1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * (C) COPYRIGHT 2018 ARM Limited. All rights reserved. 4 * Author: James.Qian.Wang <james.qian.wang@arm.com> 5 * 6 */ 7 8 #include <drm/drm_print.h> 9 #include <linux/clk.h> 10 #include "komeda_dev.h" 11 #include "komeda_kms.h" 12 #include "komeda_pipeline.h" 13 #include "komeda_framebuffer.h" 14 15 static inline bool is_switching_user(void *old, void *new) 16 { 17 if (!old || !new) 18 return false; 19 20 return old != new; 21 } 22 23 static struct komeda_pipeline_state * 24 komeda_pipeline_get_state(struct komeda_pipeline *pipe, 25 struct drm_atomic_state *state) 26 { 27 struct drm_private_state *priv_st; 28 29 priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj); 30 if (IS_ERR(priv_st)) 31 return ERR_CAST(priv_st); 32 33 return priv_to_pipe_st(priv_st); 34 } 35 36 struct komeda_pipeline_state * 37 komeda_pipeline_get_old_state(struct komeda_pipeline *pipe, 38 struct drm_atomic_state *state) 39 { 40 struct drm_private_state *priv_st; 41 42 priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj); 43 if (priv_st) 44 return priv_to_pipe_st(priv_st); 45 return NULL; 46 } 47 48 static struct komeda_pipeline_state * 49 komeda_pipeline_get_new_state(struct komeda_pipeline *pipe, 50 struct drm_atomic_state *state) 51 { 52 struct drm_private_state *priv_st; 53 54 priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj); 55 if (priv_st) 56 return priv_to_pipe_st(priv_st); 57 return NULL; 58 } 59 60 /* Assign pipeline for crtc */ 61 static struct komeda_pipeline_state * 62 komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe, 63 struct drm_atomic_state *state, 64 struct drm_crtc *crtc) 65 { 66 struct komeda_pipeline_state *st; 67 68 st = komeda_pipeline_get_state(pipe, state); 69 if (IS_ERR(st)) 70 return st; 71 72 if (is_switching_user(crtc, st->crtc)) { 73 DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n", 74 drm_crtc_index(crtc), pipe->id); 75 return ERR_PTR(-EBUSY); 76 } 77 78 /* pipeline only can be disabled when the it is free or unused */ 79 if (!crtc && st->active_comps) { 80 DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id); 81 return ERR_PTR(-EBUSY); 82 } 83 84 st->crtc = crtc; 85 86 if (crtc) { 87 struct komeda_crtc_state *kcrtc_st; 88 89 kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state, 90 crtc)); 91 92 kcrtc_st->active_pipes |= BIT(pipe->id); 93 kcrtc_st->affected_pipes |= BIT(pipe->id); 94 } 95 return st; 96 } 97 98 static struct komeda_component_state * 99 komeda_component_get_state(struct komeda_component *c, 100 struct drm_atomic_state *state) 101 { 102 struct drm_private_state *priv_st; 103 104 WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock)); 105 106 priv_st = drm_atomic_get_private_obj_state(state, &c->obj); 107 if (IS_ERR(priv_st)) 108 return ERR_CAST(priv_st); 109 110 return priv_to_comp_st(priv_st); 111 } 112 113 static struct komeda_component_state * 114 komeda_component_get_old_state(struct komeda_component *c, 115 struct drm_atomic_state *state) 116 { 117 struct drm_private_state *priv_st; 118 119 priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj); 120 if (priv_st) 121 return priv_to_comp_st(priv_st); 122 return NULL; 123 } 124 125 /** 126 * komeda_component_get_state_and_set_user() 127 * 128 * @c: component to get state and set user 129 * @state: global atomic state 130 * @user: direct user, the binding user 131 * @crtc: the CRTC user, the big boss :) 132 * 133 * This function accepts two users: 134 * - The direct user: can be plane/crtc/wb_connector depends on component 135 * - The big boss (CRTC) 136 * CRTC is the big boss (the final user), because all component resources 137 * eventually will be assigned to CRTC, like the layer will be binding to 138 * kms_plane, but kms plane will be binding to a CRTC eventually. 139 * 140 * The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't 141 * independent and can be assigned to CRTC freely, but belongs to a specific 142 * pipeline, only pipeline can be shared between crtc, and pipeline as a whole 143 * (include all the internal components) assigned to a specific CRTC. 144 * 145 * So when set a user to komeda_component, need first to check the status of 146 * component->pipeline to see if the pipeline is available on this specific 147 * CRTC. if the pipeline is busy (assigned to another CRTC), even the required 148 * component is free, the component still cannot be assigned to the direct user. 149 */ 150 static struct komeda_component_state * 151 komeda_component_get_state_and_set_user(struct komeda_component *c, 152 struct drm_atomic_state *state, 153 void *user, 154 struct drm_crtc *crtc) 155 { 156 struct komeda_pipeline_state *pipe_st; 157 struct komeda_component_state *st; 158 159 /* First check if the pipeline is available */ 160 pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline, 161 state, crtc); 162 if (IS_ERR(pipe_st)) 163 return ERR_CAST(pipe_st); 164 165 st = komeda_component_get_state(c, state); 166 if (IS_ERR(st)) 167 return st; 168 169 /* check if the component has been occupied */ 170 if (is_switching_user(user, st->binding_user)) { 171 DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name); 172 return ERR_PTR(-EBUSY); 173 } 174 175 st->binding_user = user; 176 /* mark the component as active if user is valid */ 177 if (st->binding_user) 178 pipe_st->active_comps |= BIT(c->id); 179 180 return st; 181 } 182 183 static void 184 komeda_component_add_input(struct komeda_component_state *state, 185 struct komeda_component_output *input, 186 int idx) 187 { 188 struct komeda_component *c = state->component; 189 190 WARN_ON((idx < 0 || idx >= c->max_active_inputs)); 191 192 /* since the inputs[i] is only valid when it is active. So if a input[i] 193 * is a newly enabled input which switches from disable to enable, then 194 * the old inputs[i] is undefined (NOT zeroed), we can not rely on 195 * memcmp, but directly mark it changed 196 */ 197 if (!has_bit(idx, state->affected_inputs) || 198 memcmp(&state->inputs[idx], input, sizeof(*input))) { 199 memcpy(&state->inputs[idx], input, sizeof(*input)); 200 state->changed_active_inputs |= BIT(idx); 201 } 202 state->active_inputs |= BIT(idx); 203 state->affected_inputs |= BIT(idx); 204 } 205 206 static int 207 komeda_component_check_input(struct komeda_component_state *state, 208 struct komeda_component_output *input, 209 int idx) 210 { 211 struct komeda_component *c = state->component; 212 213 if ((idx < 0) || (idx >= c->max_active_inputs)) { 214 DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n", 215 input->component->name, c->name, idx); 216 return -EINVAL; 217 } 218 219 if (has_bit(idx, state->active_inputs)) { 220 DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n", 221 input->component->name, c->name, idx); 222 return -EINVAL; 223 } 224 225 return 0; 226 } 227 228 static void 229 komeda_component_set_output(struct komeda_component_output *output, 230 struct komeda_component *comp, 231 u8 output_port) 232 { 233 output->component = comp; 234 output->output_port = output_port; 235 } 236 237 static int 238 komeda_component_validate_private(struct komeda_component *c, 239 struct komeda_component_state *st) 240 { 241 int err; 242 243 if (!c->funcs->validate) 244 return 0; 245 246 err = c->funcs->validate(c, st); 247 if (err) 248 DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name); 249 250 return err; 251 } 252 253 /* Get current available scaler from the component->supported_outputs */ 254 static struct komeda_scaler * 255 komeda_component_get_avail_scaler(struct komeda_component *c, 256 struct drm_atomic_state *state) 257 { 258 struct komeda_pipeline_state *pipe_st; 259 u32 avail_scalers; 260 261 pipe_st = komeda_pipeline_get_state(c->pipeline, state); 262 if (!pipe_st) 263 return NULL; 264 265 avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^ 266 KOMEDA_PIPELINE_SCALERS; 267 268 c = komeda_component_pickup_output(c, avail_scalers); 269 270 return to_scaler(c); 271 } 272 273 static void 274 komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot) 275 { 276 if (drm_rotation_90_or_270(rot)) { 277 swap(dflow->in_h, dflow->in_w); 278 swap(dflow->total_in_h, dflow->total_in_w); 279 } 280 } 281 282 static int 283 komeda_layer_check_cfg(struct komeda_layer *layer, 284 struct komeda_fb *kfb, 285 struct komeda_data_flow_cfg *dflow) 286 { 287 u32 src_x, src_y, src_w, src_h; 288 289 if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot)) 290 return -EINVAL; 291 292 if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) { 293 src_x = dflow->out_x; 294 src_y = dflow->out_y; 295 src_w = dflow->out_w; 296 src_h = dflow->out_h; 297 } else { 298 src_x = dflow->in_x; 299 src_y = dflow->in_y; 300 src_w = dflow->in_w; 301 src_h = dflow->in_h; 302 } 303 304 if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h)) 305 return -EINVAL; 306 307 if (!in_range(&layer->hsize_in, src_w)) { 308 DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w); 309 return -EINVAL; 310 } 311 312 if (!in_range(&layer->vsize_in, src_h)) { 313 DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h); 314 return -EINVAL; 315 } 316 317 return 0; 318 } 319 320 static int 321 komeda_layer_validate(struct komeda_layer *layer, 322 struct komeda_plane_state *kplane_st, 323 struct komeda_data_flow_cfg *dflow) 324 { 325 struct drm_plane_state *plane_st = &kplane_st->base; 326 struct drm_framebuffer *fb = plane_st->fb; 327 struct komeda_fb *kfb = to_kfb(fb); 328 struct komeda_component_state *c_st; 329 struct komeda_layer_state *st; 330 int i, err; 331 332 err = komeda_layer_check_cfg(layer, kfb, dflow); 333 if (err) 334 return err; 335 336 c_st = komeda_component_get_state_and_set_user(&layer->base, 337 plane_st->state, plane_st->plane, plane_st->crtc); 338 if (IS_ERR(c_st)) 