xref: /openbmc/linux/drivers/gpu/drm/bridge/ti-sn65dsi86.c (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include <asm/unaligned.h>
25 
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_panel.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_probe_helper.h>
38 
39 #define SN_DEVICE_REV_REG			0x08
40 #define SN_DPPLL_SRC_REG			0x0A
41 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)				((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45 #define SN_PLL_ENABLE_REG			0x0D
46 #define SN_DSI_LANES_REG			0x10
47 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)			((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG			0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54 #define  CHA_HSYNC_POLARITY			BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57 #define  CHA_VSYNC_POLARITY			BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62 #define SN_LN_ASSIGN_REG			0x59
63 #define  LN_ASSIGN_WIDTH			2
64 #define SN_ENH_FRAME_REG			0x5A
65 #define  VSTREAM_ENABLE				BIT(3)
66 #define  LN_POLRS_OFFSET			4
67 #define  LN_POLRS_MASK				0xf0
68 #define SN_DATA_FORMAT_REG			0x5B
69 #define  BPP_18_RGB				BIT(0)
70 #define SN_HPD_DISABLE_REG			0x5C
71 #define  HPD_DISABLE				BIT(0)
72 #define  HPD_DEBOUNCED_STATE			BIT(4)
73 #define SN_GPIO_IO_REG				0x5E
74 #define  SN_GPIO_INPUT_SHIFT			4
75 #define  SN_GPIO_OUTPUT_SHIFT			0
76 #define SN_GPIO_CTRL_REG			0x5F
77 #define  SN_GPIO_MUX_INPUT			0
78 #define  SN_GPIO_MUX_OUTPUT			1
79 #define  SN_GPIO_MUX_SPECIAL			2
80 #define  SN_GPIO_MUX_MASK			0x3
81 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG			0x74
83 #define SN_AUX_ADDR_15_8_REG			0x75
84 #define SN_AUX_ADDR_7_0_REG			0x76
85 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG			0x77
87 #define SN_AUX_CMD_REG				0x78
88 #define  AUX_CMD_SEND				BIT(0)
89 #define  AUX_CMD_REQ(x)				((x) << 4)
90 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91 #define SN_SSC_CONFIG_REG			0x93
92 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)			((x) << 4)
94 #define SN_DATARATE_CONFIG_REG			0x94
95 #define  DP_DATARATE_MASK			GENMASK(7, 5)
96 #define  DP_DATARATE(x)				((x) << 5)
97 #define SN_TRAINING_SETTING_REG			0x95
98 #define  SCRAMBLE_DISABLE			BIT(4)
99 #define SN_ML_TX_MODE_REG			0x96
100 #define  ML_TX_MAIN_LINK_OFF			0
101 #define  ML_TX_NORMAL_MODE			BIT(0)
102 #define SN_PWM_PRE_DIV_REG			0xA0
103 #define SN_BACKLIGHT_SCALE_REG			0xA1
104 #define  BACKLIGHT_SCALE_MAX			0xFFFF
105 #define SN_BACKLIGHT_REG			0xA3
106 #define SN_PWM_EN_INV_REG			0xA5
107 #define  SN_PWM_INV_MASK			BIT(0)
108 #define  SN_PWM_EN_MASK				BIT(1)
109 #define SN_AUX_CMD_STATUS_REG			0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
113 
114 #define MIN_DSI_CLK_FREQ_MHZ	40
115 
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM	10
118 #define DP_CLK_FUDGE_DEN	8
119 
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES	16
122 
123 #define SN_REGULATOR_SUPPLY_NUM		4
124 
125 #define SN_MAX_DP_LANES			4
126 #define SN_NUM_GPIOS			4
127 #define SN_GPIO_PHYSICAL_OFFSET		1
128 
129 #define SN_LINK_TRAINING_TRIES		10
130 
131 #define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
132 
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173 	struct auxiliary_device		bridge_aux;
174 	struct auxiliary_device		gpio_aux;
175 	struct auxiliary_device		aux_aux;
176 	struct auxiliary_device		pwm_aux;
177 
178 	struct device			*dev;
179 	struct regmap			*regmap;
180 	struct drm_dp_aux		aux;
181 	struct drm_bridge		bridge;
182 	struct drm_connector		*connector;
183 	struct device_node		*host_node;
184 	struct mipi_dsi_device		*dsi;
185 	struct clk			*refclk;
186 	struct drm_bridge		*next_bridge;
187 	struct gpio_desc		*enable_gpio;
188 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
189 	int				dp_lanes;
190 	u8				ln_assign;
191 	u8				ln_polrs;
192 	bool				comms_enabled;
193 	struct mutex			comms_mutex;
194 
195 #if defined(CONFIG_OF_GPIO)
196 	struct gpio_chip		gchip;
197 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if defined(CONFIG_PWM)
200 	struct pwm_chip			pchip;
201 	bool				pwm_enabled;
202 	atomic_t			pwm_pin_busy;
203 #endif
204 	unsigned int			pwm_refclk_freq;
205 };
206 
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208 	{ .range_min = 0, .range_max = 0xFF },
209 };
210 
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
213 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215 
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217 	.reg_bits = 8,
218 	.val_bits = 8,
219 	.volatile_table = &ti_sn_bridge_volatile_table,
220 	.cache_type = REGCACHE_NONE,
221 	.max_register = 0xFF,
222 };
223 
224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225 						unsigned int reg, u16 *val)
226 {
227 	u8 buf[2];
228 	int ret;
229 
230 	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231 	if (ret)
232 		return ret;
233 
234 	*val = buf[0] | (buf[1] << 8);
235 
236 	return 0;
237 }
238 
239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240 				   unsigned int reg, u16 val)
241 {
242 	u8 buf[2] = { val & 0xff, val >> 8 };
243 
244 	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246 
247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
248 {
249 	u32 bit_rate_khz, clk_freq_khz;
250 	struct drm_display_mode *mode =
251 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
252 
253 	bit_rate_khz = mode->clock *
254 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
255 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256 
257 	return clk_freq_khz;
258 }
259 
260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
261 static const u32 ti_sn_bridge_refclk_lut[] = {
262 	12000000,
263 	19200000,
264 	26000000,
265 	27000000,
266 	38400000,
267 };
268 
269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
270 static const u32 ti_sn_bridge_dsiclk_lut[] = {
271 	468000000,
272 	384000000,
273 	416000000,
274 	486000000,
275 	460800000,
276 };
277 
278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
279 {
280 	int i;
281 	u32 refclk_rate;
282 	const u32 *refclk_lut;
283 	size_t refclk_lut_size;
284 
285 	if (pdata->refclk) {
286 		refclk_rate = clk_get_rate(pdata->refclk);
287 		refclk_lut = ti_sn_bridge_refclk_lut;
288 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
289 		clk_prepare_enable(pdata->refclk);
290 	} else {
291 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
292 		refclk_lut = ti_sn_bridge_dsiclk_lut;
293 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
294 	}
295 
296 	/* for i equals to refclk_lut_size means default frequency */
297 	for (i = 0; i < refclk_lut_size; i++)
298 		if (refclk_lut[i] == refclk_rate)
299 			break;
300 
301 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
302 			   REFCLK_FREQ(i));
303 
304 	/*
305 	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
306 	 * regardless of its actual sourcing.
