1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/bits.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/gpio/driver.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_graph.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_bridge.h>
25 #include <drm/drm_dp_helper.h>
26 #include <drm/drm_mipi_dsi.h>
27 #include <drm/drm_of.h>
28 #include <drm/drm_panel.h>
29 #include <drm/drm_print.h>
30 #include <drm/drm_probe_helper.h>
31 
32 #define SN_DEVICE_REV_REG			0x08
33 #define SN_DPPLL_SRC_REG			0x0A
34 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
35 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
36 #define  REFCLK_FREQ(x)				((x) << 1)
37 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
38 #define SN_PLL_ENABLE_REG			0x0D
39 #define SN_DSI_LANES_REG			0x10
40 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
41 #define  CHA_DSI_LANES(x)			((x) << 3)
42 #define SN_DSIA_CLK_FREQ_REG			0x12
43 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
44 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
45 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
46 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
47 #define  CHA_HSYNC_POLARITY			BIT(7)
48 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
49 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
50 #define  CHA_VSYNC_POLARITY			BIT(7)
51 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
52 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
53 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
54 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
55 #define SN_LN_ASSIGN_REG			0x59
56 #define  LN_ASSIGN_WIDTH			2
57 #define SN_ENH_FRAME_REG			0x5A
58 #define  VSTREAM_ENABLE				BIT(3)
59 #define  LN_POLRS_OFFSET			4
60 #define  LN_POLRS_MASK				0xf0
61 #define SN_DATA_FORMAT_REG			0x5B
62 #define  BPP_18_RGB				BIT(0)
63 #define SN_HPD_DISABLE_REG			0x5C
64 #define  HPD_DISABLE				BIT(0)
65 #define SN_GPIO_IO_REG				0x5E
66 #define  SN_GPIO_INPUT_SHIFT			4
67 #define  SN_GPIO_OUTPUT_SHIFT			0
68 #define SN_GPIO_CTRL_REG			0x5F
69 #define  SN_GPIO_MUX_INPUT			0
70 #define  SN_GPIO_MUX_OUTPUT			1
71 #define  SN_GPIO_MUX_SPECIAL			2
72 #define  SN_GPIO_MUX_MASK			0x3
73 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
74 #define SN_AUX_ADDR_19_16_REG			0x74
75 #define SN_AUX_ADDR_15_8_REG			0x75
76 #define SN_AUX_ADDR_7_0_REG			0x76
77 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
78 #define SN_AUX_LENGTH_REG			0x77
79 #define SN_AUX_CMD_REG				0x78
80 #define  AUX_CMD_SEND				BIT(0)
81 #define  AUX_CMD_REQ(x)				((x) << 4)
82 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
83 #define SN_SSC_CONFIG_REG			0x93
84 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
85 #define  DP_NUM_LANES(x)			((x) << 4)
86 #define SN_DATARATE_CONFIG_REG			0x94
87 #define  DP_DATARATE_MASK			GENMASK(7, 5)
88 #define  DP_DATARATE(x)				((x) << 5)
89 #define SN_ML_TX_MODE_REG			0x96
90 #define  ML_TX_MAIN_LINK_OFF			0
91 #define  ML_TX_NORMAL_MODE			BIT(0)
92 #define SN_AUX_CMD_STATUS_REG			0xF4
93 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
94 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
95 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
96 
97 #define MIN_DSI_CLK_FREQ_MHZ	40
98 
99 /* fudge factor required to account for 8b/10b encoding */
100 #define DP_CLK_FUDGE_NUM	10
101 #define DP_CLK_FUDGE_DEN	8
102 
103 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
104 #define SN_AUX_MAX_PAYLOAD_BYTES	16
105 
106 #define SN_REGULATOR_SUPPLY_NUM		4
107 
108 #define SN_MAX_DP_LANES			4
109 #define SN_NUM_GPIOS			4
110 #define SN_GPIO_PHYSICAL_OFFSET		1
111 
112 #define SN_LINK_TRAINING_TRIES		10
113 
114 /**
115  * struct ti_sn_bridge - Platform data for ti-sn65dsi86 driver.
116  * @dev:          Pointer to our device.
117  * @regmap:       Regmap for accessing i2c.
118  * @aux:          Our aux channel.
119  * @bridge:       Our bridge.
120  * @connector:    Our connector.
121  * @debugfs:      Used for managing our debugfs.
122  * @host_node:    Remote DSI node.
123  * @dsi:          Our MIPI DSI source.
124  * @edid:         Detected EDID of eDP panel.
125  * @refclk:       Our reference clock.
126  * @panel:        Our panel.
127  * @enable_gpio:  The GPIO we toggle to enable the bridge.
128  * @supplies:     Data for bulk enabling/disabling our regulators.
129  * @dp_lanes:     Count of dp_lanes we're using.
130  * @ln_assign:    Value to program to the LN_ASSIGN register.
131  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
132  *
133  * @gchip:        If we expose our GPIOs, this is used.
134  * @gchip_output: A cache of whether we've set GPIOs to output.  This
135  *                serves double-duty of keeping track of the direction and
136  *                also keeping track of whether we've incremented the
137  *                pm_runtime reference count for this pin, which we do
138  *                whenever a pin is configured as an output.  This is a
139  *                bitmap so we can do atomic ops on it without an extra
140  *                lock so concurrent users of our 4 GPIOs don't stomp on
141  *                each other's read-modify-write.