339 return PTR_ERR(c_st); 340 341 st = to_layer_st(c_st); 342 343 st->rot = dflow->rot; 344 345 if (fb->modifier) { 346 st->hsize = kfb->aligned_w; 347 st->vsize = kfb->aligned_h; 348 st->afbc_crop_l = dflow->in_x; 349 st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w; 350 st->afbc_crop_t = dflow->in_y; 351 st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h; 352 } else { 353 st->hsize = dflow->in_w; 354 st->vsize = dflow->in_h; 355 st->afbc_crop_l = 0; 356 st->afbc_crop_r = 0; 357 st->afbc_crop_t = 0; 358 st->afbc_crop_b = 0; 359 } 360 361 for (i = 0; i < fb->format->num_planes; i++) 362 st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x, 363 dflow->in_y, i); 364 365 err = komeda_component_validate_private(&layer->base, c_st); 366 if (err) 367 return err; 368 369 /* update the data flow for the next stage */ 370 komeda_component_set_output(&dflow->input, &layer->base, 0); 371 372 /* 373 * The rotation has been handled by layer, so adjusted the data flow for 374 * the next stage. 375 */ 376 komeda_rotate_data_flow(dflow, st->rot); 377 378 return 0; 379 } 380 381 static int 382 komeda_wb_layer_validate(struct komeda_layer *wb_layer, 383 struct drm_connector_state *conn_st, 384 struct komeda_data_flow_cfg *dflow) 385 { 386 struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb); 387 struct komeda_component_state *c_st; 388 struct komeda_layer_state *st; 389 int i, err; 390 391 err = komeda_layer_check_cfg(wb_layer, kfb, dflow); 392 if (err) 393 return err; 394 395 c_st = komeda_component_get_state_and_set_user(&wb_layer->base, 396 conn_st->state, conn_st->connector, conn_st->crtc); 397 if (IS_ERR(c_st)) 398 return PTR_ERR(c_st); 399 400 st = to_layer_st(c_st); 401 402 st->hsize = dflow->out_w; 403 st->vsize = dflow->out_h; 404 405 for (i = 0; i < kfb->base.format->num_planes; i++) 406 st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x, 407 dflow->out_y, i); 408 409 komeda_component_add_input(&st->base, &dflow->input, 0); 410 komeda_component_set_output(&dflow->input, &wb_layer->base, 0); 411 412 return 0; 413 } 414 415 static bool scaling_ratio_valid(u32 size_in, u32 size_out, 416 u32 max_upscaling, u32 max_downscaling) 417 { 418 if (size_out > size_in * max_upscaling) 419 return false; 420 else if (size_in > size_out * max_downscaling) 421 return false; 422 return true; 423 } 424 425 static int 426 komeda_scaler_check_cfg(struct komeda_scaler *scaler, 427 struct komeda_crtc_state *kcrtc_st, 428 struct komeda_data_flow_cfg *dflow) 429 { 430 u32 hsize_in, vsize_in, hsize_out, vsize_out; 431 u32 max_upscaling; 432 433 hsize_in = dflow->in_w; 434 vsize_in = dflow->in_h; 435 hsize_out = dflow->out_w; 436 vsize_out = dflow->out_h; 437 438 if (!in_range(&scaler->hsize, hsize_in) || 439 !in_range(&scaler->hsize, hsize_out)) { 440 DRM_DEBUG_ATOMIC("Invalid horizontal sizes"); 441 return -EINVAL; 442 } 443 444 if (!in_range(&scaler->vsize, vsize_in) || 445 !in_range(&scaler->vsize, vsize_out)) { 446 DRM_DEBUG_ATOMIC("Invalid vertical sizes"); 447 return -EINVAL; 448 } 449 450 /* If input comes from compiz that means the scaling is for writeback 451 * and scaler can not do upscaling for writeback 452 */ 453 if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS)) 454 max_upscaling = 1; 455 else 456 max_upscaling = scaler->max_upscaling; 457 458 if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling, 459 scaler->max_downscaling)) { 460 DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio"); 461 return -EINVAL; 462 } 463 464 if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling, 465 scaler->max_downscaling)) { 466 DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio"); 467 return -EINVAL; 468 } 469 470 if (hsize_in > hsize_out || vsize_in > vsize_out) { 471 struct komeda_pipeline *pipe = scaler->base.pipeline; 472 int err; 473 474 err = pipe->funcs->downscaling_clk_check(pipe, 475 &kcrtc_st->base.adjusted_mode, 476 komeda_calc_aclk(kcrtc_st), dflow); 477 if (err) { 478 DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n"); 479 return err; 480 } 481 } 482 483 return 0; 484 } 485 486 static int 487 komeda_scaler_validate(void *user, 488 struct komeda_crtc_state *kcrtc_st, 489 struct komeda_data_flow_cfg *dflow) 490 { 491 struct drm_atomic_state *drm_st = kcrtc_st->base.state; 492 struct komeda_component_state *c_st; 493 struct komeda_scaler_state *st; 494 struct komeda_scaler *scaler; 495 int err = 0; 496 497 if (!