1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) COPYRIGHT 2016 ARM Limited. All rights reserved. 4 * Author: Liviu Dudau <Liviu.Dudau@arm.com> 5 * 6 * ARM Mali DP500/DP550/DP650 driver (crtc operations) 7 */ 8 9 #include <drm/drmP.h> 10 #include <drm/drm_atomic.h> 11 #include <drm/drm_atomic_helper.h> 12 #include <drm/drm_crtc.h> 13 #include <drm/drm_probe_helper.h> 14 #include <linux/clk.h> 15 #include <linux/pm_runtime.h> 16 #include <video/videomode.h> 17 18 #include "malidp_drv.h" 19 #include "malidp_hw.h" 20 21 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc, 22 const struct drm_display_mode *mode) 23 { 24 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 25 struct malidp_hw_device *hwdev = malidp->dev; 26 27 /* 28 * check that the hardware can drive the required clock rate, 29 * but skip the check if the clock is meant to be disabled (req_rate = 0) 30 */ 31 long rate, req_rate = mode->crtc_clock * 1000; 32 33 if (req_rate) { 34 rate = clk_round_rate(hwdev->pxlclk, req_rate); 35 if (rate != req_rate) { 36 DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n", 37 req_rate); 38 return MODE_NOCLOCK; 39 } 40 } 41 42 return MODE_OK; 43 } 44 45 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc, 46 struct drm_crtc_state *old_state) 47 { 48 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 49 struct malidp_hw_device *hwdev = malidp->dev; 50 struct videomode vm; 51 int err = pm_runtime_get_sync(crtc->dev->dev); 52 53 if (err < 0) { 54 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err); 55 return; 56 } 57 58 drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm); 59 clk_prepare_enable(hwdev->pxlclk); 60 61 /* We rely on firmware to set mclk to a sensible level. */ 62 clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000); 63 64 hwdev->hw->modeset(hwdev, &vm); 65 hwdev->hw->leave_config_mode(hwdev); 66 drm_crtc_vblank_on(crtc); 67 } 68 69 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc, 70 struct drm_crtc_state *old_state) 71 { 72 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 73 struct malidp_hw_device *hwdev = malidp->dev; 74 int err; 75 76 /* always disable planes on the CRTC that is being turned off */ 77 drm_atomic_helper_disable_planes_on_crtc(old_state, false); 78 79 drm_crtc_vblank_off(crtc); 80 hwdev->hw->enter_config_mode(hwdev); 81 82 clk_disable_unprepare(hwdev->pxlclk); 83 84 err = pm_runtime_put(crtc->dev->dev); 85 if (err < 0) { 86 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err); 87 } 88 } 89 90 static const struct gamma_curve_segment { 91 u16 start; 92 u16 end; 93 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = { 94 /* sector 0 */ 95 { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, 96 { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, 97 { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 }, 98 { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 }, 99 /* sector 1 */ 100 { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 }, 101 /* sector 2 */ 102 { 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 }, 103 /* sector 3 */ 104 { 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 }, 105 /* sector 4 */ 106 { 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 }, 107 /* sector 5 */ 108 { 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 }, 109 /* sector 6 */ 110 { 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 }, 111 { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 }, 112 { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 }, 113 { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 }, 114 { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 }, 115 { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 }, 116 { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 }, 117 }; 118 119 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff))) 120 121 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob, 122 u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS]) 123 { 124 struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data; 125 int i; 126 127 for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) { 128 u32 a, b, delta_in, out_start, out_end; 129 130 delta_in = segments[i].end - segments[i].start; 131 /* DP has 12-bit internal precision for its LUTs. */ 132 out_start = drm_color_lut_extract(lut[segments[i].start].green, 133 12); 134 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12); 135 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in; 136 b = out_start; 137 coeffs[i] = DE_COEFTAB_DATA(a, b); 138 } 139 } 140 141 /* 142 * Check if there is a new gamma LUT and if it is of an acceptable size. Also, 143 * reject any LUTs that use distinct red, green, and blue curves. 