xref: /openbmc/linux/drivers/gpu/drm/ast/ast_dp501.c (revision a8da474e)
1 
2 #include <linux/firmware.h>
3 #include <drm/drmP.h>
4 #include "ast_drv.h"
5 MODULE_FIRMWARE("ast_dp501_fw.bin");
6 
7 int ast_load_dp501_microcode(struct drm_device *dev)
8 {
9 	struct ast_private *ast = dev->dev_private;
10 	static char *fw_name = "ast_dp501_fw.bin";
11 	int err;
12 	err = request_firmware(&ast->dp501_fw, fw_name, dev->dev);
13 	if (err)
14 		return err;
15 
16 	return 0;
17 }
18 
19 static void send_ack(struct ast_private *ast)
20 {
21 	u8 sendack;
22 	sendack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0xff);
23 	sendack |= 0x80;
24 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0x00, sendack);
25 }
26 
27 static void send_nack(struct ast_private *ast)
28 {
29 	u8 sendack;
30 	sendack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0xff);
31 	sendack &= ~0x80;
32 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0x00, sendack);
33 }
34 
35 static bool wait_ack(struct ast_private *ast)
36 {
37 	u8 waitack;
38 	u32 retry = 0;
39 	do {
40 		waitack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
41 		waitack &= 0x80;
42 		udelay(100);
43 	} while ((!waitack) && (retry++ < 1000));
44 
45 	if (retry < 1000)
46 		return true;
47 	else
48 		return false;
49 }
50 
51 static bool wait_nack(struct ast_private *ast)
52 {
53 	u8 waitack;
54 	u32 retry = 0;
55 	do {
56 		waitack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
57 		waitack &= 0x80;
58 		udelay(100);
59 	} while ((waitack) && (retry++ < 1000));
60 
61 	if (retry < 1000)
62 		return true;
63 	else
64 		return false;
65 }
66 
67 static void set_cmd_trigger(struct ast_private *ast)
68 {
69 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, ~0x40, 0x40);
70 }
71 
72 static void clear_cmd_trigger(struct ast_private *ast)
73 {
74 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, ~0x40, 0x00);
75 }
76 
77 #if 0
78 static bool wait_fw_ready(struct ast_private *ast)
79 {
80 	u8 waitready;
81 	u32 retry = 0;
82 	do {
83 		waitready = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
84 		waitready &= 0x40;
85 		udelay(100);
86 	} while ((!waitready) && (retry++ < 1000));
87 
88 	if (retry < 1000)
89 		return true;
90 	else
91 		return false;
92 }
93 #endif
94 
95 static bool ast_write_cmd(struct drm_device *dev, u8 data)
96 {
97 	struct ast_private *ast = dev->dev_private;
98 	int retry = 0;
99 	if (wait_nack(ast)) {
100 		send_nack(ast);
101 		ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, data);
102 		send_ack(ast);
103 		set_cmd_trigger(ast);
104 		do {
105 			if (wait_ack(ast)) {
106 				clear_cmd_trigger(ast);
107 				send_nack(ast);
108 				return true;
109 			}
110 		} while (retry++ < 100);
111 	}
112 	clear_cmd_trigger(ast);
113 	send_nack(ast);
114 	return false;
115 }
116 
117 static bool ast_write_data(struct drm_device *dev, u8 data)
118 {
119 	struct ast_private *ast = dev->dev_private;
120 
121 	if (wait_nack(ast)) {
122 		send_nack(ast);
123 		ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, data);
124 		send_ack(ast);
125 		if (wait_ack(ast)) {
126 			send_nack(ast);
127 			return true;
128 		}
129 	}
130 	send_nack(ast);
131 	return false;
132 }
133 
134 #if 0
135 static bool ast_read_data(struct drm_device *dev, u8 *data)
136 {
137 	struct ast_private *ast = dev->dev_private;
138 	u8 tmp;
139 
140 	*data = 0;
141 
142 	if (wait_ack(ast) == false)
143 		return false;
144 	tmp = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd3, 0xff);
145 	*data = tmp;
146 	if (wait_nack(ast) == false) {
147 		send_nack(ast);
148 		return false;
149 	}
150 	send_nack(ast);
151 	return true;
152 }
153 
154 static void clear_cmd(struct ast_private *ast)
155 {
156 	send_nack(ast);
157 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, 0x00);
158 }
