1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) COPYRIGHT 2016 ARM Limited. All rights reserved. 4 * Author: Liviu Dudau <Liviu.Dudau@arm.com> 5 * 6 * ARM Mali DP500/DP550/DP650 driver (crtc operations) 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/pm_runtime.h> 11 12 #include <video/videomode.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_framebuffer.h> 18 #include <drm/drm_print.h> 19 #include <drm/drm_probe_helper.h> 20 #include <drm/drm_vblank.h> 21 22 #include "malidp_drv.h" 23 #include "malidp_hw.h" 24 25 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc, 26 const struct drm_display_mode *mode) 27 { 28 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 29 struct malidp_hw_device *hwdev = malidp->dev; 30 31 /* 32 * check that the hardware can drive the required clock rate, 33 * but skip the check if the clock is meant to be disabled (req_rate = 0) 34 */ 35 long rate, req_rate = mode->crtc_clock * 1000; 36 37 if (req_rate) { 38 rate = clk_round_rate(hwdev->pxlclk, req_rate); 39 if (rate != req_rate) { 40 DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n", 41 req_rate); 42 return MODE_NOCLOCK; 43 } 44 } 45 46 return MODE_OK; 47 } 48 49 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc, 50 struct drm_atomic_state *state) 51 { 52 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 53 struct malidp_hw_device *hwdev = malidp->dev; 54 struct videomode vm; 55 int err = pm_runtime_get_sync(crtc->dev->dev); 56 57 if (err < 0) { 58 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err); 59 return; 60 } 61 62 drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm); 63 clk_prepare_enable(hwdev->pxlclk); 64 65 /* We rely on firmware to set mclk to a sensible level. */ 66 clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000); 67 68 hwdev->hw->modeset(hwdev, &vm); 69 hwdev->hw->leave_config_mode(hwdev); 70 drm_crtc_vblank_on(crtc); 71 } 72 73 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc, 74 struct drm_atomic_state *state) 75 { 76 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 77 crtc); 78 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 79 struct malidp_hw_device *hwdev = malidp->dev; 80 int err; 81 82 /* always disable planes on the CRTC that is being turned off */ 83 drm_atomic_helper_disable_planes_on_crtc(old_state, false); 84 85 drm_crtc_vblank_off(crtc); 86 hwdev->hw->enter_config_mode(hwdev); 87 88 clk_disable_unprepare(hwdev->pxlclk); 89 90 err = pm_runtime_put(crtc->dev->dev); 91 if (err < 0) { 92 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err); 93 } 94 } 95 96 static const struct gamma_curve_segment { 97 u16 start; 98 u16 end; 99 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = { 100 /* sector 0 */ 101 { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, 102 { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, 103 { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 }, 104 { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 }, 105 /* sector 1 */ 106 { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 }, 107 /* sector 2 */ 108 { 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 }, 109 /* sector 3 */ 110 { 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 }, 111 /* sector 4 */ 112 { 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 }, 113 /* sector 5 */ 114 { 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 }, 115 /* sector 6 */ 116 { 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 }, 117 { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 }, 118 { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 }, 119 { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 }, 120 { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 }, 121 { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 }, 122 { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 }, 123 }; 124 125 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff))) 126 127 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob, 128 u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS]) 129 { 130 struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data; 131 int i; 132 133 for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) { 134 u32 a, b, delta_in, out_start, out_end; 135 136 delta_in = segments[i].end - segments[i].start; 137 /* DP has 12-bit internal precision for its LUTs. */ 138 out_start = drm_color_lut_extract(lut[segments[i].start].green, 139 12); 140 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12); 141 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in; 142 b = out_start; 143 coeffs[i] = DE_COEFTAB_DATA(a, b); 144 } 145 } 146 147 /* 148 * Check if there is a new gamma LUT and if it is of an acceptable size. Also, 149 * reject any LUTs that use distinct red, green, and blue curves. 