xref: /openbmc/linux/drivers/gpu/drm/arm/malidp_crtc.c (revision d8bcaabe)
1 /*
2  * (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
3  * Author: Liviu Dudau <Liviu.Dudau@arm.com>
4  *
5  * This program is free software and is provided to you under the terms of the
6  * GNU General Public License version 2 as published by the Free Software
7  * Foundation, and any use by you of this program is subject to the terms
8  * of such GNU licence.
9  *
10  * ARM Mali DP500/DP550/DP650 driver (crtc operations)
11  */
12 
13 #include <drm/drmP.h>
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_atomic_helper.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <linux/clk.h>
19 #include <linux/pm_runtime.h>
20 #include <video/videomode.h>
21 
22 #include "malidp_drv.h"
23 #include "malidp_hw.h"
24 
25 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
26 						   const struct drm_display_mode *mode)
27 {
28 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
29 	struct malidp_hw_device *hwdev = malidp->dev;
30 
31 	/*
32 	 * check that the hardware can drive the required clock rate,
33 	 * but skip the check if the clock is meant to be disabled (req_rate = 0)
34 	 */
35 	long rate, req_rate = mode->crtc_clock * 1000;
36 
37 	if (req_rate) {
38 		rate = clk_round_rate(hwdev->pxlclk, req_rate);
39 		if (rate != req_rate) {
40 			DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
41 					 req_rate);
42 			return MODE_NOCLOCK;
43 		}
44 	}
45 
46 	return MODE_OK;
47 }
48 
49 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
50 				      struct drm_crtc_state *old_state)
51 {
52 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
53 	struct malidp_hw_device *hwdev = malidp->dev;
54 	struct videomode vm;
55 	int err = pm_runtime_get_sync(crtc->dev->dev);
56 
57 	if (err < 0) {
58 		DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
59 		return;
60 	}
61 
62 	drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
63 	clk_prepare_enable(hwdev->pxlclk);
64 
65 	/* We rely on firmware to set mclk to a sensible level. */
66 	clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
67 
68 	hwdev->modeset(hwdev, &vm);
69 	hwdev->leave_config_mode(hwdev);
70 	drm_crtc_vblank_on(crtc);
71 }
72 
73 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
74 				       struct drm_crtc_state *old_state)
75 {
76 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
77 	struct malidp_hw_device *hwdev = malidp->dev;
78 	int err;
79 
80 	drm_crtc_vblank_off(crtc);
81 	hwdev->enter_config_mode(hwdev);
82 	clk_disable_unprepare(hwdev->pxlclk);
83 
84 	err = pm_runtime_put(crtc->dev->dev);
85 	if (err < 0) {
86 		DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
87 	}
88 }
89 
90 static const struct gamma_curve_segment {
91 	u16 start;
92 	u16 end;
93 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
94 	/* sector 0 */
95 	{    0,    0 }, {    1,    1 }, {    2,    2 }, {    3,    3 },
96 	{    4,    4 }, {    5,    5 }, {    6,    6 }, {    7,    7 },
97 	{    8,    8 }, {    9,    9 }, {   10,   10 }, {   11,   11 },
98 	{   12,   12 }, {   13,   13 }, {   14,   14 }, {   15,   15 },
99 	/* sector 1 */
100 	{   16,   19 }, {   20,   23 }, {   24,   27 }, {   28,   31 },
101 	/* sector 2 */
102 	{   32,   39 }, {   40,   47 }, {   48,   55 }, {   56,   63 },
103 	/* sector 3 */
104 	{   64,   79 }, {   80,   95 }, {   96,  111 }, {  112,  127 },
105 	/* sector 4 */
106 	{  128,  159 }, {  160,  191 }, {  192,  223 }, {  224,  255 },
107 	/* sector 5 */
108 	{  256,  319 }, {  320,  383 }, {  384,  447 }, {  448,  511 },
109 	/* sector 6 */
110 	{  512,  639 }, {  640,  767 }, {  768,  895 }, {  896, 1023 },
111 	{ 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
112 	{ 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
113 	{ 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
114 	{ 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
115 	{ 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
116 	{ 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
117 };
118 
119 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
120 
121 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
122 					u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
123 {
124 	struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
125 	int i;
126 
127 	for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
128 		u32 a, b, delta_in, out_start, out_end;
129 
130 		delta_in = segments[i].end - segments[i].start;
131 		/* DP has 12-bit internal precision for its LUTs. */
132 		out_start = drm_color_lut_extract(lut[segments[i].start].green,
133 						  12);
134 		out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
135 		a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
136 		b = out_start;
137 		coeffs[i] = DE_COEFTAB_DATA(a, b);
138 	}
139 }
140 
141 /*
142  * Check if there is a new gamma LUT and if it is of an acceptable size. Also,
143  * reject any LUTs that use distinct red, green, and blue curves.