142  */
143 struct ti_sn_bridge {
144 	struct device			*dev;
145 	struct regmap			*regmap;
146 	struct drm_dp_aux		aux;
147 	struct drm_bridge		bridge;
148 	struct drm_connector		connector;
149 	struct dentry			*debugfs;
150 	struct edid			*edid;
151 	struct device_node		*host_node;
152 	struct mipi_dsi_device		*dsi;
153 	struct clk			*refclk;
154 	struct drm_panel		*panel;
155 	struct gpio_desc		*enable_gpio;
156 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
157 	int				dp_lanes;
158 	u8				ln_assign;
159 	u8				ln_polrs;
160 
161 #if defined(CONFIG_OF_GPIO)
162 	struct gpio_chip		gchip;
163 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
164 #endif
165 };
166 
167 static const struct regmap_range ti_sn_bridge_volatile_ranges[] = {
168 	{ .range_min = 0, .range_max = 0xFF },
169 };
170 
171 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
172 	.yes_ranges = ti_sn_bridge_volatile_ranges,
173 	.n_yes_ranges = ARRAY_SIZE(ti_sn_bridge_volatile_ranges),
174 };
175 
176 static const struct regmap_config ti_sn_bridge_regmap_config = {
177 	.reg_bits = 8,
178 	.val_bits = 8,
179 	.volatile_table = &ti_sn_bridge_volatile_table,
180 	.cache_type = REGCACHE_NONE,
181 };
182 
183 static void ti_sn_bridge_write_u16(struct ti_sn_bridge *pdata,
184 				   unsigned int reg, u16 val)
185 {
186 	regmap_write(pdata->regmap, reg, val & 0xFF);
187 	regmap_write(pdata->regmap, reg + 1, val >> 8);
188 }
189 
190 static int __maybe_unused ti_sn_bridge_resume(struct device *dev)
191 {
192 	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
193 	int ret;
194 
195 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
196 	if (ret) {
197 		DRM_ERROR("failed to enable supplies %d\n", ret);
198 		return ret;
199 	}
200 
201 	gpiod_set_value(pdata->enable_gpio, 1);
202 
203 	return ret;
204 }
205 
206 static int __maybe_unused ti_sn_bridge_suspend(struct device *dev)
207 {
208 	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
209 	int ret;
210 
211 	gpiod_set_value(pdata->enable_gpio, 0);
212 
213 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
214 	if (ret)
215 		DRM_ERROR("failed to disable supplies %d\n", ret);
216 
217 	return ret;
218 }
219 
220 static const struct dev_pm_ops ti_sn_bridge_pm_ops = {
221 	SET_RUNTIME_PM_OPS(ti_sn_bridge_suspend, ti_sn_bridge_resume, NULL)
222 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
223 				pm_runtime_force_resume)
224 };
225 
226 static int status_show(struct seq_file *s, void *data)
227 {
228 	struct ti_sn_bridge *pdata = s->private;
229 	unsigned int reg, val;
230 
231 	seq_puts(s, "STATUS REGISTERS:\n");
232 
233 	pm_runtime_get_sync(pdata->dev);
234 
235 	/* IRQ Status Registers, see Table 31 in datasheet */
236 	for (reg = 0xf0; reg <= 0xf8; reg++) {
237 		regmap_read(pdata->regmap, reg, &val);
238 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
239 	}
240 
241 	pm_runtime_put(pdata->dev);
242 
243 	return 0;
244 }
245 
246 DEFINE_SHOW_ATTRIBUTE(status);
247 
248 static void ti_sn_debugfs_init(struct ti_sn_bridge *pdata)
249 {
250 	pdata->debugfs = debugfs_create_dir(dev_name(pdata->dev), NULL);
251 
252 	debugfs_create_file("status", 0600, pdata->debugfs, pdata,
253 			&status_fops);
254 }
255 
256 static void ti_sn_debugfs_remove(struct ti_sn_bridge *pdata)
257 {
258 	debugfs_remove_recursive(pdata->debugfs);
259 	pdata->debugfs = NULL;
260 }
261 
262 /* Connector funcs */
263 static struct ti_sn_bridge *
264 connector_to_ti_sn_bridge(struct drm_connector *connector)
265 {
266 	return container_of(connector, struct ti_sn_bridge, connector);
267 }
268 
269 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
270 {
271 	struct ti_sn_bridge *pdata = connector_to_ti_sn_bridge(connector);
272 	struct edid *edid = pdata->edid;
273 	int num, ret;
274 
275 	if (!edid) {
276 		pm_runtime_get_sync(pdata->dev);
277 		edid = pdata->edid = drm_get_edid(connector, &pdata->aux.ddc);
278 		pm_runtime_put(pdata->dev);
279 	}
280 
281 	if (edid && drm_edid_is_valid(edid)) {
282 		ret = drm_connector_update_edid_property(connector, edid);
283 		if (!ret) {
284 			num = drm_add_edid_modes(connector, edid);
285 			if (num)
286 				return num;
287 		}
288 	}
289 
290 	return drm_panel_get_modes(pdata->panel, connector);
291 }
292 
293 static enum drm_mode_status
294 ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
295 				  struct drm_display_mode *mode)
296 {
297 	/* maximum supported resolution is 4K at 60 fps */
298 	if (mode->clock > 594000)
299 		return MODE_CLOCK_HIGH;
300 
301 	return MODE_OK;
302 }
303 
304 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
305 	.get_modes = ti_sn_bridge_connector_get_modes,
306 	.mode_valid = ti_sn_bridge_connector_mode_valid,
307 };
308 
309 static enum drm_connector_status
310 ti_sn_bridge_connector_detect(struct drm_connector *connector, bool force)
311 {
312 	/**
313 	 * TODO: Currently if drm_panel is present, then always
314 	 * return the status as connected. Need to add support to detect
315 	 * device state for hot pluggable scenarios.
