xref: /openbmc/linux/drivers/gpu/drm/arm/malidp_crtc.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
4  * Author: Liviu Dudau <Liviu.Dudau@arm.com>
5  *
6  * ARM Mali DP500/DP550/DP650 driver (crtc operations)
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/pm_runtime.h>
11 
12 #include <video/videomode.h>
13 
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_atomic_helper.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_print.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_vblank.h>
20 
21 #include "malidp_drv.h"
22 #include "malidp_hw.h"
23 
24 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
25 						   const struct drm_display_mode *mode)
26 {
27 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
28 	struct malidp_hw_device *hwdev = malidp->dev;
29 
30 	/*
31 	 * check that the hardware can drive the required clock rate,
32 	 * but skip the check if the clock is meant to be disabled (req_rate = 0)
33 	 */
34 	long rate, req_rate = mode->crtc_clock * 1000;
35 
36 	if (req_rate) {
37 		rate = clk_round_rate(hwdev->pxlclk, req_rate);
38 		if (rate != req_rate) {
39 			DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
40 					 req_rate);
41 			return MODE_NOCLOCK;
42 		}
43 	}
44 
45 	return MODE_OK;
46 }
47 
48 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
49 				      struct drm_atomic_state *state)
50 {
51 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
52 	struct malidp_hw_device *hwdev = malidp->dev;
53 	struct videomode vm;
54 	int err = pm_runtime_get_sync(crtc->dev->dev);
55 
56 	if (err < 0) {
57 		DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
58 		return;
59 	}
60 
61 	drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
62 	clk_prepare_enable(hwdev->pxlclk);
63 
64 	/* We rely on firmware to set mclk to a sensible level. */
65 	clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
66 
67 	hwdev->hw->modeset(hwdev, &vm);
68 	hwdev->hw->leave_config_mode(hwdev);
69 	drm_crtc_vblank_on(crtc);
70 }
71 
72 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
73 				       struct drm_atomic_state *state)
74 {
75 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
76 									 crtc);
77 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
78 	struct malidp_hw_device *hwdev = malidp->dev;
79 	int err;
80 
81 	/* always disable planes on the CRTC that is being turned off */
82 	drm_atomic_helper_disable_planes_on_crtc(old_state, false);
83 
84 	drm_crtc_vblank_off(crtc);
85 	hwdev->hw->enter_config_mode(hwdev);
86 
87 	clk_disable_unprepare(hwdev->pxlclk);
88 
89 	err = pm_runtime_put(crtc->dev->dev);
90 	if (err < 0) {
91 		DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
92 	}
93 }
94 
95 static const struct gamma_curve_segment {
96 	u16 start;
97 	u16 end;
98 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
99 	/* sector 0 */
100 	{    0,    0 }, {    1,    1 }, {    2,    2 }, {    3,    3 },
101 	{    4,    4 }, {    5,    5 }, {    6,    6 }, {    7,    7 },
102 	{    8,    8 }, {    9,    9 }, {   10,   10 }, {   11,   11 },
103 	{   12,   12 }, {   13,   13 }, {   14,   14 }, {   15,   15 },
104 	/* sector 1 */
105 	{   16,   19 }, {   20,   23 }, {   24,   27 }, {   28,   31 },
106 	/* sector 2 */
107 	{   32,   39 }, {   40,   47 }, {   48,   55 }, {   56,   63 },
108 	/* sector 3 */
109 	{   64,   79 }, {   80,   95 }, {   96,  111 }, {  112,  127 },
110 	/* sector 4 */
111 	{  128,  159 }, {  160,  191 }, {  192,  223 }, {  224,  255 },
112 	/* sector 5 */
113 	{  256,  319 }, {  320,  383 }, {  384,  447 }, {  448,  511 },
114 	/* sector 6 */
115 	{  512,  639 }, {  640,  767 }, {  768,  895 }, {  896, 1023 },
116 	{ 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
117 	{ 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
118 	{ 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
119 	{ 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
120 	{ 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
121 	{ 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
122 };
123 
124 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
125 
126 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
127 					u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
128 {
129 	struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
130 	int i;
131 
132 	for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
133 		u32 a, b, delta_in, out_start, out_end;
134 
135 		delta_in = segments[i].end - segments[i].start;
136 		/* DP has 12-bit internal precision for its LUTs. */
137 		out_start = drm_color_lut_extract(lut[segments[i].start].green,
138 						  12);
139 		out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
140 		a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
141 		b = out_start;
142 		coeffs[i] = DE_COEFTAB_DATA(a, b);
143 	}
144 }
145 
146 /*
147  * Check if there is a new gamma LUT and if it is of an acceptable size. Also,
148  * reject any LUTs that use distinct red, green, and blue curves.
