1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf 5 */ 6 7 #include <linux/auxiliary_bus.h> 8 #include <linux/bits.h> 9 #include <linux/clk.h> 10 #include <linux/debugfs.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/gpio/driver.h> 13 #include <linux/i2c.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/of_graph.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 21 #include <asm/unaligned.h> 22 23 #include <drm/drm_atomic.h> 24 #include <drm/drm_atomic_helper.h> 25 #include <drm/drm_bridge.h> 26 #include <drm/drm_dp_aux_bus.h> 27 #include <drm/drm_dp_helper.h> 28 #include <drm/drm_mipi_dsi.h> 29 #include <drm/drm_of.h> 30 #include <drm/drm_panel.h> 31 #include <drm/drm_print.h> 32 #include <drm/drm_probe_helper.h> 33 34 #define SN_DEVICE_REV_REG 0x08 35 #define SN_DPPLL_SRC_REG 0x0A 36 #define DPPLL_CLK_SRC_DSICLK BIT(0) 37 #define REFCLK_FREQ_MASK GENMASK(3, 1) 38 #define REFCLK_FREQ(x) ((x) << 1) 39 #define DPPLL_SRC_DP_PLL_LOCK BIT(7) 40 #define SN_PLL_ENABLE_REG 0x0D 41 #define SN_DSI_LANES_REG 0x10 42 #define CHA_DSI_LANES_MASK GENMASK(4, 3) 43 #define CHA_DSI_LANES(x) ((x) << 3) 44 #define SN_DSIA_CLK_FREQ_REG 0x12 45 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20 46 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24 47 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C 48 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D 49 #define CHA_HSYNC_POLARITY BIT(7) 50 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30 51 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31 52 #define CHA_VSYNC_POLARITY BIT(7) 53 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34 54 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36 55 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38 56 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A 57 #define SN_LN_ASSIGN_REG 0x59 58 #define LN_ASSIGN_WIDTH 2 59 #define SN_ENH_FRAME_REG 0x5A 60 #define VSTREAM_ENABLE BIT(3) 61 #define LN_POLRS_OFFSET 4 62 #define LN_POLRS_MASK 0xf0 63 #define SN_DATA_FORMAT_REG 0x5B 64 #define BPP_18_RGB BIT(0) 65 #define SN_HPD_DISABLE_REG 0x5C 66 #define HPD_DISABLE BIT(0) 67 #define SN_GPIO_IO_REG 0x5E 68 #define SN_GPIO_INPUT_SHIFT 4 69 #define SN_GPIO_OUTPUT_SHIFT 0 70 #define SN_GPIO_CTRL_REG 0x5F 71 #define SN_GPIO_MUX_INPUT 0 72 #define SN_GPIO_MUX_OUTPUT 1 73 #define SN_GPIO_MUX_SPECIAL 2 74 #define SN_GPIO_MUX_MASK 0x3 75 #define SN_AUX_WDATA_REG(x) (0x64 + (x)) 76 #define SN_AUX_ADDR_19_16_REG 0x74 77 #define SN_AUX_ADDR_15_8_REG 0x75 78 #define SN_AUX_ADDR_7_0_REG 0x76 79 #define SN_AUX_ADDR_MASK GENMASK(19, 0) 80 #define SN_AUX_LENGTH_REG 0x77 81 #define SN_AUX_CMD_REG 0x78 82 #define AUX_CMD_SEND BIT(0) 83 #define AUX_CMD_REQ(x) ((x) << 4) 84 #define SN_AUX_RDATA_REG(x) (0x79 + (x)) 85 #define SN_SSC_CONFIG_REG 0x93 86 #define DP_NUM_LANES_MASK GENMASK(5, 4) 87 #define DP_NUM_LANES(x) ((x) << 4) 88 #define SN_DATARATE_CONFIG_REG 0x94 89 #define DP_DATARATE_MASK GENMASK(7, 5) 90 #define DP_DATARATE(x) ((x) << 5) 91 #define SN_ML_TX_MODE_REG 0x96 92 #define ML_TX_MAIN_LINK_OFF 0 93 #define ML_TX_NORMAL_MODE BIT(0) 94 #define SN_AUX_CMD_STATUS_REG 0xF4 95 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) 96 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) 97 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6) 98 99 #define MIN_DSI_CLK_FREQ_MHZ 40 100 101 /* fudge factor required to account for 8b/10b encoding */ 102 #define DP_CLK_FUDGE_NUM 10 103 #define DP_CLK_FUDGE_DEN 8 104 105 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */ 106 #define SN_AUX_MAX_PAYLOAD_BYTES 16 107 108 #define SN_REGULATOR_SUPPLY_NUM 4 109 110 #define SN_MAX_DP_LANES 4 111 #define SN_NUM_GPIOS 4 112 #define SN_GPIO_PHYSICAL_OFFSET 1 113 114 #define SN_LINK_TRAINING_TRIES 10 115 116 /** 117 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver. 118 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality. 119 * @gpio_aux: AUX-bus sub device for GPIO controller functionality. 120 * @aux_aux: AUX-bus sub device for eDP AUX channel functionality. 121 * 122 * @dev: Pointer to the top level (i2c) device. 123 * @regmap: Regmap for accessing i2c. 124 * @aux: Our aux channel. 125 * @bridge: Our bridge. 126 * @connector: Our connector. 127 * @host_node: Remote DSI node. 128 * @dsi: Our MIPI DSI source. 129 * @refclk: Our reference clock. 130 * @next_bridge: The bridge on the eDP side. 131 * @enable_gpio: The GPIO we toggle to enable the bridge. 132 * @supplies: Data for bulk enabling/disabling our regulators. 133 * @dp_lanes: Count of dp_lanes we're using. 134 * @ln_assign: Value to program to the LN_ASSIGN register. 135 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG. 136 * @comms_enabled: If true then communication over the aux channel is enabled. 137 * @comms_mutex: Protects modification of comms_enabled. 138 * 139 * @gchip: If we expose our GPIOs, this is used. 140 * @gchip_output: A cache of whether we've set GPIOs to output. This 141 * serves double-duty of keeping track of the direction and 142 * also keeping track of whether we've incremented the 143 * pm_runtime reference count for this pin, which we do 144 * whenever a pin is configured as an output. This is a 145 * bitmap so we can do atomic ops on it without an extra 146 * lock so concurrent users of our 4 GPIOs don't stomp on 147 * each other's read-modify-write. 148 */ 149 struct ti_sn65dsi86 { 150 struct auxiliary_device bridge_aux; 151 struct auxiliary_device gpio_aux; 152 struct auxiliary_device aux_aux; 153 154 struct device *dev; 155 struct regmap *regmap; 156 struct drm_dp_aux aux; 157 struct drm_bridge bridge; 158 struct drm_connector connector; 159 struct device_node *host_node; 160 struct mipi_dsi_device *dsi; 161 struct clk *refclk; 162 struct drm_bridge *next_bridge; 163 struct gpio_desc *enable_gpio; 164 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM]; 165 int dp_lanes; 166 u8 ln_assign; 167 u8 ln_polrs; 168 bool comms_enabled; 169 struct mutex comms_mutex; 170 171 #if defined(CONFIG_OF_GPIO) 172 struct gpio_chip gchip; 173 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); 174 #endif 175 }; 176 177 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = { 178 { .range_min = 0, .range_max = 0xFF }, 179 }; 180 181 static const struct regmap_access_table ti_sn_bridge_volatile_table = { 