1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/bits.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/gpio/driver.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_graph.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_bridge.h>
25 #include <drm/drm_dp_helper.h>
26 #include <drm/drm_mipi_dsi.h>
27 #include <drm/drm_of.h>
28 #include <drm/drm_panel.h>
29 #include <drm/drm_print.h>
30 #include <drm/drm_probe_helper.h>
31 
32 #define SN_DEVICE_REV_REG			0x08
33 #define SN_DPPLL_SRC_REG			0x0A
34 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
35 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
36 #define  REFCLK_FREQ(x)				((x) << 1)
37 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
38 #define SN_PLL_ENABLE_REG			0x0D
39 #define SN_DSI_LANES_REG			0x10
40 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
41 #define  CHA_DSI_LANES(x)			((x) << 3)
42 #define SN_DSIA_CLK_FREQ_REG			0x12
43 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
44 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
45 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
46 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
47 #define  CHA_HSYNC_POLARITY			BIT(7)
48 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
49 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
50 #define  CHA_VSYNC_POLARITY			BIT(7)
51 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
52 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
53 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
54 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
55 #define SN_LN_ASSIGN_REG			0x59
56 #define  LN_ASSIGN_WIDTH			2
57 #define SN_ENH_FRAME_REG			0x5A
58 #define  VSTREAM_ENABLE				BIT(3)
59 #define  LN_POLRS_OFFSET			4
60 #define  LN_POLRS_MASK				0xf0
61 #define SN_DATA_FORMAT_REG			0x5B
62 #define  BPP_18_RGB				BIT(0)
63 #define SN_HPD_DISABLE_REG			0x5C
64 #define  HPD_DISABLE				BIT(0)
65 #define SN_GPIO_IO_REG				0x5E
66 #define  SN_GPIO_INPUT_SHIFT			4
67 #define  SN_GPIO_OUTPUT_SHIFT			0
68 #define SN_GPIO_CTRL_REG			0x5F
69 #define  SN_GPIO_MUX_INPUT			0
70 #define  SN_GPIO_MUX_OUTPUT			1
71 #define  SN_GPIO_MUX_SPECIAL			2
72 #define  SN_GPIO_MUX_MASK			0x3
73 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
74 #define SN_AUX_ADDR_19_16_REG			0x74
75 #define SN_AUX_ADDR_15_8_REG			0x75
76 #define SN_AUX_ADDR_7_0_REG			0x76
77 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
78 #define SN_AUX_LENGTH_REG			0x77
79 #define SN_AUX_CMD_REG				0x78
80 #define  AUX_CMD_SEND				BIT(0)
81 #define  AUX_CMD_REQ(x)				((x) << 4)
82 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
83 #define SN_SSC_CONFIG_REG			0x93
84 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
85 #define  DP_NUM_LANES(x)			((x) << 4)
86 #define SN_DATARATE_CONFIG_REG			0x94
87 #define  DP_DATARATE_MASK			GENMASK(7, 5)
88 #define  DP_DATARATE(x)				((x) << 5)
89 #define SN_ML_TX_MODE_REG			0x96
90 #define  ML_TX_MAIN_LINK_OFF			0
91 #define  ML_TX_NORMAL_MODE			BIT(0)
92 #define SN_AUX_CMD_STATUS_REG			0xF4
93 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
94 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
95 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
96 
97 #define MIN_DSI_CLK_FREQ_MHZ	40
98 
99 /* fudge factor required to account for 8b/10b encoding */
100 #define DP_CLK_FUDGE_NUM	10
101 #define DP_CLK_FUDGE_DEN	8
102 
103 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
104 #define SN_AUX_MAX_PAYLOAD_BYTES	16
105 
106 #define SN_REGULATOR_SUPPLY_NUM		4
107 
108 #define SN_MAX_DP_LANES			4
109 #define SN_NUM_GPIOS			4
110 #define SN_GPIO_PHYSICAL_OFFSET		1
111 
112 #define SN_LINK_TRAINING_TRIES		10
113 
114 /**
115  * struct ti_sn_bridge - Platform data for ti-sn65dsi86 driver.
116  * @dev:          Pointer to our device.
117  * @regmap:       Regmap for accessing i2c.
118  * @aux:          Our aux channel.
119  * @bridge:       Our bridge.
120  * @connector:    Our connector.
121  * @debugfs:      Used for managing our debugfs.
122  * @host_node:    Remote DSI node.
123  * @dsi:          Our MIPI DSI source.
124  * @edid:         Detected EDID of eDP panel.
125  * @refclk:       Our reference clock.
126  * @panel:        Our panel.
127  * @enable_gpio:  The GPIO we toggle to enable the bridge.
128  * @supplies:     Data for bulk enabling/disabling our regulators.
129  * @dp_lanes:     Count of dp_lanes we're using.
130  * @ln_assign:    Value to program to the LN_ASSIGN register.
131  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
132  *
133  * @gchip:        If we expose our GPIOs, this is used.
134  * @gchip_output: A cache of whether we've set GPIOs to output.  This
135  *                serves double-duty of keeping track of the direction and
136  *                also keeping track of whether we've incremented the
137  *                pm_runtime reference count for this pin, which we do
138  *                whenever a pin is configured as an output.  This is a
139  *                bitmap so we can do atomic ops on it without an extra
140  *                lock so concurrent users of our 4 GPIOs don't stomp on
141  *                each other's read-modify-write.