307 	 */
308 	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
309 }
310 
311 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
312 {
313 	mutex_lock(&pdata->comms_mutex);
314 
315 	/* configure bridge ref_clk */
316 	ti_sn_bridge_set_refclk_freq(pdata);
317 
318 	/*
319 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
320 	 * so the HPD is an internal signal that's only there to signal that
321 	 * the panel is done powering up.  ...but the bridge chip debounces
322 	 * this signal by between 100 ms and 400 ms (depending on process,
323 	 * voltage, and temperate--I measured it at about 200 ms).  One
324 	 * particular panel asserted HPD 84 ms after it was powered on meaning
325 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
326 	 * that instead of looking at HPD you could just hardcode a delay of
327 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
328 	 * delay in its prepare and always disable HPD.
329 	 *
330 	 * If HPD somehow makes sense on some future panel we'll have to
331 	 * change this to be conditional on someone specifying that HPD should
332 	 * be used.
333 	 */
334 	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
335 			   HPD_DISABLE);
336 
337 	pdata->comms_enabled = true;
338 
339 	mutex_unlock(&pdata->comms_mutex);
340 }
341 
342 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
343 {
344 	mutex_lock(&pdata->comms_mutex);
345 
346 	pdata->comms_enabled = false;
347 	clk_disable_unprepare(pdata->refclk);
348 
349 	mutex_unlock(&pdata->comms_mutex);
350 }
351 
352 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
353 {
354 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
355 	int ret;
356 
357 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
358 	if (ret) {
359 		DRM_ERROR("failed to enable supplies %d\n", ret);
360 		return ret;
361 	}
362 
363 	/* td2: min 100 us after regulators before enabling the GPIO */
364 	usleep_range(100, 110);
365 
366 	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
367 
368 	/*
369 	 * If we have a reference clock we can enable communication w/ the
370 	 * panel (including the aux channel) w/out any need for an input clock
371 	 * so we can do it in resume which lets us read the EDID before
372 	 * pre_enable(). Without a reference clock we need the MIPI reference
373 	 * clock so reading early doesn't work.
374 	 */
375 	if (pdata->refclk)
376 		ti_sn65dsi86_enable_comms(pdata);
377 
378 	return ret;
379 }
380 
381 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
382 {
383 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
384 	int ret;
385 
386 	if (pdata->refclk)
387 		ti_sn65dsi86_disable_comms(pdata);
388 
389 	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
390 
391 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
392 	if (ret)
393 		DRM_ERROR("failed to disable supplies %d\n", ret);
394 
395 	return ret;
396 }
397 
398 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
399 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
400 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
401 				pm_runtime_force_resume)
402 };
403 
404 static int status_show(struct seq_file *s, void *data)
405 {
406 	struct ti_sn65dsi86 *pdata = s->private;
407 	unsigned int reg, val;
408 
409 	seq_puts(s, "STATUS REGISTERS:\n");
410 
411 	pm_runtime_get_sync(pdata->dev);
412 
413 	/* IRQ Status Registers, see Table 31 in datasheet */
414 	for (reg = 0xf0; reg <= 0xf8; reg++) {
415 		regmap_read(pdata->regmap, reg, &val);
416 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
417 	}
418 
419 	pm_runtime_put_autosuspend(pdata->dev);
420 
421 	return 0;
422 }
423 
424 DEFINE_SHOW_ATTRIBUTE(status);
425 
426 static void ti_sn65dsi86_debugfs_remove(void *data)
427 {
428 	debugfs_remove_recursive(data);
429 }
430 
431 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
432 {
433 	struct device *dev = pdata->dev;
434 	struct dentry *debugfs;
435 	int ret;
436 
437 	debugfs = debugfs_create_dir(dev_name(dev), NULL);
438 
439 	/*
440 	 * We might get an error back if debugfs wasn't enabled in the kernel
441 	 * so let's just silently return upon failure.
442 	 */
443 	if (IS_ERR_OR_NULL(debugfs))
444 		return;
445 
446 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
447 	if (ret)
448 		return;
449 
450 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
451 }
452 
453 /* -----------------------------------------------------------------------------
454  * Auxiliary Devices (*not* AUX)
455  */
456 
457 static void ti_sn65dsi86_uninit_aux(void *data)
458 {
459 	auxiliary_device_uninit(data);
460 }
461 
462 static void ti_sn65dsi86_delete_aux(void *data)
463 {
464 	auxiliary_device_delete(data);
465 }
466 
467 /*
468  * AUX bus docs say that a non-NULL release is mandatory, but it makes no
469  * sense for the model used here where all of the aux devices are allocated
470  * in the single shared structure. We'll use this noop as a workaround.
471  */
472 static void ti_sn65dsi86_noop(struct device *dev) {}
473 
474 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
475 				       struct auxiliary_device *aux,
476 				       const char *name)
477 {
478 	struct device *dev = pdata->dev;
479 	int ret;
480 
481 	aux->name = name;
482 	aux->dev.parent = dev;
483 	aux->dev.release = ti_sn65dsi86_noop;
484 	device_set_of_node_from_dev(&aux->dev, dev);
485 	ret = auxiliary_device_init(aux);
486 	if (ret)
487 		return ret;
488 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
489 	if (ret)
490 		return ret;
491 
492 	ret = auxiliary_device_add(aux);
493 	if (ret)
494 		return ret;
495 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
496 
497 	return ret;
498 }
499 
500 /* -----------------------------------------------------------------------------
501  * AUX Adapter
502  */
503 
504 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
505 {
506 	return container_of(aux, struct ti_sn65dsi86, aux);
507 }
508 
509 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
510 				  struct drm_dp_aux_msg *msg)
511 {
512 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
513 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
514 	u32 request_val = AUX_CMD_REQ(msg->request);
515 	u8 *buf = msg->buffer;
516 	unsigned int len = msg->size;
517 	unsigned int val;
518 	int ret;
519 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
520 
521 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
522 		return -EINVAL;
523 
524 	pm_runtime_get_sync(pdata->dev);
525 	mutex_lock(&pdata->comms_mutex);
526 
527 	/*
528 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
529 	 * on a device without a dedicated reference clock then we just can't
530 	 * do it. Fail right away. This prevents non-refclk users from reading
531 	 * the EDID before enabling the panel but such is life.