316 	 */
317 	return connector_status_connected;
318 }
319 
320 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
321 	.fill_modes = drm_helper_probe_single_connector_modes,
322 	.detect = ti_sn_bridge_connector_detect,
323 	.destroy = drm_connector_cleanup,
324 	.reset = drm_atomic_helper_connector_reset,
325 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
326 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
327 };
328 
329 static struct ti_sn_bridge *bridge_to_ti_sn_bridge(struct drm_bridge *bridge)
330 {
331 	return container_of(bridge, struct ti_sn_bridge, bridge);
332 }
333 
334 static int ti_sn_bridge_parse_regulators(struct ti_sn_bridge *pdata)
335 {
336 	unsigned int i;
337 	const char * const ti_sn_bridge_supply_names[] = {
338 		"vcca", "vcc", "vccio", "vpll",
339 	};
340 
341 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
342 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
343 
344 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
345 				       pdata->supplies);
346 }
347 
348 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
349 			       enum drm_bridge_attach_flags flags)
350 {
351 	int ret, val;
352 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
353 	struct mipi_dsi_host *host;
354 	struct mipi_dsi_device *dsi;
355 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
356 						   .channel = 0,
357 						   .node = NULL,
358 						 };
359 
360 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
361 		DRM_ERROR("Fix bridge driver to make connector optional!");
362 		return -EINVAL;
363 	}
364 
365 	ret = drm_connector_init(bridge->dev, &pdata->connector,
366 				 &ti_sn_bridge_connector_funcs,
367 				 DRM_MODE_CONNECTOR_eDP);
368 	if (ret) {
369 		DRM_ERROR("Failed to initialize connector with drm\n");
370 		return ret;
371 	}
372 
373 	drm_connector_helper_add(&pdata->connector,
374 				 &ti_sn_bridge_connector_helper_funcs);
375 	drm_connector_attach_encoder(&pdata->connector, bridge->encoder);
376 
377 	/*
378 	 * TODO: ideally finding host resource and dsi dev registration needs
379 	 * to be done in bridge probe. But some existing DSI host drivers will
380 	 * wait for any of the drm_bridge/drm_panel to get added to the global
381 	 * bridge/panel list, before completing their probe. So if we do the
382 	 * dsi dev registration part in bridge probe, before populating in
383 	 * the global bridge list, then it will cause deadlock as dsi host probe
384 	 * will never complete, neither our bridge probe. So keeping it here
385 	 * will satisfy most of the existing host drivers. Once the host driver
386 	 * is fixed we can move the below code to bridge probe safely.
387 	 */
388 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
389 	if (!host) {
390 		DRM_ERROR("failed to find dsi host\n");
391 		ret = -ENODEV;
392 		goto err_dsi_host;
393 	}
394 
395 	dsi = mipi_dsi_device_register_full(host, &info);
396 	if (IS_ERR(dsi)) {
397 		DRM_ERROR("failed to create dsi device\n");
398 		ret = PTR_ERR(dsi);
399 		goto err_dsi_host;
400 	}
401 
402 	/* TODO: setting to 4 MIPI lanes always for now */
403 	dsi->lanes = 4;
404 	dsi->format = MIPI_DSI_FMT_RGB888;
405 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
406 
407 	/* check if continuous dsi clock is required or not */
408 	pm_runtime_get_sync(pdata->dev);
409 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
410 	pm_runtime_put(pdata->dev);
411 	if (!(val & DPPLL_CLK_SRC_DSICLK))
412 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
413 
414 	ret = mipi_dsi_attach(dsi);
415 	if (ret < 0) {
416 		DRM_ERROR("failed to attach dsi to host\n");
417 		goto err_dsi_attach;
418 	}
419 	pdata->dsi = dsi;
420 
421 	return 0;
422 
423 err_dsi_attach:
424 	mipi_dsi_device_unregister(dsi);
425 err_dsi_host:
426 	drm_connector_cleanup(&pdata->connector);
427 	return ret;
428 }
429 
430 static void ti_sn_bridge_disable(struct drm_bridge *bridge)
431 {
432 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
433 
434 	drm_panel_disable(pdata->panel);
435 
436 	/* disable video stream */
437 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
438 	/* semi auto link training mode OFF */
439 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
440 	/* disable DP PLL */
441 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
442 
443 	drm_panel_unprepare(pdata->panel);
444 }
445 
446 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn_bridge *pdata)
447 {
448 	u32 bit_rate_khz, clk_freq_khz;
449 	struct drm_display_mode *mode =
450 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
451 
452 	bit_rate_khz = mode->clock *
453 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
454 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
455 
456 	return clk_freq_khz;
457 }
458 
459 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
460 static const u32 ti_sn_bridge_refclk_lut[] = {
461 	12000000,
462 	19200000,
463 	26000000,
464 	27000000,
465 	38400000,
466 };
467 
468 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
469 static const u32 ti_sn_bridge_dsiclk_lut[] = {
470 	468000000,
471 	384000000,
472 	416000000,
473 	486000000,
474 	460800000,
475 };
476 
477 static void ti_sn_bridge_set_refclk_freq(struct ti_sn_bridge *pdata)
478 {
479 	int i;
480 	u32 refclk_rate;
481 	const u32 *refclk_lut;
482 	size_t refclk_lut_size;
483 
484 	if (pdata->refclk) {
485 		refclk_rate = clk_get_rate(pdata->refclk);
486 		refclk_lut = ti_sn_bridge_refclk_lut;
487 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
488 		clk_prepare_enable(pdata->refclk);
489 	} else {
490 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
491 		refclk_lut = ti_sn_bridge_dsiclk_lut;
492 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
493 	}
494 
495 	/* for i equals to refclk_lut_size means default frequency */