182 .yes_ranges = ti_sn65dsi86_volatile_ranges, 183 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges), 184 }; 185 186 static const struct regmap_config ti_sn65dsi86_regmap_config = { 187 .reg_bits = 8, 188 .val_bits = 8, 189 .volatile_table = &ti_sn_bridge_volatile_table, 190 .cache_type = REGCACHE_NONE, 191 }; 192 193 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata, 194 unsigned int reg, u16 val) 195 { 196 regmap_write(pdata->regmap, reg, val & 0xFF); 197 regmap_write(pdata->regmap, reg + 1, val >> 8); 198 } 199 200 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata) 201 { 202 u32 bit_rate_khz, clk_freq_khz; 203 struct drm_display_mode *mode = 204 &pdata->bridge.encoder->crtc->state->adjusted_mode; 205 206 bit_rate_khz = mode->clock * 207 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 208 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2); 209 210 return clk_freq_khz; 211 } 212 213 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */ 214 static const u32 ti_sn_bridge_refclk_lut[] = { 215 12000000, 216 19200000, 217 26000000, 218 27000000, 219 38400000, 220 }; 221 222 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */ 223 static const u32 ti_sn_bridge_dsiclk_lut[] = { 224 468000000, 225 384000000, 226 416000000, 227 486000000, 228 460800000, 229 }; 230 231 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata) 232 { 233 int i; 234 u32 refclk_rate; 235 const u32 *refclk_lut; 236 size_t refclk_lut_size; 237 238 if (pdata->refclk) { 239 refclk_rate = clk_get_rate(pdata->refclk); 240 refclk_lut = ti_sn_bridge_refclk_lut; 241 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut); 242 clk_prepare_enable(pdata->refclk); 243 } else { 244 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000; 245 refclk_lut = ti_sn_bridge_dsiclk_lut; 246 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut); 247 } 248 249 /* for i equals to refclk_lut_size means default frequency */ 250 for (i = 0; i < refclk_lut_size; i++) 251 if (refclk_lut[i] == refclk_rate) 252 break; 253 254 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, 255 REFCLK_FREQ(i)); 256 } 257 258 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata) 259 { 260 mutex_lock(&pdata->comms_mutex); 261 262 /* configure bridge ref_clk */ 263 ti_sn_bridge_set_refclk_freq(pdata); 264 265 /* 266 * HPD on this bridge chip is a bit useless. This is an eDP bridge 267 * so the HPD is an internal signal that's only there to signal that 268 * the panel is done powering up. ...but the bridge chip debounces 269 * this signal by between 100 ms and 400 ms (depending on process, 270 * voltage, and temperate--I measured it at about 200 ms). One 271 * particular panel asserted HPD 84 ms after it was powered on meaning 272 * that we saw HPD 284 ms after power on. ...but the same panel said 273 * that instead of looking at HPD you could just hardcode a delay of 274 * 200 ms. We'll assume that the panel driver will have the hardcoded 275 * delay in its prepare and always disable HPD. 276 * 277 * If HPD somehow makes sense on some future panel we'll have to 278 * change this to be conditional on someone specifying that HPD should 279 * be used. 280 */ 281 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE, 282 HPD_DISABLE); 283 284 pdata->comms_enabled = true; 285 286 mutex_unlock(&pdata->comms_mutex); 287 } 288 289 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata) 290 { 291 mutex_lock(&pdata->comms_mutex); 292 293 pdata->comms_enabled = false; 294 clk_disable_unprepare(pdata->refclk); 295 296 mutex_unlock(&pdata->comms_mutex); 297 } 298 299 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev) 300 { 301 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 302 int ret; 303 304 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 305 if (ret) { 306 DRM_ERROR("failed to enable supplies %d\n", ret); 307 return ret; 308 } 309 310 /* td2: min 100 us after regulators before enabling the GPIO */ 311 usleep_range(100, 110); 312 313 gpiod_set_value(pdata->enable_gpio, 1); 314 315 /* 316 * If we have a reference clock we can enable communication w/ the 317 * panel (including the aux channel) w/out any need for an input clock 318 * so we can do it in resume which lets us read the EDID before 319 * pre_enable(). Without a reference clock we need the MIPI reference 320 * clock so reading early doesn't work. 321 */ 322 if (pdata->refclk) 323 ti_sn65dsi86_enable_comms(pdata); 324 325 return ret; 326 } 327 328 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev) 329 { 330 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 331 int ret; 332 333 if (pdata->refclk) 334 ti_sn65dsi86_disable_comms(pdata); 335 336 gpiod_set_value(pdata->enable_gpio, 0); 337 338 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 339 if (ret) 340 DRM_ERROR("failed to disable supplies %d\n", ret); 341 342 return ret; 343 } 344 345 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = { 346 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL) 347 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 348 pm_runtime_force_resume) 349 }; 350 351 static int status_show(struct seq_file *s, void *data) 352 { 353 struct ti_sn65dsi86 *pdata = s->private; 354 unsigned int reg, val; 355 356 seq_puts(s, "STATUS REGISTERS:\n"); 357 358 pm_runtime_get_sync(pdata->dev); 359 360 /* IRQ Status Registers, see Table 31 in datasheet */ 361 for (reg = 0xf0; reg <= 0xf8; reg++) { 362 regmap_read(pdata->regmap, reg, &val); 363 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val); 364 } 365 366 pm_runtime_put_autosuspend(pdata->dev); 367 368 return 0; 369 } 370 371 DEFINE_SHOW_ATTRIBUTE(status); 372 373 static void ti_sn65dsi86_debugfs_remove(void *data) 374 { 375 debugfs_remove_recursive(data); 376 } 377 378 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata) 379 { 380 struct device *dev = pdata->dev; 381 struct dentry *debugfs; 382 int ret; 383 384 debugfs = debugfs_create_dir(dev_name(dev), NULL); 385 386 /* 387 * We might get an error back if debugfs wasn't enabled in the kernel 388 * so let's just silently return upon failure. 