532 	 */
533 	if (!pdata->comms_enabled) {
534 		ret = -EIO;
535 		goto exit;
536 	}
537 
538 	switch (request) {
539 	case DP_AUX_NATIVE_WRITE:
540 	case DP_AUX_I2C_WRITE:
541 	case DP_AUX_NATIVE_READ:
542 	case DP_AUX_I2C_READ:
543 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
544 		/* Assume it's good */
545 		msg->reply = 0;
546 		break;
547 	default:
548 		ret = -EINVAL;
549 		goto exit;
550 	}
551 
552 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
553 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
554 			   addr_len);
555 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
556 			  ARRAY_SIZE(addr_len));
557 
558 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
559 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
560 
561 	/* Clear old status bits before start so we don't get confused */
562 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
563 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
564 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
565 		     AUX_IRQ_STATUS_AUX_SHORT);
566 
567 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
568 
569 	/* Zero delay loop because i2c transactions are slow already */
570 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
571 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
572 	if (ret)
573 		goto exit;
574 
575 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
576 	if (ret)
577 		goto exit;
578 
579 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
580 		/*
581 		 * The hardware tried the message seven times per the DP spec
582 		 * but it hit a timeout. We ignore defers here because they're
583 		 * handled in hardware.
584 		 */
585 		ret = -ETIMEDOUT;
586 		goto exit;
587 	}
588 
589 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
590 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
591 		if (ret)
592 			goto exit;
593 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
594 		switch (request) {
595 		case DP_AUX_I2C_WRITE:
596 		case DP_AUX_I2C_READ:
597 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
598 			break;
599 		case DP_AUX_NATIVE_READ:
600 		case DP_AUX_NATIVE_WRITE:
601 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
602 			break;
603 		}
604 		len = 0;
605 		goto exit;
606 	}
607 
608 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
609 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
610 
611 exit:
612 	mutex_unlock(&pdata->comms_mutex);
613 	pm_runtime_mark_last_busy(pdata->dev);
614 	pm_runtime_put_autosuspend(pdata->dev);
615 
616 	if (ret)
617 		return ret;
618 	return len;
619 }
620 
621 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
622 {
623 	/*
624 	 * The HPD in this chip is a bit useless (See comment in
625 	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
626 	 * for HPD, we just assume it's asserted after the wait_us delay.
627 	 *
628 	 * In case we are asked to wait forever (wait_us=0) take conservative
629 	 * 500ms delay.
630 	 */
631 	if (wait_us == 0)
632 		wait_us = 500000;
633 
634 	usleep_range(wait_us, wait_us + 1000);
635 
636 	return 0;
637 }
638 
639 static int ti_sn_aux_probe(struct auxiliary_device *adev,
640 			   const struct auxiliary_device_id *id)
641 {
642 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
643 	int ret;
644 
645 	pdata->aux.name = "ti-sn65dsi86-aux";
646 	pdata->aux.dev = &adev->dev;
647 	pdata->aux.transfer = ti_sn_aux_transfer;
648 	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
649 	drm_dp_aux_init(&pdata->aux);
650 
651 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
652 	if (ret)
653 		return ret;
654 
655 	/*
656 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
657 	 * setup so we don't add it in the main driver probe, we add it now.
658 	 */
659 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
660 }
661 
662 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
663 	{ .name = "ti_sn65dsi86.aux", },
664 	{},
665 };
666 
667 static struct auxiliary_driver ti_sn_aux_driver = {
668 	.name = "aux",
669 	.probe = ti_sn_aux_probe,
670 	.id_table = ti_sn_aux_id_table,
671 };
672 
673 /*------------------------------------------------------------------------------
674  * DRM Bridge
675  */
676 
677 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
678 {
679 	return container_of(bridge, struct ti_sn65dsi86, bridge);
680 }
681 
682 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
683 {
684 	int val;
685 	struct mipi_dsi_host *host;
686 	struct mipi_dsi_device *dsi;
687 	struct device *dev = pdata->dev;
688 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
689 						   .channel = 0,
690 						   .node = NULL,
691 	};
692 
693 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
694 	if (!host)
695 		return -EPROBE_DEFER;
696 
697 	dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
698 	if (IS_ERR(dsi))
699 		return PTR_ERR(dsi);
700 
701 	/* TODO: setting to 4 MIPI lanes always for now */
702 	dsi->lanes = 4;
703 	dsi->format = MIPI_DSI_FMT_RGB888;
704 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
705 
706 	/* check if continuous dsi clock is required or not */
707 	pm_runtime_get_sync(dev);
708 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
709 	pm_runtime_put_autosuspend(dev);
710 	if (!(val & DPPLL_CLK_SRC_DSICLK))
711 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
712 
713 	pdata->dsi = dsi;
714 
715 	return devm_mipi_dsi_attach(dev, dsi);
716 }
717 
718 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
719 			       enum drm_bridge_attach_flags flags)
720 {
721 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
722 	int ret;
723 
724 	pdata->aux.drm_dev = bridge->dev;
725 	ret = drm_dp_aux_register(&pdata->aux);
726 	if (ret < 0) {
727 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
728 		return ret;
729 	}
730 
731 	/*
732 	 * Attach the next bridge.
733 	 * We never want the next bridge to *also* create a connector.
734 	 */
735 	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
736 				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
737 	if (ret < 0)
738 		goto err_initted_aux;
739 
740 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
741 		return 0;
742 
743 	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
744 						     pdata->bridge.encoder);
745 	if (IS_ERR(pdata->connector)) {
746 		ret = PTR_ERR(pdata->connector);
747 		goto err_initted_aux;
748 	}
749 
750 	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
751 
752 	return 0;
753 
754 err_initted_aux:
755 	drm_dp_aux_unregister(&pdata->aux);
756 	return ret;
757 }
758 
759 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
760 {
761 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
762 }
763 
764 static enum drm_mode_status
765 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
766 			const struct drm_display_info *info,
767 			const struct drm_display_mode *mode)
768 {
769 	/* maximum supported resolution is 4K at 60 fps */
770 	if (mode->clock > 594000)
771 		return MODE_CLOCK_HIGH;
772 
773 	/*
774 	 * The front and back porch registers are 8 bits, and pulse width
775 	 * registers are 15 bits, so reject any modes with larger periods.