(dflow->en_scaling || dflow->en_img_enhancement)) 498 return 0; 499 500 scaler = komeda_component_get_avail_scaler(dflow->input.component, 501 drm_st); 502 if (!scaler) { 503 DRM_DEBUG_ATOMIC("No scaler available"); 504 return -EINVAL; 505 } 506 507 err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow); 508 if (err) 509 return err; 510 511 c_st = komeda_component_get_state_and_set_user(&scaler->base, 512 drm_st, user, kcrtc_st->base.crtc); 513 if (IS_ERR(c_st)) 514 return PTR_ERR(c_st); 515 516 st = to_scaler_st(c_st); 517 518 st->hsize_in = dflow->in_w; 519 st->vsize_in = dflow->in_h; 520 st->hsize_out = dflow->out_w; 521 st->vsize_out = dflow->out_h; 522 st->right_crop = dflow->right_crop; 523 st->left_crop = dflow->left_crop; 524 st->total_vsize_in = dflow->total_in_h; 525 st->total_hsize_in = dflow->total_in_w; 526 st->total_hsize_out = dflow->total_out_w; 527 528 /* Enable alpha processing if the next stage needs the pixel alpha */ 529 st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE; 530 st->en_scaling = dflow->en_scaling; 531 st->en_img_enhancement = dflow->en_img_enhancement; 532 st->en_split = dflow->en_split; 533 st->right_part = dflow->right_part; 534 535 komeda_component_add_input(&st->base, &dflow->input, 0); 536 komeda_component_set_output(&dflow->input, &scaler->base, 0); 537 return err; 538 } 539 540 static void komeda_split_data_flow(struct komeda_scaler *scaler, 541 struct komeda_data_flow_cfg *dflow, 542 struct komeda_data_flow_cfg *l_dflow, 543 struct komeda_data_flow_cfg *r_dflow); 544 545 static int 546 komeda_splitter_validate(struct komeda_splitter *splitter, 547 struct drm_connector_state *conn_st, 548 struct komeda_data_flow_cfg *dflow, 549 struct komeda_data_flow_cfg *l_output, 550 struct komeda_data_flow_cfg *r_output) 551 { 552 struct komeda_component_state *c_st; 553 struct komeda_splitter_state *st; 554 555 if (!splitter) { 556 DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n"); 557 return -EINVAL; 558 } 559 560 if (!in_range(&splitter->hsize, dflow->in_w)) { 561 DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n", 562 dflow->in_w); 563 return -EINVAL; 564 } 565 566 if (!in_range(&splitter->vsize, dflow->in_h)) { 567 DRM_DEBUG_ATOMIC("split in_in: %d exceed the acceptable range.\n", 568 dflow->in_w); 569 return -EINVAL; 570 } 571 572 c_st = komeda_component_get_state_and_set_user(&splitter->base, 573 conn_st->state, conn_st->connector, conn_st->crtc); 574 575 if (IS_ERR(c_st)) 576 return PTR_ERR(c_st); 577 578 komeda_split_data_flow(splitter->base.pipeline->scalers[0], 579 dflow, l_output, r_output); 580 581 st = to_splitter_st(c_st); 582 st->hsize = dflow->in_w; 583 st->vsize = dflow->in_h; 584 st->overlap = dflow->overlap; 585 586 komeda_component_add_input(&st->base, &dflow->input, 0); 587 komeda_component_set_output(&l_output->input, &splitter->base, 0); 588 komeda_component_set_output(&r_output->input, &splitter->base, 1); 589 590 return 0; 591 } 592 593 static int 594 komeda_merger_validate(struct komeda_merger *merger, 595 void *user, 596 struct komeda_crtc_state *kcrtc_st, 597 struct komeda_data_flow_cfg *left_input, 598 struct komeda_data_flow_cfg *right_input, 599 struct komeda_data_flow_cfg *output) 600 { 601 struct komeda_component_state *c_st; 602 struct komeda_merger_state *st; 603 int err = 0; 604 605 if (!merger) { 606 DRM_DEBUG_ATOMIC("No merger is available"); 607 return -EINVAL; 608 } 609 610 if (!in_range(&merger->hsize_merged, output->out_w)) { 611 DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n", 612 output->out_w); 613 return -EINVAL; 614 } 615 616 if (!in_range(&merger->vsize_merged, output->out_h)) { 617 DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n", 618 output->out_h); 619 return -EINVAL; 620 } 621 622 c_st = komeda_component_get_state_and_set_user(&merger->base, 623 kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc); 624 625 if (IS_ERR(c_st)) 626 return PTR_ERR(c_st); 627 628 st = to_merger_st(c_st); 629 st->hsize_merged = output->out_w; 630 st->vsize_merged = output->out_h; 631 632 komeda_component_add_input(c_st, &left_input->input, 0); 633 komeda_component_add_input(c_st, &right_input->input, 1); 634 komeda_component_set_output(&output->input, &merger->base, 0); 635 636 return err; 637 } 638 639 void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st, 640 u16 *hsize, u16 *vsize) 641 { 642 struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode; 643 644 if (hsize) 645 *hsize = m->hdisplay; 646 if (vsize) 647 *vsize = m->vdisplay; 648 } 649 650 static int 651 komeda_compiz_set_input(struct komeda_compiz *compiz, 652 struct komeda_crtc_state *kcrtc_st, 653 struct komeda_data_flow_cfg *dflow) 654 { 655 struct drm_atomic_state *drm_st = kcrtc_st->base.state; 656 struct komeda_component_state *c_st, *old_st; 657 struct komeda_compiz_input_cfg *cin; 658 u16 compiz_w, compiz_h; 659 int idx = dflow->blending_zorder; 660 661 pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h); 662 /* check display rect */ 663 if ((dflow->out_x + dflow->out_w > compiz_w) || 664 (dflow->out_y + dflow->out_h > compiz_h) || 665 dflow->out_w == 0 || dflow->out_h == 0) { 666 DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n", 667 dflow->out_x, dflow->out_y, 668 dflow->out_w, dflow->out_h); 669 return -EINVAL; 670 } 671 672 