144 */ 145 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc, 146 struct drm_crtc_state *state) 147 { 148 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 149 struct drm_color_lut *lut; 150 size_t lut_size; 151 int i; 152 153 if (!state->color_mgmt_changed || !state->gamma_lut) 154 return 0; 155 156 if (crtc->state->gamma_lut && 157 (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id)) 158 return 0; 159 160 if (state->gamma_lut->length % sizeof(struct drm_color_lut)) 161 return -EINVAL; 162 163 lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut); 164 if (lut_size != MALIDP_GAMMA_LUT_SIZE) 165 return -EINVAL; 166 167 lut = (struct drm_color_lut *)state->gamma_lut->data; 168 for (i = 0; i < lut_size; ++i) 169 if (!((lut[i].red == lut[i].green) && 170 (lut[i].red == lut[i].blue))) 171 return -EINVAL; 172 173 if (!state->mode_changed) { 174 int ret; 175 176 state->mode_changed = true; 177 /* 178 * Kerneldoc for drm_atomic_helper_check_modeset mandates that 179 * it be invoked when the driver sets ->mode_changed. Since 180 * changing the gamma LUT doesn't depend on any external 181 * resources, it is safe to call it only once. 182 */ 183 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state); 184 if (ret) 185 return ret; 186 } 187 188 malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs); 189 return 0; 190 } 191 192 /* 193 * Check if there is a new CTM and if it contains valid input. Valid here means 194 * that the number is inside the representable range for a Q3.12 number, 195 * excluding truncating the fractional part of the input data. 196 * 197 * The COLORADJ registers can be changed atomically. 198 */ 199 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc, 200 struct drm_crtc_state *state) 201 { 202 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 203 struct drm_color_ctm *ctm; 204 int i; 205 206 if (!state->color_mgmt_changed) 207 return 0; 208 209 if (!state->ctm) 210 return 0; 211 212 if (crtc->state->ctm && (crtc->state->ctm->base.id == 213 state->ctm->base.id)) 214 return 0; 215 216 /* 217 * The size of the ctm is checked in 218 * drm_atomic_replace_property_blob_from_id. 219 */ 220 ctm = (struct drm_color_ctm *)state->ctm->data; 221 for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) { 222 /* Convert from S31.32 to Q3.12. */ 223 s64 val = ctm->matrix[i]; 224 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) & 225 GENMASK_ULL(14, 0); 226 227 /* 228 * Convert to 2s complement and check the destination's top bit 229 * for overflow. NB: Can't check before converting or it'd 230 * incorrectly reject the case: 231 * sign == 1 232 * mag == 0x2000 233 */ 234 if (val & BIT_ULL(63)) 235 mag = ~mag + 1; 236 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14))) 237 return -EINVAL; 238 mc->coloradj_coeffs[i] = mag; 239 } 240 241 return 0; 242 } 243 244 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc, 245 struct drm_crtc_state *state) 246 { 247 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 248 struct malidp_hw_device *hwdev = malidp->dev; 249 struct malidp_crtc_state *cs = to_malidp_crtc_state(state); 250 struct malidp_se_config *s = &cs->scaler_config; 251 struct drm_plane *plane; 252 struct videomode vm; 253 const struct drm_plane_state *pstate; 254 u32 h_upscale_factor = 0; /* U16.16 */ 255 u32 v_upscale_factor = 0; /* U16.16 */ 256 u8 scaling = cs->scaled_planes_mask; 257 int ret; 258 259 if (!scaling) { 260 s->scale_enable = false; 261 goto mclk_calc; 262 } 263 264 /* The scaling engine can only handle one plane at a time. */ 265 if (scaling & (scaling - 1)) 266 return -EINVAL; 267 268 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 269 struct malidp_plane *mp = to_malidp_plane(plane); 270 u32 phase; 271 272 if (!(mp->layer->id & scaling)) 273 continue; 274 275 /* 276 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h] 277 * to get the U16.16 result. 