j++) {
874 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
875 					valid_rates |= BIT(j);
876 			}
877 		}
878 
879 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
880 			if (valid_rates & BIT(i))
881 				return valid_rates;
882 		}
883 		DRM_DEV_ERROR(pdata->dev,
884 			      "No matching eDP rates in table; falling back\n");
885 	}
886 
887 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
888 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
889 	if (ret != 1) {
890 		DRM_DEV_ERROR(pdata->dev,
891 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
892 			      ret);
893 		dpcd_val = DP_LINK_BW_5_4;
894 	}
895 
896 	switch (dpcd_val) {
897 	default:
898 		DRM_DEV_ERROR(pdata->dev,
899 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
900 			      (int)dpcd_val);
901 		fallthrough;
902 	case DP_LINK_BW_5_4:
903 		valid_rates |= BIT(7);
904 		fallthrough;
905 	case DP_LINK_BW_2_7:
906 		valid_rates |= BIT(4);
907 		fallthrough;
908 	case DP_LINK_BW_1_62:
909 		valid_rates |= BIT(1);
910 		break;
911 	}
912 
913 	return valid_rates;
914 }
915 
916 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
917 {
918 	struct drm_display_mode *mode =
919 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
920 	u8 hsync_polarity = 0, vsync_polarity = 0;
921 
922 	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
923 		hsync_polarity = CHA_HSYNC_POLARITY;
924 	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
925 		vsync_polarity = CHA_VSYNC_POLARITY;
926 
927 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
928 			       mode->hdisplay);
929 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
930 			       mode->vdisplay);
931 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
932 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
933 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
934 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
935 		     hsync_polarity);
936 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
937 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
938 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
939 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
940 		     vsync_polarity);
941 
942 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
943 		     (mode->htotal - mode->hsync_end) & 0xFF);
944 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
945 		     (mode->vtotal - mode->vsync_end) & 0xFF);
946 
947 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
948 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
949 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
950 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
951 
952 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
953 }
954 
955 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
956 {
957 	u8 data;
958 	int ret;
959 
960 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
961 	if (ret != 1) {
962 		DRM_DEV_ERROR(pdata->dev,
963 			      "Can't read lane count (%d); assuming 4\n", ret);
964 		return 4;
965 	}
966 
967 	return data & DP_LANE_COUNT_MASK;
968 }
969 
970 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
971 			       const char **last_err_str)
972 {
973 	unsigned int val;
974 	int ret;
975 	int i;
976 
977 	/* set dp clk frequency value */
978 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
979 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
980 
981 	/* enable DP PLL */
982 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
983 
984 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
985 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
986 				       50 * 1000);
987 	if (ret) {
988 		*last_err_str = "DP_PLL_LOCK polling failed";
989 		goto exit;
990 	}
991 
992 	/*
993 	 * We'll try to link train several times.  As part of link training
994 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
995 	 * the panel isn't ready quite it might respond NAK here which means
996 	 * we need to try again.
997 	 */
998 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
999 		/* Semi auto link training mode */
1000 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1001 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1002 					       val == ML_TX_MAIN_LINK_OFF ||
1003 					       val == ML_TX_NORMAL_MODE, 1000,
1004 					       500 * 1000);
1005 		if (ret) {
1006 			*last_err_str = "Training complete polling failed";
1007 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1008 			*last_err_str = "Link training failed, link is off";
1009 			ret = -EIO;
1010 			continue;
1011 		}
1012 
1013 		break;
1014 	}
1015 
1016 	/* If we saw quite a few retries, add a note about it */
1017 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1018 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1019 
1020 exit:
1021 	/* Disable the PLL if we failed */
1022 	if (ret)
1023 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1024 
1025 	return ret;
1026 }
1027 
1028 static void ti_sn_bridge_enable(struct drm_bridge *bridge)
1029 {
1030 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1031 	const char *last_err_str = "No supported DP rate";
1032 	unsigned int valid_rates;
1033 	int dp_rate_idx;
1034 	unsigned int val;
1035 	int ret = -EINVAL;
1036 	int max_dp_lanes;
1037 
1038 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1039 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1040 
1041 	/* DSI_A lane config */
1042 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1043 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1044 			   CHA_DSI_LANES_MASK, val);
1045 
1046 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1047 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1048 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1049 
1050 	/* set dsi clk frequency value */
1051 	ti_sn_bridge_set_dsi_rate(pdata);
1052 
1053 	/*
1054 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1055 	 * this method is enabled by default. An eDP panel must support this
1056 	 * authentication method. We need to enable this method in the eDP panel
1057 	 * at DisplayPort address 0x0010A prior to link training.