142  */
143 struct ti_sn_bridge {
144 	struct device			*dev;
145 	struct regmap			*regmap;
146 	struct drm_dp_aux		aux;
147 	struct drm_bridge		bridge;
148 	struct drm_connector		connector;
149 	struct dentry			*debugfs;
150 	struct edid			*edid;
151 	struct device_node		*host_node;
152 	struct mipi_dsi_device		*dsi;
153 	struct clk			*refclk;
154 	struct drm_panel		*panel;
155 	struct gpio_desc		*enable_gpio;
156 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
157 	int				dp_lanes;
158 	u8				ln_assign;
159 	u8				ln_polrs;
160 
161 #if defined(CONFIG_OF_GPIO)
162 	struct gpio_chip		gchip;
163 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
164 #endif
165 };
166 
167 static const struct regmap_range ti_sn_bridge_volatile_ranges[] = {
168 	{ .range_min = 0, .range_max = 0xFF },
169 };
170 
171 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
172 	.yes_ranges = ti_sn_bridge_volatile_ranges,
173 	.n_yes_ranges = ARRAY_SIZE(ti_sn_bridge_volatile_ranges),
174 };
175 
176 static const struct regmap_config ti_sn_bridge_regmap_config = {
177 	.reg_bits = 8,
178 	.val_bits = 8,
179 	.volatile_table = &ti_sn_bridge_volatile_table,
180 	.cache_type = REGCACHE_NONE,
181 };
182 
183 static void ti_sn_bridge_write_u16(struct ti_sn_bridge *pdata,
184 				   unsigned int reg, u16 val)
185 {
186 	regmap_write(pdata->regmap, reg, val & 0xFF);
187 	regmap_write(pdata->regmap, reg + 1, val >> 8);
188 }
189 
190 static int __maybe_unused ti_sn_bridge_resume(struct device *dev)
191 {
192 	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
193 	int ret;
194 
195 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
196 	if (ret) {
197 		DRM_ERROR("failed to enable supplies %d\n", ret);
198 		return ret;
199 	}
200 
201 	gpiod_set_value(pdata->enable_gpio, 1);
202 
203 	return ret;
204 }
205 
206 static int __maybe_unused ti_sn_bridge_suspend(struct device *dev)
207 {
208 	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
209 	int ret;
210 
211 	gpiod_set_value(pdata->enable_gpio, 0);
212 
213 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
214 	if (ret)
215 		DRM_ERROR("failed to disable supplies %d\n", ret);
216 
217 	return ret;
218 }
219 
220 static const struct dev_pm_ops ti_sn_bridge_pm_ops = {
221 	SET_RUNTIME_PM_OPS(ti_sn_bridge_suspend, ti_sn_bridge_resume, NULL)
222 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
223 				pm_runtime_force_resume)
224 };
225 
226 static int status_show(struct seq_file *s, void *data)
227 {
228 	struct ti_sn_bridge *pdata = s->private;
229 	unsigned int reg, val;
230 
231 	seq_puts(s, "STATUS REGISTERS:\n");
232 
233 	pm_runtime_get_sync(pdata->dev);
234 
235 	/* IRQ Status Registers, see Table 31 in datasheet */
236 	for (reg = 0xf0; reg <= 0xf8; reg++) {
237 		regmap_read(pdata->regmap, reg, &val);
238 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
239 	}
240 
241 	pm_runtime_put(pdata->dev);
242 
243 	return 0;
244 }
245 
246 DEFINE_SHOW_ATTRIBUTE(status);
247 
248 static void ti_sn_debugfs_init(struct ti_sn_bridge *pdata)
249 {
250 	pdata->debugfs = debugfs_create_dir(dev_name(pdata->dev), NULL);
251 
252 	debugfs_create_file("status", 0600, pdata->debugfs, pdata,
253 			&status_fops);
254 }
255 
256 static void ti_sn_debugfs_remove(struct ti_sn_bridge *pdata)
257 {
258 	debugfs_remove_recursive(pdata->debugfs);
259 	pdata->debugfs = NULL;
260 }
261 
262 /* Connector funcs */
263 static struct ti_sn_bridge *
264 connector_to_ti_sn_bridge(struct drm_connector *connector)
265 {
266 	return container_of(connector, struct ti_sn_bridge, connector);
267 }
268 
269 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
270 {
271 	struct ti_sn_bridge *pdata = connector_to_ti_sn_bridge(connector);
272 	struct edid *edid = pdata->edid;
273 	int num, ret;
274 
275 	if (!edid) {
276 		pm_runtime_get_sync(pdata->dev);
277 		edid = pdata->edid = drm_get_edid(connector, &pdata->aux.ddc);
278 		pm_runtime_put(pdata->dev);
279 	}
280 
281 	if (edid && drm_edid_is_valid(edid)) {
282 		ret = drm_connector_update_edid_property(connector, edid);
283 		if (!ret) {
284 			num = drm_add_edid_modes(connector, edid);
285 			if (num)
286 				return num;
287 		}
288 	}
289 
290 	return drm_panel_get_modes(pdata->panel, connector);
291 }
292 
293 static enum drm_mode_status
294 ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
295 				  struct drm_display_mode *mode)
296 {
297 	/* maximum supported resolution is 4K at 60 fps */
298 	if (mode->clock > 594000)
299 		return MODE_CLOCK_HIGH;
300 
301 	return MODE_OK;
302 }
303 
304 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
305 	.get_modes = ti_sn_bridge_connector_get_modes,
306 	.mode_valid = ti_sn_bridge_connector_mode_valid,
307 };
308 
309 static enum drm_connector_status
310 ti_sn_bridge_connector_detect(struct drm_connector *connector, bool force)
311 {
312 	/**
313 	 * TODO: Currently if drm_panel is present, then always
314 	 * return the status as connected. Need to add support to detect
315 	 * device state for hot pluggable scenarios.