149  */
150 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
151 					  struct drm_crtc_state *state)
152 {
153 	struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
154 	struct drm_color_lut *lut;
155 	size_t lut_size;
156 	int i;
157 
158 	if (!state->color_mgmt_changed || !state->gamma_lut)
159 		return 0;
160 
161 	if (crtc->state->gamma_lut &&
162 	    (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
163 		return 0;
164 
165 	if (state->gamma_lut->length % sizeof(struct drm_color_lut))
166 		return -EINVAL;
167 
168 	lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
169 	if (lut_size != MALIDP_GAMMA_LUT_SIZE)
170 		return -EINVAL;
171 
172 	lut = (struct drm_color_lut *)state->gamma_lut->data;
173 	for (i = 0; i < lut_size; ++i)
174 		if (!((lut[i].red == lut[i].green) &&
175 		      (lut[i].red == lut[i].blue)))
176 			return -EINVAL;
177 
178 	if (!state->mode_changed) {
179 		int ret;
180 
181 		state->mode_changed = true;
182 		/*
183 		 * Kerneldoc for drm_atomic_helper_check_modeset mandates that
184 		 * it be invoked when the driver sets ->mode_changed. Since
185 		 * changing the gamma LUT doesn't depend on any external
186 		 * resources, it is safe to call it only once.
187 		 */
188 		ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
189 		if (ret)
190 			return ret;
191 	}
192 
193 	malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
194 	return 0;
195 }
196 
197 /*
198  * Check if there is a new CTM and if it contains valid input. Valid here means
199  * that the number is inside the representable range for a Q3.12 number,
200  * excluding truncating the fractional part of the input data.
201  *
202  * The COLORADJ registers can be changed atomically.
203  */
204 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
205 					struct drm_crtc_state *state)
206 {
207 	struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
208 	struct drm_color_ctm *ctm;
209 	int i;
210 
211 	if (!state->color_mgmt_changed)
212 		return 0;
213 
214 	if (!state->ctm)
215 		return 0;
216 
217 	if (crtc->state->ctm && (crtc->state->ctm->base.id ==
218 				 state->ctm->base.id))
219 		return 0;
220 
221 	/*
222 	 * The size of the ctm is checked in
223 	 * drm_atomic_replace_property_blob_from_id.
224 	 */
225 	ctm = (struct drm_color_ctm *)state->ctm->data;
226 	for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
227 		/* Convert from S31.32 to Q3.12. */
228 		s64 val = ctm->matrix[i];
229 		u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
230 			  GENMASK_ULL(14, 0);
231 
232 		/*
233 		 * Convert to 2s complement and check the destination's top bit
234 		 * for overflow. NB: Can't check before converting or it'd
235 		 * incorrectly reject the case:
236 		 * sign == 1
237 		 * mag == 0x2000
238 		 */
239 		if (val & BIT_ULL(63))
240 			mag = ~mag + 1;
241 		if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
242 			return -EINVAL;
243 		mc->coloradj_coeffs[i] = mag;
244 	}
245 
246 	return 0;
247 }
248 
249 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
250 					    struct drm_crtc_state *state)
251 {
252 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
253 	struct malidp_hw_device *hwdev = malidp->dev;
254 	struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
255 	struct malidp_se_config *s = &cs->scaler_config;
256 	struct drm_plane *plane;
257 	struct videomode vm;
258 	const struct drm_plane_state *pstate;
259 	u32 h_upscale_factor = 0; /* U16.16 */
260 	u32 v_upscale_factor = 0; /* U16.16 */
261 	u8 scaling = cs->scaled_planes_mask;
262 	int ret;
263 
264 	if (!scaling) {
265 		s->scale_enable = false;
266 		goto mclk_calc;
267 	}
268 
269 	/* The scaling engine can only handle one plane at a time. */
270 	if (scaling & (scaling - 1))
271 		return -EINVAL;
272 
273 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
274 		struct malidp_plane *mp = to_malidp_plane(plane);
275 		u32 phase;
276 
277 		if (!(mp->layer->id & scaling))
278 			continue;
279 
280 		/*
281 		 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
282 		 * to get the U16.16 result.