150 */ 151 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc, 152 struct drm_crtc_state *state) 153 { 154 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 155 struct drm_color_lut *lut; 156 size_t lut_size; 157 int i; 158 159 if (!state->color_mgmt_changed || !state->gamma_lut) 160 return 0; 161 162 if (crtc->state->gamma_lut && 163 (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id)) 164 return 0; 165 166 if (state->gamma_lut->length % sizeof(struct drm_color_lut)) 167 return -EINVAL; 168 169 lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut); 170 if (lut_size != MALIDP_GAMMA_LUT_SIZE) 171 return -EINVAL; 172 173 lut = (struct drm_color_lut *)state->gamma_lut->data; 174 for (i = 0; i < lut_size; ++i) 175 if (!((lut[i].red == lut[i].green) && 176 (lut[i].red == lut[i].blue))) 177 return -EINVAL; 178 179 if (!state->mode_changed) { 180 int ret; 181 182 state->mode_changed = true; 183 /* 184 * Kerneldoc for drm_atomic_helper_check_modeset mandates that 185 * it be invoked when the driver sets ->mode_changed. Since 186 * changing the gamma LUT doesn't depend on any external 187 * resources, it is safe to call it only once. 188 */ 189 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state); 190 if (ret) 191 return ret; 192 } 193 194 malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs); 195 return 0; 196 } 197 198 /* 199 * Check if there is a new CTM and if it contains valid input. Valid here means 200 * that the number is inside the representable range for a Q3.12 number, 201 * excluding truncating the fractional part of the input data. 202 * 203 * The COLORADJ registers can be changed atomically. 204 */ 205 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc, 206 struct drm_crtc_state *state) 207 { 208 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 209 struct drm_color_ctm *ctm; 210 int i; 211 212 if (!state->color_mgmt_changed) 213 return 0; 214 215 if (!state->ctm) 216 return 0; 217 218 if (crtc->state->ctm && (crtc->state->ctm->base.id == 219 state->ctm->base.id)) 220 return 0; 221 222 /* 223 * The size of the ctm is checked in 224 * drm_atomic_replace_property_blob_from_id. 225 */ 226 ctm = (struct drm_color_ctm *)state->ctm->data; 227 for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) { 228 /* Convert from S31.32 to Q3.12. */ 229 s64 val = ctm->matrix[i]; 230 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) & 231 GENMASK_ULL(14, 0); 232 233 /* 234 * Convert to 2s complement and check the destination's top bit 235 * for overflow. NB: Can't check before converting or it'd 236 * incorrectly reject the case: 237 * sign == 1 238 * mag == 0x2000 239 */ 240 if (val & BIT_ULL(63)) 241 mag = ~mag + 1; 242 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14))) 243 return -EINVAL; 244 mc->coloradj_coeffs[i] = mag; 245 } 246 247 return 0; 248 } 249 250 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc, 251 struct drm_crtc_state *state) 252 { 253 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 254 struct malidp_hw_device *hwdev = malidp->dev; 255 struct malidp_crtc_state *cs = to_malidp_crtc_state(state); 256 struct malidp_se_config *s = &cs->scaler_config; 257 struct drm_plane *plane; 258 struct videomode vm; 259 const struct drm_plane_state *pstate; 260 u32 h_upscale_factor = 0; /* U16.16 */ 261 u32 v_upscale_factor = 0; /* U16.16 */ 262 u8 scaling = cs->scaled_planes_mask; 263 int ret; 264 265 if (!scaling) { 266 s->scale_enable = false; 267 goto mclk_calc; 268 } 269 270 /* The scaling engine can only handle one plane at a time. */ 271 if (scaling & (scaling - 1)) 272 return -EINVAL; 273 274 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 275 struct malidp_plane *mp = to_malidp_plane(plane); 276 u32 phase; 277 278 if (!(mp->layer->id & scaling)) 279 continue; 280 281 /* 282 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h] 283 * to get the U16.16 result. 