1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) COPYRIGHT 2016 ARM Limited. All rights reserved. 4 * Author: Liviu Dudau <Liviu.Dudau@arm.com> 5 * 6 * ARM Mali DP500/DP550/DP650 driver (crtc operations) 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/pm_runtime.h> 11 12 #include <video/videomode.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_print.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_vblank.h> 20 21 #include "malidp_drv.h" 22 #include "malidp_hw.h" 23 24 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc, 25 const struct drm_display_mode *mode) 26 { 27 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 28 struct malidp_hw_device *hwdev = malidp->dev; 29 30 /* 31 * check that the hardware can drive the required clock rate, 32 * but skip the check if the clock is meant to be disabled (req_rate = 0) 33 */ 34 long rate, req_rate = mode->crtc_clock * 1000; 35 36 if (req_rate) { 37 rate = clk_round_rate(hwdev->pxlclk, req_rate); 38 if (rate != req_rate) { 39 DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n", 40 req_rate); 41 return MODE_NOCLOCK; 42 } 43 } 44 45 return MODE_OK; 46 } 47 48 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc, 49 struct drm_crtc_state *old_state) 50 { 51 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 52 struct malidp_hw_device *hwdev = malidp->dev; 53 struct videomode vm; 54 int err = pm_runtime_get_sync(crtc->dev->dev); 55 56 if (err < 0) { 57 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err); 58 return; 59 } 60 61 drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm); 62 clk_prepare_enable(hwdev->pxlclk); 63 64 /* We rely on firmware to set mclk to a sensible level. */ 65 clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000); 66 67 hwdev->hw->modeset(hwdev, &vm); 68 hwdev->hw->leave_config_mode(hwdev); 69 drm_crtc_vblank_on(crtc); 70 } 71 72 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc, 73 struct drm_crtc_state *old_state) 74 { 75 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 76 struct malidp_hw_device *hwdev = malidp->dev; 77 int err; 78 79 /* always disable planes on the CRTC that is being turned off */ 80 drm_atomic_helper_disable_planes_on_crtc(old_state, false); 81 82 drm_crtc_vblank_off(crtc); 83 hwdev->hw->enter_config_mode(hwdev); 84 85 clk_disable_unprepare(hwdev->pxlclk); 86 87 err = pm_runtime_put(crtc->dev->dev); 88 if (err < 0) { 89 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err); 90 } 91 } 92 93 static const struct gamma_curve_segment { 94 u16 start; 95 u16 end; 96 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = { 97 /* sector 0 */ 98 { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, 99 { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, 100 { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 }, 101 { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 }, 102 /* sector 1 */ 103 { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 }, 104 /* sector 2 */ 105 { 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 }, 106 /* sector 3 */ 107 { 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 }, 108 /* sector 4 */ 109 { 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 }, 110 /* sector 5 */ 111 { 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 }, 112 /* sector 6 */ 113 { 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 }, 114 { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 }, 115 { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 }, 116 { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 }, 117 { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 }, 118 { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 }, 119 { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 }, 120 }; 121 122 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff))) 123 124 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob, 125 u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS]) 126 { 127 struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data; 128 int i; 129 130 for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) { 131 u32 a, b, delta_in, out_start, out_end; 132 133 delta_in = segments[i].end - segments[i].start; 134 /* DP has 12-bit internal precision for its LUTs. */ 135 out_start = drm_color_lut_extract(lut[segments[i].start].green, 136 12); 137 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12); 138 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in; 139 b = out_start; 140 coeffs[i] = DE_COEFTAB_DATA(a, b); 141 } 142 } 143 144 /* 145 * Check if there is a new gamma LUT and if it is of an acceptable size. Also, 146 * reject any LUTs that use distinct red, green, and blue curves. 