283 		 */
284 		h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
285 					   pstate->src_w);
286 		v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
287 					   pstate->src_h);
288 
289 		s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
290 				      (v_upscale_factor >> 16) >= 2);
291 
292 		if (pstate->rotation & MALIDP_ROTATED_MASK) {
293 			s->input_w = pstate->src_h >> 16;
294 			s->input_h = pstate->src_w >> 16;
295 		} else {
296 			s->input_w = pstate->src_w >> 16;
297 			s->input_h = pstate->src_h >> 16;
298 		}
299 
300 		s->output_w = pstate->crtc_w;
301 		s->output_h = pstate->crtc_h;
302 
303 #define SE_N_PHASE 4
304 #define SE_SHIFT_N_PHASE 12
305 		/* Calculate initial_phase and delta_phase for horizontal. */
306 		phase = s->input_w;
307 		s->h_init_phase =
308 				((phase << SE_N_PHASE) / s->output_w + 1) / 2;
309 
310 		phase = s->input_w;
311 		phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
312 		s->h_delta_phase = phase / s->output_w;
313 
314 		/* Same for vertical. */
315 		phase = s->input_h;
316 		s->v_init_phase =
317 				((phase << SE_N_PHASE) / s->output_h + 1) / 2;
318 
319 		phase = s->input_h;
320 		phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
321 		s->v_delta_phase = phase / s->output_h;
322 #undef SE_N_PHASE
323 #undef SE_SHIFT_N_PHASE
324 		s->plane_src_id = mp->layer->id;
325 	}
326 
327 	s->scale_enable = true;
328 	s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
329 	s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
330 
331 mclk_calc:
332 	drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
333 	ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm);
334 	if (ret < 0)
335 		return -EINVAL;
336 	return 0;
337 }
338 
339 static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
340 				    struct drm_atomic_state *state)
341 {
342 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
343 									  crtc);
344 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
345 	struct malidp_hw_device *hwdev = malidp->dev;
346 	struct drm_plane *plane;
347 	const struct drm_plane_state *pstate;
348 	u32 rot_mem_free, rot_mem_usable;
349 	int rotated_planes = 0;
350 	int ret;
351 
352 	/*
353 	 * check if there is enough rotation memory available for planes
354 	 * that need 90° and 270° rotion or planes that are compressed.
355 	 * Each plane has set its required memory size in the ->plane_check()
356 	 * callback, here we only make sure that the sums are less that the
357 	 * total usable memory.
358 	 *
359 	 * The rotation memory allocation algorithm (for each plane):
360 	 *  a. If no more rotated or compressed planes exist, all remaining
361 	 *     rotate memory in the bank is available for use by the plane.
362 	 *  b. If other rotated or compressed planes exist, and plane's
363 	 *     layer ID is DE_VIDEO1, it can use all the memory from first bank
364 	 *     if secondary rotation memory bank is available, otherwise it can
365 	 *     use up to half the bank's memory.
366 	 *  c. If other rotated or compressed planes exist, and plane's layer ID
367 	 *     is not DE_VIDEO1, it can use half of the available memory.
368 	 *
369 	 * Note: this algorithm assumes that the order in which the planes are
370 	 * checked always has DE_VIDEO1 plane first in the list if it is
371 	 * rotated. Because that is how we create the planes in the first
372 	 * place, under current DRM version things work, but if ever the order
373 	 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes
374 	 * changes, we need to pre-sort the planes before validation.
375 	 */
376 
377 	/* first count the number of rotated planes */
378 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
379 		struct drm_framebuffer *fb = pstate->fb;
380 
381 		if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier)
382 			rotated_planes++;
383 	}
384 
385 	rot_mem_free = hwdev->rotation_memory[0];
386 	/*
387 	 * if we have more than 1 plane using rotation memory, use the second
388 	 * block of rotation memory as well
389 	 */
390 	if (rotated_planes > 1)
391 		rot_mem_free += hwdev->rotation_memory[1];
392 
393 	/* now validate the rotation memory requirements */
394 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
395 		struct malidp_plane *mp = to_malidp_plane(plane);
396 		struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
397 		struct drm_framebuffer *fb = pstate->fb;
398 
399 		if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) {
400 			/* process current plane */
401 			rotated_planes--;
402 
403 			if (!rotated_planes) {
404 				/* no more rotated planes, we can use what's left */
405 				rot_mem_usable = rot_mem_free;
406 			} else {
407 				if ((mp->layer->id != DE_VIDEO1) ||