496 	for (i = 0; i < refclk_lut_size; i++)
497 		if (refclk_lut[i] == refclk_rate)
498 			break;
499 
500 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
501 			   REFCLK_FREQ(i));
502 }
503 
504 static void ti_sn_bridge_set_dsi_rate(struct ti_sn_bridge *pdata)
505 {
506 	unsigned int bit_rate_mhz, clk_freq_mhz;
507 	unsigned int val;
508 	struct drm_display_mode *mode =
509 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
510 
511 	/* set DSIA clk frequency */
512 	bit_rate_mhz = (mode->clock / 1000) *
513 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
514 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
515 
516 	/* for each increment in val, frequency increases by 5MHz */
517 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
518 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
519 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
520 }
521 
522 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn_bridge *pdata)
523 {
524 	if (pdata->connector.display_info.bpc <= 6)
525 		return 18;
526 	else
527 		return 24;
528 }
529 
530 /*
531  * LUT index corresponds to register value and
532  * LUT values corresponds to dp data rate supported
533  * by the bridge in Mbps unit.
534  */
535 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
536 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
537 };
538 
539 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn_bridge *pdata)
540 {
541 	unsigned int bit_rate_khz, dp_rate_mhz;
542 	unsigned int i;
543 	struct drm_display_mode *mode =
544 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
545 
546 	/* Calculate minimum bit rate based on our pixel clock. */
547 	bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
548 
549 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
550 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
551 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
552 
553 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
554 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
555 			break;
556 
557 	return i;
558 }
559 
560 static void ti_sn_bridge_read_valid_rates(struct ti_sn_bridge *pdata,
561 					  bool rate_valid[])
562 {
563 	unsigned int rate_per_200khz;
564 	unsigned int rate_mhz;
565 	u8 dpcd_val;
566 	int ret;
567 	int i, j;
568 
569 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
570 	if (ret != 1) {
571 		DRM_DEV_ERROR(pdata->dev,
572 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
573 		dpcd_val = DP_EDP_11;
574 	}
575 
576 	if (dpcd_val >= DP_EDP_14) {
577 		/* eDP 1.4 devices must provide a custom table */
578 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
579 
580 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
581 				       sink_rates, sizeof(sink_rates));
582 
583 		if (ret != sizeof(sink_rates)) {
584 			DRM_DEV_ERROR(pdata->dev,
585 				"Can't read supported rate table (%d)\n", ret);
586 
587 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
588 			memset(sink_rates, 0, sizeof(sink_rates));
589 		}
590 
591 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
592 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
593 
594 			if (!rate_per_200khz)
595 				break;
596 
597 			rate_mhz = rate_per_200khz * 200 / 1000;
598 			for (j = 0;
599 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
600 			     j++) {
601 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
602 					rate_valid[j] = true;
603 			}
604 		}
605 
606 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
607 			if (rate_valid[i])
608 				return;
609 		}
610 		DRM_DEV_ERROR(pdata->dev,
611 			      "No matching eDP rates in table; falling back\n");
612 	}
613 
614 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
615 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
616 	if (ret != 1) {
617 		DRM_DEV_ERROR(pdata->dev,
618 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
619 			      ret);
620 		dpcd_val = DP_LINK_BW_5_4;
621 	}
622 
623 	switch (dpcd_val) {
624 	default:
625 		DRM_DEV_ERROR(pdata->dev,
626 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
627 			      (int)dpcd_val);
628 		fallthrough;
629 	case DP_LINK_BW_5_4:
630 		rate_valid[7] = 1;
631 		fallthrough;
632 	case DP_LINK_BW_2_7:
633 		rate_valid[4] = 1;
634 		fallthrough;
635 	case DP_LINK_BW_1_62:
636 		rate_valid[1] = 1;
637 		break;
638 	}
639 }
640 
641 static void ti_sn_bridge_set_video_timings(struct ti_sn_bridge *pdata)
642 {
643 	struct drm_display_mode *mode =
644 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
645 	u8 hsync_polarity = 0, vsync_polarity = 0;
646 
647 	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
648 		hsync_polarity = CHA_HSYNC_POLARITY;
649 	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
650 		vsync_polarity = CHA_VSYNC_POLARITY;
651 
652 	ti_sn_bridge_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
653 			       mode->hdisplay);
654 	ti_sn_bridge_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
655 			       mode->vdisplay);
656 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
657 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
658 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
659 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
660 		     hsync_polarity);
661 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
662 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
663 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
664 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
665 		     vsync_polarity);
666 
667 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
668 		     (mode->htotal - mode->hsync_end) & 0xFF);
669 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
670 		     (mode->vtotal - mode->vsync_end) & 0xFF);
671 
672 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