1058 	 */
1059 	drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1060 			   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1061 
1062 	/* Set the DP output format (18 bpp or 24 bpp) */
1063 	val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
1064 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1065 
1066 	/* DP lane config */
1067 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1068 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1069 			   val);
1070 
1071 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1072 
1073 	/* Train until we run out of rates */
1074 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
1075 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1076 	     dp_rate_idx++) {
1077 		if (!(valid_rates & BIT(dp_rate_idx)))
1078 			continue;
1079 
1080 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1081 		if (!ret)
1082 			break;
1083 	}
1084 	if (ret) {
1085 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1086 		return;
1087 	}
1088 
1089 	/* config video parameters */
1090 	ti_sn_bridge_set_video_timings(pdata);
1091 
1092 	/* enable video stream */
1093 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1094 			   VSTREAM_ENABLE);
1095 }
1096 
1097 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
1098 {
1099 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1100 
1101 	pm_runtime_get_sync(pdata->dev);
1102 
1103 	if (!pdata->refclk)
1104 		ti_sn65dsi86_enable_comms(pdata);
1105 
1106 	/* td7: min 100 us after enable before DSI data */
1107 	usleep_range(100, 110);
1108 }
1109 
1110 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
1111 {
1112 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1113 
1114 	/* semi auto link training mode OFF */
1115 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1116 	/* Num lanes to 0 as per power sequencing in data sheet */
1117 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1118 	/* disable DP PLL */
1119 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1120 
1121 	if (!pdata->refclk)
1122 		ti_sn65dsi86_disable_comms(pdata);
1123 
1124 	pm_runtime_put_sync(pdata->dev);
1125 }
1126 
1127 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1128 	.attach = ti_sn_bridge_attach,
1129 	.detach = ti_sn_bridge_detach,
1130 	.mode_valid = ti_sn_bridge_mode_valid,
1131 	.pre_enable = ti_sn_bridge_pre_enable,
1132 	.enable = ti_sn_bridge_enable,
1133 	.disable = ti_sn_bridge_disable,
1134 	.post_disable = ti_sn_bridge_post_disable,
1135 };
1136 
1137 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1138 				     struct device_node *np)
1139 {
1140 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1141 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1142 	struct device_node *endpoint;
1143 	u8 ln_assign = 0;
1144 	u8 ln_polrs = 0;
1145 	int dp_lanes;
1146 	int i;
1147 
1148 	/*
1149 	 * Read config from the device tree about lane remapping and lane
1150 	 * polarities.  These are optional and we assume identity map and
1151 	 * normal polarity if nothing is specified.  It's OK to specify just
1152 	 * data-lanes but not lane-polarities but not vice versa.
1153 	 *
1154 	 * Error checking is light (we just make sure we don't crash or
1155 	 * buffer overrun) and we assume dts is well formed and specifying
1156 	 * mappings that the hardware supports.
1157 	 */
1158 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1159 	dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1160 	if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1161 		of_property_read_u32_array(endpoint, "data-lanes",
1162 					   lane_assignments, dp_lanes);
1163 		of_property_read_u32_array(endpoint, "lane-polarities",
1164 					   lane_polarities, dp_lanes);
1165 	} else {
1166 		dp_lanes = SN_MAX_DP_LANES;
1167 	}
1168 	of_node_put(endpoint);
1169 
1170 	/*
1171 	 * Convert into register format.  Loop over all lanes even if
1172 	 * data-lanes had fewer elements so that we nicely initialize
1173 	 * the LN_ASSIGN register.