316 	 */
317 	return connector_status_connected;
318 }
319 
320 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
321 	.fill_modes = drm_helper_probe_single_connector_modes,
322 	.detect = ti_sn_bridge_connector_detect,
323 	.destroy = drm_connector_cleanup,
324 	.reset = drm_atomic_helper_connector_reset,
325 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
326 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
327 };
328 
329 static struct ti_sn_bridge *bridge_to_ti_sn_bridge(struct drm_bridge *bridge)
330 {
331 	return container_of(bridge, struct ti_sn_bridge, bridge);
332 }
333 
334 static int ti_sn_bridge_parse_regulators(struct ti_sn_bridge *pdata)
335 {
336 	unsigned int i;
337 	const char * const ti_sn_bridge_supply_names[] = {
338 		"vcca", "vcc", "vccio", "vpll",
339 	};
340 
341 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
342 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
343 
344 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
345 				       pdata->supplies);
346 }
347 
348 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
349 			       enum drm_bridge_attach_flags flags)
350 {
351 	int ret, val;
352 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
353 	struct mipi_dsi_host *host;
354 	struct mipi_dsi_device *dsi;
355 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
356 						   .channel = 0,
357 						   .node = NULL,
358 						 };
359 
360 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
361 		DRM_ERROR("Fix bridge driver to make connector optional!");
362 		return -EINVAL;
363 	}
364 
365 	ret = drm_dp_aux_register(&pdata->aux);
366 	if (ret < 0) {
367 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
368 		return ret;
369 	}
370 
371 	ret = drm_connector_init(bridge->dev, &pdata->connector,
372 				 &ti_sn_bridge_connector_funcs,
373 				 DRM_MODE_CONNECTOR_eDP);
374 	if (ret) {
375 		DRM_ERROR("Failed to initialize connector with drm\n");
376 		goto err_conn_init;
377 	}
378 
379 	drm_connector_helper_add(&pdata->connector,
380 				 &ti_sn_bridge_connector_helper_funcs);
381 	drm_connector_attach_encoder(&pdata->connector, bridge->encoder);
382 
383 	/*
384 	 * TODO: ideally finding host resource and dsi dev registration needs
385 	 * to be done in bridge probe. But some existing DSI host drivers will
386 	 * wait for any of the drm_bridge/drm_panel to get added to the global
387 	 * bridge/panel list, before completing their probe. So if we do the
388 	 * dsi dev registration part in bridge probe, before populating in
389 	 * the global bridge list, then it will cause deadlock as dsi host probe
390 	 * will never complete, neither our bridge probe. So keeping it here
391 	 * will satisfy most of the existing host drivers. Once the host driver
392 	 * is fixed we can move the below code to bridge probe safely.
393 	 */
394 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
395 	if (!host) {
396 		DRM_ERROR("failed to find dsi host\n");
397 		ret = -ENODEV;
398 		goto err_dsi_host;
399 	}
400 
401 	dsi = mipi_dsi_device_register_full(host, &info);
402 	if (IS_ERR(dsi)) {
403 		DRM_ERROR("failed to create dsi device\n");
404 		ret = PTR_ERR(dsi);
405 		goto err_dsi_host;
406 	}
407 
408 	/* TODO: setting to 4 MIPI lanes always for now */
409 	dsi->lanes = 4;
410 	dsi->format = MIPI_DSI_FMT_RGB888;
411 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
412 
413 	/* check if continuous dsi clock is required or not */
414 	pm_runtime_get_sync(pdata->dev);
415 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
416 	pm_runtime_put(pdata->dev);
417 	if (!(val & DPPLL_CLK_SRC_DSICLK))
418 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
419 
420 	ret = mipi_dsi_attach(dsi);
421 	if (ret < 0) {
422 		DRM_ERROR("failed to attach dsi to host\n");
423 		goto err_dsi_attach;
424 	}
425 	pdata->dsi = dsi;
426 
427 	return 0;
428 
429 err_dsi_attach:
430 	mipi_dsi_device_unregister(dsi);
431 err_dsi_host:
432 	drm_connector_cleanup(&pdata->connector);
433 err_conn_init:
434 	drm_dp_aux_unregister(&pdata->aux);
435 	return ret;
436 }
437 
438 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
439 {
440 	drm_dp_aux_unregister(&bridge_to_ti_sn_bridge(bridge)->aux);
441 }
442 
443 static void ti_sn_bridge_disable(struct drm_bridge *bridge)
444 {
445 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
446 
447 	drm_panel_disable(pdata->panel);
448 
449 	/* disable video stream */
450 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
451 	/* semi auto link training mode OFF */
452 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
453 	/* disable DP PLL */
454 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
455 
456 	drm_panel_unprepare(pdata->panel);
457 }
458 
459 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn_bridge *pdata)
460 {
461 	u32 bit_rate_khz, clk_freq_khz;
462 	struct drm_display_mode *mode =
463 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
464 
465 	bit_rate_khz = mode->clock *
466 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
467 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
468 
469 	return clk_freq_khz;
470 }
471 
472 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
473 static const u32 ti_sn_bridge_refclk_lut[] = {
474 	12000000,
475 	19200000,
476 	26000000,
477 	27000000,
478 	38400000,
479 };
480 
481 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
482 static const u32 ti_sn_bridge_dsiclk_lut[] = {
483 	468000000,
484 	384000000,
485 	416000000,
486 	486000000,
487 	460800000,
488 };
489 
490 static void ti_sn_bridge_set_refclk_freq(struct ti_sn_bridge *pdata)
491 {
492 	int i;
493 	u32 refclk_rate;
494 	const u32 *refclk_lut;
495 	size_t refclk_lut_size;
496 
497 	if (pdata->refclk) {
498 		refclk_rate = clk_get_rate(pdata->refclk);
499 		refclk_lut = ti_sn_bridge_refclk_lut;
500 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
501 		clk_prepare_enable(pdata->refclk);
502 	} else {