144  */
145 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
146 					  struct drm_crtc_state *state)
147 {
148 	struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
149 	struct drm_color_lut *lut;
150 	size_t lut_size;
151 	int i;
152 
153 	if (!state->color_mgmt_changed || !state->gamma_lut)
154 		return 0;
155 
156 	if (crtc->state->gamma_lut &&
157 	    (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
158 		return 0;
159 
160 	if (state->gamma_lut->length % sizeof(struct drm_color_lut))
161 		return -EINVAL;
162 
163 	lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
164 	if (lut_size != MALIDP_GAMMA_LUT_SIZE)
165 		return -EINVAL;
166 
167 	lut = (struct drm_color_lut *)state->gamma_lut->data;
168 	for (i = 0; i < lut_size; ++i)
169 		if (!((lut[i].red == lut[i].green) &&
170 		      (lut[i].red == lut[i].blue)))
171 			return -EINVAL;
172 
173 	if (!state->mode_changed) {
174 		int ret;
175 
176 		state->mode_changed = true;
177 		/*
178 		 * Kerneldoc for drm_atomic_helper_check_modeset mandates that
179 		 * it be invoked when the driver sets ->mode_changed. Since
180 		 * changing the gamma LUT doesn't depend on any external
181 		 * resources, it is safe to call it only once.
182 		 */
183 		ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
184 		if (ret)
185 			return ret;
186 	}
187 
188 	malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
189 	return 0;
190 }
191 
192 /*
193  * Check if there is a new CTM and if it contains valid input. Valid here means
194  * that the number is inside the representable range for a Q3.12 number,
195  * excluding truncating the fractional part of the input data.
196  *
197  * The COLORADJ registers can be changed atomically.
198  */
199 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
200 					struct drm_crtc_state *state)
201 {
202 	struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
203 	struct drm_color_ctm *ctm;
204 	int i;
205 
206 	if (!state->color_mgmt_changed)
207 		return 0;
208 
209 	if (!state->ctm)
210 		return 0;
211 
212 	if (crtc->state->ctm && (crtc->state->ctm->base.id ==
213 				 state->ctm->base.id))
214 		return 0;
215 
216 	/*
217 	 * The size of the ctm is checked in
218 	 * drm_atomic_replace_property_blob_from_id.
219 	 */
220 	ctm = (struct drm_color_ctm *)state->ctm->data;
221 	for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
222 		/* Convert from S31.32 to Q3.12. */
223 		s64 val = ctm->matrix[i];
224 		u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
225 			  GENMASK_ULL(14, 0);
226 
227 		/*
228 		 * Convert to 2s complement and check the destination's top bit
229 		 * for overflow. NB: Can't check before converting or it'd
230 		 * incorrectly reject the case:
231 		 * sign == 1
232 		 * mag == 0x2000
233 		 */
234 		if (val & BIT_ULL(63))
235 			mag = ~mag + 1;
236 		if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
237 			return -EINVAL;
238 		mc->coloradj_coeffs[i] = mag;
239 	}
240 
241 	return 0;
242 }
243 
244 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
245 					    struct drm_crtc_state *state)
246 {
247 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
248 	struct malidp_hw_device *hwdev = malidp->dev;
249 	struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
250 	struct malidp_se_config *s = &cs->scaler_config;
251 	struct drm_plane *plane;
252 	struct videomode vm;
253 	const struct drm_plane_state *pstate;
254 	u32 h_upscale_factor = 0; /* U16.16 */
255 	u32 v_upscale_factor = 0; /* U16.16 */
256 	u8 scaling = cs->scaled_planes_mask;
257 	int ret;
258 
259 	if (!scaling) {
260 		s->scale_enable = false;
261 		goto mclk_calc;
262 	}
263 
264 	/* The scaling engine can only handle one plane at a time. */
265 	if (scaling & (scaling - 1))
266 		return -EINVAL;
267 
268 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
269 		struct malidp_plane *mp = to_malidp_plane(plane);
270 		u32 phase;
271 
272 		if (!(mp->layer->id & scaling))
273 			continue;
274 
275 		/*
276 		 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
277 		 * to get the U16.16 result.