284 */ 285 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32, 286 pstate->src_w); 287 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32, 288 pstate->src_h); 289 290 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 || 291 (v_upscale_factor >> 16) >= 2); 292 293 if (pstate->rotation & MALIDP_ROTATED_MASK) { 294 s->input_w = pstate->src_h >> 16; 295 s->input_h = pstate->src_w >> 16; 296 } else { 297 s->input_w = pstate->src_w >> 16; 298 s->input_h = pstate->src_h >> 16; 299 } 300 301 s->output_w = pstate->crtc_w; 302 s->output_h = pstate->crtc_h; 303 304 #define SE_N_PHASE 4 305 #define SE_SHIFT_N_PHASE 12 306 /* Calculate initial_phase and delta_phase for horizontal. */ 307 phase = s->input_w; 308 s->h_init_phase = 309 ((phase << SE_N_PHASE) / s->output_w + 1) / 2; 310 311 phase = s->input_w; 312 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 313 s->h_delta_phase = phase / s->output_w; 314 315 /* Same for vertical. */ 316 phase = s->input_h; 317 s->v_init_phase = 318 ((phase << SE_N_PHASE) / s->output_h + 1) / 2; 319 320 phase = s->input_h; 321 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 322 s->v_delta_phase = phase / s->output_h; 323 #undef SE_N_PHASE 324 #undef SE_SHIFT_N_PHASE 325 s->plane_src_id = mp->layer->id; 326 } 327 328 s->scale_enable = true; 329 s->hcoeff = malidp_se_select_coeffs(h_upscale_factor); 330 s->vcoeff = malidp_se_select_coeffs(v_upscale_factor); 331 332 mclk_calc: 333 drm_display_mode_to_videomode(&state->adjusted_mode, &vm); 334 ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm); 335 if (ret < 0) 336 return -EINVAL; 337 return 0; 338 } 339 340 static int malidp_crtc_atomic_check(struct drm_crtc *crtc, 341 struct drm_atomic_state *state) 342 { 343 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 344 crtc); 345 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 346 struct malidp_hw_device *hwdev = malidp->dev; 347 struct drm_plane *plane; 348 const struct drm_plane_state *pstate; 349 u32 rot_mem_free, rot_mem_usable; 350 int rotated_planes = 0; 351 int ret; 352 353 /* 354 * check if there is enough rotation memory available for planes 355 * that need 90° and 270° rotion or planes that are compressed. 356 * Each plane has set its required memory size in the ->plane_check() 357 * callback, here we only make sure that the sums are less that the 358 * total usable memory. 359 * 360 * The rotation memory allocation algorithm (for each plane): 361 * a. If no more rotated or compressed planes exist, all remaining 362 * rotate memory in the bank is available for use by the plane. 363 * b. If other rotated or compressed planes exist, and plane's 364 * layer ID is DE_VIDEO1, it can use all the memory from first bank 365 * if secondary rotation memory bank is available, otherwise it can 366 * use up to half the bank's memory. 367 * c. If other rotated or compressed planes exist, and plane's layer ID 368 * is not DE_VIDEO1, it can use half of the available memory. 369 * 370 * Note: this algorithm assumes that the order in which the planes are 371 * checked always has DE_VIDEO1 plane first in the list if it is 372 * rotated. Because that is how we create the planes in the first 373 * place, under current DRM version things work, but if ever the order 374 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes 375 * changes, we need to pre-sort the planes before validation. 376 */ 377 378 /* first count the number of rotated planes */ 379 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 380 struct drm_framebuffer *fb = pstate->fb; 381 382 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) 383 rotated_planes++; 384 } 385 386 rot_mem_free = hwdev->rotation_memory[0]; 387 /* 388 * if we have more than 1 plane using rotation memory, use the second 389 * block of rotation memory as well 390 */ 391 if (rotated_planes > 1) 392 rot_mem_free += hwdev->rotation_memory[1]; 393 394 /* now validate the rotation memory requirements */ 395 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 396 struct malidp_plane *mp = to_malidp_plane(plane); 397 struct malidp_plane_state *ms = to_malidp_plane_state(pstate); 398 struct drm_framebuffer *fb = pstate->fb; 399 400 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) { 401 /* process current plane */ 402 rotated_planes--; 403 404 if (!rotated_planes) { 405 /* no more rotated planes, we can use what's left */ 406 rot_mem_usable = rot_mem_free; 407 } else { 408 if ((mp->layer->id != DE_VIDEO1) || 409 (hwdev->rotation_memory[1] == 0)) 410 rot_mem_usable = rot_mem_free / 2; 411 else 412 rot_mem_usable = hwdev->rotation_memory[0]; 413 } 414 415 rot_mem_free -= rot_mem_usable; 416 417 if (ms->rotmem_size > rot_mem_usable) 418 return -EINVAL; 419 } 420 } 421 422 /* If only the writeback routing has changed, we don't need a modeset */ 423 if (crtc_state->connectors_changed) { 424 u32 old_mask = crtc->state->connector_mask; 425 u32 new_mask = crtc_state->connector_mask; 426 427 if ((old_mask ^ new_mask) == 428 (1 << drm_connector_index(&malidp->mw_connector.base))) 429 crtc_state->connectors_changed = false; 430 } 431 432 ret = malidp_crtc_atomic_check_gamma(crtc, crtc_state); 433 ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, crtc_state); 434 ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, crtc_state); 435 436 return ret; 437 } 438 439 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = { 440 .mode_valid = malidp_crtc_mode_valid, 441 .atomic_check = malidp_crtc_atomic_check, 442 .atomic_enable = malidp_crtc_atomic_enable, 443 .atomic_disable = malidp_crtc_atomic_disable, 444 }; 445 446 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc) 447 { 448 struct malidp_crtc_state *state, *old_state; 449 450 if (WARN_ON(!crtc->state)) 451 return NULL; 452 453 old_state = to_malidp_crtc_state(crtc->state); 454 state = kmalloc(sizeof(*state), GFP_KERNEL); 455 if (!state) 456 return NULL; 457 458 __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); 459 memcpy(state->gamma_coeffs, old_state->gamma_coeffs, 460 sizeof(state->gamma_coeffs)); 461 memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs, 462 sizeof(state->coloradj_coeffs)); 463 memcpy(&state->scaler_config, &old_state->scaler_config, 464 sizeof(state->scaler_config)); 465 state->scaled_planes_mask = 0; 466 467 return &state->base; 468 } 469 470 static void malidp_crtc_destroy_state(struct drm_crtc *crtc, 471 struct drm_crtc_state *state) 472 { 473 struct malidp_crtc_state *mali_state = NULL; 474 475 if (state) { 476 mali_state = to_malidp_crtc_state(state); 477 __drm_atomic_helper_crtc_destroy_state(state); 478 } 479 480 kfree(mali_state); 481 } 482 483 static void malidp_crtc_reset(struct drm_crtc *crtc) 484 { 485 struct malidp_crtc_state *state = 486 kzalloc(sizeof(*state), GFP_KERNEL); 487 488 if (crtc->state) 489 malidp_crtc_destroy_state(crtc, crtc->state); 490 491 if (state) 492 __drm_atomic_helper_crtc_reset(crtc, &state->base); 493 else 494 __drm_atomic_helper_crtc_reset(crtc, NULL); 495 } 496 497 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc) 498 { 499 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 500 struct malidp_hw_device *hwdev = malidp->dev; 501 502 malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK, 503 hwdev->hw->map.de_irq_map.vsync_irq); 504 return 0; 505 } 506 507 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc) 508 { 509 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 510 struct malidp_hw_device *hwdev = malidp->dev; 511 512 malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK, 513 hwdev->hw->map.de_irq_map.vsync_irq); 514 } 515 516 static const struct drm_crtc_funcs malidp_crtc_funcs = { 517 .destroy = drm_crtc_cleanup, 518 .set_config = drm_atomic_helper_set_config, 519 .page_flip = drm_atomic_helper_page_flip, 520 .reset = malidp_crtc_reset, 521 .atomic_duplicate_state = malidp_crtc_duplicate_state, 522 .atomic_destroy_state = malidp_crtc_destroy_state, 523 .enable_vblank = malidp_crtc_enable_vblank, 524 .disable_vblank = malidp_crtc_disable_vblank, 525 }; 526 527 int malidp_crtc_init(struct drm_device *drm) 528 { 529 struct malidp_drm *malidp = drm->dev_private; 530 struct drm_plane *primary = NULL, *plane; 531 int ret; 532 533 ret = malidp_de_planes_init(drm); 534 if (ret < 0) { 535 DRM_ERROR("Failed to initialise planes\n"); 536 return ret; 537 } 538 539 drm_for_each_plane(plane, drm) { 540 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 541 primary = plane; 542 break; 543 } 544 } 545 546 if (!primary) { 547 DRM_ERROR("no primary plane found\n"); 548 return -EINVAL; 549 } 550 551 ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL, 552 &malidp_crtc_funcs, NULL); 553 if (ret) 554 return ret; 555 556 drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs); 557 drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE); 558 /* No inverse-gamma: it is per-plane. */ 559 drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE); 560 561 malidp_se_set_enh_coeffs(malidp->dev); 562 563 return 0; 564 } 565