673 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
674 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
675 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
676 
677 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
678 }
679 
680 static unsigned int ti_sn_get_max_lanes(struct ti_sn_bridge *pdata)
681 {
682 	u8 data;
683 	int ret;
684 
685 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
686 	if (ret != 1) {
687 		DRM_DEV_ERROR(pdata->dev,
688 			      "Can't read lane count (%d); assuming 4\n", ret);
689 		return 4;
690 	}
691 
692 	return data & DP_LANE_COUNT_MASK;
693 }
694 
695 static int ti_sn_link_training(struct ti_sn_bridge *pdata, int dp_rate_idx,
696 			       const char **last_err_str)
697 {
698 	unsigned int val;
699 	int ret;
700 	int i;
701 
702 	/* set dp clk frequency value */
703 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
704 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
705 
706 	/* enable DP PLL */
707 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
708 
709 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
710 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
711 				       50 * 1000);
712 	if (ret) {
713 		*last_err_str = "DP_PLL_LOCK polling failed";
714 		goto exit;
715 	}
716 
717 	/*
718 	 * We'll try to link train several times.  As part of link training
719 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
720 	 * the panel isn't ready quite it might respond NAK here which means
721 	 * we need to try again.
722 	 */
723 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
724 		/* Semi auto link training mode */
725 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
726 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
727 					       val == ML_TX_MAIN_LINK_OFF ||
728 					       val == ML_TX_NORMAL_MODE, 1000,
729 					       500 * 1000);
730 		if (ret) {
731 			*last_err_str = "Training complete polling failed";
732 		} else if (val == ML_TX_MAIN_LINK_OFF) {
733 			*last_err_str = "Link training failed, link is off";
734 			ret = -EIO;
735 			continue;
736 		}
737 
738 		break;
739 	}
740 
741 	/* If we saw quite a few retries, add a note about it */
742 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
743 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
744 
745 exit:
746 	/* Disable the PLL if we failed */
747 	if (ret)
748 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
749 
750 	return ret;
751 }
752 
753 static void ti_sn_bridge_enable(struct drm_bridge *bridge)
754 {
755 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
756 	bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { };
757 	const char *last_err_str = "No supported DP rate";
758 	int dp_rate_idx;
759 	unsigned int val;
760 	int ret = -EINVAL;
761 	int max_dp_lanes;
762 
763 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
764 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
765 
766 	/* DSI_A lane config */
767 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
768 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
769 			   CHA_DSI_LANES_MASK, val);
770 
771 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
772 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
773 			   pdata->ln_polrs << LN_POLRS_OFFSET);
774 
775 	/* set dsi clk frequency value */
776 	ti_sn_bridge_set_dsi_rate(pdata);
777 
778 	/**
779 	 * The SN65DSI86 only supports ASSR Display Authentication method and
780 	 * this method is enabled by default. An eDP panel must support this
781 	 * authentication method. We need to enable this method in the eDP panel
782 	 * at DisplayPort address 0x0010A prior to link training.
783 	 */
784 	drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
785 			   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
786 
787 	/* Set the DP output format (18 bpp or 24 bpp) */
788 	val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
789 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
790 
791 	/* DP lane config */
792 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
793 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
794 			   val);
795 
796 	ti_sn_bridge_read_valid_rates(pdata, rate_valid);
797 
798 	/* Train until we run out of rates */
799 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
800 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
801 	     dp_rate_idx++) {
802 		if (!rate_valid[dp_rate_idx])
803 			continue;
804 
805 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
806 		if (!ret)
807 			break;
808 	}
809 	if (ret) {
810 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
811 		return;
812 	}
813 
814 	/* config video parameters */
815 	ti_sn_bridge_set_video_timings(pdata);
816 
817 	/* enable video stream */
818 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
819 			   VSTREAM_ENABLE);
820 
821 	drm_panel_enable(pdata->panel);
822 }
823 
824 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
825 {
826 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
827 
828 	pm_runtime_get_sync(pdata->dev);
829 
830 	/* configure bridge ref_clk */
831 	ti_sn_bridge_set_refclk_freq(pdata);
832 
833 	/*
834 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
835 	 * so the HPD is an internal signal that's only there to signal that
836 	 * the panel is done powering up.  ...but the bridge chip debounces
837 	 * this signal by between 100 ms and 400 ms (depending on process,
838 	 * voltage, and temperate--I measured it at about 200 ms).  One
839 	 * particular panel asserted HPD 84 ms after it was powered on meaning
840 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
841 	 * that instead of looking at HPD you could just hardcode a delay of
842 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
843 	 * delay in its prepare and always disable HPD.