278 */ 279 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32, 280 pstate->src_w); 281 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32, 282 pstate->src_h); 283 284 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 || 285 (v_upscale_factor >> 16) >= 2); 286 287 if (pstate->rotation & MALIDP_ROTATED_MASK) { 288 s->input_w = pstate->src_h >> 16; 289 s->input_h = pstate->src_w >> 16; 290 } else { 291 s->input_w = pstate->src_w >> 16; 292 s->input_h = pstate->src_h >> 16; 293 } 294 295 s->output_w = pstate->crtc_w; 296 s->output_h = pstate->crtc_h; 297 298 #define SE_N_PHASE 4 299 #define SE_SHIFT_N_PHASE 12 300 /* Calculate initial_phase and delta_phase for horizontal. */ 301 phase = s->input_w; 302 s->h_init_phase = 303 ((phase << SE_N_PHASE) / s->output_w + 1) / 2; 304 305 phase = s->input_w; 306 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 307 s->h_delta_phase = phase / s->output_w; 308 309 /* Same for vertical. */ 310 phase = s->input_h; 311 s->v_init_phase = 312 ((phase << SE_N_PHASE) / s->output_h + 1) / 2; 313 314 phase = s->input_h; 315 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 316 s->v_delta_phase = phase / s->output_h; 317 #undef SE_N_PHASE 318 #undef SE_SHIFT_N_PHASE 319 s->plane_src_id = mp->layer->id; 320 } 321 322 s->scale_enable = true; 323 s->hcoeff = malidp_se_select_coeffs(h_upscale_factor); 324 s->vcoeff = malidp_se_select_coeffs(v_upscale_factor); 325 326 mclk_calc: 327 drm_display_mode_to_videomode(&state->adjusted_mode, &vm); 328 ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm); 329 if (ret < 0) 330 return -EINVAL; 331 return 0; 332 } 333 334 static int malidp_crtc_atomic_check(struct drm_crtc *crtc, 335 struct drm_crtc_state *state) 336 { 337 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 338 struct malidp_hw_device *hwdev = malidp->dev; 339 struct drm_plane *plane; 340 const struct drm_plane_state *pstate; 341 u32 rot_mem_free, rot_mem_usable; 342 int rotated_planes = 0; 343 int ret; 344 345 /* 346 * check if there is enough rotation memory available for planes 347 * that need 90° and 270° rotion or planes that are compressed. 348 * Each plane has set its required memory size in the ->plane_check() 349 * callback, here we only make sure that the sums are less that the 350 * total usable memory. 351 * 352 * The rotation memory allocation algorithm (for each plane): 353 * a. If no more rotated or compressed planes exist, all remaining 354 * rotate memory in the bank is available for use by the plane. 355 * b. If other rotated or compressed planes exist, and plane's 356 * layer ID is DE_VIDEO1, it can use all the memory from first bank 357 * if secondary rotation memory bank is available, otherwise it can 358 * use up to half the bank's memory. 359 * c. If other rotated or compressed planes exist, and plane's layer ID 360 * is not DE_VIDEO1, it can use half of the available memory. 361 * 362 * Note: this algorithm assumes that the order in which the planes are 363 * checked always has DE_VIDEO1 plane first in the list if it is 364 * rotated. Because that is how we create the planes in the first 365 * place, under current DRM version things work, but if ever the order 366 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes 367 * changes, we need to pre-sort the planes before validation. 368 */ 369 370 /* first count the number of rotated planes */ 371 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 372 struct drm_framebuffer *fb = pstate->fb; 373 374 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) 375 rotated_planes++; 376 } 377 378 rot_mem_free = hwdev->rotation_memory[0]; 379 /* 380 * if we have more than 1 plane using rotation memory, use the second 381 * block of rotation memory as well 382 */ 383 if (rotated_planes > 1) 384 rot_mem_free += hwdev->rotation_memory[1]; 385 386 /* now validate the rotation memory requirements */ 387 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 388 struct malidp_plane *mp = to_malidp_plane(plane); 389 struct malidp_plane_state *ms = to_malidp_plane_state(pstate); 390 struct drm_framebuffer *fb = pstate->fb; 391 392 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) { 393 /* process current plane */ 394 rotated_planes--; 395 396 if (!rotated_planes) { 397 /* no more rotated planes, we can use what's left */ 398 rot_mem_usable = rot_mem_free; 399 } else { 400 if ((mp->layer->id != DE_VIDEO1) || 401 (hwdev->rotation_memory[1] == 0)) 402 rot_mem_usable = rot_mem_free / 2; 403 else 404 rot_mem_usable = hwdev->rotation_memory[0]; 405 } 406 407 rot_mem_free -= rot_mem_usable; 408 409 if (ms->rotmem_size > rot_mem_usable) 410 return -EINVAL; 411 } 412 } 413 414 /* If only the writeback routing has changed, we don't need a modeset */ 415 if (state->connectors_changed) { 416 u32 old_mask = crtc->state->connector_mask; 417 u32 new_mask = state->connector_mask; 418 419 if ((old_mask ^ new_mask) == 420 (1 << drm_connector_index(&malidp->mw_connector.base))) 421 state->connectors_changed = false; 422 } 423 424 ret = malidp_crtc_atomic_check_gamma(crtc, state); 425 ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state); 426 ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state); 427 428 return ret; 429 } 430 431 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = { 432 .mode_valid = malidp_crtc_mode_valid, 433 .atomic_check = malidp_crtc_atomic_check, 434 .atomic_enable = malidp_crtc_atomic_enable, 435 .atomic_disable = malidp_crtc_atomic_disable, 436 }; 437 438 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc) 439 { 440 struct malidp_crtc_state *state, *old_state; 441 442 if (WARN_ON(!crtc->state)) 443 return NULL; 444 445 old_state = to_malidp_crtc_state(crtc->state); 446 state = kmalloc(sizeof(*state), GFP_KERNEL); 447 if (!state) 448 return NULL; 449 450 __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); 451 memcpy(state->gamma_coeffs, old_state->gamma_coeffs, 452 sizeof(state->gamma_coeffs)); 453 memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs, 454 sizeof(state->coloradj_coeffs)); 455 memcpy(&state->scaler_config, &old_state->scaler_config, 456 sizeof(state->scaler_config)); 457 state->scaled_planes_mask = 0; 458 459 return &state->base; 460 } 461 462 static void malidp_crtc_destroy_state(struct drm_crtc *crtc, 463 struct drm_crtc_state *state) 464 { 465 struct malidp_crtc_state *mali_state = NULL; 466 467 if (state) { 468 mali_state = to_malidp_crtc_state(state); 469 __drm_atomic_helper_crtc_destroy_state(state); 470 } 471 472 kfree(mali_state); 473 } 474 475 static void malidp_crtc_reset(struct drm_crtc *crtc) 476 { 477 struct malidp_crtc_state *state = 478 kzalloc(sizeof(*state), GFP_KERNEL); 479 480 if (crtc->state) 481 malidp_crtc_destroy_state(crtc, crtc->state); 482 483 __drm_atomic_helper_crtc_reset(crtc, &state->base); 484 } 485 486 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc) 487 { 488 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 489 struct malidp_hw_device *hwdev = malidp->dev; 490 491 malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK, 492 hwdev->hw->map.de_irq_map.vsync_irq); 493 return 0; 494 } 495 496 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc) 497 { 498 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 499 struct malidp_hw_device *hwdev = malidp->dev; 500 501 malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK, 502 hwdev->hw->map.de_irq_map.vsync_irq); 503 } 504 505 static const struct drm_crtc_funcs malidp_crtc_funcs = { 506 .gamma_set = drm_atomic_helper_legacy_gamma_set, 507 .destroy = drm_crtc_cleanup, 508 .set_config = drm_atomic_helper_set_config, 509 .page_flip = drm_atomic_helper_page_flip, 510 .reset = malidp_crtc_reset, 511 .atomic_duplicate_state = malidp_crtc_duplicate_state, 512 .atomic_destroy_state = malidp_crtc_destroy_state, 513 .enable_vblank = malidp_crtc_enable_vblank, 514 .disable_vblank = malidp_crtc_disable_vblank, 515 }; 516 517 int malidp_crtc_init(struct drm_device *drm) 518 { 519 struct malidp_drm *malidp = drm->dev_private; 520 struct drm_plane *primary = NULL, *plane; 521 int ret; 522 523 ret = malidp_de_planes_init(drm); 524 if (ret < 0) { 525 DRM_ERROR("Failed to initialise planes\n"); 526 return ret; 527 } 528 529 drm_for_each_plane(plane, drm) { 530 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 531 primary = plane; 532 break; 533 } 534 } 535 536 if (!primary) { 537 DRM_ERROR("no primary plane found\n"); 538 return -EINVAL; 539 } 540 541 ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL, 542 &malidp_crtc_funcs, NULL); 543 if (ret) 544 return ret; 545 546 drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs); 547 drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE); 548 /* No inverse-gamma: it is per-plane. */ 549 drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE); 550 551 malidp_se_set_enh_coeffs(malidp->dev); 552 553 return 0; 554 } 555