776 	 */
777 
778 	if ((mode->hsync_start - mode->hdisplay) > 0xff)
779 		return MODE_HBLANK_WIDE;
780 
781 	if ((mode->vsync_start - mode->vdisplay) > 0xff)
782 		return MODE_VBLANK_WIDE;
783 
784 	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
785 		return MODE_HSYNC_WIDE;
786 
787 	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
788 		return MODE_VSYNC_WIDE;
789 
790 	if ((mode->htotal - mode->hsync_end) > 0xff)
791 		return MODE_HBLANK_WIDE;
792 
793 	if ((mode->vtotal - mode->vsync_end) > 0xff)
794 		return MODE_VBLANK_WIDE;
795 
796 	return MODE_OK;
797 }
798 
799 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
800 					struct drm_bridge_state *old_bridge_state)
801 {
802 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
803 
804 	/* disable video stream */
805 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
806 }
807 
808 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
809 {
810 	unsigned int bit_rate_mhz, clk_freq_mhz;
811 	unsigned int val;
812 	struct drm_display_mode *mode =
813 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
814 
815 	/* set DSIA clk frequency */
816 	bit_rate_mhz = (mode->clock / 1000) *
817 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
818 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
819 
820 	/* for each increment in val, frequency increases by 5MHz */
821 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
822 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
823 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
824 }
825 
826 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
827 {
828 	if (connector->display_info.bpc <= 6)
829 		return 18;
830 	else
831 		return 24;
832 }
833 
834 /*
835  * LUT index corresponds to register value and
836  * LUT values corresponds to dp data rate supported
837  * by the bridge in Mbps unit.
838  */
839 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
840 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
841 };
842 
843 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
844 {
845 	unsigned int bit_rate_khz, dp_rate_mhz;
846 	unsigned int i;
847 	struct drm_display_mode *mode =
848 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
849 
850 	/* Calculate minimum bit rate based on our pixel clock. */
851 	bit_rate_khz = mode->clock * bpp;
852 
853 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
854 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
855 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
856 
857 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
858 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
859 			break;
860 
861 	return i;
862 }
863 
864 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
865 {
866 	unsigned int valid_rates = 0;
867 	unsigned int rate_per_200khz;
868 	unsigned int rate_mhz;
869 	u8 dpcd_val;
870 	int ret;
871 	int i, j;
872 
873 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
874 	if (ret != 1) {
875 		DRM_DEV_ERROR(pdata->dev,
876 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
877 		dpcd_val = DP_EDP_11;
878 	}
879 
880 	if (dpcd_val >= DP_EDP_14) {
881 		/* eDP 1.4 devices must provide a custom table */
882 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
883 
884 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
885 				       sink_rates, sizeof(sink_rates));
886 
887 		if (ret != sizeof(sink_rates)) {
888 			DRM_DEV_ERROR(pdata->dev,
889 				"Can't read supported rate table (%d)\n", ret);
890 
891 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
892 			memset(sink_rates, 0, sizeof(sink_rates));
893 		}
894 
895 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
896 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
897 
898 			if (!rate_per_200khz)
899 				break;
900 
901 			rate_mhz = rate_per_200khz * 200 / 1000;
902 			for (j = 0;
903 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
904 			     j++) {
905 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
906 					valid_rates |= BIT(j);
907 			}
908 		}
909 
910 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
911 			if (valid_rates & BIT(i))
912 				return valid_rates;
913 		}
914 		DRM_DEV_ERROR(pdata->dev,
915 			      "No matching eDP rates in table; falling back\n");
916 	}
917 
918 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
919 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
920 	if (ret != 1) {
921 		DRM_DEV_ERROR(pdata->dev,
922 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
923 			      ret);
924 		dpcd_val = DP_LINK_BW_5_4;
925 	}
926 
927 	switch (dpcd_val) {
928 	default:
929 		DRM_DEV_ERROR(pdata->dev,
930 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
931 			      (int)dpcd_val);
932 		fallthrough;
933 	case DP_LINK_BW_5_4:
934 		valid_rates |= BIT(7);
935 		fallthrough;
936 	case DP_LINK_BW_2_7:
937 		valid_rates |= BIT(4);
938 		fallthrough;
939 	case DP_LINK_BW_1_62:
940 		valid_rates |= BIT(1);
941 		break;
942 	}
943 
944 	return valid_rates;
945 }
946 
947 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
948 {
949 	struct drm_display_mode *mode =
950 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
951 	u8 hsync_polarity = 0, vsync_polarity = 0;
952 
953 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
954 		hsync_polarity = CHA_HSYNC_POLARITY;
955 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
956 		vsync_polarity = CHA_VSYNC_POLARITY;
957 
958 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
959 			       mode->hdisplay);
960 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
961 			       mode->vdisplay);
962 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
963 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
964 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
965 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
966 		     hsync_polarity);
967 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
968 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
969 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
970 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
971 		     vsync_polarity);
972 
973 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
974 		     (mode->htotal - mode->hsync_end) & 0xFF);
975 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
976 		     (mode->vtotal - mode->vsync_end) & 0xFF);
977 
978 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
979 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
980 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
981 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
982 
983 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
984 }
985 
986 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
987 {
988 	u8 data;
989 	int ret;
990 
991 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
992 	if (ret != 1) {
993 		DRM_DEV_ERROR(pdata->dev,
994 			      "Can't read lane count (%d); assuming 4\n", ret);
995 		return 4;
996 	}
997 
998 	return data & DP_LANE_COUNT_MASK;
999 }
1000 
1001 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
1002 			       const char **last_err_str)
1003 {
1004 	unsigned int val;
1005 	int ret;
1006 	int i;
1007 
1008 	/* set dp clk frequency value */
1009 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1010 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1011 
1012 	/* enable DP PLL */
1013 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1014 
1015 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1016 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1017 				       50 * 1000);
1018 	if (ret) {
1019 		*last_err_str = "DP_PLL_LOCK polling failed";
1020 		goto exit;
1021 	}
1022 
1023 	/*
1024 	 * We'll try to link train several times.  As part of link training
1025 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1026 	 * the panel isn't ready quite it might respond NAK here which means
1027 	 * we need to try again.
1028 	 */
1029 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1030 		/* Semi auto link training mode */
1031 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1032 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1033 					       val == ML_TX_MAIN_LINK_OFF ||
1034 					       val == ML_TX_NORMAL_MODE, 1000,
1035 					       500 * 1000);
1036 		if (ret) {
1037 			*last_err_str = "Training complete polling failed";
1038 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1039 			*last_err_str = "Link training failed, link is off";
1040 			ret = -EIO;
1041 			continue;
1042 		}
1043 
1044 		break;
1045 	}
1046 
1047 	/* If we saw quite a few retries, add a note about it */
1048 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1049 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1050 
1051 exit:
1052 	/* Disable the PLL if we failed */
1053 	if (ret)
1054 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1055 
1056 	return ret;
1057 }
1058 
1059 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1060 				       struct drm_bridge_state *old_bridge_state)
1061 {
1062 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1063 	struct drm_connector *connector;
1064 	const char *last_err_str = "No supported DP rate";
1065 	unsigned int valid_rates;
1066 	int dp_rate_idx;
1067 	unsigned int val;
1068 	int ret = -EINVAL;
1069 	int max_dp_lanes;
1070 	unsigned int bpp;
1071 
1072 	connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1073 							     bridge->encoder);
1074 	if (!connector) {
1075 		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1076 		return;
1077 	}
1078 
1079 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1080 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1081 
1082 	/* DSI_A lane config */
1083 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1084 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1085 			   CHA_DSI_LANES_MASK, val);
1086 
1087 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1088 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1089 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1090 
1091 	/* set dsi clk frequency value */
1092 	ti_sn_bridge_set_dsi_rate(pdata);
1093 
1094 	/*
1095 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1096 	 * this method is enabled for eDP panels. An eDP panel must support this
1097 	 * authentication method. We need to enable this method in the eDP panel
1098 	 * at DisplayPort address 0x0010A prior to link training.