844 	 *
845 	 * If HPD somehow makes sense on some future panel we'll have to
846 	 * change this to be conditional on someone specifying that HPD should
847 	 * be used.
848 	 */
849 	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
850 			   HPD_DISABLE);
851 
852 	drm_panel_prepare(pdata->panel);
853 }
854 
855 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
856 {
857 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
858 
859 	clk_disable_unprepare(pdata->refclk);
860 
861 	pm_runtime_put_sync(pdata->dev);
862 }
863 
864 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
865 	.attach = ti_sn_bridge_attach,
866 	.pre_enable = ti_sn_bridge_pre_enable,
867 	.enable = ti_sn_bridge_enable,
868 	.disable = ti_sn_bridge_disable,
869 	.post_disable = ti_sn_bridge_post_disable,
870 };
871 
872 static struct ti_sn_bridge *aux_to_ti_sn_bridge(struct drm_dp_aux *aux)
873 {
874 	return container_of(aux, struct ti_sn_bridge, aux);
875 }
876 
877 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
878 				  struct drm_dp_aux_msg *msg)
879 {
880 	struct ti_sn_bridge *pdata = aux_to_ti_sn_bridge(aux);
881 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
882 	u32 request_val = AUX_CMD_REQ(msg->request);
883 	u8 *buf = msg->buffer;
884 	unsigned int len = msg->size;
885 	unsigned int val;
886 	int ret;
887 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
888 
889 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
890 		return -EINVAL;
891 
892 	switch (request) {
893 	case DP_AUX_NATIVE_WRITE:
894 	case DP_AUX_I2C_WRITE:
895 	case DP_AUX_NATIVE_READ:
896 	case DP_AUX_I2C_READ:
897 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
898 		/* Assume it's good */
899 		msg->reply = 0;
900 		break;
901 	default:
902 		return -EINVAL;
903 	}
904 
905 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
906 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
907 			   addr_len);
908 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
909 			  ARRAY_SIZE(addr_len));
910 
911 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
912 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
913 
914 	/* Clear old status bits before start so we don't get confused */
915 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
916 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
917 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
918 		     AUX_IRQ_STATUS_AUX_SHORT);
919 
920 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
921 
922 	/* Zero delay loop because i2c transactions are slow already */
923 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
924 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
925 	if (ret)
926 		return ret;
927 
928 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
929 	if (ret)
930 		return ret;
931 
932 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
933 		/*
934 		 * The hardware tried the message seven times per the DP spec
935 		 * but it hit a timeout. We ignore defers here because they're
936 		 * handled in hardware.
937 		 */
938 		return -ETIMEDOUT;
939 	}
940 
941 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
942 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
943 		if (ret)
944 			return ret;
945 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
946 		switch (request) {
947 		case DP_AUX_I2C_WRITE:
948 		case DP_AUX_I2C_READ:
949 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
950 			break;
951 		case DP_AUX_NATIVE_READ:
952 		case DP_AUX_NATIVE_WRITE:
953 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
954 			break;
955 		}
956 		return 0;
957 	}
958 
959 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE ||
960 	    len == 0)
961 		return len;
962 
963 	ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
964 	if (ret)
965 		return ret;
966 
967 	return len;
968 }
969 
970 static int ti_sn_bridge_parse_dsi_host(struct ti_sn_bridge *pdata)
971 {
972 	struct device_node *np = pdata->dev->of_node;
973 
974 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
975 
976 	if (!pdata->host_node) {
977 		DRM_ERROR("remote dsi host node not found\n");
978 		return -ENODEV;
979 	}
980 
981 	return 0;
982 }
983 
984 #if defined(CONFIG_OF_GPIO)
985 
986 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
987 				 const struct of_phandle_args *gpiospec,
988 				 u32 *flags)
989 {
990 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
991 		return -EINVAL;
992 
993 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
994 		return -EINVAL;
995 
996 	if (flags)
997 		*flags = gpiospec->args[1];
998 
999 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1000 }
1001 
1002 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1003 					   unsigned int offset)
1004 {
1005 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1006 
1007 	/*
1008 	 * We already have to keep track of the direction because we use
1009 	 * that to figure out whether we've powered the device.  We can
1010 	 * just return that rather than (maybe) powering up the device
1011 	 * to ask its direction.
1012 	 */
1013 	return test_bit(offset, pdata->gchip_output) ?
1014 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1015 }
1016 
1017 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1018 {
1019 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1020 	unsigned int val;
1021 	int ret;
1022 
1023 	/*
1024 	 * When the pin is an input we don't forcibly keep the bridge
1025 	 * powered--we just power it on to read the pin.  NOTE: part of
1026 	 * the reason this works is that the bridge defaults (when
1027 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1028 	 * Also note that if something else is keeping the chip powered the
1029 	 * pm_runtime functions are lightweight increments of a refcount.