389 */ 390 if (IS_ERR_OR_NULL(debugfs)) 391 return; 392 393 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs); 394 if (ret) 395 return; 396 397 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops); 398 } 399 400 /* ----------------------------------------------------------------------------- 401 * Auxiliary Devices (*not* AUX) 402 */ 403 404 static void ti_sn65dsi86_uninit_aux(void *data) 405 { 406 auxiliary_device_uninit(data); 407 } 408 409 static void ti_sn65dsi86_delete_aux(void *data) 410 { 411 auxiliary_device_delete(data); 412 } 413 414 /* 415 * AUX bus docs say that a non-NULL release is mandatory, but it makes no 416 * sense for the model used here where all of the aux devices are allocated 417 * in the single shared structure. We'll use this noop as a workaround. 418 */ 419 static void ti_sn65dsi86_noop(struct device *dev) {} 420 421 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata, 422 struct auxiliary_device *aux, 423 const char *name) 424 { 425 struct device *dev = pdata->dev; 426 int ret; 427 428 aux->name = name; 429 aux->dev.parent = dev; 430 aux->dev.release = ti_sn65dsi86_noop; 431 device_set_of_node_from_dev(&aux->dev, dev); 432 ret = auxiliary_device_init(aux); 433 if (ret) 434 return ret; 435 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux); 436 if (ret) 437 return ret; 438 439 ret = auxiliary_device_add(aux); 440 if (ret) 441 return ret; 442 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux); 443 444 return ret; 445 } 446 447 /* ----------------------------------------------------------------------------- 448 * AUX Adapter 449 */ 450 451 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux) 452 { 453 return container_of(aux, struct ti_sn65dsi86, aux); 454 } 455 456 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux, 457 struct drm_dp_aux_msg *msg) 458 { 459 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux); 460 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE); 461 u32 request_val = AUX_CMD_REQ(msg->request); 462 u8 *buf = msg->buffer; 463 unsigned int len = msg->size; 464 unsigned int val; 465 int ret; 466 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG]; 467 468 if (len > SN_AUX_MAX_PAYLOAD_BYTES) 469 return -EINVAL; 470 471 pm_runtime_get_sync(pdata->dev); 472 mutex_lock(&pdata->comms_mutex); 473 474 /* 475 * If someone tries to do a DDC over AUX transaction before pre_enable() 476 * on a device without a dedicated reference clock then we just can't 477 * do it. Fail right away. This prevents non-refclk users from reading 478 * the EDID before enabling the panel but such is life. 479 */ 480 if (!pdata->comms_enabled) { 481 ret = -EIO; 482 goto exit; 483 } 484 485 switch (request) { 486 case DP_AUX_NATIVE_WRITE: 487 case DP_AUX_I2C_WRITE: 488 case DP_AUX_NATIVE_READ: 489 case DP_AUX_I2C_READ: 490 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val); 491 /* Assume it's good */ 492 msg->reply = 0; 493 break; 494 default: 495 ret = -EINVAL; 496 goto exit; 497 } 498 499 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32)); 500 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len, 501 addr_len); 502 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len, 503 ARRAY_SIZE(addr_len)); 504 505 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) 506 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len); 507 508 /* Clear old status bits before start so we don't get confused */ 509 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG, 510 AUX_IRQ_STATUS_NAT_I2C_FAIL | 511 AUX_IRQ_STATUS_AUX_RPLY_TOUT | 512 AUX_IRQ_STATUS_AUX_SHORT); 513 514 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND); 515 516 /* Zero delay loop because i2c transactions are slow already */ 517 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val, 518 !(val & AUX_CMD_SEND), 0, 50 * 1000); 519 if (ret) 520 goto exit; 521 522 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val); 523 if (ret) 524 goto exit; 525 526 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) { 527 /* 528 * The hardware tried the message seven times per the DP spec 529 * but it hit a timeout. We ignore defers here because they're 530 * handled in hardware. 531 */ 532 ret = -ETIMEDOUT; 533 goto exit; 534 } 535 536 if (val & AUX_IRQ_STATUS_AUX_SHORT) { 537 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len); 538 if (ret) 539 goto exit; 540 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) { 541 switch (request) { 542 case DP_AUX_I2C_WRITE: 543 case DP_AUX_I2C_READ: 544 msg->reply |= DP_AUX_I2C_REPLY_NACK; 545 break; 546 case DP_AUX_NATIVE_READ: 547 case DP_AUX_NATIVE_WRITE: 548 msg->reply |= DP_AUX_NATIVE_REPLY_NACK; 549 break; 550 } 551 len = 0; 552 goto exit; 553 } 554 555 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0) 556 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len); 557 558 exit: 559 mutex_unlock(&pdata->comms_mutex); 560 pm_runtime_mark_last_busy(pdata->dev); 561 pm_runtime_put_autosuspend(pdata->dev); 562 563 if (ret) 564 return ret; 565 return len; 566 } 567 568 static int ti_sn_aux_probe(struct auxiliary_device *adev, 569 const struct auxiliary_device_id *id) 570 { 571 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 572 int ret; 573 574 pdata->aux.name = "ti-sn65dsi86-aux"; 575 pdata->aux.dev = &adev->dev; 576 pdata->aux.transfer = ti_sn_aux_transfer; 577 drm_dp_aux_init(&pdata->aux); 578 579 ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux); 580 if (ret) 581 return ret; 582 583 /* 584 * The eDP to MIPI bridge parts don't work until the AUX channel is 585 * setup so we don't add it in the main driver probe, we add it now. 586 */ 587 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge"); 588 } 589 590 static const struct auxiliary_device_id ti_sn_aux_id_table[] = { 591 { .name = "ti_sn65dsi86.aux", }, 592 {}, 593 }; 594 595 static struct auxiliary_driver ti_sn_aux_driver = { 596 .name = "aux", 597 .probe = ti_sn_aux_probe, 598 .id_table = ti_sn_aux_id_table, 599 }; 600 601 /* ----------------------------------------------------------------------------- 602 * DRM Connector Operations 603 */ 604 605 static struct ti_sn65dsi86 * 606 connector_to_ti_sn65dsi86(struct drm_connector *connector) 607 { 608 return container_of(connector, struct ti_sn65dsi86, connector); 609 } 610 611 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector) 612 { 613 struct ti_sn65dsi86 *pdata = connector_to_ti_sn65dsi86(connector); 614 615 return drm_bridge_get_modes(pdata->next_bridge, connector); 616 } 617 618 