1099 	 *
1100 	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1101 	 * we need to disable the scrambler.
1102 	 */
1103 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1104 		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1105 				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1106 
1107 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1108 				   SCRAMBLE_DISABLE, 0);
1109 	} else {
1110 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1111 				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1112 	}
1113 
1114 	bpp = ti_sn_bridge_get_bpp(connector);
1115 	/* Set the DP output format (18 bpp or 24 bpp) */
1116 	val = bpp == 18 ? BPP_18_RGB : 0;
1117 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1118 
1119 	/* DP lane config */
1120 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1121 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1122 			   val);
1123 
1124 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1125 
1126 	/* Train until we run out of rates */
1127 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1128 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1129 	     dp_rate_idx++) {
1130 		if (!(valid_rates & BIT(dp_rate_idx)))
1131 			continue;
1132 
1133 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1134 		if (!ret)
1135 			break;
1136 	}
1137 	if (ret) {
1138 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1139 		return;
1140 	}
1141 
1142 	/* config video parameters */
1143 	ti_sn_bridge_set_video_timings(pdata);
1144 
1145 	/* enable video stream */
1146 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1147 			   VSTREAM_ENABLE);
1148 }
1149 
1150 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1151 					   struct drm_bridge_state *old_bridge_state)
1152 {
1153 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1154 
1155 	pm_runtime_get_sync(pdata->dev);
1156 
1157 	if (!pdata->refclk)
1158 		ti_sn65dsi86_enable_comms(pdata);
1159 
1160 	/* td7: min 100 us after enable before DSI data */
1161 	usleep_range(100, 110);
1162 }
1163 
1164 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1165 					     struct drm_bridge_state *old_bridge_state)
1166 {
1167 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1168 
1169 	/* semi auto link training mode OFF */
1170 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1171 	/* Num lanes to 0 as per power sequencing in data sheet */
1172 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1173 	/* disable DP PLL */
1174 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1175 
1176 	if (!pdata->refclk)
1177 		ti_sn65dsi86_disable_comms(pdata);
1178 
1179 	pm_runtime_put_sync(pdata->dev);
1180 }
1181 
1182 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1183 {
1184 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1185 	int val = 0;
1186 
1187 	pm_runtime_get_sync(pdata->dev);
1188 	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1189 	pm_runtime_put_autosuspend(pdata->dev);
1190 
1191 	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1192 					 : connector_status_disconnected;
1193 }
1194 
1195 static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1196 					  struct drm_connector *connector)
1197 {
1198 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1199 
1200 	return drm_get_edid(connector, &pdata->aux.ddc);
1201 }
1202 
1203 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1204 	.attach = ti_sn_bridge_attach,
1205 	.detach = ti_sn_bridge_detach,
1206 	.mode_valid = ti_sn_bridge_mode_valid,
1207 	.get_edid = ti_sn_bridge_get_edid,
1208 	.detect = ti_sn_bridge_detect,
1209 	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1210 	.atomic_enable = ti_sn_bridge_atomic_enable,
1211 	.atomic_disable = ti_sn_bridge_atomic_disable,
1212 	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1213 	.atomic_reset = drm_atomic_helper_bridge_reset,
1214 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1215 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1216 };
1217 
1218 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1219 				     struct device_node *np)
1220 {
1221 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1222 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1223 	struct device_node *endpoint;
1224 	u8 ln_assign = 0;
1225 	u8 ln_polrs = 0;
1226 	int dp_lanes;
1227 	int i;
1228 
1229 	/*
1230 	 * Read config from the device tree about lane remapping and lane
1231 	 * polarities.  These are optional and we assume identity map and
1232 	 * normal polarity if nothing is specified.  It's OK to specify just
1233 	 * data-lanes but not lane-polarities but not vice versa.
1234 	 *
1235 	 * Error checking is light (we just make sure we don't crash or
1236 	 * buffer overrun) and we assume dts is well formed and specifying
1237 	 * mappings that the hardware supports.
1238 	 */
1239 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1240 	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1241 	if (dp_lanes > 0) {
1242 		of_property_read_u32_array(endpoint, "data-lanes",
1243 					   lane_assignments, dp_lanes);
1244 		of_property_read_u32_array(endpoint, "lane-polarities",
1245 					   lane_polarities, dp_lanes);
1246 	} else {
1247 		dp_lanes = SN_MAX_DP_LANES;
1248 	}
1249 	of_node_put(endpoint);
1250 
1251 	/*
1252 	 * Convert into register format.  Loop over all lanes even if
1253 	 * data-lanes had fewer elements so that we nicely initialize
1254 	 * the LN_ASSIGN register.