503 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
504 		refclk_lut = ti_sn_bridge_dsiclk_lut;
505 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
506 	}
507 
508 	/* for i equals to refclk_lut_size means default frequency */
509 	for (i = 0; i < refclk_lut_size; i++)
510 		if (refclk_lut[i] == refclk_rate)
511 			break;
512 
513 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
514 			   REFCLK_FREQ(i));
515 }
516 
517 static void ti_sn_bridge_set_dsi_rate(struct ti_sn_bridge *pdata)
518 {
519 	unsigned int bit_rate_mhz, clk_freq_mhz;
520 	unsigned int val;
521 	struct drm_display_mode *mode =
522 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
523 
524 	/* set DSIA clk frequency */
525 	bit_rate_mhz = (mode->clock / 1000) *
526 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
527 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
528 
529 	/* for each increment in val, frequency increases by 5MHz */
530 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
531 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
532 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
533 }
534 
535 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn_bridge *pdata)
536 {
537 	if (pdata->connector.display_info.bpc <= 6)
538 		return 18;
539 	else
540 		return 24;
541 }
542 
543 /*
544  * LUT index corresponds to register value and
545  * LUT values corresponds to dp data rate supported
546  * by the bridge in Mbps unit.
547  */
548 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
549 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
550 };
551 
552 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn_bridge *pdata)
553 {
554 	unsigned int bit_rate_khz, dp_rate_mhz;
555 	unsigned int i;
556 	struct drm_display_mode *mode =
557 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
558 
559 	/* Calculate minimum bit rate based on our pixel clock. */
560 	bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
561 
562 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
563 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
564 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
565 
566 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
567 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
568 			break;
569 
570 	return i;
571 }
572 
573 static void ti_sn_bridge_read_valid_rates(struct ti_sn_bridge *pdata,
574 					  bool rate_valid[])
575 {
576 	unsigned int rate_per_200khz;
577 	unsigned int rate_mhz;
578 	u8 dpcd_val;
579 	int ret;
580 	int i, j;
581 
582 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
583 	if (ret != 1) {
584 		DRM_DEV_ERROR(pdata->dev,
585 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
586 		dpcd_val = DP_EDP_11;
587 	}
588 
589 	if (dpcd_val >= DP_EDP_14) {
590 		/* eDP 1.4 devices must provide a custom table */
591 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
592 
593 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
594 				       sink_rates, sizeof(sink_rates));
595 
596 		if (ret != sizeof(sink_rates)) {
597 			DRM_DEV_ERROR(pdata->dev,
598 				"Can't read supported rate table (%d)\n", ret);
599 
600 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
601 			memset(sink_rates, 0, sizeof(sink_rates));
602 		}
603 
604 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
605 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
606 
607 			if (!rate_per_200khz)
608 				break;
609 
610 			rate_mhz = rate_per_200khz * 200 / 1000;
611 			for (j = 0;
612 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
613 			     j++) {
614 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
615 					rate_valid[j] = true;
616 			}
617 		}
618 
619 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
620 			if (rate_valid[i])
621 				return;
622 		}
623 		DRM_DEV_ERROR(pdata->dev,
624 			      "No matching eDP rates in table; falling back\n");
625 	}
626 
627 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
628 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
629 	if (ret != 1) {
630 		DRM_DEV_ERROR(pdata->dev,
631 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
632 			      ret);
633 		dpcd_val = DP_LINK_BW_5_4;
634 	}
635 
636 	switch (dpcd_val) {
637 	default:
638 		DRM_DEV_ERROR(pdata->dev,
639 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
640 			      (int)dpcd_val);
641 		fallthrough;
642 	case DP_LINK_BW_5_4:
643 		rate_valid[7] = 1;
644 		fallthrough;
645 	case DP_LINK_BW_2_7:
646 		rate_valid[4] = 1;
647 		fallthrough;
648 	case DP_LINK_BW_1_62:
649 		rate_valid[1] = 1;
650 		break;
651 	}
652 }
653 
654 static void ti_sn_bridge_set_video_timings(struct ti_sn_bridge *pdata)
655 {
656 	struct drm_display_mode *mode =
657 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
658 	u8 hsync_polarity = 0, vsync_polarity = 0;
659 
660 	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
661 		hsync_polarity = CHA_HSYNC_POLARITY;
662 	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
663 		vsync_polarity = CHA_VSYNC_POLARITY;
664 
665 	ti_sn_bridge_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
666 			       mode->hdisplay);
667 	ti_sn_bridge_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
668 			       mode->vdisplay);
669 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
670 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
671 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
672 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
673 		     hsync_polarity);
674 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
675 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
676 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
677 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
678 		     vsync_polarity);
679 
680 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
681 		     (mode->htotal - mode->hsync_end) & 0xFF);
682 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
