1 /* 2 * (C) COPYRIGHT 2016 ARM Limited. All rights reserved. 3 * Author: Liviu Dudau <Liviu.Dudau@arm.com> 4 * 5 * This program is free software and is provided to you under the terms of the 6 * GNU General Public License version 2 as published by the Free Software 7 * Foundation, and any use by you of this program is subject to the terms 8 * of such GNU licence. 9 * 10 * ARM Mali DP500/DP550/DP650 driver (crtc operations) 11 */ 12 13 #include <drm/drmP.h> 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_probe_helper.h> 18 #include <linux/clk.h> 19 #include <linux/pm_runtime.h> 20 #include <video/videomode.h> 21 22 #include "malidp_drv.h" 23 #include "malidp_hw.h" 24 25 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc, 26 const struct drm_display_mode *mode) 27 { 28 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 29 struct malidp_hw_device *hwdev = malidp->dev; 30 31 /* 32 * check that the hardware can drive the required clock rate, 33 * but skip the check if the clock is meant to be disabled (req_rate = 0) 34 */ 35 long rate, req_rate = mode->crtc_clock * 1000; 36 37 if (req_rate) { 38 rate = clk_round_rate(hwdev->pxlclk, req_rate); 39 if (rate != req_rate) { 40 DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n", 41 req_rate); 42 return MODE_NOCLOCK; 43 } 44 } 45 46 return MODE_OK; 47 } 48 49 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc, 50 struct drm_crtc_state *old_state) 51 { 52 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 53 struct malidp_hw_device *hwdev = malidp->dev; 54 struct videomode vm; 55 int err = pm_runtime_get_sync(crtc->dev->dev); 56 57 if (err < 0) { 58 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err); 59 return; 60 } 61 62 drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm); 63 clk_prepare_enable(hwdev->pxlclk); 64 65 /* We rely on firmware to set mclk to a sensible level. */ 66 clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000); 67 68 hwdev->hw->modeset(hwdev, &vm); 69 hwdev->hw->leave_config_mode(hwdev); 70 drm_crtc_vblank_on(crtc); 71 } 72 73 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc, 74 struct drm_crtc_state *old_state) 75 { 76 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 77 struct malidp_hw_device *hwdev = malidp->dev; 78 int err; 79 80 /* always disable planes on the CRTC that is being turned off */ 81 drm_atomic_helper_disable_planes_on_crtc(old_state, false); 82 83 drm_crtc_vblank_off(crtc); 84 hwdev->hw->enter_config_mode(hwdev); 85 86 clk_disable_unprepare(hwdev->pxlclk); 87 88 err = pm_runtime_put(crtc->dev->dev); 89 if (err < 0) { 90 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err); 91 } 92 } 93 94 static const struct gamma_curve_segment { 95 u16 start; 96 u16 end; 97 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = { 98 /* sector 0 */ 99 { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, 100 { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, 101 { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 }, 102 { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 }, 103 /* sector 1 */ 104 { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 }, 105 /* sector 2 */ 106 { 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 }, 107 /* sector 3 */ 108 { 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 }, 109 /* sector 4 */ 110 { 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 }, 111 /* sector 5 */ 112 { 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 }, 113 /* sector 6 */ 114 { 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 }, 115 { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 }, 116 { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 }, 117 { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 }, 118 { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 }, 119 { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 }, 120 { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 }, 121 }; 122 123 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff))) 124 125 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob, 126 u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS]) 127 { 128 struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data; 129 int i; 130 131 for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) { 132 u32 a, b, delta_in, out_start, out_end; 133 134 delta_in = segments[i].end - segments[i].start; 135 /* DP has 12-bit internal precision for its LUTs. */ 136 out_start = drm_color_lut_extract(lut[segments[i].start].green, 137 12); 138 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12); 139 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in; 140 b = out_start; 141 coeffs[i] = DE_COEFTAB_DATA(a, b); 142 } 143 } 144 145 /* 146 * Check if there is a new gamma LUT and if it is of an acceptable size. Also, 147 * reject any LUTs that use distinct red, green, and blue curves. 