1255 	 */
1256 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1257 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1258 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1259 	}
1260 
1261 	/* Stash in our struct for when we power on */
1262 	pdata->dp_lanes = dp_lanes;
1263 	pdata->ln_assign = ln_assign;
1264 	pdata->ln_polrs = ln_polrs;
1265 }
1266 
1267 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1268 {
1269 	struct device_node *np = pdata->dev->of_node;
1270 
1271 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1272 
1273 	if (!pdata->host_node) {
1274 		DRM_ERROR("remote dsi host node not found\n");
1275 		return -ENODEV;
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1282 			      const struct auxiliary_device_id *id)
1283 {
1284 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1285 	struct device_node *np = pdata->dev->of_node;
1286 	int ret;
1287 
1288 	pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1289 	if (IS_ERR(pdata->next_bridge))
1290 		return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
1291 				     "failed to create panel bridge\n");
1292 
1293 	ti_sn_bridge_parse_lanes(pdata, np);
1294 
1295 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1296 	if (ret)
1297 		return ret;
1298 
1299 	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1300 	pdata->bridge.of_node = np;
1301 	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1302 			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1303 
1304 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1305 		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1306 
1307 	drm_bridge_add(&pdata->bridge);
1308 
1309 	ret = ti_sn_attach_host(pdata);
1310 	if (ret) {
1311 		dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1312 		goto err_remove_bridge;
1313 	}
1314 
1315 	return 0;
1316 
1317 err_remove_bridge:
1318 	drm_bridge_remove(&pdata->bridge);
1319 	return ret;
1320 }
1321 
1322 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1323 {
1324 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1325 
1326 	if (!pdata)
1327 		return;
1328 
1329 	drm_bridge_remove(&pdata->bridge);
1330 
1331 	of_node_put(pdata->host_node);
1332 }
1333 
1334 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1335 	{ .name = "ti_sn65dsi86.bridge", },
1336 	{},
1337 };
1338 
1339 static struct auxiliary_driver ti_sn_bridge_driver = {
1340 	.name = "bridge",
1341 	.probe = ti_sn_bridge_probe,
1342 	.remove = ti_sn_bridge_remove,
1343 	.id_table = ti_sn_bridge_id_table,
1344 };
1345 
1346 /* -----------------------------------------------------------------------------
1347  * PWM Controller
1348  */
1349 #if defined(CONFIG_PWM)
1350 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1351 {
1352 	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1353 }
1354 
1355 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1356 {
1357 	atomic_set(&pdata->pwm_pin_busy, 0);
1358 }
1359 
1360 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1361 {
1362 	return container_of(chip, struct ti_sn65dsi86, pchip);
1363 }
1364 
1365 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1366 {
1367 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1368 
1369 	return ti_sn_pwm_pin_request(pdata);
1370 }
1371 
1372 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1373 {
1374 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1375 
1376 	ti_sn_pwm_pin_release(pdata);
1377 }
1378 
1379 /*
1380  * Limitations:
1381  * - The PWM signal is not driven when the chip is powered down, or in its
1382  *   reset state and the driver does not implement the "suspend state"
1383  *   described in the documentation. In order to save power, state->enabled is
1384  *   interpreted as denoting if the signal is expected to be valid, and is used
1385  *   to determine if the chip needs to be kept powered.
1386  * - Changing both period and duty_cycle is not done atomically, neither is the
1387  *   multi-byte register updates, so the output might briefly be undefined
1388  *   during update.
1389  */
1390 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1391 			   const struct pwm_state *state)
1392 {
1393 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1394 	unsigned int pwm_en_inv;
1395 	unsigned int backlight;
1396 	unsigned int pre_div;
1397 	unsigned int scale;
1398 	u64 period_max;
1399 	u64 period;
1400 	int ret;
1401 
1402 	if (!pdata->pwm_enabled) {
1403 		ret = pm_runtime_get_sync(pdata->dev);
1404 		if (ret < 0) {
1405 			pm_runtime_put_sync(pdata->dev);
1406 			return ret;
1407 		}
1408 	}
1409 
1410 	if (state->enabled) {
1411 		if (!pdata->pwm_enabled) {
1412 			/*
1413 			 * The chip might have been powered down while we
1414 			 * didn't hold a PM runtime reference, so mux in the
1415 			 * PWM function on the GPIO pin again.
1416 			 */
1417 			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1418 						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1419 						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1420 			if (ret) {
1421 				dev_err(pdata->dev, "failed to mux in PWM function\n");
1422 				goto out;
1423 			}
1424 		}
1425 
1426 		/*
1427 		 * Per the datasheet the PWM frequency is given by:
1428 		 *
1429 		 *                          REFCLK_FREQ
1430 		 *   PWM_FREQ = -----------------------------------
1431 		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1432 		 *
1433 		 * However, after careful review the author is convinced that
1434 		 * the documentation has lost some parenthesis around
1435 		 * "BACKLIGHT_SCALE + 1".
1436 		 *
1437 		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1438 		 *
1439 		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1440 		 *
1441 		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1442 		 * PWM_PRE_DIV must be:
1443 		 *
1444 		 *                     T_pwm * REFCLK_FREQ
1445 		 *   PWM_PRE_DIV >= -------------------------
1446 		 *                   BACKLIGHT_SCALE_MAX + 1
1447 		 *
1448 		 * To simplify the search and to favour higher resolution of
1449 		 * the duty cycle over accuracy of the period, the lowest
1450 		 * possible PWM_PRE_DIV is used. Finally the scale is
1451 		 * calculated as:
1452 		 *
1453 		 *                      T_pwm * REFCLK_FREQ
1454 		 *   BACKLIGHT_SCALE = ---------------------- - 1
1455 		 *                          PWM_PRE_DIV
1456 		 *
1457 		 * Here T_pwm is represented in seconds, so appropriate scaling
1458 		 * to nanoseconds is necessary.
1459 		 */
1460 
1461 		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1462 		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1463 			ret = -EINVAL;
1464 			goto out;
1465 		}
1466 
1467 		/*
1468 		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1469 		 * Limit period to this to avoid overflows
1470 		 */
1471 		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1472 				     pdata->pwm_refclk_freq);
1473 		period = min(state->period, period_max);
1474 
1475 		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1476 					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1477 		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1478 
1479 		/*
1480 		 * The documentation has the duty ratio given as:
1481 		 *
1482 		 *     duty          BACKLIGHT
1483 		 *   ------- = ---------------------
1484 		 *    period    BACKLIGHT_SCALE + 1
1485 		 *