683 		     (mode->vtotal - mode->vsync_end) & 0xFF);
684 
685 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
686 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
687 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
688 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
689 
690 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
691 }
692 
693 static unsigned int ti_sn_get_max_lanes(struct ti_sn_bridge *pdata)
694 {
695 	u8 data;
696 	int ret;
697 
698 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
699 	if (ret != 1) {
700 		DRM_DEV_ERROR(pdata->dev,
701 			      "Can't read lane count (%d); assuming 4\n", ret);
702 		return 4;
703 	}
704 
705 	return data & DP_LANE_COUNT_MASK;
706 }
707 
708 static int ti_sn_link_training(struct ti_sn_bridge *pdata, int dp_rate_idx,
709 			       const char **last_err_str)
710 {
711 	unsigned int val;
712 	int ret;
713 	int i;
714 
715 	/* set dp clk frequency value */
716 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
717 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
718 
719 	/* enable DP PLL */
720 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
721 
722 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
723 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
724 				       50 * 1000);
725 	if (ret) {
726 		*last_err_str = "DP_PLL_LOCK polling failed";
727 		goto exit;
728 	}
729 
730 	/*
731 	 * We'll try to link train several times.  As part of link training
732 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
733 	 * the panel isn't ready quite it might respond NAK here which means
734 	 * we need to try again.
735 	 */
736 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
737 		/* Semi auto link training mode */
738 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
739 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
740 					       val == ML_TX_MAIN_LINK_OFF ||
741 					       val == ML_TX_NORMAL_MODE, 1000,
742 					       500 * 1000);
743 		if (ret) {
744 			*last_err_str = "Training complete polling failed";
745 		} else if (val == ML_TX_MAIN_LINK_OFF) {
746 			*last_err_str = "Link training failed, link is off";
747 			ret = -EIO;
748 			continue;
749 		}
750 
751 		break;
752 	}
753 
754 	/* If we saw quite a few retries, add a note about it */
755 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
756 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
757 
758 exit:
759 	/* Disable the PLL if we failed */
760 	if (ret)
761 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
762 
763 	return ret;
764 }
765 
766 static void ti_sn_bridge_enable(struct drm_bridge *bridge)
767 {
768 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
769 	bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { };
770 	const char *last_err_str = "No supported DP rate";
771 	int dp_rate_idx;
772 	unsigned int val;
773 	int ret = -EINVAL;
774 	int max_dp_lanes;
775 
776 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
777 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
778 
779 	/* DSI_A lane config */
780 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
781 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
782 			   CHA_DSI_LANES_MASK, val);
783 
784 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
785 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
786 			   pdata->ln_polrs << LN_POLRS_OFFSET);
787 
788 	/* set dsi clk frequency value */
789 	ti_sn_bridge_set_dsi_rate(pdata);
790 
791 	/**
792 	 * The SN65DSI86 only supports ASSR Display Authentication method and
793 	 * this method is enabled by default. An eDP panel must support this
794 	 * authentication method. We need to enable this method in the eDP panel
795 	 * at DisplayPort address 0x0010A prior to link training.
796 	 */
797 	drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
798 			   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
799 
800 	/* Set the DP output format (18 bpp or 24 bpp) */
801 	val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
802 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
803 
804 	/* DP lane config */
805 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
806 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
807 			   val);
808 
809 	ti_sn_bridge_read_valid_rates(pdata, rate_valid);
810 
811 	/* Train until we run out of rates */
812 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
813 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
814 	     dp_rate_idx++) {
815 		if (!rate_valid[dp_rate_idx])
816 			continue;
817 
818 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
819 		if (!ret)
820 			break;
821 	}
822 	if (ret) {
823 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
824 		return;
825 	}
826 
827 	/* config video parameters */
828 	ti_sn_bridge_set_video_timings(pdata);
829 
830 	/* enable video stream */
831 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
832 			   VSTREAM_ENABLE);
833 
834 	drm_panel_enable(pdata->panel);
835 }
836 
837 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
838 {
839 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
840 
841 	pm_runtime_get_sync(pdata->dev);
842 
843 	/* configure bridge ref_clk */
844 	ti_sn_bridge_set_refclk_freq(pdata);
845 
846 	/*
847 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
848 	 * so the HPD is an internal signal that's only there to signal that
849 	 * the panel is done powering up.  ...but the bridge chip debounces
850 	 * this signal by between 100 ms and 400 ms (depending on process,
851 	 * voltage, and temperate--I measured it at about 200 ms).  One
852 	 * particular panel asserted HPD 84 ms after it was powered on meaning
853 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
854 	 * that instead of looking at HPD you could just hardcode a delay of
855 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
856 	 * delay in its prepare and always disable HPD.