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = { 619 .get_modes = ti_sn_bridge_connector_get_modes, 620 }; 621 622 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = { 623 .fill_modes = drm_helper_probe_single_connector_modes, 624 .destroy = drm_connector_cleanup, 625 .reset = drm_atomic_helper_connector_reset, 626 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 627 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 628 }; 629 630 static int ti_sn_bridge_connector_init(struct ti_sn65dsi86 *pdata) 631 { 632 int ret; 633 634 ret = drm_connector_init(pdata->bridge.dev, &pdata->connector, 635 &ti_sn_bridge_connector_funcs, 636 DRM_MODE_CONNECTOR_eDP); 637 if (ret) { 638 DRM_ERROR("Failed to initialize connector with drm\n"); 639 return ret; 640 } 641 642 drm_connector_helper_add(&pdata->connector, 643 &ti_sn_bridge_connector_helper_funcs); 644 drm_connector_attach_encoder(&pdata->connector, pdata->bridge.encoder); 645 646 return 0; 647 } 648 649 /*------------------------------------------------------------------------------ 650 * DRM Bridge 651 */ 652 653 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge) 654 { 655 return container_of(bridge, struct ti_sn65dsi86, bridge); 656 } 657 658 static int ti_sn_bridge_attach(struct drm_bridge *bridge, 659 enum drm_bridge_attach_flags flags) 660 { 661 int ret, val; 662 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 663 struct mipi_dsi_host *host; 664 struct mipi_dsi_device *dsi; 665 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge", 666 .channel = 0, 667 .node = NULL, 668 }; 669 670 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) { 671 DRM_ERROR("Fix bridge driver to make connector optional!"); 672 return -EINVAL; 673 } 674 675 pdata->aux.drm_dev = bridge->dev; 676 ret = drm_dp_aux_register(&pdata->aux); 677 if (ret < 0) { 678 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret); 679 return ret; 680 } 681 682 ret = ti_sn_bridge_connector_init(pdata); 683 if (ret < 0) 684 goto err_conn_init; 685 686 /* 687 * TODO: ideally finding host resource and dsi dev registration needs 688 * to be done in bridge probe. But some existing DSI host drivers will 689 * wait for any of the drm_bridge/drm_panel to get added to the global 690 * bridge/panel list, before completing their probe. So if we do the 691 * dsi dev registration part in bridge probe, before populating in 692 * the global bridge list, then it will cause deadlock as dsi host probe 693 * will never complete, neither our bridge probe. So keeping it here 694 * will satisfy most of the existing host drivers. Once the host driver 695 * is fixed we can move the below code to bridge probe safely. 696 */ 697 host = of_find_mipi_dsi_host_by_node(pdata->host_node); 698 if (!host) { 699 DRM_ERROR("failed to find dsi host\n"); 700 ret = -ENODEV; 701 goto err_dsi_host; 702 } 703 704 dsi = mipi_dsi_device_register_full(host, &info); 705 if (IS_ERR(dsi)) { 706 DRM_ERROR("failed to create dsi device\n"); 707 ret = PTR_ERR(dsi); 708 goto err_dsi_host; 709 } 710 711 /* TODO: setting to 4 MIPI lanes always for now */ 712 dsi->lanes = 4; 713 dsi->format = MIPI_DSI_FMT_RGB888; 714 dsi->mode_flags = MIPI_DSI_MODE_VIDEO; 715 716 /* check if continuous dsi clock is required or not */ 717 pm_runtime_get_sync(pdata->dev); 718 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val); 719 pm_runtime_put_autosuspend(pdata->dev); 720 if (!(val & DPPLL_CLK_SRC_DSICLK)) 721 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS; 722 723 ret = mipi_dsi_attach(dsi); 724 if (ret < 0) { 725 DRM_ERROR("failed to attach dsi to host\n"); 726 goto err_dsi_attach; 727 } 728 pdata->dsi = dsi; 729 730 /* We never want the next bridge to *also* create a connector: */ 731 flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR; 732 733 /* Attach the next bridge */ 734 ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge, 735 &pdata->bridge, flags); 736 if (ret < 0) 737 goto err_dsi_detach; 738 739 return 0; 740 741 err_dsi_detach: 742 mipi_dsi_detach(dsi); 743 err_dsi_attach: 744 mipi_dsi_device_unregister(dsi); 745 err_dsi_host: 746 drm_connector_cleanup(&pdata->connector); 747 err_conn_init: 748 drm_dp_aux_unregister(&pdata->aux); 749 return ret; 750 } 751 752 static void ti_sn_bridge_detach(struct drm_bridge *bridge) 753 { 754 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux); 755 } 756 757 static enum drm_mode_status 758 ti_sn_bridge_mode_valid(struct drm_bridge *bridge, 759 const struct drm_display_info *info, 760 const struct drm_display_mode *mode) 761 { 762 /* maximum supported resolution is 4K at 60 fps */ 763 if (mode->clock > 594000) 764 return MODE_CLOCK_HIGH; 765 766 return MODE_OK; 767 } 768 769 static void ti_sn_bridge_disable(struct drm_bridge *bridge) 770 { 771 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 772 773 /* disable video stream */ 774 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0); 775 } 776 777 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata) 778 { 779 unsigned int bit_rate_mhz, clk_freq_mhz; 780 unsigned int val; 781 struct drm_display_mode *mode = 782 &pdata->bridge.encoder->crtc->state->adjusted_mode; 783 784 /* set DSIA clk frequency */ 785 bit_rate_mhz = (mode->clock / 1000) * 786 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 787 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2); 788 789 /* for each increment in val, frequency increases by 5MHz */ 790 val = (MIN_DSI_CLK_FREQ_MHZ / 5) + 791 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF); 792 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val); 793 } 794 795 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata) 796 { 797 if (pdata->connector.display_info.bpc <= 6) 798 return 18; 799 else 800 return 24; 801 } 802 803 /* 804 * LUT index corresponds to register value and 805 * LUT values corresponds to dp data rate supported 806 * by the bridge in Mbps unit. 807 */ 808 static const unsigned int ti_sn_bridge_dp_rate_lut[] = { 809 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400 810 }; 811 812 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata) 813 { 814 unsigned int bit_rate_khz, dp_rate_mhz; 815 unsigned int i; 816 struct drm_display_mode *mode = 817 &pdata->bridge.encoder->crtc->state->adjusted_mode; 818 819 /* Calculate minimum bit rate based on our pixel clock. */ 