c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st, 673 kcrtc_st->base.crtc, kcrtc_st->base.crtc); 674 if (IS_ERR(c_st)) 675 return PTR_ERR(c_st); 676 677 if (komeda_component_check_input(c_st, &dflow->input, idx)) 678 return -EINVAL; 679 680 cin = &(to_compiz_st(c_st)->cins[idx]); 681 682 cin->hsize = dflow->out_w; 683 cin->vsize = dflow->out_h; 684 cin->hoffset = dflow->out_x; 685 cin->voffset = dflow->out_y; 686 cin->pixel_blend_mode = dflow->pixel_blend_mode; 687 cin->layer_alpha = dflow->layer_alpha; 688 689 old_st = komeda_component_get_old_state(&compiz->base, drm_st); 690 WARN_ON(!old_st); 691 692 /* compare with old to check if this input has been changed */ 693 if (memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin))) 694 c_st->changed_active_inputs |= BIT(idx); 695 696 komeda_component_add_input(c_st, &dflow->input, idx); 697 komeda_component_set_output(&dflow->input, &compiz->base, 0); 698 699 return 0; 700 } 701 702 static int 703 komeda_compiz_validate(struct komeda_compiz *compiz, 704 struct komeda_crtc_state *state, 705 struct komeda_data_flow_cfg *dflow) 706 { 707 struct komeda_component_state *c_st; 708 struct komeda_compiz_state *st; 709 710 c_st = komeda_component_get_state_and_set_user(&compiz->base, 711 state->base.state, state->base.crtc, state->base.crtc); 712 if (IS_ERR(c_st)) 713 return PTR_ERR(c_st); 714 715 st = to_compiz_st(c_st); 716 717 pipeline_composition_size(state, &st->hsize, &st->vsize); 718 719 komeda_component_set_output(&dflow->input, &compiz->base, 0); 720 721 /* compiz output dflow will be fed to the next pipeline stage, prepare 722 * the data flow configuration for the next stage 723 */ 724 if (dflow) { 725 dflow->in_w = st->hsize; 726 dflow->in_h = st->vsize; 727 dflow->out_w = dflow->in_w; 728 dflow->out_h = dflow->in_h; 729 /* the output data of compiz doesn't have alpha, it only can be 730 * used as bottom layer when blend it with master layers 731 */ 732 dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE; 733 dflow->layer_alpha = 0xFF; 734 dflow->blending_zorder = 0; 735 } 736 737 return 0; 738 } 739 740 static int 741 komeda_improc_validate(struct komeda_improc *improc, 742 struct komeda_crtc_state *kcrtc_st, 743 struct komeda_data_flow_cfg *dflow) 744 { 745 struct drm_crtc *crtc = kcrtc_st->base.crtc; 746 struct komeda_component_state *c_st; 747 struct komeda_improc_state *st; 748 749 c_st = komeda_component_get_state_and_set_user(&improc->base, 750 kcrtc_st->base.state, crtc, crtc); 751 if (IS_ERR(c_st)) 752 return PTR_ERR(c_st); 753 754 st = to_improc_st(c_st); 755 756 st->hsize = dflow->in_w; 757 st->vsize = dflow->in_h; 758 759 komeda_component_add_input(&st->base, &dflow->input, 0); 760 komeda_component_set_output(&dflow->input, &improc->base, 0); 761 762 return 0; 763 } 764 765 static int 766 komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr, 767 struct komeda_crtc_state *kcrtc_st, 768 struct komeda_data_flow_cfg *dflow) 769 { 770 struct drm_crtc *crtc = kcrtc_st->base.crtc; 771 struct komeda_timing_ctrlr_state *st; 772 struct komeda_component_state *c_st; 773 774 c_st = komeda_component_get_state_and_set_user(&ctrlr->base, 775 kcrtc_st->base.state, crtc, crtc); 776 if (IS_ERR(c_st)) 777 return PTR_ERR(c_st); 778 779 st = to_ctrlr_st(c_st); 780 781 komeda_component_add_input(&st->base, &dflow->input, 0); 782 komeda_component_set_output(&dflow->input, &ctrlr->base, 0); 783 784 return 0; 785 } 786 787 void komeda_complete_data_flow_cfg(struct komeda_data_flow_cfg *dflow, 788 struct drm_framebuffer *fb) 789 { 790 u32 w = dflow->in_w; 791 u32 h = dflow->in_h; 792 793 dflow->total_in_w = dflow->in_w; 794 dflow->total_in_h = dflow->in_h; 795 dflow->total_out_w = dflow->out_w; 796 797 /* if format doesn't have alpha, fix blend mode to PIXEL_NONE */ 798 if (!fb->format->has_alpha) 799 dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE; 800 801 if (drm_rotation_90_or_270(dflow->rot)) 802 swap(w, h); 803 804 dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h); 805 dflow->is_yuv = fb->format->is_yuv; 806 } 807 808 static bool merger_is_available(struct komeda_pipeline *pipe, 809 struct komeda_data_flow_cfg *dflow) 810 { 811 u32 avail_inputs = pipe->merger ? 812 pipe->merger->base.supported_inputs : 0; 813 814 return has_bit(dflow->input.component->id, avail_inputs); 815 } 816 817 int komeda_build_layer_data_flow(struct komeda_layer *layer, 818 struct komeda_plane_state *kplane_st, 819 struct komeda_crtc_state *kcrtc_st, 820 struct komeda_data_flow_cfg *dflow) 821 { 822 struct drm_plane *plane = kplane_st->base.plane; 823 struct komeda_pipeline *pipe = layer->base.pipeline; 824 int err; 825 826 DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]", 827 layer->base.name, plane->base.id, plane->name, 828 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h, 829 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h); 830 831 err = komeda_layer_validate(layer, kplane_st, dflow); 832 if (err) 833 return err; 834 835 err = komeda_scaler_validate(plane, kcrtc_st, dflow); 836 if (err) 837 return err; 838 839 /* if split, check if can put the data flow into merger */ 840 if (dflow->en_split && merger_is_available(pipe, dflow)) 841 return 0; 842 843 err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow); 844 845 return err; 846 } 847 848 /* 849 * Split is introduced for workaround scaler's input/output size limitation. 