857 	 *
858 	 * If HPD somehow makes sense on some future panel we'll have to
859 	 * change this to be conditional on someone specifying that HPD should
860 	 * be used.
861 	 */
862 	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
863 			   HPD_DISABLE);
864 
865 	drm_panel_prepare(pdata->panel);
866 }
867 
868 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
869 {
870 	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
871 
872 	clk_disable_unprepare(pdata->refclk);
873 
874 	pm_runtime_put_sync(pdata->dev);
875 }
876 
877 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
878 	.attach = ti_sn_bridge_attach,
879 	.detach = ti_sn_bridge_detach,
880 	.pre_enable = ti_sn_bridge_pre_enable,
881 	.enable = ti_sn_bridge_enable,
882 	.disable = ti_sn_bridge_disable,
883 	.post_disable = ti_sn_bridge_post_disable,
884 };
885 
886 static struct ti_sn_bridge *aux_to_ti_sn_bridge(struct drm_dp_aux *aux)
887 {
888 	return container_of(aux, struct ti_sn_bridge, aux);
889 }
890 
891 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
892 				  struct drm_dp_aux_msg *msg)
893 {
894 	struct ti_sn_bridge *pdata = aux_to_ti_sn_bridge(aux);
895 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
896 	u32 request_val = AUX_CMD_REQ(msg->request);
897 	u8 *buf = msg->buffer;
898 	unsigned int len = msg->size;
899 	unsigned int val;
900 	int ret;
901 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
902 
903 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
904 		return -EINVAL;
905 
906 	switch (request) {
907 	case DP_AUX_NATIVE_WRITE:
908 	case DP_AUX_I2C_WRITE:
909 	case DP_AUX_NATIVE_READ:
910 	case DP_AUX_I2C_READ:
911 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
912 		/* Assume it's good */
913 		msg->reply = 0;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 
919 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
920 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
921 			   addr_len);
922 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
923 			  ARRAY_SIZE(addr_len));
924 
925 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
926 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
927 
928 	/* Clear old status bits before start so we don't get confused */
929 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
930 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
931 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
932 		     AUX_IRQ_STATUS_AUX_SHORT);
933 
934 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
935 
936 	/* Zero delay loop because i2c transactions are slow already */
937 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
938 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
939 	if (ret)
940 		return ret;
941 
942 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
943 	if (ret)
944 		return ret;
945 
946 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
947 		/*
948 		 * The hardware tried the message seven times per the DP spec
949 		 * but it hit a timeout. We ignore defers here because they're
950 		 * handled in hardware.
951 		 */
952 		return -ETIMEDOUT;
953 	}
954 
955 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
956 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
957 		if (ret)
958 			return ret;
959 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
960 		switch (request) {
961 		case DP_AUX_I2C_WRITE:
962 		case DP_AUX_I2C_READ:
963 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
964 			break;
965 		case DP_AUX_NATIVE_READ:
966 		case DP_AUX_NATIVE_WRITE:
967 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
968 			break;
969 		}
970 		return 0;
971 	}
972 
973 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE ||
974 	    len == 0)
975 		return len;
976 
977 	ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
978 	if (ret)
979 		return ret;
980 
981 	return len;
982 }
983 
984 static int ti_sn_bridge_parse_dsi_host(struct ti_sn_bridge *pdata)
985 {
986 	struct device_node *np = pdata->dev->of_node;
987 
988 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
989 
990 	if (!pdata->host_node) {
991 		DRM_ERROR("remote dsi host node not found\n");
992 		return -ENODEV;
993 	}
994 
995 	return 0;
996 }
997 
998 #if defined(CONFIG_OF_GPIO)
999 
1000 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1001 				 const struct of_phandle_args *gpiospec,
1002 				 u32 *flags)
1003 {
1004 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1005 		return -EINVAL;
1006 
1007 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1008 		return -EINVAL;
1009 
1010 	if (flags)
1011 		*flags = gpiospec->args[1];
1012 
1013 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1014 }
1015 
1016 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1017 					   unsigned int offset)
1018 {
1019 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1020 
1021 	/*
1022 	 * We already have to keep track of the direction because we use
1023 	 * that to figure out whether we've powered the device.  We can
1024 	 * just return that rather than (maybe) powering up the device
1025 	 * to ask its direction.
1026 	 */
1027 	return test_bit(offset, pdata->gchip_output) ?
1028 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1029 }
1030 
1031 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1032 {
1033 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1034 	unsigned int val;
1035 	int ret;
1036 
1037 	/*
1038 	 * When the pin is an input we don't forcibly keep the bridge
1039 	 * powered--we just power it on to read the pin.  NOTE: part of
1040 	 * the reason this works is that the bridge defaults (when
1041 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1042 	 * Also note that if something else is keeping the chip powered the
1043 	 * pm_runtime functions are lightweight increments of a refcount.