820 bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata); 821 822 /* Calculate minimum DP data rate, taking 80% as per DP spec */ 823 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM, 824 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN); 825 826 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++) 827 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz) 828 break; 829 830 return i; 831 } 832 833 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata) 834 { 835 unsigned int valid_rates = 0; 836 unsigned int rate_per_200khz; 837 unsigned int rate_mhz; 838 u8 dpcd_val; 839 int ret; 840 int i, j; 841 842 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val); 843 if (ret != 1) { 844 DRM_DEV_ERROR(pdata->dev, 845 "Can't read eDP rev (%d), assuming 1.1\n", ret); 846 dpcd_val = DP_EDP_11; 847 } 848 849 if (dpcd_val >= DP_EDP_14) { 850 /* eDP 1.4 devices must provide a custom table */ 851 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 852 853 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES, 854 sink_rates, sizeof(sink_rates)); 855 856 if (ret != sizeof(sink_rates)) { 857 DRM_DEV_ERROR(pdata->dev, 858 "Can't read supported rate table (%d)\n", ret); 859 860 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */ 861 memset(sink_rates, 0, sizeof(sink_rates)); 862 } 863 864 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 865 rate_per_200khz = le16_to_cpu(sink_rates[i]); 866 867 if (!rate_per_200khz) 868 break; 869 870 rate_mhz = rate_per_200khz * 200 / 1000; 871 for (j = 0; 872 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 873 j++) { 874 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz) 875 valid_rates |= BIT(j); 876 } 877 } 878 879 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) { 880 if (valid_rates & BIT(i)) 881 return valid_rates; 882 } 883 DRM_DEV_ERROR(pdata->dev, 884 "No matching eDP rates in table; falling back\n"); 885 } 886 887 /* On older versions best we can do is use DP_MAX_LINK_RATE */ 888 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val); 889 if (ret != 1) { 890 DRM_DEV_ERROR(pdata->dev, 891 "Can't read max rate (%d); assuming 5.4 GHz\n", 892 ret); 893 dpcd_val = DP_LINK_BW_5_4; 894 } 895 896 switch (dpcd_val) { 897 default: 898 DRM_DEV_ERROR(pdata->dev, 899 "Unexpected max rate (%#x); assuming 5.4 GHz\n", 900 (int)dpcd_val); 901 fallthrough; 902 case DP_LINK_BW_5_4: 903 valid_rates |= BIT(7); 904 fallthrough; 905 case DP_LINK_BW_2_7: 906 valid_rates |= BIT(4); 907 fallthrough; 908 case DP_LINK_BW_1_62: 909 valid_rates |= BIT(1); 910 break; 911 } 912 913 return valid_rates; 914 } 915 916 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata) 917 { 918 struct drm_display_mode *mode = 919 &pdata->bridge.encoder->crtc->state->adjusted_mode; 920 u8 hsync_polarity = 0, vsync_polarity = 0; 921 922 if (mode->flags & DRM_MODE_FLAG_PHSYNC) 923 hsync_polarity = CHA_HSYNC_POLARITY; 924 if (mode->flags & DRM_MODE_FLAG_PVSYNC) 925 vsync_polarity = CHA_VSYNC_POLARITY; 926 927 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG, 928 mode->hdisplay); 929 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG, 930 mode->vdisplay); 931 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG, 932 (mode->hsync_end - mode->hsync_start) & 0xFF); 933 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG, 934 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) | 935 hsync_polarity); 936 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG, 937 (mode->vsync_end - mode->vsync_start) & 0xFF); 938 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG, 939 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) | 940 vsync_polarity); 941 942 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG, 943 (mode->htotal - mode->hsync_end) & 0xFF); 944 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG, 945 (mode->vtotal - mode->vsync_end) & 0xFF); 946 947 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG, 948 (mode->hsync_start - mode->hdisplay) & 0xFF); 949 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG, 950 (mode->vsync_start - mode->vdisplay) & 0xFF); 951 952 usleep_range(10000, 10500); /* 10ms delay recommended by spec */ 953 } 954 955 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata) 956 { 957 u8 data; 958 int ret; 959 960 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data); 961 if (ret != 1) { 962 DRM_DEV_ERROR(pdata->dev, 963 "Can't read lane count (%d); assuming 4\n", ret); 964 return 4; 965 } 966 967 return data & DP_LANE_COUNT_MASK; 968 } 969 970 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx, 971 const char **last_err_str) 972 { 973 unsigned int val; 974 int ret; 975 int i; 976 977 /* set dp clk frequency value */ 978 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG, 979 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx)); 980 981 /* enable DP PLL */ 982 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1); 983 984 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val, 985 val & DPPLL_SRC_DP_PLL_LOCK, 1000, 986 50 * 1000); 987 if (ret) { 988 *last_err_str = "DP_PLL_LOCK polling failed"; 989 goto exit; 990 } 991 992 /* 993 * We'll try to link train several times. As part of link training 994 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If 995 * the panel isn't ready quite it might respond NAK here which means 996 * we need to try again. 997 */ 998 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) { 999 /* Semi auto link training mode */ 1000 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A); 1001 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val, 1002 val == ML_TX_MAIN_LINK_OFF || 1003 val == ML_TX_NORMAL_MODE, 1000, 1004 500 * 1000); 1005 if (ret) { 1006 *last_err_str = "Training complete polling failed"; 1007 } else if (val == ML_TX_MAIN_LINK_OFF) { 1008 *last_err_str = "Link training failed, link is off"; 1009 ret = -EIO; 1010 continue; 1011 } 1012 1013 break; 1014 } 1015 1016 /* If we saw quite a few retries, add a note about it */ 1017 if (!ret && i > SN_LINK_TRAINING_TRIES / 2) 1018 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i); 1019 1020 exit: 1021 /* Disable the PLL if we failed */ 1022 if (ret) 1023 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1024 1025 return ret; 1026 } 1027 1028 static void ti_sn_bridge_enable(struct drm_bridge *bridge) 1029 { 1030 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1031 const char *last_err_str = "No supported DP rate"; 1032 unsigned int valid_rates; 1033 int dp_rate_idx; 1034 unsigned int val; 1035 int ret = -EINVAL; 1036 int max_dp_lanes; 1037 1038 max_dp_lanes = ti_sn_get_max_lanes(pdata); 1039 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes); 1040 1041 /* DSI_A lane config */ 1042 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes); 1043 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG, 1044 CHA_DSI_LANES_MASK, val); 1045 1046 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign); 1047 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK, 1048 pdata->ln_polrs << LN_POLRS_OFFSET); 1049 1050 /* set dsi clk frequency value */ 1051 ti_sn_bridge_set_dsi_rate(pdata); 1052 1053 /* 1054 * The SN65DSI86 only supports ASSR Display Authentication method and 1055 * this method is enabled by default. An eDP panel must support this 1056 * authentication method. We need to enable this method in the eDP panel 1057 * at DisplayPort address 0x0010A prior to link training. 1058 */ 1059 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET, 1060 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE); 1061 1062 /* Set the DP output format (18 bpp or 24 bpp) */ 1063 val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0; 1064 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val); 1065 1066 /* DP lane config */ 1067 val = DP_NUM_LANES(min(pdata->dp_lanes, 3)); 1068 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 1069 val); 1070 1071 valid_rates = ti_sn_bridge_read_valid_rates(pdata); 1072 1073 /* Train until we run out of rates */ 1074 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata); 1075 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 1076 dp_rate_idx++) { 1077 if (!(valid_rates & BIT(dp_rate_idx))) 1078 continue; 1079 1080 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str); 1081 if (!ret) 1082 break; 1083 } 1084 if (ret) { 1085 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret); 1086 return; 1087 } 1088 1089 /* config video parameters */ 1090 ti_sn_bridge_set_video_timings(pdata); 1091 1092 /* enable video stream */ 1093 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 1094 VSTREAM_ENABLE); 1095 } 1096 1097 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge) 1098 { 1099 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1100 1101 pm_runtime_get_sync(pdata->dev); 1102 1103 if (!pdata->refclk) 1104 ti_sn65dsi86_enable_comms(pdata); 1105 1106 /* td7: min 100 us after enable before DSI data */ 1107 usleep_range(100, 110); 1108 } 1109 1110 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge) 1111 { 1112 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1113 1114 /* semi auto link training mode OFF */ 1115 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0); 1116 /* Num lanes to 0 as per power sequencing in data sheet */ 1117 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0); 1118 /* disable DP PLL */ 1119 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1120 1121 if (!pdata->refclk) 1122 ti_sn65dsi86_disable_comms(pdata); 1123 1124 pm_runtime_put_sync(pdata->dev); 1125 } 1126 1127 static const struct drm_bridge_funcs ti_sn_bridge_funcs = { 1128 .attach = ti_sn_bridge_attach, 1129 .detach = ti_sn_bridge_detach, 1130 .mode_valid = ti_sn_bridge_mode_valid, 1131 .pre_enable = ti_sn_bridge_pre_enable, 1132 .enable = ti_sn_bridge_enable, 1133 .disable = ti_sn_bridge_disable, 1134 .post_disable = ti_sn_bridge_post_disable, 1135 }; 1136 1137 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata, 1138 struct device_node *np) 1139 { 1140 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 }; 1141 u32 lane_polarities[SN_MAX_DP_LANES] = { }; 1142 struct device_node *endpoint; 1143 u8 ln_assign = 0; 1144 u8 ln_polrs = 0; 1145 int dp_lanes; 1146 int i; 1147 1148 /* 1149 * Read config from the device tree about lane remapping and lane 1150 * polarities. These are optional and we assume identity map and 1151 * normal polarity if nothing is specified. It's OK to specify just 1152 * data-lanes but not lane-polarities but not vice versa. 1153 * 1154 * Error checking is light (we just make sure we don't crash or 1155 * buffer overrun) and we assume dts is well formed and specifying 1156 * mappings that the hardware supports. 1157 */ 1158 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1159 dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes"); 1160 if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) { 1161 of_property_read_u32_array(endpoint, "data-lanes", 1162 lane_assignments, dp_lanes); 1163 of_property_read_u32_array(endpoint, "lane-polarities", 1164 lane_polarities, dp_lanes); 1165 } else { 1166 dp_lanes = SN_MAX_DP_LANES; 1167 } 1168 of_node_put(endpoint); 1169 1170 /* 1171 * Convert into register format. Loop over all lanes even if 1172 * data-lanes had fewer elements so that we nicely initialize 1173 * the LN_ASSIGN register. 1174 */ 1175 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) { 1176 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i]; 1177 ln_polrs = ln_polrs << 1 | lane_polarities[i]; 1178 } 1179 1180 /* Stash in our struct for when we power on */ 1181 pdata->dp_lanes = dp_lanes; 1182 pdata->ln_assign = ln_assign; 1183 pdata->ln_polrs = ln_polrs; 1184 } 1185 1186 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata) 1187 { 1188 struct device_node *np = pdata->dev->of_node; 1189 1190 pdata->host_node = of_graph_get_remote_node(np, 0, 0); 1191 1192 if (!pdata->host_node) { 1193 DRM_ERROR("remote dsi host node not found\n"); 1194 return -ENODEV; 1195 } 1196 1197 return 0; 1198 } 1199 1200 static int ti_sn_bridge_probe(struct auxiliary_device *adev, 1201 const struct auxiliary_device_id *id) 1202 { 1203 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1204 struct device_node *np = pdata->dev->of_node; 1205 struct drm_panel *panel; 1206 int ret; 1207 1208 ret = drm_of_find_panel_or_bridge(np, 1, 0, &panel, NULL); 1209 if (ret) 1210 return dev_err_probe(&adev->dev, ret, 1211 "could not find any panel node\n"); 1212 1213 pdata->next_bridge = devm_drm_panel_bridge_add(pdata->dev, panel); 1214 if (IS_ERR(pdata->next_bridge)) { 1215 DRM_ERROR("failed to create panel bridge\n"); 