850 * The idea is simple, if one scaler can not fit the requirement, use two. 851 * So split splits the big source image to two half parts (left/right) and do 852 * the scaling by two scaler separately and independently. 853 * But split also imports an edge problem in the middle of the image when 854 * scaling, to avoid it, split isn't a simple half-and-half, but add an extra 855 * pixels (overlap) to both side, after split the left/right will be: 856 * - left: [0, src_length/2 + overlap] 857 * - right: [src_length/2 - overlap, src_length] 858 * The extra overlap do eliminate the edge problem, but which may also generates 859 * unnecessary pixels when scaling, we need to crop them before scaler output 860 * the result to the next stage. and for the how to crop, it depends on the 861 * unneeded pixels, another words the position where overlay has been added. 862 * - left: crop the right 863 * - right: crop the left 864 * 865 * The diagram for how to do the split 866 * 867 * <---------------------left->out_w ----------------> 868 * |--------------------------------|---right_crop-----| <- left after split 869 * \ \ / 870 * \ \<--overlap--->/ 871 * |-----------------|-------------|(Middle)------|-----------------| <- src 872 * /<---overlap--->\ \ 873 * / \ \ 874 * right after split->|-----left_crop---|--------------------------------| 875 * ^<------------------- right->out_w --------------->^ 876 * 877 * NOTE: To consistent with HW the output_w always contains the crop size. 878 */ 879 880 static void komeda_split_data_flow(struct komeda_scaler *scaler, 881 struct komeda_data_flow_cfg *dflow, 882 struct komeda_data_flow_cfg *l_dflow, 883 struct komeda_data_flow_cfg *r_dflow) 884 { 885 bool r90 = drm_rotation_90_or_270(dflow->rot); 886 bool flip_h = has_flip_h(dflow->rot); 887 u32 l_out, r_out, overlap; 888 889 memcpy(l_dflow, dflow, sizeof(*dflow)); 890 memcpy(r_dflow, dflow, sizeof(*dflow)); 891 892 l_dflow->right_part = false; 893 r_dflow->right_part = true; 894 r_dflow->blending_zorder = dflow->blending_zorder + 1; 895 896 overlap = 0; 897 if (dflow->en_scaling && scaler) 898 overlap += scaler->scaling_split_overlap; 899 900 /* original dflow may fed into splitter, and which doesn't need 901 * enhancement overlap 902 */ 903 dflow->overlap = overlap; 904 905 if (dflow->en_img_enhancement && scaler) 906 overlap += scaler->enh_split_overlap; 907 908 l_dflow->overlap = overlap; 909 r_dflow->overlap = overlap; 910 911 /* split the origin content */ 912 /* left/right here always means the left/right part of display image, 913 * not the source Image 914 */ 915 /* DRM rotation is anti-clockwise */ 916 if (r90) { 917 if (dflow->en_scaling) { 918 l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap; 919 r_dflow->in_h = l_dflow->in_h; 920 } else if (dflow->en_img_enhancement) { 921 /* enhancer only */ 922 l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap; 923 r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap; 924 } else { 925 /* split without scaler, no overlap */ 926 l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2); 927 r_dflow->in_h = dflow->in_h - l_dflow->in_h; 928 } 929 930 /* Consider YUV format, after split, the split source w/h 931 * may not aligned to 2. we have two choices for such case. 932 * 1. scaler is enabled (overlap != 0), we can do a alignment 933 * both left/right and crop the extra data by scaler. 934 * 2. scaler is not enabled, only align the split left 935 * src/disp, and the rest part assign to right 936 */ 937 if ((overlap != 0) && dflow->is_yuv) { 938 l_dflow->in_h = ALIGN(l_dflow->in_h, 2); 939 r_dflow->in_h = ALIGN(r_dflow->in_h, 2); 940 } 941 942 if (flip_h) 943 l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h; 944 else 945 r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h; 946 } else { 947 if (dflow->en_scaling) { 948 l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap; 949 r_dflow->in_w = l_dflow->in_w; 950 } else if (dflow->en_img_enhancement) { 951 l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap; 952 r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap; 953 } else { 954 l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2); 955 r_dflow->in_w = dflow->in_w - l_dflow->in_w; 956 } 957 958 /* do YUV alignment when scaler enabled */ 959 if ((overlap != 0) && dflow->is_yuv) { 960 l_dflow->in_w = ALIGN(l_dflow->in_w, 2); 961 r_dflow->in_w = ALIGN(r_dflow->in_w, 