408 				    (hwdev->rotation_memory[1] == 0))
409 					rot_mem_usable = rot_mem_free / 2;
410 				else
411 					rot_mem_usable = hwdev->rotation_memory[0];
412 			}
413 
414 			rot_mem_free -= rot_mem_usable;
415 
416 			if (ms->rotmem_size > rot_mem_usable)
417 				return -EINVAL;
418 		}
419 	}
420 
421 	/* If only the writeback routing has changed, we don't need a modeset */
422 	if (crtc_state->connectors_changed) {
423 		u32 old_mask = crtc->state->connector_mask;
424 		u32 new_mask = crtc_state->connector_mask;
425 
426 		if ((old_mask ^ new_mask) ==
427 		    (1 << drm_connector_index(&malidp->mw_connector.base)))
428 			crtc_state->connectors_changed = false;
429 	}
430 
431 	ret = malidp_crtc_atomic_check_gamma(crtc, crtc_state);
432 	ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, crtc_state);
433 	ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, crtc_state);
434 
435 	return ret;
436 }
437 
438 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
439 	.mode_valid = malidp_crtc_mode_valid,
440 	.atomic_check = malidp_crtc_atomic_check,
441 	.atomic_enable = malidp_crtc_atomic_enable,
442 	.atomic_disable = malidp_crtc_atomic_disable,
443 };
444 
445 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
446 {
447 	struct malidp_crtc_state *state, *old_state;
448 
449 	if (WARN_ON(!crtc->state))
450 		return NULL;
451 
452 	old_state = to_malidp_crtc_state(crtc->state);
453 	state = kmalloc(sizeof(*state), GFP_KERNEL);
454 	if (!state)
455 		return NULL;
456 
457 	__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
458 	memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
459 	       sizeof(state->gamma_coeffs));
460 	memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
461 	       sizeof(state->coloradj_coeffs));
462 	memcpy(&state->scaler_config, &old_state->scaler_config,
463 	       sizeof(state->scaler_config));
464 	state->scaled_planes_mask = 0;
465 
466 	return &state->base;
467 }
468 
469 static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
470 				      struct drm_crtc_state *state)
471 {
472 	struct malidp_crtc_state *mali_state = NULL;
473 
474 	if (state) {
475 		mali_state = to_malidp_crtc_state(state);
476 		__drm_atomic_helper_crtc_destroy_state(state);
477 	}
478 
479 	kfree(mali_state);
480 }
481 
482 static void malidp_crtc_reset(struct drm_crtc *crtc)
483 {
484 	struct malidp_crtc_state *state =
485 		kzalloc(sizeof(*state), GFP_KERNEL);
486 
487 	if (crtc->state)
488 		malidp_crtc_destroy_state(crtc, crtc->state);
489 
490 	if (state)
491 		__drm_atomic_helper_crtc_reset(crtc, &state->base);
492 	else
493 		__drm_atomic_helper_crtc_reset(crtc, NULL);
494 }
495 
496 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
497 {
498 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
499 	struct malidp_hw_device *hwdev = malidp->dev;
500 
501 	malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
502 			     hwdev->hw->map.de_irq_map.vsync_irq);
503 	return 0;
504 }
505 
506 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
507 {
508 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
509 	struct malidp_hw_device *hwdev = malidp->dev;
510 
511 	malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
512 			      hwdev->hw->map.de_irq_map.vsync_irq);
513 }
514 
515 static const struct drm_crtc_funcs malidp_crtc_funcs = {
516 	.destroy = drm_crtc_cleanup,
517 	.set_config = drm_atomic_helper_set_config,
518 	.page_flip = drm_atomic_helper_page_flip,
519 	.reset = malidp_crtc_reset,
520 	.atomic_duplicate_state = malidp_crtc_duplicate_state,
521 	.atomic_destroy_state = malidp_crtc_destroy_state,
522 	.enable_vblank = malidp_crtc_enable_vblank,
523 	.disable_vblank = malidp_crtc_disable_vblank,
524 };
525 
526 int malidp_crtc_init(struct drm_device *drm)
527 {
528 	struct malidp_drm *malidp = drm->dev_private;
529 	struct drm_plane *primary = NULL, *plane;
530 	int ret;
531 
532 	ret = malidp_de_planes_init(drm);
533 	if (ret < 0) {
534 		DRM_ERROR("Failed to initialise planes\n");
535 		return ret;
536 	}
537 
538 	drm_for_each_plane(plane, drm) {
539 		if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
540 			primary = plane;
541 			break;
542 		}
543 	}
544 
545 	if (!primary) {
546 		DRM_ERROR("no primary plane found\n");
547 		return -EINVAL;
548 	}
549 
550 	ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
551 					&malidp_crtc_funcs, NULL);
552 	if (ret)
553 		return ret;
554 
555 	drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
556 	drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
557 	/* No inverse-gamma: it is per-plane. */
558 	drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
559 
560 	malidp_se_set_enh_coeffs(malidp->dev);
561 
562 	return 0;
563 }
564