159 #endif
160 
161 void ast_set_dp501_video_output(struct drm_device *dev, u8 mode)
162 {
163 	ast_write_cmd(dev, 0x40);
164 	ast_write_data(dev, mode);
165 
166 	msleep(10);
167 }
168 
169 static u32 get_fw_base(struct ast_private *ast)
170 {
171 	return ast_mindwm(ast, 0x1e6e2104) & 0x7fffffff;
172 }
173 
174 bool ast_backup_fw(struct drm_device *dev, u8 *addr, u32 size)
175 {
176 	struct ast_private *ast = dev->dev_private;
177 	u32 i, data;
178 	u32 boot_address;
179 
180 	data = ast_mindwm(ast, 0x1e6e2100) & 0x01;
181 	if (data) {
182 		boot_address = get_fw_base(ast);
183 		for (i = 0; i < size; i += 4)
184 			*(u32 *)(addr + i) = ast_mindwm(ast, boot_address + i);
185 		return true;
186 	}
187 	return false;
188 }
189 
190 bool ast_launch_m68k(struct drm_device *dev)
191 {
192 	struct ast_private *ast = dev->dev_private;
193 	u32 i, data, len = 0;
194 	u32 boot_address;
195 	u8 *fw_addr = NULL;
196 	u8 jreg;
197 
198 	data = ast_mindwm(ast, 0x1e6e2100) & 0x01;
199 	if (!data) {
200 
201 		if (ast->dp501_fw_addr) {
202 			fw_addr = ast->dp501_fw_addr;
203 			len = 32*1024;
204 		} else if (ast->dp501_fw) {
205 			fw_addr = (u8 *)ast->dp501_fw->data;
206 			len = ast->dp501_fw->size;
207 		}
208 		/* Get BootAddress */
209 		ast_moutdwm(ast, 0x1e6e2000, 0x1688a8a8);
210 		data = ast_mindwm(ast, 0x1e6e0004);
211 		switch (data & 0x03) {
212 		case 0:
213 			boot_address = 0x44000000;
214 			break;
215 		default:
216 		case 1:
217 			boot_address = 0x48000000;
218 			break;
219 		case 2:
220 			boot_address = 0x50000000;
221 			break;
222 		case 3:
223 			boot_address = 0x60000000;
224 			break;
225 		}
226 		boot_address -= 0x200000; /* -2MB */
227 
228 		/* copy image to buffer */
229 		for (i = 0; i < len; i += 4) {
230 			data = *(u32 *)(fw_addr + i);
231 			ast_moutdwm(ast, boot_address + i, data);
232 		}
233 
234 		/* Init SCU */
235 		ast_moutdwm(ast, 0x1e6e2000, 0x1688a8a8);
236 
237 		/* Launch FW */
238 		ast_moutdwm(ast, 0x1e6e2104, 0x80000000 + boot_address);
239 		ast_moutdwm(ast, 0x1e6e2100, 1);
240 
241 		/* Update Scratch */
242 		data = ast_mindwm(ast, 0x1e6e2040) & 0xfffff1ff;		/* D[11:9] = 100b: UEFI handling */
243 		data |= 0x800;
244 		ast_moutdwm(ast, 0x1e6e2040, data);
245 
246 		jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x99, 0xfc); /* D[1:0]: Reserved Video Buffer */
247 		jreg |= 0x02;
248 		ast_set_index_reg(ast, AST_IO_CRTC_PORT, 0x99, jreg);
249 	}
250 	return true;
251 }
252 
253 u8 ast_get_dp501_max_clk(struct drm_device *dev)
254 {
255 	struct ast_private *ast = dev->dev_private;
256 	u32 boot_address, offset, data;
257 	u8 linkcap[4], linkrate, linklanes, maxclk = 0xff;
258 
259 	boot_address = get_fw_base(ast);
260 
261 	/* validate FW version */
262 	offset = 0xf000;
263 	data = ast_mindwm(ast, boot_address + offset);
264 	if ((data & 0xf0) != 0x10) /* version: 1x */
265 		return maxclk;
266 
267 	/* Read Link Capability */
268 	offset  = 0xf014;
269 	*(u32 *)linkcap = ast_mindwm(ast, boot_address + offset);
270 	if (linkcap[2] == 0) {
271 		linkrate = linkcap[0];
272 		linklanes = linkcap[1];
273 		data = (linkrate == 0x0a) ? (90 * linklanes) : (54 * linklanes);
274 		if (data > 0xff)
275 			data = 0xff;
276 		maxclk = (u8)data;
277 	}
278 	return maxclk;
279 }
280 
281 bool ast_dp501_read_edid(struct drm_device *dev, u8 *ediddata)
282 {
283 	struct ast_private *ast = dev->dev_private;
284 	u32 i, boot_address, offset, data;
285 
286 	boot_address = get_fw_base(ast);
287 
288 	/* validate FW version */
289 	offset = 0xf000;
290 	data = ast_mindwm(ast, boot_address + offset);
291 	if ((data & 0xf0) != 0x10)
292 		return false;
293 
294 	/* validate PnP Monitor */
295 	offset = 0xf010;
296 	data = ast_mindwm(ast, boot_address + offset);
297 	if (!(data & 0x01))
298 		return false;
299 
300 	/* Read EDID */