1216 return PTR_ERR(pdata->next_bridge); 1217 } 1218 1219 ti_sn_bridge_parse_lanes(pdata, np); 1220 1221 ret = ti_sn_bridge_parse_dsi_host(pdata); 1222 if (ret) 1223 return ret; 1224 1225 pdata->bridge.funcs = &ti_sn_bridge_funcs; 1226 pdata->bridge.of_node = np; 1227 1228 drm_bridge_add(&pdata->bridge); 1229 1230 return 0; 1231 } 1232 1233 static void ti_sn_bridge_remove(struct auxiliary_device *adev) 1234 { 1235 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1236 1237 if (!pdata) 1238 return; 1239 1240 if (pdata->dsi) { 1241 mipi_dsi_detach(pdata->dsi); 1242 mipi_dsi_device_unregister(pdata->dsi); 1243 } 1244 1245 drm_bridge_remove(&pdata->bridge); 1246 1247 of_node_put(pdata->host_node); 1248 } 1249 1250 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = { 1251 { .name = "ti_sn65dsi86.bridge", }, 1252 {}, 1253 }; 1254 1255 static struct auxiliary_driver ti_sn_bridge_driver = { 1256 .name = "bridge", 1257 .probe = ti_sn_bridge_probe, 1258 .remove = ti_sn_bridge_remove, 1259 .id_table = ti_sn_bridge_id_table, 1260 }; 1261 1262 /* ----------------------------------------------------------------------------- 1263 * GPIO Controller 1264 */ 1265 1266 #if defined(CONFIG_OF_GPIO) 1267 1268 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip, 1269 const struct of_phandle_args *gpiospec, 1270 u32 *flags) 1271 { 1272 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells)) 1273 return -EINVAL; 1274 1275 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1) 1276 return -EINVAL; 1277 1278 if (flags) 1279 *flags = gpiospec->args[1]; 1280 1281 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET; 1282 } 1283 1284 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip, 1285 unsigned int offset) 1286 { 1287 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1288 1289 /* 1290 * We already have to keep track of the direction because we use 1291 * that to figure out whether we've powered the device. We can 1292 * just return that rather than (maybe) powering up the device 1293 * to ask its direction. 1294 */ 1295 return test_bit(offset, pdata->gchip_output) ? 1296 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1297 } 1298 1299 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset) 1300 { 1301 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1302 unsigned int val; 1303 int ret; 1304 1305 /* 1306 * When the pin is an input we don't forcibly keep the bridge 1307 * powered--we just power it on to read the pin. NOTE: part of 1308 * the reason this works is that the bridge defaults (when 1309 * powered back on) to all 4 GPIOs being configured as GPIO input. 1310 * Also note that if something else is keeping the chip powered the 1311 * pm_runtime functions are lightweight increments of a refcount. 1312 */ 1313 pm_runtime_get_sync(pdata->dev); 1314 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val); 1315 pm_runtime_put_autosuspend(pdata->dev); 1316 1317 if (ret) 1318 return ret; 1319 1320 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset)); 1321 } 1322 1323 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset, 1324 int val) 1325 { 1326 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1327 int ret; 1328 1329 if (!test_bit(offset, pdata->gchip_output)) { 1330 dev_err(pdata->dev, "Ignoring GPIO set while input\n"); 1331 return; 1332 } 1333 1334 val &= 1; 1335 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG, 1336 BIT(SN_GPIO_OUTPUT_SHIFT + offset), 1337 val << (SN_GPIO_OUTPUT_SHIFT + offset)); 1338 if (ret) 1339 dev_warn(pdata->dev, 1340 "Failed to set bridge GPIO %u: %d\n", offset, ret); 1341 } 1342 1343 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip, 1344 unsigned int offset) 1345 { 1346 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1347 int shift = offset * 2; 1348 int ret; 1349 1350 if (!test_and_clear_bit(offset, pdata->gchip_output)) 1351 return 0; 1352 1353 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1354 SN_GPIO_MUX_MASK << shift, 1355 SN_GPIO_MUX_INPUT << shift); 1356 if (ret) { 1357 set_bit(offset, pdata->gchip_output); 1358 return ret; 1359 } 1360 1361 /* 1362 * NOTE: if nobody else is powering the device this may fully power 1363 * it off and when it comes back it will have lost all state, but 1364 * that's OK because the default is input and we're now an input. 1365 */ 1366 pm_runtime_put_autosuspend(pdata->dev); 1367 1368 return 0; 1369 } 1370 1371 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip, 1372 unsigned int offset, int val) 1373 { 1374 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1375 int shift = offset * 2; 1376 int ret; 1377 1378 if (test_and_set_bit(offset, pdata->gchip_output)) 1379 return 0; 1380 1381 pm_runtime_get_sync(pdata->dev); 1382 1383 /* Set value first to avoid glitching */ 1384 ti_sn_bridge_gpio_set(chip, offset, val); 1385 1386 /* Set direction */ 1387 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1388 SN_GPIO_MUX_MASK << shift, 1389 SN_GPIO_MUX_OUTPUT << shift); 1390 if (ret) { 1391 clear_bit(offset, pdata->gchip_output); 1392 pm_runtime_put_autosuspend(pdata->dev); 1393 } 1394 1395 return ret; 1396 } 1397 1398 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset) 1399 { 1400 /* We won't keep pm_runtime if we're input, so switch there on free */ 1401 ti_sn_bridge_gpio_direction_input(chip, offset); 1402 } 1403 1404 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = { 1405 "GPIO1", "GPIO2", "GPIO3", "GPIO4" 1406 }; 1407 1408 static int ti_sn_gpio_probe(struct auxiliary_device *adev, 1409 const struct auxiliary_device_id *id) 1410 { 1411 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1412 int ret; 1413 1414 /* Only init if someone is going to use us as a GPIO controller */ 1415 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller")) 1416 return 0; 1417 1418 pdata->gchip.label = dev_name(pdata->dev); 1419 pdata->gchip.parent = pdata->dev; 1420 pdata->gchip.owner = THIS_MODULE; 1421 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate; 1422 pdata->gchip.of_gpio_n_cells = 2; 1423 pdata->gchip.free = ti_sn_bridge_gpio_free; 1424 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction; 1425 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input; 1426 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output; 1427 pdata->gchip.get = ti_sn_bridge_gpio_get; 1428 