1044 	 */
1045 	pm_runtime_get_sync(pdata->dev);
1046 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1047 	pm_runtime_put(pdata->dev);
1048 
1049 	if (ret)
1050 		return ret;
1051 
1052 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1053 }
1054 
1055 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1056 				  int val)
1057 {
1058 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1059 	int ret;
1060 
1061 	if (!test_bit(offset, pdata->gchip_output)) {
1062 		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1063 		return;
1064 	}
1065 
1066 	val &= 1;
1067 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1068 				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1069 				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1070 	if (ret)
1071 		dev_warn(pdata->dev,
1072 			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1073 }
1074 
1075 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1076 					     unsigned int offset)
1077 {
1078 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1079 	int shift = offset * 2;
1080 	int ret;
1081 
1082 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1083 		return 0;
1084 
1085 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1086 				 SN_GPIO_MUX_MASK << shift,
1087 				 SN_GPIO_MUX_INPUT << shift);
1088 	if (ret) {
1089 		set_bit(offset, pdata->gchip_output);
1090 		return ret;
1091 	}
1092 
1093 	/*
1094 	 * NOTE: if nobody else is powering the device this may fully power
1095 	 * it off and when it comes back it will have lost all state, but
1096 	 * that's OK because the default is input and we're now an input.
1097 	 */
1098 	pm_runtime_put(pdata->dev);
1099 
1100 	return 0;
1101 }
1102 
1103 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1104 					      unsigned int offset, int val)
1105 {
1106 	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1107 	int shift = offset * 2;
1108 	int ret;
1109 
1110 	if (test_and_set_bit(offset, pdata->gchip_output))
1111 		return 0;
1112 
1113 	pm_runtime_get_sync(pdata->dev);
1114 
1115 	/* Set value first to avoid glitching */
1116 	ti_sn_bridge_gpio_set(chip, offset, val);
1117 
1118 	/* Set direction */
1119 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1120 				 SN_GPIO_MUX_MASK << shift,
1121 				 SN_GPIO_MUX_OUTPUT << shift);
1122 	if (ret) {
1123 		clear_bit(offset, pdata->gchip_output);
1124 		pm_runtime_put(pdata->dev);
1125 	}
1126 
1127 	return ret;
1128 }
1129 
1130 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1131 {
1132 	/* We won't keep pm_runtime if we're input, so switch there on free */
1133 	ti_sn_bridge_gpio_direction_input(chip, offset);
1134 }
1135 
1136 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1137 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1138 };
1139 
1140 static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1141 {
1142 	int ret;
1143 
1144 	/* Only init if someone is going to use us as a GPIO controller */
1145 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1146 		return 0;
1147 
1148 	pdata->gchip.label = dev_name(pdata->dev);
1149 	pdata->gchip.parent = pdata->dev;
1150 	pdata->gchip.owner = THIS_MODULE;
1151 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1152 	pdata->gchip.of_gpio_n_cells = 2;
1153 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1154 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1155 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1156 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1157 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1158 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1159 	pdata->gchip.can_sleep = true;
1160 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1161 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1162 	pdata->gchip.base = -1;
1163 	ret = devm_gpiochip_add_data(pdata->dev, &pdata->gchip, pdata);
1164 	if (ret)
1165 		dev_err(pdata->dev, "can't add gpio chip\n");
1166 
1167 	return ret;
1168 }
1169 
1170 #else
1171 
1172 static inline int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1173 {
1174 	return 0;
1175 }
1176 
1177 #endif
1178 
1179 static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
1180 				     struct device_node *np)
1181 {
1182 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1183 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1184 	struct device_node *endpoint;
1185 	u8 ln_assign = 0;
1186 	u8 ln_polrs = 0;
1187 	int dp_lanes;
1188 	int i;
1189 
1190 	/*
1191 	 * Read config from the device tree about lane remapping and lane
1192 	 * polarities.  These are optional and we assume identity map and
1193 	 * normal polarity if nothing is specified.  It's OK to specify just
1194 	 * data-lanes but not lane-polarities but not vice versa.
1195 	 *
1196 	 * Error checking is light (we just make sure we don't crash or
1197 	 * buffer overrun) and we assume dts is well formed and specifying
1198 	 * mappings that the hardware supports.
1199 	 */
1200 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1201 	dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1202 	if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1203 		of_property_read_u32_array(endpoint, "data-lanes",
1204 					   lane_assignments, dp_lanes);
1205 		of_property_read_u32_array(endpoint, "lane-polarities",
1206 					   lane_polarities, dp_lanes);
1207 	} else {
1208 		dp_lanes = SN_MAX_DP_LANES;
1209 	}
1210 	of_node_put(endpoint);
1211 
1212 	/*
1213 	 * Convert into register format.  Loop over all lanes even if
1214 	 * data-lanes had fewer elements so that we nicely initialize
1215 	 * the LN_ASSIGN register.