1486 		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1487 		 * to definition above and adjusting for nanosecond
1488 		 * representation of duty cycle gives us:
1489 		 */
1490 		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1491 				      (u64)NSEC_PER_SEC * pre_div);
1492 		if (backlight > scale)
1493 			backlight = scale;
1494 
1495 		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1496 		if (ret) {
1497 			dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1498 			goto out;
1499 		}
1500 
1501 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1502 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1503 	}
1504 
1505 	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1506 		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1507 	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1508 	if (ret) {
1509 		dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1510 		goto out;
1511 	}
1512 
1513 	pdata->pwm_enabled = state->enabled;
1514 out:
1515 
1516 	if (!pdata->pwm_enabled)
1517 		pm_runtime_put_sync(pdata->dev);
1518 
1519 	return ret;
1520 }
1521 
1522 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1523 			       struct pwm_state *state)
1524 {
1525 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1526 	unsigned int pwm_en_inv;
1527 	unsigned int pre_div;
1528 	u16 backlight;
1529 	u16 scale;
1530 	int ret;
1531 
1532 	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1533 	if (ret)
1534 		return ret;
1535 
1536 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1537 	if (ret)
1538 		return ret;
1539 
1540 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1541 	if (ret)
1542 		return ret;
1543 
1544 	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1545 	if (ret)
1546 		return ret;
1547 
1548 	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1549 	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1550 		state->polarity = PWM_POLARITY_INVERSED;
1551 	else
1552 		state->polarity = PWM_POLARITY_NORMAL;
1553 
1554 	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1555 					 pdata->pwm_refclk_freq);
1556 	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1557 					     pdata->pwm_refclk_freq);
1558 
1559 	if (state->duty_cycle > state->period)
1560 		state->duty_cycle = state->period;
1561 
1562 	return 0;
1563 }
1564 
1565 static const struct pwm_ops ti_sn_pwm_ops = {
1566 	.request = ti_sn_pwm_request,
1567 	.free = ti_sn_pwm_free,
1568 	.apply = ti_sn_pwm_apply,
1569 	.get_state = ti_sn_pwm_get_state,
1570 	.owner = THIS_MODULE,
1571 };
1572 
1573 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1574 			   const struct auxiliary_device_id *id)
1575 {
1576 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1577 
1578 	pdata->pchip.dev = pdata->dev;
1579 	pdata->pchip.ops = &ti_sn_pwm_ops;
1580 	pdata->pchip.npwm = 1;
1581 	pdata->pchip.of_xlate = of_pwm_single_xlate;
1582 	pdata->pchip.of_pwm_n_cells = 1;
1583 
1584 	return pwmchip_add(&pdata->pchip);
1585 }
1586 
1587 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1588 {
1589 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1590 
1591 	pwmchip_remove(&pdata->pchip);
1592 
1593 	if (pdata->pwm_enabled)
1594 		pm_runtime_put_sync(pdata->dev);
1595 }
1596 
1597 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1598 	{ .name = "ti_sn65dsi86.pwm", },
1599 	{},
1600 };
1601 
1602 static struct auxiliary_driver ti_sn_pwm_driver = {
1603 	.name = "pwm",
1604 	.probe = ti_sn_pwm_probe,
1605 	.remove = ti_sn_pwm_remove,
1606 	.id_table = ti_sn_pwm_id_table,
1607 };
1608 
1609 static int __init ti_sn_pwm_register(void)
1610 {
1611 	return auxiliary_driver_register(&ti_sn_pwm_driver);
1612 }
1613 
1614 static void ti_sn_pwm_unregister(void)
1615 {
1616 	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1617 }
1618 
1619 #else
1620 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1621 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1622 
1623 static inline int ti_sn_pwm_register(void) { return 0; }
1624 static inline void ti_sn_pwm_unregister(void) {}
1625 #endif
1626 
1627 /* -----------------------------------------------------------------------------
1628  * GPIO Controller
1629  */
1630 #if defined(CONFIG_OF_GPIO)
1631 
1632 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1633 				 const struct of_phandle_args *gpiospec,
1634 				 u32 *flags)
1635 {
1636 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1637 		return -EINVAL;
1638 
1639 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1640 		return -EINVAL;
1641 
1642 	if (flags)
1643 		*flags = gpiospec->args[1];
1644 
1645 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1646 }
1647 
1648 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1649 					   unsigned int offset)
1650 {
1651 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1652 
1653 	/*
1654 	 * We already have to keep track of the direction because we use
1655 	 * that to figure out whether we've powered the device.  We can
1656 	 * just return that rather than (maybe) powering up the device
1657 	 * to ask its direction.
1658 	 */
1659 	return test_bit(offset, pdata->gchip_output) ?
1660 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1661 }
1662 
1663 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1664 {
1665 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1666 	unsigned int val;
1667 	int ret;
1668 
1669 	/*
1670 	 * When the pin is an input we don't forcibly keep the bridge
1671 	 * powered--we just power it on to read the pin.  NOTE: part of
1672 	 * the reason this works is that the bridge defaults (when
1673 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1674 	 * Also note that if something else is keeping the chip powered the
1675 	 * pm_runtime functions are lightweight increments of a refcount.
1676 	 */
1677 	pm_runtime_get_sync(pdata->dev);
1678 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1679 	pm_runtime_put_autosuspend(pdata->dev);
1680 
1681 	if (ret)
1682 		return ret;
1683 
1684 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1685 }
1686 
1687 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1688 				  int val)
1689 {
1690 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1691 	int ret;
1692 
1693 	if (!test_bit(offset, pdata->gchip_output)) {
1694 		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1695 		return;
1696 	}
1697 
1698 	val &= 1;
1699 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1700 				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1701 				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1702 	if (ret)
1703 		dev_warn(pdata->dev,
1704 			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1705 }
1706 
1707 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1708 					     unsigned int offset)
1709 {
1710 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1711 	int shift = offset * 2;
1712 	int ret;
1713 
1714 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1715 		return 0;
1716 
1717 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1718 				 SN_GPIO_MUX_MASK << shift,
1719 				 SN_GPIO_MUX_INPUT << shift);
1720 	if (ret) {
1721 		set_bit(offset, pdata->gchip_output);
1722 		return ret;
1723 	}
1724 
1725 	/*
1726 	 * NOTE: if nobody else is powering the device this may fully power
1727 	 * it off and when it comes back it will have lost all state, but
1728 	 * that's OK because the default is input and we're now an input.