pdata->gchip.set = ti_sn_bridge_gpio_set; 1429 pdata->gchip.can_sleep = true; 1430 pdata->gchip.names = ti_sn_bridge_gpio_names; 1431 pdata->gchip.ngpio = SN_NUM_GPIOS; 1432 pdata->gchip.base = -1; 1433 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata); 1434 if (ret) 1435 dev_err(pdata->dev, "can't add gpio chip\n"); 1436 1437 return ret; 1438 } 1439 1440 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = { 1441 { .name = "ti_sn65dsi86.gpio", }, 1442 {}, 1443 }; 1444 1445 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table); 1446 1447 static struct auxiliary_driver ti_sn_gpio_driver = { 1448 .name = "gpio", 1449 .probe = ti_sn_gpio_probe, 1450 .id_table = ti_sn_gpio_id_table, 1451 }; 1452 1453 static int __init ti_sn_gpio_register(void) 1454 { 1455 return auxiliary_driver_register(&ti_sn_gpio_driver); 1456 } 1457 1458 static void ti_sn_gpio_unregister(void) 1459 { 1460 auxiliary_driver_unregister(&ti_sn_gpio_driver); 1461 } 1462 1463 #else 1464 1465 static inline int ti_sn_gpio_register(void) { return 0; } 1466 static inline void ti_sn_gpio_unregister(void) {} 1467 1468 #endif 1469 1470 /* ----------------------------------------------------------------------------- 1471 * Probe & Remove 1472 */ 1473 1474 static void ti_sn65dsi86_runtime_disable(void *data) 1475 { 1476 pm_runtime_disable(data); 1477 } 1478 1479 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata) 1480 { 1481 unsigned int i; 1482 const char * const ti_sn_bridge_supply_names[] = { 1483 "vcca", "vcc", "vccio", "vpll", 1484 }; 1485 1486 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++) 1487 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i]; 1488 1489 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM, 1490 pdata->supplies); 1491 } 1492 1493 static int ti_sn65dsi86_probe(struct i2c_client *client, 1494 const struct i2c_device_id *id) 1495 { 1496 struct device *dev = &client->dev; 1497 struct ti_sn65dsi86 *pdata; 1498 int ret; 1499 1500 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 1501 DRM_ERROR("device doesn't support I2C\n"); 1502 return -ENODEV; 1503 } 1504 1505 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL); 1506 if (!pdata) 1507 return -ENOMEM; 1508 dev_set_drvdata(dev, pdata); 1509 pdata->dev = dev; 1510 1511 mutex_init(&pdata->comms_mutex); 1512 1513 pdata->regmap = devm_regmap_init_i2c(client, 1514 &ti_sn65dsi86_regmap_config); 1515 if (IS_ERR(pdata->regmap)) 1516 return dev_err_probe(dev, PTR_ERR(pdata->regmap), 1517 "regmap i2c init failed\n"); 1518 1519 pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable", 1520 GPIOD_OUT_LOW); 1521 if (IS_ERR(pdata->enable_gpio)) 1522 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio), 1523 "failed to get enable gpio from DT\n"); 1524 1525 ret = ti_sn65dsi86_parse_regulators(pdata); 1526 if (ret) 1527 return dev_err_probe(dev, ret, "failed to parse regulators\n"); 1528 1529 pdata->refclk = devm_clk_get_optional(dev, "refclk"); 1530 if (IS_ERR(pdata->refclk)) 1531 return dev_err_probe(dev, PTR_ERR(pdata->refclk), 1532 "failed to get reference clock\n"); 1533 1534 pm_runtime_enable(dev); 1535 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev); 1536 if (ret) 1537 return ret; 1538 pm_runtime_set_autosuspend_delay(pdata->dev, 500); 1539 pm_runtime_use_autosuspend(pdata->dev); 1540 1541 ti_sn65dsi86_debugfs_init(pdata); 1542 1543 /* 1544 * Break ourselves up into a collection of aux devices. The only real 1545 * motiviation here is to solve the chicken-and-egg problem of probe 1546 * ordering. The bridge wants the panel to be there when it probes. 1547 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards) 1548 * when it probes. The panel and maybe backlight might want the DDC 1549 * bus. Soon the PWM provided by the bridge chip will have the same 1550 * problem. Having sub-devices allows the some sub devices to finish 1551 * probing even if others return -EPROBE_DEFER and gets us around the 1552 * problems. 1553 */ 1554 1555 if (IS_ENABLED(CONFIG_OF_GPIO)) { 1556 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio"); 1557 if (ret) 1558 return ret; 1559 } 1560 1561 /* 1562 * NOTE: At the end of the AUX channel probe we'll add the aux device 1563 * for the bridge. This is because the bridge can't be used until the 1564 * AUX channel is there and this is a very simple solution to the 1565 * dependency problem. 1566 */ 1567 return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux"); 1568 } 1569 1570 static struct i2c_device_id ti_sn65dsi86_id[] = { 1571 { "ti,sn65dsi86", 0}, 1572 {}, 1573 }; 1574 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id); 1575 1576 static const struct of_device_id ti_sn65dsi86_match_table[] = { 1577 {.compatible = "ti,sn65dsi86"}, 1578 {}, 1579 }; 1580 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table); 1581 1582 static struct i2c_driver ti_sn65dsi86_driver = { 1583 .driver = { 1584 .name = "ti_sn65dsi86", 1585 .of_match_table = ti_sn65dsi86_match_table, 1586 .pm = &ti_sn65dsi86_pm_ops, 1587 }, 1588 .probe = ti_sn65dsi86_probe, 1589 .id_table = ti_sn65dsi86_id, 1590 }; 1591 1592 static int __init ti_sn65dsi86_init(void) 1593 { 1594 int ret; 1595 1596 ret = i2c_add_driver(&ti_sn65dsi86_driver); 1597 if (ret) 1598 return ret; 1599 1600 ret = ti_sn_gpio_register(); 1601 if (ret) 1602 goto err_main_was_registered; 1603 1604 ret = auxiliary_driver_register(&ti_sn_aux_driver); 1605 if (ret) 1606 goto err_gpio_was_registered; 1607 1608 ret = auxiliary_driver_register(&ti_sn_bridge_driver); 1609 if (ret) 1610 goto err_aux_was_registered; 1611 1612 return 0; 1613 1614 err_aux_was_registered: 1615 auxiliary_driver_unregister(&ti_sn_aux_driver); 1616 err_gpio_was_registered: 1617 ti_sn_gpio_unregister(); 1618 err_main_was_registered: 1619 i2c_del_driver(&ti_sn65dsi86_driver); 1620 1621 return ret; 1622 } 1623 module_init(ti_sn65dsi86_init); 1624 1625 static void __exit ti_sn65dsi86_exit(void) 1626 { 1627 auxiliary_driver_unregister(&ti_sn_bridge_driver); 1628 auxiliary_driver_unregister(&ti_sn_aux_driver); 1629 ti_sn_gpio_unregister(); 1630 i2c_del_driver(&ti_sn65dsi86_driver); 1631 } 1632 module_exit(ti_sn65dsi86_exit); 1633 1634 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>"); 1635 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver"); 1636 MODULE_LICENSE("GPL v2"); 1637