2); 962 } 963 964 /* on flip_h, the left display content from the right-source */ 965 if (flip_h) 966 l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w; 967 else 968 r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w; 969 } 970 971 /* split the disp_rect */ 972 if (dflow->en_scaling || dflow->en_img_enhancement) 973 l_dflow->out_w = ((dflow->out_w + 1) >> 1); 974 else 975 l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2); 976 977 r_dflow->out_w = dflow->out_w - l_dflow->out_w; 978 979 l_dflow->out_x = dflow->out_x; 980 r_dflow->out_x = l_dflow->out_w + l_dflow->out_x; 981 982 /* calculate the scaling crop */ 983 /* left scaler output more data and do crop */ 984 if (r90) { 985 l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h; 986 r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h; 987 } else { 988 l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w; 989 r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w; 990 } 991 992 l_dflow->left_crop = 0; 993 l_dflow->right_crop = l_out - l_dflow->out_w; 994 r_dflow->left_crop = r_out - r_dflow->out_w; 995 r_dflow->right_crop = 0; 996 997 /* out_w includes the crop length */ 998 l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop; 999 r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop; 1000 } 1001 1002 /* For layer split, a plane state will be split to two data flows and handled 1003 * by two separated komeda layer input pipelines. komeda supports two types of 1004 * layer split: 1005 * - none-scaling split: 1006 * / layer-left -> \ 1007 * plane_state compiz-> ... 1008 * \ layer-right-> / 1009 * 1010 * - scaling split: 1011 * / layer-left -> scaler->\ 1012 * plane_state merger -> compiz-> ... 1013 * \ layer-right-> scaler->/ 1014 * 1015 * Since merger only supports scaler as input, so for none-scaling split, two 1016 * layer data flows will be output to compiz directly. for scaling_split, two 1017 * data flow will be merged by merger firstly, then merger outputs one merged 1018 * data flow to compiz. 1019 */ 1020 int komeda_build_layer_split_data_flow(struct komeda_layer *left, 1021 struct komeda_plane_state *kplane_st, 1022 struct komeda_crtc_state *kcrtc_st, 1023 struct komeda_data_flow_cfg *dflow) 1024 { 1025 struct drm_plane *plane = kplane_st->base.plane; 1026 struct komeda_pipeline *pipe = left->base.pipeline; 1027 struct komeda_layer *right = left->right; 1028 struct komeda_data_flow_cfg l_dflow, r_dflow; 1029 int err; 1030 1031 komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow); 1032 1033 DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: " 1034 "src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]", 1035 left->base.name, right->base.name, 1036 plane->base.id, plane->name, 1037 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h, 1038 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h); 1039 1040 err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow); 1041 if (err) 1042 return err; 1043 1044 err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow); 1045 if (err) 1046 return err; 1047 1048 /* The rotation has been handled by layer, so adjusted the data flow */ 1049 komeda_rotate_data_flow(dflow, dflow->rot); 1050 1051 /* left and right dflow has been merged to compiz already, 1052 * no need merger to merge them anymore. 1053 */ 1054 if (r_dflow.input.component == l_dflow.input.component) 1055 return 0; 1056 1057 /* line merger path */ 1058 err = komeda_merger_validate(pipe->merger, plane, kcrtc_st, 1059 &l_dflow, &r_dflow, dflow); 1060 if (err) 1061 return err; 1062 1063 err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow); 1064 1065 return err; 1066 } 1067 1068 /* writeback data path: compiz -> scaler -> wb_layer -> memory */ 1069 int komeda_build_wb_data_flow(struct komeda_layer *wb_layer, 1070 struct drm_connector_state *conn_st, 1071 struct komeda_crtc_state *kcrtc_st, 1072 struct komeda_data_flow_cfg *dflow) 1073 { 1074 struct drm_connector *conn = conn_st->connector; 1075 int err; 1076 1077 err = komeda_scaler_validate(conn, kcrtc_st, dflow); 1078 if (err) 1079 return err; 1080 1081 return komeda_wb_layer_validate(wb_layer, conn_st, dflow); 1082 } 1083 1084 /* writeback scaling split data path: 1085 * /-> scaler ->\ 1086 * compiz -> splitter merger -> wb_layer -> memory 1087 * \-> scaler ->/ 1088 */ 1089 int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer, 1090 struct drm_connector_state *conn_st, 1091 struct komeda_crtc_state *kcrtc_st, 1092 struct komeda_data_flow_cfg *dflow) 1093 { 1094 struct komeda_pipeline *pipe = wb_layer->base.pipeline; 1095 struct drm_connector *conn = conn_st->connector; 1096 struct komeda_data_flow_cfg l_dflow, r_dflow; 1097 int err; 1098 1099 err = komeda_splitter_validate(pipe->splitter, conn_st, 1100 dflow, &l_dflow, &r_dflow); 1101 if (err) 1102 return err; 1103 err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow); 