148 */ 149 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc, 150 struct drm_crtc_state *state) 151 { 152 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 153 struct drm_color_lut *lut; 154 size_t lut_size; 155 int i; 156 157 if (!state->color_mgmt_changed || !state->gamma_lut) 158 return 0; 159 160 if (crtc->state->gamma_lut && 161 (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id)) 162 return 0; 163 164 if (state->gamma_lut->length % sizeof(struct drm_color_lut)) 165 return -EINVAL; 166 167 lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut); 168 if (lut_size != MALIDP_GAMMA_LUT_SIZE) 169 return -EINVAL; 170 171 lut = (struct drm_color_lut *)state->gamma_lut->data; 172 for (i = 0; i < lut_size; ++i) 173 if (!((lut[i].red == lut[i].green) && 174 (lut[i].red == lut[i].blue))) 175 return -EINVAL; 176 177 if (!state->mode_changed) { 178 int ret; 179 180 state->mode_changed = true; 181 /* 182 * Kerneldoc for drm_atomic_helper_check_modeset mandates that 183 * it be invoked when the driver sets ->mode_changed. Since 184 * changing the gamma LUT doesn't depend on any external 185 * resources, it is safe to call it only once. 186 */ 187 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state); 188 if (ret) 189 return ret; 190 } 191 192 malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs); 193 return 0; 194 } 195 196 /* 197 * Check if there is a new CTM and if it contains valid input. Valid here means 198 * that the number is inside the representable range for a Q3.12 number, 199 * excluding truncating the fractional part of the input data. 200 * 201 * The COLORADJ registers can be changed atomically. 202 */ 203 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc, 204 struct drm_crtc_state *state) 205 { 206 struct malidp_crtc_state *mc = to_malidp_crtc_state(state); 207 struct drm_color_ctm *ctm; 208 int i; 209 210 if (!state->color_mgmt_changed) 211 return 0; 212 213 if (!state->ctm) 214 return 0; 215 216 if (crtc->state->ctm && (crtc->state->ctm->base.id == 217 state->ctm->base.id)) 218 return 0; 219 220 /* 221 * The size of the ctm is checked in 222 * drm_atomic_replace_property_blob_from_id. 223 */ 224 ctm = (struct drm_color_ctm *)state->ctm->data; 225 for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) { 226 /* Convert from S31.32 to Q3.12. */ 227 s64 val = ctm->matrix[i]; 228 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) & 229 GENMASK_ULL(14, 0); 230 231 /* 232 * Convert to 2s complement and check the destination's top bit 233 * for overflow. NB: Can't check before converting or it'd 234 * incorrectly reject the case: 235 * sign == 1 236 * mag == 0x2000 237 */ 238 if (val & BIT_ULL(63)) 239 mag = ~mag + 1; 240 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14))) 241 return -EINVAL; 242 mc->coloradj_coeffs[i] = mag; 243 } 244 245 return 0; 246 } 247 248 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc, 249 struct drm_crtc_state *state) 250 { 251 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 252 struct malidp_hw_device *hwdev = malidp->dev; 253 struct malidp_crtc_state *cs = to_malidp_crtc_state(state); 254 struct malidp_se_config *s = &cs->scaler_config; 255 struct drm_plane *plane; 256 struct videomode vm; 257 const struct drm_plane_state *pstate; 258 u32 h_upscale_factor = 0; /* U16.16 */ 259 u32 v_upscale_factor = 0; /* U16.16 */ 260 u8 scaling = cs->scaled_planes_mask; 261 int ret; 262 263 if (!scaling) { 264 s->scale_enable = false; 265 goto mclk_calc; 266 } 267 268 /* The scaling engine can only handle one plane at a time. */ 269 if (scaling & (scaling - 1)) 270 return -EINVAL; 271 272 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 273 struct malidp_plane *mp = to_malidp_plane(plane); 274 u32 phase; 275 276 if (!(mp->layer->id & scaling)) 277 continue; 278 279 /* 280 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h] 281 * to get the U16.16 result. 