1174 	 */
1175 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1176 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1177 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1178 	}
1179 
1180 	/* Stash in our struct for when we power on */
1181 	pdata->dp_lanes = dp_lanes;
1182 	pdata->ln_assign = ln_assign;
1183 	pdata->ln_polrs = ln_polrs;
1184 }
1185 
1186 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1187 {
1188 	struct device_node *np = pdata->dev->of_node;
1189 
1190 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1191 
1192 	if (!pdata->host_node) {
1193 		DRM_ERROR("remote dsi host node not found\n");
1194 		return -ENODEV;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1201 			      const struct auxiliary_device_id *id)
1202 {
1203 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1204 	struct device_node *np = pdata->dev->of_node;
1205 	struct drm_panel *panel;
1206 	int ret;
1207 
1208 	ret = drm_of_find_panel_or_bridge(np, 1, 0, &panel, NULL);
1209 	if (ret)
1210 		return dev_err_probe(&adev->dev, ret,
1211 				     "could not find any panel node\n");
1212 
1213 	pdata->next_bridge = devm_drm_panel_bridge_add(pdata->dev, panel);
1214 	if (IS_ERR(pdata->next_bridge)) {
1215 		DRM_ERROR("failed to create panel bridge\n");
1216 		return PTR_ERR(pdata->next_bridge);
1217 	}
1218 
1219 	ti_sn_bridge_parse_lanes(pdata, np);
1220 
1221 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1222 	if (ret)
1223 		return ret;
1224 
1225 	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1226 	pdata->bridge.of_node = np;
1227 
1228 	drm_bridge_add(&pdata->bridge);
1229 
1230 	return 0;
1231 }
1232 
1233 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1234 {
1235 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1236 
1237 	if (!pdata)
1238 		return;
1239 
1240 	if (pdata->dsi) {
1241 		mipi_dsi_detach(pdata->dsi);
1242 		mipi_dsi_device_unregister(pdata->dsi);
1243 	}
1244 
1245 	drm_bridge_remove(&pdata->bridge);
1246 
1247 	of_node_put(pdata->host_node);
1248 }
1249 
1250 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1251 	{ .name = "ti_sn65dsi86.bridge", },
1252 	{},
1253 };
1254 
1255 static struct auxiliary_driver ti_sn_bridge_driver = {
1256 	.name = "bridge",
1257 	.probe = ti_sn_bridge_probe,
1258 	.remove = ti_sn_bridge_remove,
1259 	.id_table = ti_sn_bridge_id_table,
1260 };
1261 
1262 /* -----------------------------------------------------------------------------
1263  * GPIO Controller
1264  */
1265 
1266 #if defined(CONFIG_OF_GPIO)
1267 
1268 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1269 				 const struct of_phandle_args *gpiospec,
1270 				 u32 *flags)
1271 {
1272 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1273 		return -EINVAL;
1274 
1275 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1276 		return -EINVAL;
1277 
1278 	if (flags)
1279 		*flags = gpiospec->args[1];
1280 
1281 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1282 }
1283 
1284 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1285 					   unsigned int offset)
1286 {
1287 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1288 
1289 	/*
1290 	 * We already have to keep track of the direction because we use
1291 	 * that to figure out whether we've powered the device.  We can
1292 	 * just return that rather than (maybe) powering up the device
1293 	 * to ask its direction.
1294 	 */
1295 	return test_bit(offset, pdata->gchip_output) ?
1296 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1297 }
1298 
1299 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1300 {
1301 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1302 	unsigned int val;
1303 	int ret;
1304 
1305 	/*
1306 	 * When the pin is an input we don't forcibly keep the bridge
1307 	 * powered--we just power it on to read the pin.  NOTE: part of
1308 	 * the reason this works is that the bridge defaults (when
1309 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1310 	 * Also note that if something else is keeping the chip powered the
1311 	 * pm_runtime functions are lightweight increments of a refcount.
1312 	 */
1313 	pm_runtime_get_sync(pdata->dev);
1314 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1315 	pm_runtime_put_autosuspend(pdata->dev);
1316 
1317 	if (ret)
1318 		return ret;
1319 
1320 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1321 }
1322 
1323 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1324 				  int val)
1325 {
1326 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1327 	int ret;
1328 
1329 	if (!test_bit(offset, pdata->gchip_output)) {
1330 		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1331 		return;
1332 	}
1333 
1334 	val &= 1;
1335 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1336 				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1337 				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1338 	if (ret)
1339 		dev_warn(pdata->dev,
1340 			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1341 }
1342 
1343 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1344 					     unsigned int offset)
1345 {
1346 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1347 	int shift = offset * 2;
1348 	int ret;
1349 
1350 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1351 		return 0;
1352 
1353 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1354 				 SN_GPIO_MUX_MASK << shift,
1355 				 SN_GPIO_MUX_INPUT << shift);
1356 	if (ret) {
1357 		set_bit(offset, pdata->gchip_output);
1358 		return ret;
1359 	}
1360 
1361 	/*
1362 	 * NOTE: if nobody else is powering the device this may fully power
1363 	 * it off and when it comes back it will have lost all state, but
1364 	 * that's OK because the default is input and we're now an input.