147 */ 148 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc, 149 struct drm_crtc_state *state) 150 { 151 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 152 struct drm_color_lut *lut; 153 size_t lut_size; 154 int i; 155 156 if (!state->color_mgmt_changed || !state->gamma_lut) 157 return 0; 158 159 if (crtc->state->gamma_lut && 160 (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id)) 161 return 0; 162 163 if (state->gamma_lut->length % sizeof(struct drm_color_lut)) 164 return -EINVAL; 165 166 lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut); 167 if (lut_size != MALIDP_GAMMA_LUT_SIZE) 168 return -EINVAL; 169 170 lut = (struct drm_color_lut *)state->gamma_lut->data; 171 for (i = 0; i < lut_size; ++i) 172 if (!((lut[i].red == lut[i].green) && 173 (lut[i].red == lut[i].blue))) 174 return -EINVAL; 175 176 if (!state->mode_changed) { 177 int ret; 178 179 state->mode_changed = true; 180 /* 181 * Kerneldoc for drm_atomic_helper_check_modeset mandates that 182 * it be invoked when the driver sets ->mode_changed. Since 183 * changing the gamma LUT doesn't depend on any external 184 * resources, it is safe to call it only once. 185 */ 186 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state); 187 if (ret) 188 return ret; 189 } 190 191 malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs); 192 return 0; 193 } 194 195 /* 196 * Check if there is a new CTM and if it contains valid input. Valid here means 197 * that the number is inside the representable range for a Q3.12 number, 198 * excluding truncating the fractional part of the input data. 199 * 200 * The COLORADJ registers can be changed atomically. 201 */ 202 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc, 203 struct drm_crtc_state *state) 204 { 205 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 206 struct drm_color_ctm *ctm; 207 int i; 208 209 if (!state->color_mgmt_changed) 210 return 0; 211 212 if (!state->ctm) 213 return 0; 214 215 if (crtc->state->ctm && (crtc->state->ctm->base.id == 216 state->ctm->base.id)) 217 return 0; 218 219 /* 220 * The size of the ctm is checked in 221 * drm_atomic_replace_property_blob_from_id. 222 */ 223 ctm = (struct drm_color_ctm *)state->ctm->data; 224 for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) { 225 /* Convert from S31.32 to Q3.12. */ 226 s64 val = ctm->matrix[i]; 227 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) & 228 GENMASK_ULL(14, 0); 229 230 /* 231 * Convert to 2s complement and check the destination's top bit 232 * for overflow. NB: Can't check before converting or it'd 233 * incorrectly reject the case: 234 * sign == 1 235 * mag == 0x2000 236 */ 237 if (val & BIT_ULL(63)) 238 mag = ~mag + 1; 239 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14))) 240 return -EINVAL; 241 mc->coloradj_coeffs[i] = mag; 242 } 243 244 return 0; 245 } 246 247 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc, 248 struct drm_crtc_state *state) 249 { 250 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 251 struct malidp_hw_device *hwdev = malidp->dev; 252 struct malidp_crtc_state *cs = to_malidp_crtc_state(state); 253 struct malidp_se_config *s = &cs->scaler_config; 254 struct drm_plane *plane; 255 struct videomode vm; 256 const struct drm_plane_state *pstate; 257 u32 h_upscale_factor = 0; /* U16.16 */ 258 u32 v_upscale_factor = 0; /* U16.16 */ 259 u8 scaling = cs->scaled_planes_mask; 260 int ret; 261 262 if (!scaling) { 263 s->scale_enable = false; 264 goto mclk_calc; 265 } 266 267 /* The scaling engine can only handle one plane at a time. */ 268 if (scaling & (scaling - 1)) 269 return -EINVAL; 270 271 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 272 struct malidp_plane *mp = to_malidp_plane(plane); 273 u32 phase; 274 275 if (!(mp->layer->id & scaling)) 276 continue; 277 278 /* 279 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h] 280 * to get the U16.16 result. 