282 */ 283 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32, 284 pstate->src_w); 285 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32, 286 pstate->src_h); 287 288 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 || 289 (v_upscale_factor >> 16) >= 2); 290 291 if (pstate->rotation & MALIDP_ROTATED_MASK) { 292 s->input_w = pstate->src_h >> 16; 293 s->input_h = pstate->src_w >> 16; 294 } else { 295 s->input_w = pstate->src_w >> 16; 296 s->input_h = pstate->src_h >> 16; 297 } 298 299 s->output_w = pstate->crtc_w; 300 s->output_h = pstate->crtc_h; 301 302 #define SE_N_PHASE 4 303 #define SE_SHIFT_N_PHASE 12 304 /* Calculate initial_phase and delta_phase for horizontal. */ 305 phase = s->input_w; 306 s->h_init_phase = 307 ((phase << SE_N_PHASE) / s->output_w + 1) / 2; 308 309 phase = s->input_w; 310 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 311 s->h_delta_phase = phase / s->output_w; 312 313 /* Same for vertical. */ 314 phase = s->input_h; 315 s->v_init_phase = 316 ((phase << SE_N_PHASE) / s->output_h + 1) / 2; 317 318 phase = s->input_h; 319 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); 320 s->v_delta_phase = phase / s->output_h; 321 #undef SE_N_PHASE 322 #undef SE_SHIFT_N_PHASE 323 s->plane_src_id = mp->layer->id; 324 } 325 326 s->scale_enable = true; 327 s->hcoeff = malidp_se_select_coeffs(h_upscale_factor); 328 s->vcoeff = malidp_se_select_coeffs(v_upscale_factor); 329 330 mclk_calc: 331 drm_display_mode_to_videomode(&state->adjusted_mode, &vm); 332 ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm); 333 if (ret < 0) 334 return -EINVAL; 335 return 0; 336 } 337 338 static int malidp_crtc_atomic_check(struct drm_crtc *crtc, 339 struct drm_crtc_state *state) 340 { 341 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 342 struct malidp_hw_device *hwdev = malidp->dev; 343 struct drm_plane *plane; 344 const struct drm_plane_state *pstate; 345 u32 rot_mem_free, rot_mem_usable; 346 int rotated_planes = 0; 347 int ret; 348 349 /* 350 * check if there is enough rotation memory available for planes 351 * that need 90° and 270° rotion or planes that are compressed. 352 * Each plane has set its required memory size in the ->plane_check() 353 * callback, here we only make sure that the sums are less that the 354 * total usable memory. 355 * 356 * The rotation memory allocation algorithm (for each plane): 357 * a. If no more rotated or compressed planes exist, all remaining 358 * rotate memory in the bank is available for use by the plane. 359 * b. If other rotated or compressed planes exist, and plane's 360 * layer ID is DE_VIDEO1, it can use all the memory from first bank 361 * if secondary rotation memory bank is available, otherwise it can 362 * use up to half the bank's memory. 363 * c. If other rotated or compressed planes exist, and plane's layer ID 364 * is not DE_VIDEO1, it can use half of the available memory. 365 * 366 * Note: this algorithm assumes that the order in which the planes are 367 * checked always has DE_VIDEO1 plane first in the list if it is 368 * rotated. Because that is how we create the planes in the first 369 * place, under current DRM version things work, but if ever the order 370 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes 371 * changes, we need to pre-sort the planes before validation. 372 */ 373 374 /* first count the number of rotated planes */ 375 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 376 struct drm_framebuffer *fb = pstate->fb; 377 378 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) 379 rotated_planes++; 380 } 381 382 rot_mem_free = hwdev->rotation_memory[0]; 383 /* 384 * if we have more than 1 plane using rotation memory, use the second 385 * block of rotation memory as well 386 */ 387 if (rotated_planes > 1) 388 rot_mem_free += hwdev->rotation_memory[1]; 389 390 /* now validate the rotation memory requirements */ 391 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 392 struct malidp_plane *mp = to_malidp_plane(plane); 393 struct malidp_plane_state *ms = to_malidp_plane_state(pstate); 394 struct drm_framebuffer *fb = pstate->fb; 395 396 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) { 397 /* process current plane */ 398 rotated_planes--; 399 400 if (!rotated_planes) { 401 /* no more rotated planes, we can use what's left */ 402 rot_mem_usable = rot_mem_free; 403 } else { 404 if ((mp->layer->id != DE_VIDEO1) || 405 (hwdev->rotation_memory[1] == 0)) 406 rot_mem_usable = rot_mem_free / 2; 407 else 408 rot_mem_usable = hwdev->rotation_memory[0]; 409 } 410 411 rot_mem_free -= rot_mem_usable; 412 413 if (ms->rotmem_size > rot_mem_usable) 414 return -EINVAL; 415 } 416 } 417 418 /* If only the writeback routing has changed, we don't need a modeset */ 419 if (state->connectors_changed) { 420 u32 old_mask = crtc->state->connector_mask; 421 u32 new_mask = state->connector_mask; 422 423 if ((old_mask ^ new_mask) == 424 (1 << drm_connector_index(&malidp->mw_connector.base))) 425 state->connectors_changed = false; 426 } 427 428 ret = malidp_crtc_atomic_check_gamma(crtc, state); 429 ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state); 430 ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state); 431 432 return ret; 433 } 434 435 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = { 436 .mode_valid = malidp_crtc_mode_valid, 437 .atomic_check = malidp_crtc_atomic_check, 438 .atomic_enable = malidp_crtc_atomic_enable, 439 .atomic_disable = malidp_crtc_atomic_disable, 440 }; 441 442 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc) 443 { 444 struct malidp_crtc_state *state, *old_state; 445 446 if (WARN_ON(!crtc->state)) 447 return NULL; 448 449 old_state = to_malidp_crtc_state(crtc->state); 450 state = kmalloc(sizeof(*state), GFP_KERNEL); 451 if (!state) 452 return NULL; 453 454 __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); 455 memcpy(state->gamma_coeffs, old_state->gamma_coeffs, 456 sizeof(state->gamma_coeffs)); 457 memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs, 458 sizeof(state->coloradj_coeffs)); 459 memcpy(&state->scaler_config, &old_state->scaler_config, 460 sizeof(state->scaler_config)); 461 state->scaled_planes_mask = 0; 462 463 return &state->base; 464 } 465 466 static void malidp_crtc_destroy_state(struct drm_crtc *crtc, 467 struct drm_crtc_state *state) 468 { 469 struct malidp_crtc_state *mali_state = NULL; 470 471 if (state) { 472 mali_state = to_malidp_crtc_state(state); 473 __drm_atomic_helper_crtc_destroy_state(state); 474 } 475 476 kfree(mali_state); 477 } 478 479 static void malidp_crtc_reset(struct drm_crtc *crtc) 480 { 481 struct malidp_crtc_state *state = 482 kzalloc(sizeof(*state), GFP_KERNEL); 483 484 if (crtc->state) 485 malidp_crtc_destroy_state(crtc, crtc->state); 486 487 __drm_atomic_helper_crtc_reset(crtc, &state->base); 488 } 489 490 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc) 491 { 492 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 493 struct malidp_hw_device *hwdev = malidp->dev; 494 495 malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK, 496 hwdev->hw->map.de_irq_map.vsync_irq); 497 return 0; 498 } 499 500 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc) 501 { 502 struct malidp_drm *malidp = crtc_to_malidp_device(crtc); 503 struct malidp_hw_device *hwdev = malidp->dev; 504 505 malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK, 506 hwdev->hw->map.de_irq_map.vsync_irq); 507 } 508 509 static const struct drm_crtc_funcs malidp_crtc_funcs = { 510 .gamma_set = drm_atomic_helper_legacy_gamma_set, 511 .destroy = drm_crtc_cleanup, 512 .set_config = drm_atomic_helper_set_config, 513 .page_flip = drm_atomic_helper_page_flip, 514 .reset = malidp_crtc_reset, 515 .atomic_duplicate_state = malidp_crtc_duplicate_state, 516 .atomic_destroy_state = malidp_crtc_destroy_state, 517 .enable_vblank = malidp_crtc_enable_vblank, 518 .disable_vblank = malidp_crtc_disable_vblank, 519 }; 520 521 int malidp_crtc_init(struct drm_device *drm) 522 { 523 struct malidp_drm *malidp = drm->dev_private; 524 struct drm_plane *primary = NULL, *plane; 525 int ret; 526 527 ret = malidp_de_planes_init(drm); 528 if (ret < 0) { 529 DRM_ERROR("Failed to initialise planes\n"); 530 return ret; 531 } 532 533 drm_for_each_plane(plane, drm) { 534 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 535 primary = plane; 536 break; 537 } 538 } 539 540 if (!primary) { 541 DRM_ERROR("no primary plane found\n"); 542 return -EINVAL; 543 } 544 545 ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL, 546 &malidp_crtc_funcs, NULL); 547 if (ret) 548 return ret; 549 550 drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs); 551 drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE); 552 /* No inverse-gamma: it is per-plane. */ 553 drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE); 554 555 malidp_se_set_enh_coeffs(malidp->dev); 556 557 return 0; 558 } 559