1030 	 */
1031 	pm_runtime_get_sync(pdata->dev);
1032 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1033 	pm_runtime_put(pdata->dev);
1034 
1035 	if (ret)
1036 		return ret;
1037 
1038 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1039 }
1040 
1041 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1042 				  int val)
1043 {
1044 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1045 	int ret;
1046 
1047 	if (!test_bit(offset, pdata->gchip_output)) {
1048 		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1049 		return;
1050 	}
1051 
1052 	val &= 1;
1053 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1054 				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1055 				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1056 	if (ret)
1057 		dev_warn(pdata->dev,
1058 			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1059 }
1060 
1061 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1062 					     unsigned int offset)
1063 {
1064 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1065 	int shift = offset * 2;
1066 	int ret;
1067 
1068 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1069 		return 0;
1070 
1071 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1072 				 SN_GPIO_MUX_MASK << shift,
1073 				 SN_GPIO_MUX_INPUT << shift);
1074 	if (ret) {
1075 		set_bit(offset, pdata->gchip_output);
1076 		return ret;
1077 	}
1078 
1079 	/*
1080 	 * NOTE: if nobody else is powering the device this may fully power
1081 	 * it off and when it comes back it will have lost all state, but
1082 	 * that's OK because the default is input and we're now an input.
1083 	 */
1084 	pm_runtime_put(pdata->dev);
1085 
1086 	return 0;
1087 }
1088 
1089 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1090 					      unsigned int offset, int val)
1091 {
1092 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1093 	int shift = offset * 2;
1094 	int ret;
1095 
1096 	if (test_and_set_bit(offset, pdata->gchip_output))
1097 		return 0;
1098 
1099 	pm_runtime_get_sync(pdata->dev);
1100 
1101 	/* Set value first to avoid glitching */
1102 	ti_sn_bridge_gpio_set(chip, offset, val);
1103 
1104 	/* Set direction */
1105 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1106 				 SN_GPIO_MUX_MASK << shift,
1107 				 SN_GPIO_MUX_OUTPUT << shift);
1108 	if (ret) {
1109 		clear_bit(offset, pdata->gchip_output);
1110 		pm_runtime_put(pdata->dev);
1111 	}
1112 
1113 	return ret;
1114 }
1115 
1116 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1117 {
1118 	/* We won't keep pm_runtime if we're input, so switch there on free */
1119 	ti_sn_bridge_gpio_direction_input(chip, offset);
1120 }
1121 
1122 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1123 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1124 };
1125 
1126 static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1127 {
1128 	int ret;
1129 
1130 	/* Only init if someone is going to use us as a GPIO controller */
1131 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1132 		return 0;
1133 
1134 	pdata->gchip.label = dev_name(pdata->dev);
1135 	pdata->gchip.parent = pdata->dev;
1136 	pdata->gchip.owner = THIS_MODULE;
1137 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1138 	pdata->gchip.of_gpio_n_cells = 2;
1139 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1140 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1141 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1142 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1143 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1144 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1145 	pdata->gchip.can_sleep = true;
1146 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1147 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1148 	pdata->gchip.base = -1;
1149 	ret = devm_gpiochip_add_data(pdata->dev, &pdata->gchip, pdata);
1150 	if (ret)
1151 		dev_err(pdata->dev, "can't add gpio chip\n");
1152 
1153 	return ret;
1154 }
1155 
1156 #else
1157 
1158 static inline int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1159 {
1160 	return 0;
1161 }
1162 
1163 #endif
1164 
1165 static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
1166 				     struct device_node *np)
1167 {
1168 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1169 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1170 	struct device_node *endpoint;
1171 	u8 ln_assign = 0;
1172 	u8 ln_polrs = 0;
1173 	int dp_lanes;
1174 	int i;
1175 
1176 	/*
1177 	 * Read config from the device tree about lane remapping and lane
1178 	 * polarities.  These are optional and we assume identity map and
1179 	 * normal polarity if nothing is specified.  It's OK to specify just
1180 	 * data-lanes but not lane-polarities but not vice versa.
1181 	 *
1182 	 * Error checking is light (we just make sure we don't crash or
1183 	 * buffer overrun) and we assume dts is well formed and specifying
1184 	 * mappings that the hardware supports.
1185 	 */
1186 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1187 	dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1188 	if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1189 		of_property_read_u32_array(endpoint, "data-lanes",
1190 					   lane_assignments, dp_lanes);
1191 		of_property_read_u32_array(endpoint, "lane-polarities",
1192 					   lane_polarities, dp_lanes);
1193 	} else {
1194 		dp_lanes = SN_MAX_DP_LANES;
1195 	}
1196 	of_node_put(endpoint);
1197 
1198 	/*
1199 	 * Convert into register format.  Loop over all lanes even if
1200 	 * data-lanes had fewer elements so that we nicely initialize
1201 	 * the LN_ASSIGN register.