1216 	 */
1217 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1218 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1219 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1220 	}
1221 
1222 	/* Stash in our struct for when we power on */
1223 	pdata->dp_lanes = dp_lanes;
1224 	pdata->ln_assign = ln_assign;
1225 	pdata->ln_polrs = ln_polrs;
1226 }
1227 
1228 static int ti_sn_bridge_probe(struct i2c_client *client,
1229 			      const struct i2c_device_id *id)
1230 {
1231 	struct ti_sn_bridge *pdata;
1232 	int ret;
1233 
1234 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1235 		DRM_ERROR("device doesn't support I2C\n");
1236 		return -ENODEV;
1237 	}
1238 
1239 	pdata = devm_kzalloc(&client->dev, sizeof(struct ti_sn_bridge),
1240 			     GFP_KERNEL);
1241 	if (!pdata)
1242 		return -ENOMEM;
1243 
1244 	pdata->regmap = devm_regmap_init_i2c(client,
1245 					     &ti_sn_bridge_regmap_config);
1246 	if (IS_ERR(pdata->regmap)) {
1247 		DRM_ERROR("regmap i2c init failed\n");
1248 		return PTR_ERR(pdata->regmap);
1249 	}
1250 
1251 	pdata->dev = &client->dev;
1252 
1253 	ret = drm_of_find_panel_or_bridge(pdata->dev->of_node, 1, 0,
1254 					  &pdata->panel, NULL);
1255 	if (ret) {
1256 		DRM_ERROR("could not find any panel node\n");
1257 		return ret;
1258 	}
1259 
1260 	dev_set_drvdata(&client->dev, pdata);
1261 
1262 	pdata->enable_gpio = devm_gpiod_get(pdata->dev, "enable",
1263 					    GPIOD_OUT_LOW);
1264 	if (IS_ERR(pdata->enable_gpio)) {
1265 		DRM_ERROR("failed to get enable gpio from DT\n");
1266 		ret = PTR_ERR(pdata->enable_gpio);
1267 		return ret;
1268 	}
1269 
1270 	ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
1271 
1272 	ret = ti_sn_bridge_parse_regulators(pdata);
1273 	if (ret) {
1274 		DRM_ERROR("failed to parse regulators\n");
1275 		return ret;
1276 	}
1277 
1278 	pdata->refclk = devm_clk_get(pdata->dev, "refclk");
1279 	if (IS_ERR(pdata->refclk)) {
1280 		ret = PTR_ERR(pdata->refclk);
1281 		if (ret == -EPROBE_DEFER)
1282 			return ret;
1283 		DRM_DEBUG_KMS("refclk not found\n");
1284 		pdata->refclk = NULL;
1285 	}
1286 
1287 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1288 	if (ret)
1289 		return ret;
1290 
1291 	pm_runtime_enable(pdata->dev);
1292 
1293 	ret = ti_sn_setup_gpio_controller(pdata);
1294 	if (ret) {
1295 		pm_runtime_disable(pdata->dev);
1296 		return ret;
1297 	}
1298 
1299 	i2c_set_clientdata(client, pdata);
1300 
1301 	pdata->aux.name = "ti-sn65dsi86-aux";
1302 	pdata->aux.dev = pdata->dev;
1303 	pdata->aux.transfer = ti_sn_aux_transfer;
1304 	drm_dp_aux_init(&pdata->aux);
1305 
1306 	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1307 	pdata->bridge.of_node = client->dev.of_node;
1308 
1309 	drm_bridge_add(&pdata->bridge);
1310 
1311 	ti_sn_debugfs_init(pdata);
1312 
1313 	return 0;
1314 }
1315 
1316 static int ti_sn_bridge_remove(struct i2c_client *client)
1317 {
1318 	struct ti_sn_bridge *pdata = i2c_get_clientdata(client);
1319 
1320 	if (!pdata)
1321 		return -EINVAL;
1322 
1323 	kfree(pdata->edid);
1324 	ti_sn_debugfs_remove(pdata);
1325 
1326 	of_node_put(pdata->host_node);
1327 
1328 	pm_runtime_disable(pdata->dev);
1329 
1330 	if (pdata->dsi) {
1331 		mipi_dsi_detach(pdata->dsi);
1332 		mipi_dsi_device_unregister(pdata->dsi);
1333 	}
1334 
1335 	drm_bridge_remove(&pdata->bridge);
1336 
1337 	return 0;
1338 }
1339 
1340 static struct i2c_device_id ti_sn_bridge_id[] = {
1341 	{ "ti,sn65dsi86", 0},
1342 	{},
1343 };
1344 MODULE_DEVICE_TABLE(i2c, ti_sn_bridge_id);
1345 
1346 static const struct of_device_id ti_sn_bridge_match_table[] = {
1347 	{.compatible = "ti,sn65dsi86"},
1348 	{},
1349 };
1350 MODULE_DEVICE_TABLE(of, ti_sn_bridge_match_table);
1351 
1352 static struct i2c_driver ti_sn_bridge_driver = {
1353 	.driver = {
1354 		.name = "ti_sn65dsi86",
1355 		.of_match_table = ti_sn_bridge_match_table,
1356 		.pm = &ti_sn_bridge_pm_ops,
1357 	},
1358 	.probe = ti_sn_bridge_probe,
1359 	.remove = ti_sn_bridge_remove,
1360 	.id_table = ti_sn_bridge_id,
1361 };
1362 module_i2c_driver(ti_sn_bridge_driver);
1363 
1364 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1365 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1366 MODULE_LICENSE("GPL v2");
1367