1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) COPYRIGHT 2016 ARM Limited. All rights reserved. 4 * Author: Liviu Dudau <Liviu.Dudau@arm.com> 5 * 6 * ARM Mali DP500/DP550/DP650 driver (crtc operations) 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/pm_runtime.h> 11 12 #include <video/videomode.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_print.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_vblank.h> 20 21 #include "malidp_drv.h" 22 #include "malidp_hw.h" 23 24 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc, 25 const struct drm_display_mode *mode) 26 { 27 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 28 struct malidp_hw_device *hwdev = malidp->dev; 29 30 /* 31 * check that the hardware can drive the required clock rate, 32 * but skip the check if the clock is meant to be disabled (req_rate = 0) 33 */ 34 long rate, req_rate = mode->crtc_clock * 1000; 35 36 if (req_rate) { 37 rate = clk_round_rate(hwdev->pxlclk, req_rate); 38 if (rate != req_rate) { 39 DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n", 40 req_rate); 41 return MODE_NOCLOCK; 42 } 43 } 44 45 return MODE_OK; 46 } 47 48 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc, 49 struct drm_atomic_state *state) 50 { 51 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 52 struct malidp_hw_device *hwdev = malidp->dev; 53 struct videomode vm; 54 int err = pm_runtime_get_sync(crtc->dev->dev); 55 56 if (err < 0) { 57 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err); 58 return; 59 } 60 61 drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm); 62 clk_prepare_enable(hwdev->pxlclk); 63 64 /* We rely on firmware to set mclk to a sensible level. */ 65 clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000); 66 67 hwdev->hw->modeset(hwdev, &vm); 68 hwdev->hw->leave_config_mode(hwdev); 69 drm_crtc_vblank_on(crtc); 70 } 71 72 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc, 73 struct drm_atomic_state *state) 74 { 75 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 76 crtc); 77 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 78 struct malidp_hw_device *hwdev = malidp->dev; 79 int err; 80 81 /* always disable planes on the CRTC that is being turned off */ 82 drm_atomic_helper_disable_planes_on_crtc(old_state, false); 83 84 drm_crtc_vblank_off(crtc); 85 hwdev->hw->enter_config_mode(hwdev); 86 87 clk_disable_unprepare(hwdev->pxlclk); 88 89 err = pm_runtime_put(crtc->dev->dev); 90 if (err < 0) { 91 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err); 92 } 93 } 94 95 static const struct gamma_curve_segment { 96 u16 start; 97 u16 end; 98 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = { 99 /* sector 0 */ 100 { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, 101 { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, 102 { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 }, 103 { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 }, 104 /* sector 1 */ 105 { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 }, 106 /* sector 2 */ 107 { 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 }, 108 /* sector 3 */ 109 { 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 }, 110 /* sector 4 */ 111 { 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 }, 112 /* sector 5 */ 113 { 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 }, 114 /* sector 6 */ 115 { 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 }, 116 { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 }, 117 { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 }, 118 { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 }, 119 { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 }, 120 { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 }, 121 { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 }, 122 }; 123 124 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff))) 125 126 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob, 127 u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS]) 128 { 129 struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data; 130 int i; 131 132 for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) { 133 u32 a, b, delta_in, out_start, out_end; 134 135 delta_in = segments[i].end - segments[i].start; 136 /* DP has 12-bit internal precision for its LUTs. */ 137 out_start = drm_color_lut_extract(lut[segments[i].start].green, 138 12); 139 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12); 140 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in; 141 b = out_start; 142 coeffs[i] = DE_COEFTAB_DATA(a, b); 143 } 144 } 145 146 /* 147 * Check if there is a new gamma LUT and if it is of an acceptable size. Also, 148 * reject any LUTs that use distinct red, green, and blue curves. 