1104 if (err) 1105 return err; 1106 1107 err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow); 1108 if (err) 1109 return err; 1110 1111 err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st, 1112 &l_dflow, &r_dflow, dflow); 1113 if (err) 1114 return err; 1115 1116 return komeda_wb_layer_validate(wb_layer, conn_st, dflow); 1117 } 1118 1119 /* build display output data flow, the data path is: 1120 * compiz -> improc -> timing_ctrlr 1121 */ 1122 int komeda_build_display_data_flow(struct komeda_crtc *kcrtc, 1123 struct komeda_crtc_state *kcrtc_st) 1124 { 1125 struct komeda_pipeline *master = kcrtc->master; 1126 struct komeda_pipeline *slave = kcrtc->slave; 1127 struct komeda_data_flow_cfg m_dflow; /* master data flow */ 1128 struct komeda_data_flow_cfg s_dflow; /* slave data flow */ 1129 int err; 1130 1131 memset(&m_dflow, 0, sizeof(m_dflow)); 1132 memset(&s_dflow, 0, sizeof(s_dflow)); 1133 1134 if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) { 1135 err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow); 1136 if (err) 1137 return err; 1138 1139 /* merge the slave dflow into master pipeline */ 1140 err = komeda_compiz_set_input(master->compiz, kcrtc_st, 1141 &s_dflow); 1142 if (err) 1143 return err; 1144 } 1145 1146 err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow); 1147 if (err) 1148 return err; 1149 1150 err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow); 1151 if (err) 1152 return err; 1153 1154 err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow); 1155 if (err) 1156 return err; 1157 1158 return 0; 1159 } 1160 1161 static void 1162 komeda_pipeline_unbound_components(struct komeda_pipeline *pipe, 1163 struct komeda_pipeline_state *new) 1164 { 1165 struct drm_atomic_state *drm_st = new->obj.state; 1166 struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state); 1167 struct komeda_component_state *c_st; 1168 struct komeda_component *c; 1169 u32 disabling_comps, id; 1170 1171 WARN_ON(!old); 1172 1173 disabling_comps = (~new->active_comps) & old->active_comps; 1174 1175 /* unbound all disabling component */ 1176 dp_for_each_set_bit(id, disabling_comps) { 1177 c = komeda_pipeline_get_component(pipe, id); 1178 c_st = komeda_component_get_state_and_set_user(c, 1179 drm_st, NULL, new->crtc); 1180 WARN_ON(IS_ERR(c_st)); 1181 } 1182 } 1183 1184 /* release unclaimed pipeline resource */ 1185 int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe, 1186 struct komeda_crtc_state *kcrtc_st) 1187 { 1188 struct drm_atomic_state *drm_st = kcrtc_st->base.state; 1189 struct komeda_pipeline_state *st; 1190 1191 /* ignore the pipeline which is not affected */ 1192 if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes)) 1193 return 0; 1194 1195 if (has_bit(pipe->id, kcrtc_st->active_pipes)) 1196 st = komeda_pipeline_get_new_state(pipe, drm_st); 1197 else 1198 st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL); 1199 1200 if (WARN_ON(IS_ERR_OR_NULL(st))) 1201 return -EINVAL; 1202 1203 komeda_pipeline_unbound_components(pipe, st); 1204 1205 return 0; 1206 } 1207 1208 void komeda_pipeline_disable(struct komeda_pipeline *pipe, 1209 struct drm_atomic_state *old_state) 1210 { 1211 struct komeda_pipeline_state *old; 1212 struct komeda_component *c; 1213 struct komeda_component_state *c_st; 1214 u32 id, disabling_comps = 0; 1215 1216 old = komeda_pipeline_get_old_state(pipe, old_state); 1217 1218 disabling_comps = old->active_comps; 1219 DRM_DEBUG_ATOMIC("PIPE%d: disabling_comps: 0x%x.\n", 1220 pipe->id, disabling_comps); 1221 1222 dp_for_each_set_bit(id, disabling_comps) { 1223 c = komeda_pipeline_get_component(pipe, id); 1224 c_st = priv_to_comp_st(c->obj.state); 1225 1226 /* 1227 * If we disabled a component then all active_inputs should be 1228 * put in the list of changed_active_inputs, so they get 1229 * re-enabled. 1230 * This usually happens during a modeset when the pipeline is 1231 * first disabled and then the actual state gets committed 1232 * again. 1233 */ 1234 c_st->changed_active_inputs |= c_st->active_inputs; 1235 1236 c->funcs->disable(c); 1237 } 1238 } 1239 1240 void komeda_pipeline_update(struct komeda_pipeline *pipe, 1241 struct drm_atomic_state *old_state) 1242 { 1243 struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state); 1244 struct komeda_pipeline_state *old; 1245 struct komeda_component *c; 1246 u32 id, changed_comps = 0; 1247 1248 old = komeda_pipeline_get_old_state(pipe, old_state); 1249 1250 changed_comps = new->active_comps | old->active_comps; 1251 1252 DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%x.\n", 1253 pipe->id, new->active_comps, changed_comps); 1254 1255 dp_for_each_set_bit(id, changed_comps) { 1256 c = komeda_pipeline_get_component(pipe, id); 1257 1258 if (new->active_comps & BIT(c->id)) 1259 c->funcs->update(c, priv_to_comp_st(c->obj.state)); 1260 else 1261 c->funcs->disable(c); 1262 } 1263 } 1264