1365 	 */
1366 	pm_runtime_put_autosuspend(pdata->dev);
1367 
1368 	return 0;
1369 }
1370 
1371 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1372 					      unsigned int offset, int val)
1373 {
1374 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1375 	int shift = offset * 2;
1376 	int ret;
1377 
1378 	if (test_and_set_bit(offset, pdata->gchip_output))
1379 		return 0;
1380 
1381 	pm_runtime_get_sync(pdata->dev);
1382 
1383 	/* Set value first to avoid glitching */
1384 	ti_sn_bridge_gpio_set(chip, offset, val);
1385 
1386 	/* Set direction */
1387 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1388 				 SN_GPIO_MUX_MASK << shift,
1389 				 SN_GPIO_MUX_OUTPUT << shift);
1390 	if (ret) {
1391 		clear_bit(offset, pdata->gchip_output);
1392 		pm_runtime_put_autosuspend(pdata->dev);
1393 	}
1394 
1395 	return ret;
1396 }
1397 
1398 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1399 {
1400 	/* We won't keep pm_runtime if we're input, so switch there on free */
1401 	ti_sn_bridge_gpio_direction_input(chip, offset);
1402 }
1403 
1404 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1405 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1406 };
1407 
1408 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1409 			    const struct auxiliary_device_id *id)
1410 {
1411 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1412 	int ret;
1413 
1414 	/* Only init if someone is going to use us as a GPIO controller */
1415 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1416 		return 0;
1417 
1418 	pdata->gchip.label = dev_name(pdata->dev);
1419 	pdata->gchip.parent = pdata->dev;
1420 	pdata->gchip.owner = THIS_MODULE;
1421 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1422 	pdata->gchip.of_gpio_n_cells = 2;
1423 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1424 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1425 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1426 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1427 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1428 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1429 	pdata->gchip.can_sleep = true;
1430 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1431 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1432 	pdata->gchip.base = -1;
1433 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1434 	if (ret)
1435 		dev_err(pdata->dev, "can't add gpio chip\n");
1436 
1437 	return ret;
1438 }
1439 
1440 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1441 	{ .name = "ti_sn65dsi86.gpio", },
1442 	{},
1443 };
1444 
1445 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1446 
1447 static struct auxiliary_driver ti_sn_gpio_driver = {
1448 	.name = "gpio",
1449 	.probe = ti_sn_gpio_probe,
1450 	.id_table = ti_sn_gpio_id_table,
1451 };
1452 
1453 static int __init ti_sn_gpio_register(void)
1454 {
1455 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1456 }
1457 
1458 static void ti_sn_gpio_unregister(void)
1459 {
1460 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1461 }
1462 
1463 #else
1464 
1465 static inline int ti_sn_gpio_register(void) { return 0; }
1466 static inline void ti_sn_gpio_unregister(void) {}
1467 
1468 #endif
1469 
1470 /* -----------------------------------------------------------------------------
1471  * Probe & Remove
1472  */
1473 
1474 static void ti_sn65dsi86_runtime_disable(void *data)
1475 {
1476 	pm_runtime_disable(data);
1477 }
1478 
1479 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1480 {
1481 	unsigned int i;
1482 	const char * const ti_sn_bridge_supply_names[] = {
1483 		"vcca", "vcc", "vccio", "vpll",
1484 	};
1485 
1486 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1487 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1488 
1489 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1490 				       pdata->supplies);
1491 }
1492 
1493 static int ti_sn65dsi86_probe(struct i2c_client *client,
1494 			      const struct i2c_device_id *id)
1495 {
1496 	struct device *dev = &client->dev;
1497 	struct ti_sn65dsi86 *pdata;
1498 	int ret;
1499 
1500 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1501 		DRM_ERROR("device doesn't support I2C\n");
1502 		return -ENODEV;
1503 	}
1504 