1202 	 */
1203 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1204 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1205 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1206 	}
1207 
1208 	/* Stash in our struct for when we power on */
1209 	pdata->dp_lanes = dp_lanes;
1210 	pdata->ln_assign = ln_assign;
1211 	pdata->ln_polrs = ln_polrs;
1212 }
1213 
1214 static int ti_sn_bridge_probe(struct i2c_client *client,
1215 			      const struct i2c_device_id *id)
1216 {
1217 	struct ti_sn_bridge *pdata;
1218 	int ret;
1219 
1220 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1221 		DRM_ERROR("device doesn't support I2C\n");
1222 		return -ENODEV;
1223 	}
1224 
1225 	pdata = devm_kzalloc(&client->dev, sizeof(struct ti_sn_bridge),
1226 			     GFP_KERNEL);
1227 	if (!pdata)
1228 		return -ENOMEM;
1229 
1230 	pdata->regmap = devm_regmap_init_i2c(client,
1231 					     &ti_sn_bridge_regmap_config);
1232 	if (IS_ERR(pdata->regmap)) {
1233 		DRM_ERROR("regmap i2c init failed\n");
1234 		return PTR_ERR(pdata->regmap);
1235 	}
1236 
1237 	pdata->dev = &client->dev;
1238 
1239 	ret = drm_of_find_panel_or_bridge(pdata->dev->of_node, 1, 0,
1240 					  &pdata->panel, NULL);
1241 	if (ret) {
1242 		DRM_ERROR("could not find any panel node\n");
1243 		return ret;
1244 	}
1245 
1246 	dev_set_drvdata(&client->dev, pdata);
1247 
1248 	pdata->enable_gpio = devm_gpiod_get(pdata->dev, "enable",
1249 					    GPIOD_OUT_LOW);
1250 	if (IS_ERR(pdata->enable_gpio)) {
1251 		DRM_ERROR("failed to get enable gpio from DT\n");
1252 		ret = PTR_ERR(pdata->enable_gpio);
1253 		return ret;
1254 	}
1255 
1256 	ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
1257 
1258 	ret = ti_sn_bridge_parse_regulators(pdata);
1259 	if (ret) {
1260 		DRM_ERROR("failed to parse regulators\n");
1261 		return ret;
1262 	}
1263 
1264 	pdata->refclk = devm_clk_get(pdata->dev, "refclk");
1265 	if (IS_ERR(pdata->refclk)) {
1266 		ret = PTR_ERR(pdata->refclk);
1267 		if (ret == -EPROBE_DEFER)
1268 			return ret;
1269 		DRM_DEBUG_KMS("refclk not found\n");
1270 		pdata->refclk = NULL;
1271 	}
1272 
1273 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1274 	if (ret)
1275 		return ret;
1276 
1277 	pm_runtime_enable(pdata->dev);
1278 
1279 	ret = ti_sn_setup_gpio_controller(pdata);
1280 	if (ret) {
1281 		pm_runtime_disable(pdata->dev);
1282 		return ret;
1283 	}
1284 
1285 	i2c_set_clientdata(client, pdata);
1286 
1287 	pdata->aux.name = "ti-sn65dsi86-aux";
1288 	pdata->aux.dev = pdata->dev;
1289 	pdata->aux.transfer = ti_sn_aux_transfer;
1290 	drm_dp_aux_register(&pdata->aux);
1291 
1292 	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1293 	pdata->bridge.of_node = client->dev.of_node;
1294 
1295 	drm_bridge_add(&pdata->bridge);
1296 
1297 	ti_sn_debugfs_init(pdata);
1298 
1299 	return 0;
1300 }
1301 
1302 static int ti_sn_bridge_remove(struct i2c_client *client)
1303 {
1304 	struct ti_sn_bridge *pdata = i2c_get_clientdata(client);
1305 
1306 	if (!pdata)
1307 		return -EINVAL;
1308 
1309 	kfree(pdata->edid);
1310 	ti_sn_debugfs_remove(pdata);
1311 
1312 	of_node_put(pdata->host_node);
1313 
1314 	pm_runtime_disable(pdata->dev);
1315 
1316 	if (pdata->dsi) {
1317 		mipi_dsi_detach(pdata->dsi);
1318 		mipi_dsi_device_unregister(pdata->dsi);
1319 	}
1320 
1321 	drm_bridge_remove(&pdata->bridge);
1322 
1323 	return 0;
1324 }
1325 
1326 static struct i2c_device_id ti_sn_bridge_id[] = {
1327 	{ "ti,sn65dsi86", 0},
1328 	{},
1329 };
1330 MODULE_DEVICE_TABLE(i2c, ti_sn_bridge_id);
1331 
1332 static const struct of_device_id ti_sn_bridge_match_table[] = {
1333 	{.compatible = "ti,sn65dsi86"},
1334 	{},
1335 };
1336 MODULE_DEVICE_TABLE(of, ti_sn_bridge_match_table);
1337 
1338 static struct i2c_driver ti_sn_bridge_driver = {
1339 	.driver = {
1340 		.name = "ti_sn65dsi86",
1341 		.of_match_table = ti_sn_bridge_match_table,
1342 		.pm = &ti_sn_bridge_pm_ops,
1343 	},
1344 	.probe = ti_sn_bridge_probe,
1345 	.remove = ti_sn_bridge_remove,
1346 	.id_table = ti_sn_bridge_id,
1347 };
1348 module_i2c_driver(ti_sn_bridge_driver);
1349 
1350 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1351 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1352 MODULE_LICENSE("GPL v2");
1353