1729 	 */
1730 	pm_runtime_put_autosuspend(pdata->dev);
1731 
1732 	return 0;
1733 }
1734 
1735 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1736 					      unsigned int offset, int val)
1737 {
1738 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1739 	int shift = offset * 2;
1740 	int ret;
1741 
1742 	if (test_and_set_bit(offset, pdata->gchip_output))
1743 		return 0;
1744 
1745 	pm_runtime_get_sync(pdata->dev);
1746 
1747 	/* Set value first to avoid glitching */
1748 	ti_sn_bridge_gpio_set(chip, offset, val);
1749 
1750 	/* Set direction */
1751 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1752 				 SN_GPIO_MUX_MASK << shift,
1753 				 SN_GPIO_MUX_OUTPUT << shift);
1754 	if (ret) {
1755 		clear_bit(offset, pdata->gchip_output);
1756 		pm_runtime_put_autosuspend(pdata->dev);
1757 	}
1758 
1759 	return ret;
1760 }
1761 
1762 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1763 {
1764 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1765 
1766 	if (offset == SN_PWM_GPIO_IDX)
1767 		return ti_sn_pwm_pin_request(pdata);
1768 
1769 	return 0;
1770 }
1771 
1772 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1773 {
1774 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1775 
1776 	/* We won't keep pm_runtime if we're input, so switch there on free */
1777 	ti_sn_bridge_gpio_direction_input(chip, offset);
1778 
1779 	if (offset == SN_PWM_GPIO_IDX)
1780 		ti_sn_pwm_pin_release(pdata);
1781 }
1782 
1783 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1784 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1785 };
1786 
1787 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1788 			    const struct auxiliary_device_id *id)
1789 {
1790 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1791 	int ret;
1792 
1793 	/* Only init if someone is going to use us as a GPIO controller */
1794 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1795 		return 0;
1796 
1797 	pdata->gchip.label = dev_name(pdata->dev);
1798 	pdata->gchip.parent = pdata->dev;
1799 	pdata->gchip.owner = THIS_MODULE;
1800 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1801 	pdata->gchip.of_gpio_n_cells = 2;
1802 	pdata->gchip.request = ti_sn_bridge_gpio_request;
1803 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1804 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1805 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1806 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1807 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1808 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1809 	pdata->gchip.can_sleep = true;
1810 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1811 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1812 	pdata->gchip.base = -1;
1813 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1814 	if (ret)
1815 		dev_err(pdata->dev, "can't add gpio chip\n");
1816 
1817 	return ret;
1818 }
1819 
1820 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1821 	{ .name = "ti_sn65dsi86.gpio", },
1822 	{},
1823 };
1824 
1825 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1826 
1827 static struct auxiliary_driver ti_sn_gpio_driver = {
1828 	.name = "gpio",
1829 	.probe = ti_sn_gpio_probe,
1830 	.id_table = ti_sn_gpio_id_table,
1831 };
1832 
1833 static int __init ti_sn_gpio_register(void)
1834 {
1835 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1836 }
1837 
1838 static void ti_sn_gpio_unregister(void)
1839 {
1840 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1841 }
1842 
1843 #else
1844 
1845 static inline int ti_sn_gpio_register(void) { return 0; }
1846 static inline void ti_sn_gpio_unregister(void) {}
1847 
1848 #endif
1849 
1850 /* -----------------------------------------------------------------------------
1851  * Probe & Remove
1852  */
1853 
1854 static void ti_sn65dsi86_runtime_disable(void *data)
1855 {
1856 	pm_runtime_dont_use_autosuspend(data);
1857 	pm_runtime_disable(data);
1858 }
1859 
1860 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1861 {
1862 	unsigned int i;
1863 	const char * const ti_sn_bridge_supply_names[] = {
1864 		"vcca", "vcc", "vccio", "vpll",
1865 	};
1866 
1867 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1868 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1869 
1870 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1871 				       pdata->supplies);
1872 }
1873 
1874 static int ti_sn65dsi86_probe(struct i2c_client *client)
1875 {
1876 	struct device *dev = &client->dev;
1877 	struct ti_sn65dsi86 *pdata;
1878 	int ret;
1879 
1880 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1881 		DRM_ERROR("device doesn't support I2C\n");
1882 		return -ENODEV;
1883 	}
1884 
1885 	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1886 	if (!pdata)
1887 		return -ENOMEM;
1888 	dev_set_drvdata(dev, pdata);
1889 	pdata->dev = dev;
1890 
1891 	mutex_init(&pdata->comms_mutex);
1892 
1893 	pdata->regmap = devm_regmap_init_i2c(client,
1894 					     &ti_sn65dsi86_regmap_config);
1895 	if (IS_ERR(pdata->regmap))
1896 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1897 				     "regmap i2c init failed\n");
1898 
1899 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1900 						     GPIOD_OUT_LOW);
1901 	if (IS_ERR(pdata->enable_gpio))
1902 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1903 				     "failed to get enable gpio from DT\n");
1904 
1905 	ret = ti_sn65dsi86_parse_regulators(pdata);
1906 	if (ret)
1907 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1908 
1909 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1910 	if (IS_ERR(pdata->refclk))
1911 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1912 				     "failed to get reference clock\n");
1913 
1914 	pm_runtime_enable(dev);
1915 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1916 	pm_runtime_use_autosuspend(pdata->dev);
1917 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1918 	if (ret)
1919 		return ret;
1920 
1921 	ti_sn65dsi86_debugfs_init(pdata);
1922 
1923 	/*
1924 	 * Break ourselves up into a collection of aux devices. The only real
1925 	 * motiviation here is to solve the chicken-and-egg problem of probe
1926 	 * ordering. The bridge wants the panel to be there when it probes.
1927 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1928 	 * when it probes. The panel and maybe backlight might want the DDC
1929 	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1930 	 * to finish probing even if others return -EPROBE_DEFER and gets us
1931 	 * around the problems.
1932 	 */
1933 
1934 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1935 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1936 		if (ret)
1937 			return ret;
1938 	}
1939 
1940 	if (IS_ENABLED(CONFIG_PWM)) {
1941 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1942 		if (ret)
1943 			return ret;
1944 	}
1945 
1946 	/*
1947 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1948 	 * for the bridge. This is because the bridge can't be used until the
1949 	 * AUX channel is there and this is a very simple solution to the
1950 	 * dependency problem.
1951 	 */
1952 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1953 }
1954 
1955 static struct i2c_device_id ti_sn65dsi86_id[] = {
1956 	{ "ti,sn65dsi86", 0},
1957 	{},
1958 };
1959 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1960 
1961 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1962 	{.compatible = "ti,sn65dsi86"},
1963 	{},
1964 };
1965 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1966 
1967 static struct i2c_driver ti_sn65dsi86_driver = {
1968 	.driver = {
1969 		.name = "ti_sn65dsi86",
1970 		.of_match_table = ti_sn65dsi86_match_table,
1971 		.pm = &ti_sn65dsi86_pm_ops,
1972 	},
1973 	.probe = ti_sn65dsi86_probe,
1974 	.id_table = ti_sn65dsi86_id,
1975 };
1976 
1977 static int __init ti_sn65dsi86_init(void)
1978 {
1979 	int ret;
1980 
1981 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
1982 	if (ret)
1983 		return ret;
1984 
1985 	ret = ti_sn_gpio_register();
1986 	if (ret)
1987 		goto err_main_was_registered;
1988 
1989 	ret = ti_sn_pwm_register();
1990 	if (ret)
1991 		goto err_gpio_was_registered;
1992 
1993 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
1994 	if (ret)
1995 		goto err_pwm_was_registered;
1996 
1997 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1998 	if (ret)
1999 		goto err_aux_was_registered;
2000 
2001 	return 0;
2002 
2003 err_aux_was_registered:
2004 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2005 err_pwm_was_registered:
2006 	ti_sn_pwm_unregister();
2007 err_gpio_was_registered:
2008 	ti_sn_gpio_unregister();
2009 err_main_was_registered:
2010 	i2c_del_driver(&ti_sn65dsi86_driver);
2011 
2012 	return ret;
2013 }
2014 module_init(ti_sn65dsi86_init);
2015 
2016 static void __exit ti_sn65dsi86_exit(void)
2017 {
2018 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2019 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2020 	ti_sn_pwm_unregister();
2021 	ti_sn_gpio_unregister();
2022 	i2c_del_driver(&ti_sn65dsi86_driver);
2023 }
2024 module_exit(ti_sn65dsi86_exit);
2025 
2026 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2027 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2028 MODULE_LICENSE("GPL v2");
2029