149 */ 150 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc, 151 struct drm_crtc_state *state) 152 { 153 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 154 struct drm_color_lut *lut; 155 size_t lut_size; 156 int i; 157 158 if (!state->color_mgmt_changed || !state->gamma_lut) 159 return 0; 160 161 if (crtc->state->gamma_lut && 162 (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id)) 163 return 0; 164 165 if (state->gamma_lut->length % sizeof(struct drm_color_lut)) 166 return -EINVAL; 167 168 lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut); 169 if (lut_size != MALIDP_GAMMA_LUT_SIZE) 170 return -EINVAL; 171 172 lut = (struct drm_color_lut *)state->gamma_lut->data; 173 for (i = 0; i < lut_size; ++i) 174 if (!((lut[i].red == lut[i].green) && 175 (lut[i].red == lut[i].blue))) 176 return -EINVAL; 177 178 if (!state->mode_changed) { 179 int ret; 180 181 state->mode_changed = true; 182 /* 183 * Kerneldoc for drm_atomic_helper_check_modeset mandates that 184 * it be invoked when the driver sets ->mode_changed. Since 185 * changing the gamma LUT doesn't depend on any external 186 * resources, it is safe to call it only once. 187 */ 188 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state); 189 if (ret) 190 return ret; 191 } 192 193 malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs); 194 return 0; 195 } 196 197 /* 198 * Check if there is a new CTM and if it contains valid input. Valid here means 199 * that the number is inside the representable range for a Q3.12 number, 200 * excluding truncating the fractional part of the input data. 201 * 202 * The COLORADJ registers can be changed atomically. 203 */ 204 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc, 205 struct drm_crtc_state *state) 206 { 207 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 208 struct drm_color_ctm *ctm; 209 int i; 210 211 if (!state->color_mgmt_changed) 212 return 0; 213 214 if (!state->ctm) 215 return 0; 216 217 if (crtc->state->ctm && (crtc->state->ctm->base.id == 218 state->ctm->base.id)) 219 return 0; 220 221 /* 222 * The size of the ctm is checked in 223 * drm_atomic_replace_property_blob_from_id. 224 */ 225 ctm = (struct drm_color_ctm *)state->ctm->data; 226 for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) { 227 /* Convert from S31.32 to Q3.12. */ 228 s64 val = ctm->matrix[i]; 229 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) & 230 GENMASK_ULL(14, 0); 231 232 /* 233 * Convert to 2s complement and check the destination's top bit 234 * for overflow. NB: Can't check before converting or it'd 235 * incorrectly reject the case: 236 * sign == 1 237 * mag == 0x2000 238 */ 239 if (val & BIT_ULL(63)) 240 mag = ~mag + 1; 241 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14))) 242 return -EINVAL; 243 mc->coloradj_coeffs[i] = mag; 244 } 245 246 return 0; 247 } 248 249 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc, 250 struct drm_crtc_state *state) 251 { 252 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 253 struct malidp_hw_device *hwdev = malidp->dev; 254 struct malidp_crtc_state *cs = to_malidp_crtc_state(state); 255 struct malidp_se_config *s = &cs->scaler_config; 256 struct drm_plane *plane; 257 struct videomode vm; 258 const struct drm_plane_state *pstate; 259 u32 h_upscale_factor = 0; /* U16.16 */ 260 u32 v_upscale_factor = 0; /* U16.16 */ 261 u8 scaling = cs->scaled_planes_mask; 262 int ret; 263 264 if (!scaling) { 265 s->scale_enable = false; 266 goto mclk_calc; 267 } 268 269 /* The scaling engine can only handle one plane at a time. */ 270 if (scaling & (scaling - 1)) 271 return -EINVAL; 272 273 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 274 struct malidp_plane *mp = to_malidp_plane(plane); 275 u32 phase; 276 277 if (!(mp->layer->id & scaling)) 278 continue; 279 280 /* 281 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h] 282 * to get the U16.16 result. 