1505 	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1506 	if (!pdata)
1507 		return -ENOMEM;
1508 	dev_set_drvdata(dev, pdata);
1509 	pdata->dev = dev;
1510 
1511 	mutex_init(&pdata->comms_mutex);
1512 
1513 	pdata->regmap = devm_regmap_init_i2c(client,
1514 					     &ti_sn65dsi86_regmap_config);
1515 	if (IS_ERR(pdata->regmap))
1516 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1517 				     "regmap i2c init failed\n");
1518 
1519 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1520 						     GPIOD_OUT_LOW);
1521 	if (IS_ERR(pdata->enable_gpio))
1522 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1523 				     "failed to get enable gpio from DT\n");
1524 
1525 	ret = ti_sn65dsi86_parse_regulators(pdata);
1526 	if (ret)
1527 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1528 
1529 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1530 	if (IS_ERR(pdata->refclk))
1531 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1532 				     "failed to get reference clock\n");
1533 
1534 	pm_runtime_enable(dev);
1535 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1536 	if (ret)
1537 		return ret;
1538 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1539 	pm_runtime_use_autosuspend(pdata->dev);
1540 
1541 	ti_sn65dsi86_debugfs_init(pdata);
1542 
1543 	/*
1544 	 * Break ourselves up into a collection of aux devices. The only real
1545 	 * motiviation here is to solve the chicken-and-egg problem of probe
1546 	 * ordering. The bridge wants the panel to be there when it probes.
1547 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1548 	 * when it probes. The panel and maybe backlight might want the DDC
1549 	 * bus. Soon the PWM provided by the bridge chip will have the same
1550 	 * problem. Having sub-devices allows the some sub devices to finish
1551 	 * probing even if others return -EPROBE_DEFER and gets us around the
1552 	 * problems.
1553 	 */
1554 
1555 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1556 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1557 		if (ret)
1558 			return ret;
1559 	}
1560 
1561 	/*
1562 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1563 	 * for the bridge. This is because the bridge can't be used until the
1564 	 * AUX channel is there and this is a very simple solution to the
1565 	 * dependency problem.
1566 	 */
1567 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1568 }
1569 
1570 static struct i2c_device_id ti_sn65dsi86_id[] = {
1571 	{ "ti,sn65dsi86", 0},
1572 	{},
1573 };
1574 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1575 
1576 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1577 	{.compatible = "ti,sn65dsi86"},
1578 	{},
1579 };
1580 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1581 
1582 static struct i2c_driver ti_sn65dsi86_driver = {
1583 	.driver = {
1584 		.name = "ti_sn65dsi86",
1585 		.of_match_table = ti_sn65dsi86_match_table,
1586 		.pm = &ti_sn65dsi86_pm_ops,
1587 	},
1588 	.probe = ti_sn65dsi86_probe,
1589 	.id_table = ti_sn65dsi86_id,
1590 };
1591 
1592 static int __init ti_sn65dsi86_init(void)
1593 {
1594 	int ret;
1595 
1596 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
1597 	if (ret)
1598 		return ret;
1599 
1600 	ret = ti_sn_gpio_register();
1601 	if (ret)
1602 		goto err_main_was_registered;
1603 
1604 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
1605 	if (ret)
1606 		goto err_gpio_was_registered;
1607 
1608 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1609 	if (ret)
1610 		goto err_aux_was_registered;
1611 
1612 	return 0;
1613 
1614 err_aux_was_registered:
1615 	auxiliary_driver_unregister(&ti_sn_aux_driver);
1616 err_gpio_was_registered:
1617 	ti_sn_gpio_unregister();
1618 err_main_was_registered:
1619 	i2c_del_driver(&ti_sn65dsi86_driver);
1620 
1621 	return ret;
1622 }
1623 module_init(ti_sn65dsi86_init);
1624 
1625 static void __exit ti_sn65dsi86_exit(void)
1626 {
1627 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
1628 	auxiliary_driver_unregister(&ti_sn_aux_driver);
1629 	ti_sn_gpio_unregister();
1630 	i2c_del_driver(&ti_sn65dsi86_driver);
1631 }
1632 module_exit(ti_sn65dsi86_exit);
1633 
1634 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1635 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1636 MODULE_LICENSE("GPL v2");
1637