281 */ 282 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32, 283 pstate->src_w); 284 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32, 285 pstate->src_h); 286 287 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 || 288 (v_upscale_factor >> 16) >= 2); 289 290 if (pstate->rotation & MALIDP_ROTATED_MASK) { 291 s->input_w = pstate->src_h >> 16; 292 s->input_h = pstate->src_w >> 16; 293 } else { 294 s->input_w = pstate->src_w >> 16; 295 s->input_h = pstate->src_h >> 16; 296 } 297 298 s->output_w = pstate->crtc_w; 299 s->output_h = pstate->crtc_h; 300 301 #define SE_N_PHASE 4 302 #define SE_SHIFT_N_PHASE 12 303 /* Calculate initial_phase and delta_phase for horizontal. */ 304 phase = s->input_w; 305 s->h_init_phase = 306 ((phase << SE_N_PHASE) / s->output_w + 1) / 2; 307 308 phase = s->input_w; 309 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 310 s->h_delta_phase = phase / s->output_w; 311 312 /* Same for vertical. */ 313 phase = s->input_h; 314 s->v_init_phase = 315 ((phase << SE_N_PHASE) / s->output_h + 1) / 2; 316 317 phase = s->input_h; 318 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 319 s->v_delta_phase = phase / s->output_h; 320 #undef SE_N_PHASE 321 #undef SE_SHIFT_N_PHASE 322 s->plane_src_id = mp->layer->id; 323 } 324 325 s->scale_enable = true; 326 s->hcoeff = malidp_se_select_coeffs(h_upscale_factor); 327 s->vcoeff = malidp_se_select_coeffs(v_upscale_factor); 328 329 mclk_calc: 330 drm_display_mode_to_videomode(&state->adjusted_mode, &vm); 331 ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm); 332 if (ret < 0) 333 return -EINVAL; 334 return 0; 335 } 336 337 static int malidp_crtc_atomic_check(struct drm_crtc *crtc, 338 struct drm_crtc_state *state) 339 { 340 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 341 struct malidp_hw_device *hwdev = malidp->dev; 342 struct drm_plane *plane; 343 const struct drm_plane_state *pstate; 344 u32 rot_mem_free, rot_mem_usable; 345 int rotated_planes = 0; 346 int ret; 347 348 /* 349 * check if there is enough rotation memory available for planes 350 * that need 90° and 270° rotion or planes that are compressed. 351 * Each plane has set its required memory size in the ->plane_check() 352 * callback, here we only make sure that the sums are less that the 353 * total usable memory. 354 * 355 * The rotation memory allocation algorithm (for each plane): 356 * a. If no more rotated or compressed planes exist, all remaining 357 * rotate memory in the bank is available for use by the plane. 358 * b. If other rotated or compressed planes exist, and plane's 359 * layer ID is DE_VIDEO1, it can use all the memory from first bank 360 * if secondary rotation memory bank is available, otherwise it can 361 * use up to half the bank's memory. 362 * c. If other rotated or compressed planes exist, and plane's layer ID 363 * is not DE_VIDEO1, it can use half of the available memory. 364 * 365 * Note: this algorithm assumes that the order in which the planes are 366 * checked always has DE_VIDEO1 plane first in the list if it is 367 * rotated. Because that is how we create the planes in the first 368 * place, under current DRM version things work, but if ever the order 369 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes 370 * changes, we need to pre-sort the planes before validation. 371 */ 372 373 /* first count the number of rotated planes */ 374 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 375 struct drm_framebuffer *fb = pstate->fb; 376 377 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) 378 rotated_planes++; 379 } 380 381 rot_mem_free = hwdev->rotation_memory[0]; 382 /* 383 * if we have more than 1 plane using rotation memory, use the second 384 * block of rotation memory as well 385 */ 386 if (rotated_planes > 1) 387 rot_mem_free += hwdev->rotation_memory[1]; 388 389 /* now validate the rotation memory requirements */ 390 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 391 struct malidp_plane *mp = to_malidp_plane(plane); 392 struct malidp_plane_state *ms = to_malidp_plane_state(pstate); 393 struct drm_framebuffer *fb = pstate->fb; 394 395 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) { 396 /* process current plane */ 397 rotated_planes--; 398 399 if (!rotated_planes) { 400 /* no more rotated planes, we can use what's left */ 401 rot_mem_usable = rot_mem_free; 402 } else { 403 if ((mp->layer->id != DE_VIDEO1) || 404 (hwdev->rotation_memory[1] == 0)) 405 rot_mem_usable = rot_mem_free / 2; 406 else 407 rot_mem_usable = hwdev->rotation_memory[0]; 408 } 409 410 rot_mem_free -= rot_mem_usable; 411 412 if (ms->rotmem_size > rot_mem_usable) 413 return -EINVAL; 414 } 415 } 416 417 /* If only the writeback routing has changed, we don't need a modeset */ 418 if (state->connectors_changed) { 419 u32 old_mask = crtc->state->connector_mask; 420 u32 new_mask = state->connector_mask; 421 422 if ((old_mask ^ new_mask) == 423 (1 << drm_connector_index(&malidp->mw_connector.base))) 424 state->connectors_changed = false; 425 } 426 427 ret = malidp_crtc_atomic_check_gamma(crtc, state); 428 ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state); 429 ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state); 430 431 return ret; 432 } 433 434 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = { 435 .mode_valid = malidp_crtc_mode_valid, 436 .atomic_check = malidp_crtc_atomic_check, 437 .atomic_enable = malidp_crtc_atomic_enable, 438 .atomic_disable = malidp_crtc_atomic_disable, 439 }; 440 441 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc) 442 { 443 struct malidp_crtc_state *state, *old_state; 444 445 if (WARN_ON(!crtc->state)) 446 return NULL; 447 448 old_state = to_malidp_crtc_state(crtc->state); 449 state = kmalloc(sizeof(*state), GFP_KERNEL); 450 if (!state) 451 return NULL; 452 453 __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); 454 memcpy(state->gamma_coeffs, old_state->gamma_coeffs, 455 sizeof(state->gamma_coeffs)); 456 memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs, 457 sizeof(state->coloradj_coeffs)); 458 memcpy(&state->scaler_config, &old_state->scaler_config, 459 sizeof(state->scaler_config)); 460 state->scaled_planes_mask = 0; 461 462 return &state->base; 463 } 464 465 static void malidp_crtc_destroy_state(struct drm_crtc *crtc, 466 struct drm_crtc_state *state) 467 { 468 struct malidp_crtc_state *mali_state = NULL; 469 470 if (state) { 471 mali_state = to_malidp_crtc_state(state); 472 __drm_atomic_helper_crtc_destroy_state(state); 473 } 474 475 kfree(mali_state); 476 } 477 478 static void malidp_crtc_reset(struct drm_crtc *crtc) 479 { 480 struct malidp_crtc_state *state = 481 kzalloc(sizeof(*state), GFP_KERNEL); 482 483 if (crtc->state) 484 malidp_crtc_destroy_state(crtc, crtc->state); 485 486 __drm_atomic_helper_crtc_reset(crtc, &state->base); 487 } 488 489 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc) 490 { 491 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 492 struct malidp_hw_device *hwdev = malidp->dev; 493 494 malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK, 495 hwdev->hw->map.de_irq_map.vsync_irq); 496 return 0; 497 } 498 499 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc) 500 { 501 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 502 struct malidp_hw_device *hwdev = malidp->dev; 503 504 malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK, 505 hwdev->hw->map.de_irq_map.vsync_irq); 506 } 507 508 static const struct drm_crtc_funcs malidp_crtc_funcs = { 509 .gamma_set = drm_atomic_helper_legacy_gamma_set, 510 .destroy = drm_crtc_cleanup, 511 .set_config = drm_atomic_helper_set_config, 512 .page_flip = drm_atomic_helper_page_flip, 513 .reset = malidp_crtc_reset, 514 .atomic_duplicate_state = malidp_crtc_duplicate_state, 515 .atomic_destroy_state = malidp_crtc_destroy_state, 516 .enable_vblank = malidp_crtc_enable_vblank, 517 .disable_vblank = malidp_crtc_disable_vblank, 518 }; 519 520 int malidp_crtc_init(struct drm_device *drm) 521 { 522 struct malidp_drm *malidp = drm->dev_private; 523 struct drm_plane *primary = NULL, *plane; 524 int ret; 525 526 ret = malidp_de_planes_init(drm); 527 if (ret < 0) { 528 DRM_ERROR("Failed to initialise planes\n"); 529 return ret; 530 } 531 532 drm_for_each_plane(plane, drm) { 533 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 534 primary = plane; 535 break; 536 } 537 } 538 539 if (!primary) { 540 DRM_ERROR("no primary plane found\n"); 541 return -EINVAL; 542 } 543 544 ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL, 545 &malidp_crtc_funcs, NULL); 546 if (ret) 547 return ret; 548 549 drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs); 550 drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE); 551 /* No inverse-gamma: it is per-plane. */ 552 drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE); 553 554 malidp_se_set_enh_coeffs(malidp->dev); 555 556 return 0; 557 } 558