283 */ 284 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32, 285 pstate->src_w); 286 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32, 287 pstate->src_h); 288 289 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 || 290 (v_upscale_factor >> 16) >= 2); 291 292 if (pstate->rotation & MALIDP_ROTATED_MASK) { 293 s->input_w = pstate->src_h >> 16; 294 s->input_h = pstate->src_w >> 16; 295 } else { 296 s->input_w = pstate->src_w >> 16; 297 s->input_h = pstate->src_h >> 16; 298 } 299 300 s->output_w = pstate->crtc_w; 301 s->output_h = pstate->crtc_h; 302 303 #define SE_N_PHASE 4 304 #define SE_SHIFT_N_PHASE 12 305 /* Calculate initial_phase and delta_phase for horizontal. */ 306 phase = s->input_w; 307 s->h_init_phase = 308 ((phase << SE_N_PHASE) / s->output_w + 1) / 2; 309 310 phase = s->input_w; 311 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 312 s->h_delta_phase = phase / s->output_w; 313 314 /* Same for vertical. */ 315 phase = s->input_h; 316 s->v_init_phase = 317 ((phase << SE_N_PHASE) / s->output_h + 1) / 2; 318 319 phase = s->input_h; 320 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 321 s->v_delta_phase = phase / s->output_h; 322 #undef SE_N_PHASE 323 #undef SE_SHIFT_N_PHASE 324 s->plane_src_id = mp->layer->id; 325 } 326 327 s->scale_enable = true; 328 s->hcoeff = malidp_se_select_coeffs(h_upscale_factor); 329 s->vcoeff = malidp_se_select_coeffs(v_upscale_factor); 330 331 mclk_calc: 332 drm_display_mode_to_videomode(&state->adjusted_mode, &vm); 333 ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm); 334 if (ret < 0) 335 return -EINVAL; 336 return 0; 337 } 338 339 static int malidp_crtc_atomic_check(struct drm_crtc *crtc, 340 struct drm_atomic_state *state) 341 { 342 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 343 crtc); 344 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 345 struct malidp_hw_device *hwdev = malidp->dev; 346 struct drm_plane *plane; 347 const struct drm_plane_state *pstate; 348 u32 rot_mem_free, rot_mem_usable; 349 int rotated_planes = 0; 350 int ret; 351 352 /* 353 * check if there is enough rotation memory available for planes 354 * that need 90° and 270° rotion or planes that are compressed. 355 * Each plane has set its required memory size in the ->plane_check() 356 * callback, here we only make sure that the sums are less that the 357 * total usable memory. 358 * 359 * The rotation memory allocation algorithm (for each plane): 360 * a. If no more rotated or compressed planes exist, all remaining 361 * rotate memory in the bank is available for use by the plane. 362 * b. If other rotated or compressed planes exist, and plane's 363 * layer ID is DE_VIDEO1, it can use all the memory from first bank 364 * if secondary rotation memory bank is available, otherwise it can 365 * use up to half the bank's memory. 366 * c. If other rotated or compressed planes exist, and plane's layer ID 367 * is not DE_VIDEO1, it can use half of the available memory. 368 * 369 * Note: this algorithm assumes that the order in which the planes are 370 * checked always has DE_VIDEO1 plane first in the list if it is 371 * rotated. Because that is how we create the planes in the first 372 * place, under current DRM version things work, but if ever the order 373 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes 374 * changes, we need to pre-sort the planes before validation. 375 */ 376 377 /* first count the number of rotated planes */ 378 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 379 struct drm_framebuffer *fb = pstate->fb; 380 381 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) 382 rotated_planes++; 383 } 384 385 rot_mem_free = hwdev->rotation_memory[0]; 386 /* 387 * if we have more than 1 plane using rotation memory, use the second 388 * block of rotation memory as well 389 */ 390 if (rotated_planes > 1) 391 rot_mem_free += hwdev->rotation_memory[1]; 392 393 /* now validate the rotation memory requirements */ 394 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 395 struct malidp_plane *mp = to_malidp_plane(plane); 396 struct malidp_plane_state *ms = to_malidp_plane_state(pstate); 397 struct drm_framebuffer *fb = pstate->fb; 398 399 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) { 400 /* process current plane */ 401 rotated_planes--; 402 403 if (!rotated_planes) { 404 /* no more rotated planes, we can use what's left */ 405 rot_mem_usable = rot_mem_free; 406 } else { 407 if ((mp->layer->id != DE_VIDEO1) || 408 (hwdev->rotation_memory[1] == 0)) 409 rot_mem_usable = rot_mem_free / 2; 410 else 411 rot_mem_usable = hwdev->rotation_memory[0]; 412 } 413 414 rot_mem_free -= rot_mem_usable; 415 416 if (ms->rotmem_size > rot_mem_usable) 417 return -EINVAL; 418 } 419 } 420 421 /* If only the writeback routing has changed, we don't need a modeset */ 422 if (crtc_state->connectors_changed) { 423 u32 old_mask = crtc->state->connector_mask; 424 u32 new_mask = crtc_state->connector_mask; 425 426 if ((old_mask ^ new_mask) == 427 (1 << drm_connector_index(&malidp->mw_connector.base))) 428 crtc_state->connectors_changed = false; 429 } 430 431 ret = malidp_crtc_atomic_check_gamma(crtc, crtc_state); 432 ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, crtc_state); 433 ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, crtc_state); 434 435 return ret; 436 } 437 438 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = { 439 .mode_valid = malidp_crtc_mode_valid, 440 .atomic_check = malidp_crtc_atomic_check, 441 .atomic_enable = malidp_crtc_atomic_enable, 442 .atomic_disable = malidp_crtc_atomic_disable, 443 }; 444 445 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc) 446 { 447 struct malidp_crtc_state *state, *old_state; 448 449 if (WARN_ON(!crtc->state)) 450 return NULL; 451 452 old_state = to_malidp_crtc_state(crtc->state); 453 state = kmalloc(sizeof(*state), GFP_KERNEL); 454 if (!state) 455 return NULL; 456 457 __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); 458 memcpy(state->gamma_coeffs, old_state->gamma_coeffs, 459 sizeof(state->gamma_coeffs)); 460 memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs, 461 sizeof(state->coloradj_coeffs)); 462 memcpy(&state->scaler_config, &old_state->scaler_config, 463 sizeof(state->scaler_config)); 464 state->scaled_planes_mask = 0; 465 466 return &state->base; 467 } 468 469 static void malidp_crtc_destroy_state(struct drm_crtc *crtc, 470 struct drm_crtc_state *state) 471 { 472 struct malidp_crtc_state *mali_state = NULL; 473 474 if (state) { 475 mali_state = to_malidp_crtc_state(state); 476 __drm_atomic_helper_crtc_destroy_state(state); 477 } 478 479 kfree(mali_state); 480 } 481 482 static void malidp_crtc_reset(struct drm_crtc *crtc) 483 { 484 struct malidp_crtc_state *state = 485 kzalloc(sizeof(*state), GFP_KERNEL); 486 487 if (crtc->state) 488 malidp_crtc_destroy_state(crtc, crtc->state); 489 490 __drm_atomic_helper_crtc_reset(crtc, &state->base); 491 } 492 493 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc) 494 { 495 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 496 struct malidp_hw_device *hwdev = malidp->dev; 497 498 malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK, 499 hwdev->hw->map.de_irq_map.vsync_irq); 500 return 0; 501 } 502 503 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc) 504 { 505 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 506 struct malidp_hw_device *hwdev = malidp->dev; 507 508 malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK, 509 hwdev->hw->map.de_irq_map.vsync_irq); 510 } 511 512 static const struct drm_crtc_funcs malidp_crtc_funcs = { 513 .destroy = drm_crtc_cleanup, 514 .set_config = drm_atomic_helper_set_config, 515 .page_flip = drm_atomic_helper_page_flip, 516 .reset = malidp_crtc_reset, 517 .atomic_duplicate_state = malidp_crtc_duplicate_state, 518 .atomic_destroy_state = malidp_crtc_destroy_state, 519 .enable_vblank = malidp_crtc_enable_vblank, 520 .disable_vblank = malidp_crtc_disable_vblank, 521 }; 522 523 int malidp_crtc_init(struct drm_device *drm) 524 { 525 struct malidp_drm *malidp = drm->dev_private; 526 struct drm_plane *primary = NULL, *plane; 527 int ret; 528 529 ret = malidp_de_planes_init(drm); 530 if (ret < 0) { 531 DRM_ERROR("Failed to initialise planes\n"); 532 return ret; 533 } 534 535 drm_for_each_plane(plane, drm) { 536 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 537 primary = plane; 538 break; 539 } 540 } 541 542 if (!primary) { 543 DRM_ERROR("no primary plane found\n"); 544 return -EINVAL; 545 } 546 547 ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL, 548 &malidp_crtc_funcs, NULL); 549 if (ret) 550 return ret; 551 552 drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs); 553 drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE); 554 /* No inverse-gamma: it is per-plane. */ 555 drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE); 556 557 malidp_se_set_enh_coeffs(malidp->dev); 558 559 return 0; 560 } 561