278 		 */
279 		h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
280 					   pstate->src_w);
281 		v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
282 					   pstate->src_h);
283 
284 		s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
285 				      (v_upscale_factor >> 16) >= 2);
286 
287 		s->input_w = pstate->src_w >> 16;
288 		s->input_h = pstate->src_h >> 16;
289 		s->output_w = pstate->crtc_w;
290 		s->output_h = pstate->crtc_h;
291 
292 #define SE_N_PHASE 4
293 #define SE_SHIFT_N_PHASE 12
294 		/* Calculate initial_phase and delta_phase for horizontal. */
295 		phase = s->input_w;
296 		s->h_init_phase =
297 				((phase << SE_N_PHASE) / s->output_w + 1) / 2;
298 
299 		phase = s->input_w;
300 		phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
301 		s->h_delta_phase = phase / s->output_w;
302 
303 		/* Same for vertical. */
304 		phase = s->input_h;
305 		s->v_init_phase =
306 				((phase << SE_N_PHASE) / s->output_h + 1) / 2;
307 
308 		phase = s->input_h;
309 		phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
310 		s->v_delta_phase = phase / s->output_h;
311 #undef SE_N_PHASE
312 #undef SE_SHIFT_N_PHASE
313 		s->plane_src_id = mp->layer->id;
314 	}
315 
316 	s->scale_enable = true;
317 	s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
318 	s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
319 
320 mclk_calc:
321 	drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
322 	ret = hwdev->se_calc_mclk(hwdev, s, &vm);
323 	if (ret < 0)
324 		return -EINVAL;
325 	return 0;
326 }
327 
328 static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
329 				    struct drm_crtc_state *state)
330 {
331 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
332 	struct malidp_hw_device *hwdev = malidp->dev;
333 	struct drm_plane *plane;
334 	const struct drm_plane_state *pstate;
335 	u32 rot_mem_free, rot_mem_usable;
336 	int rotated_planes = 0;
337 	int ret;
338 
339 	/*
340 	 * check if there is enough rotation memory available for planes
341 	 * that need 90° and 270° rotation. Each plane has set its required
342 	 * memory size in the ->plane_check() callback, here we only make
343 	 * sure that the sums are less that the total usable memory.
344 	 *
345 	 * The rotation memory allocation algorithm (for each plane):
346 	 *  a. If no more rotated planes exist, all remaining rotate
347 	 *     memory in the bank is available for use by the plane.
348 	 *  b. If other rotated planes exist, and plane's layer ID is
349 	 *     DE_VIDEO1, it can use all the memory from first bank if
350 	 *     secondary rotation memory bank is available, otherwise it can
351 	 *     use up to half the bank's memory.
352 	 *  c. If other rotated planes exist, and plane's layer ID is not
353 	 *     DE_VIDEO1, it can use half of the available memory
354 	 *
355 	 * Note: this algorithm assumes that the order in which the planes are
356 	 * checked always has DE_VIDEO1 plane first in the list if it is
357 	 * rotated. Because that is how we create the planes in the first
358 	 * place, under current DRM version things work, but if ever the order
359 	 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes
360 	 * changes, we need to pre-sort the planes before validation.