301 	offset = 0xf020;
302 	for (i = 0; i < 128; i += 4) {
303 		data = ast_mindwm(ast, boot_address + offset + i);
304 		*(u32 *)(ediddata + i) = data;
305 	}
306 
307 	return true;
308 }
309 
310 static bool ast_init_dvo(struct drm_device *dev)
311 {
312 	struct ast_private *ast = dev->dev_private;
313 	u8 jreg;
314 	u32 data;
315 	ast_write32(ast, 0xf004, 0x1e6e0000);
316 	ast_write32(ast, 0xf000, 0x1);
317 	ast_write32(ast, 0x12000, 0x1688a8a8);
318 
319 	jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd0, 0xff);
320 	if (!(jreg & 0x80)) {
321 		/* Init SCU DVO Settings */
322 		data = ast_read32(ast, 0x12008);
323 		/* delay phase */
324 		data &= 0xfffff8ff;
325 		data |= 0x00000500;
326 		ast_write32(ast, 0x12008, data);
327 
328 		if (ast->chip == AST2300) {
329 			data = ast_read32(ast, 0x12084);
330 			/* multi-pins for DVO single-edge */
331 			data |= 0xfffe0000;
332 			ast_write32(ast, 0x12084, data);
333 
334 			data = ast_read32(ast, 0x12088);
335 			/* multi-pins for DVO single-edge */
336 			data |= 0x000fffff;
337 			ast_write32(ast, 0x12088, data);
338 
339 			data = ast_read32(ast, 0x12090);
340 			/* multi-pins for DVO single-edge */
341 			data &= 0xffffffcf;
342 			data |= 0x00000020;
343 			ast_write32(ast, 0x12090, data);
344 		} else { /* AST2400 */
345 			data = ast_read32(ast, 0x12088);
346 			/* multi-pins for DVO single-edge */
347 			data |= 0x30000000;
348 			ast_write32(ast, 0x12088, data);
349 
350 			data = ast_read32(ast, 0x1208c);
351 			/* multi-pins for DVO single-edge */
352 			data |= 0x000000cf;
353 			ast_write32(ast, 0x1208c, data);
354 
355 			data = ast_read32(ast, 0x120a4);
356 			/* multi-pins for DVO single-edge */
357 			data |= 0xffff0000;
358 			ast_write32(ast, 0x120a4, data);
359 
360 			data = ast_read32(ast, 0x120a8);
361 			/* multi-pins for DVO single-edge */
362 			data |= 0x0000000f;
363 			ast_write32(ast, 0x120a8, data);
364 
365 			data = ast_read32(ast, 0x12094);
366 			/* multi-pins for DVO single-edge */
367 			data |= 0x00000002;
368 			ast_write32(ast, 0x12094, data);
369 		}
370 	}
371 
372 	/* Force to DVO */
373 	data = ast_read32(ast, 0x1202c);
374 	data &= 0xfffbffff;
375 	ast_write32(ast, 0x1202c, data);
376 
377 	/* Init VGA DVO Settings */
378 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xa3, 0xcf, 0x80);
379 	return true;
380 }
381 
382 
383 static void ast_init_analog(struct drm_device *dev)
384 {
385 	struct ast_private *ast = dev->dev_private;
386 	u32 data;
387 
388 	/*
389 	 * Set DAC source to VGA mode in SCU2C via the P2A
390 	 * bridge. First configure the P2U to target the SCU
391 	 * in case it isn't at this stage.
392 	 */
393 	ast_write32(ast, 0xf004, 0x1e6e0000);
394 	ast_write32(ast, 0xf000, 0x1);
395 
396 	/* Then unlock the SCU with the magic password */
397 	ast_write32(ast, 0x12000, 0x1688a8a8);
398 	ast_write32(ast, 0x12000, 0x1688a8a8);
399 	ast_write32(ast, 0x12000, 0x1688a8a8);
400 
401 	/* Finally, clear bits [17:16] of SCU2c */
402 	data = ast_read32(ast, 0x1202c);
403 	data &= 0xfffcffff;
404 	ast_write32(ast, 0, data);
405 
406 	/* Disable DVO */
407 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xa3, 0xcf, 0x00);
408 }
409 
410 void ast_init_3rdtx(struct drm_device *dev)
411 {
412 	struct ast_private *ast = dev->dev_private;
413 	u8 jreg;
414 
415 	if (ast->chip == AST2300 || ast->chip == AST2400) {
416 		jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd1, 0xff);
417 		switch (jreg & 0x0e) {
418 		case 0x04:
419 			ast_init_dvo(dev);
420 			break;
421 		case 0x08:
422 			ast_launch_m68k(dev);
423 			break;
424 		case 0x0c:
425 			ast_init_dvo(dev);
426 			break;
427 		default:
428 			if (ast->tx_chip_type == AST_TX_SIL164)
429 				ast_init_dvo(dev);
430 			else
431 				ast_init_analog(dev);
432 		}
433 	}
434 }
435