361 	 */
362 
363 	/* first count the number of rotated planes */
364 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
365 		if (pstate->rotation & MALIDP_ROTATED_MASK)
366 			rotated_planes++;
367 	}
368 
369 	rot_mem_free = hwdev->rotation_memory[0];
370 	/*
371 	 * if we have more than 1 plane using rotation memory, use the second
372 	 * block of rotation memory as well
373 	 */
374 	if (rotated_planes > 1)
375 		rot_mem_free += hwdev->rotation_memory[1];
376 
377 	/* now validate the rotation memory requirements */
378 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
379 		struct malidp_plane *mp = to_malidp_plane(plane);
380 		struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
381 
382 		if (pstate->rotation & MALIDP_ROTATED_MASK) {
383 			/* process current plane */
384 			rotated_planes--;
385 
386 			if (!rotated_planes) {
387 				/* no more rotated planes, we can use what's left */
388 				rot_mem_usable = rot_mem_free;
389 			} else {
390 				if ((mp->layer->id != DE_VIDEO1) ||
391 				    (hwdev->rotation_memory[1] == 0))
392 					rot_mem_usable = rot_mem_free / 2;
393 				else
394 					rot_mem_usable = hwdev->rotation_memory[0];
395 			}
396 
397 			rot_mem_free -= rot_mem_usable;
398 
399 			if (ms->rotmem_size > rot_mem_usable)
400 				return -EINVAL;
401 		}
402 	}
403 
404 	ret = malidp_crtc_atomic_check_gamma(crtc, state);
405 	ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state);
406 	ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state);
407 
408 	return ret;
409 }
410 
411 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
412 	.mode_valid = malidp_crtc_mode_valid,
413 	.atomic_check = malidp_crtc_atomic_check,
414 	.atomic_enable = malidp_crtc_atomic_enable,
415 	.atomic_disable = malidp_crtc_atomic_disable,
416 };
417 
418 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
419 {
420 	struct malidp_crtc_state *state, *old_state;
421 
422 	if (WARN_ON(!crtc->state))
423 		return NULL;
424 
425 	old_state = to_malidp_crtc_state(crtc->state);
426 	state = kmalloc(sizeof(*state), GFP_KERNEL);
427 	if (!state)
428 		return NULL;
429 
430 	__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
431 	memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
432 	       sizeof(state->gamma_coeffs));
433 	memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
434 	       sizeof(state->coloradj_coeffs));
435 	memcpy(&state->scaler_config, &old_state->scaler_config,
436 	       sizeof(state->scaler_config));
437 	state->scaled_planes_mask = 0;
438 
439 	return &state->base;
440 }
441 
442 static void malidp_crtc_reset(struct drm_crtc *crtc)
443 {
444 	struct malidp_crtc_state *state = NULL;
445 
446 	if (crtc->state) {
447 		state = to_malidp_crtc_state(crtc->state);
448 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
449 	}
450 
451 	kfree(state);
452 	state = kzalloc(sizeof(*state), GFP_KERNEL);
453 	if (state) {
454 		crtc->state = &state->base;
455 		crtc->state->crtc = crtc;
456 	}
457 }
458 
459 static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
460 				      struct drm_crtc_state *state)
461 {
462 	struct malidp_crtc_state *mali_state = NULL;
463 
464 	if (state) {
465 		mali_state = to_malidp_crtc_state(state);
466 		__drm_atomic_helper_crtc_destroy_state(state);
467 	}
468 
469 	kfree(mali_state);
470 }
471 
472 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
473 {
474 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
475 	struct malidp_hw_device *hwdev = malidp->dev;
476 
477 	malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
478 			     hwdev->map.de_irq_map.vsync_irq);
479 	return 0;
480 }
481 
482 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
483 {
484 	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
485 	struct malidp_hw_device *hwdev = malidp->dev;
486 
487 	malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
488 			      hwdev->map.de_irq_map.vsync_irq);
489 }
490 
491 static const struct drm_crtc_funcs malidp_crtc_funcs = {
492 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
493 	.destroy = drm_crtc_cleanup,
494 	.set_config = drm_atomic_helper_set_config,
495 	.page_flip = drm_atomic_helper_page_flip,
496 	.reset = malidp_crtc_reset,
497 	.atomic_duplicate_state = malidp_crtc_duplicate_state,
498 	.atomic_destroy_state = malidp_crtc_destroy_state,
499 	.enable_vblank = malidp_crtc_enable_vblank,
500 	.disable_vblank = malidp_crtc_disable_vblank,
501 };
502 
503 int malidp_crtc_init(struct drm_device *drm)
504 {
505 	struct malidp_drm *malidp = drm->dev_private;
506 	struct drm_plane *primary = NULL, *plane;
507 	int ret;
508 
509 	ret = malidp_de_planes_init(drm);
510 	if (ret < 0) {
511 		DRM_ERROR("Failed to initialise planes\n");
512 		return ret;
513 	}
514 
515 	drm_for_each_plane(plane, drm) {
516 		if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
517 			primary = plane;
518 			break;
519 		}
520 	}
521 
522 	if (!primary) {
523 		DRM_ERROR("no primary plane found\n");
524 		ret = -EINVAL;
525 		goto crtc_cleanup_planes;
526 	}
527 
528 	ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
529 					&malidp_crtc_funcs, NULL);
530 	if (ret)
531 		goto crtc_cleanup_planes;
532 
533 	drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
534 	drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
535 	/* No inverse-gamma: it is per-plane. */
536 	drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
537 
538 	malidp_se_set_enh_coeffs(malidp->dev);
539 
540 	return 0;
541 
542 crtc_cleanup_planes:
543 	malidp_de_planes_destroy(drm);
544 
545 	return ret;
546 }
547