xref: /openbmc/linux/drivers/gpu/drm/arm/display/komeda/komeda_pipeline_state.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4  * Author: James.Qian.Wang <james.qian.wang@arm.com>
5  *
6  */
7 
8 #include <drm/drm_print.h>
9 #include <linux/clk.h>
10 #include "komeda_dev.h"
11 #include "komeda_kms.h"
12 #include "komeda_pipeline.h"
13 #include "komeda_framebuffer.h"
14 
15 static inline bool is_switching_user(void *old, void *new)
16 {
17 	if (!old || !new)
18 		return false;
19 
20 	return old != new;
21 }
22 
23 static struct komeda_pipeline_state *
24 komeda_pipeline_get_state(struct komeda_pipeline *pipe,
25 			  struct drm_atomic_state *state)
26 {
27 	struct drm_private_state *priv_st;
28 
29 	priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj);
30 	if (IS_ERR(priv_st))
31 		return ERR_CAST(priv_st);
32 
33 	return priv_to_pipe_st(priv_st);
34 }
35 
36 struct komeda_pipeline_state *
37 komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
38 			      struct drm_atomic_state *state)
39 {
40 	struct drm_private_state *priv_st;
41 
42 	priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj);
43 	if (priv_st)
44 		return priv_to_pipe_st(priv_st);
45 	return NULL;
46 }
47 
48 static struct komeda_pipeline_state *
49 komeda_pipeline_get_new_state(struct komeda_pipeline *pipe,
50 			      struct drm_atomic_state *state)
51 {
52 	struct drm_private_state *priv_st;
53 
54 	priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj);
55 	if (priv_st)
56 		return priv_to_pipe_st(priv_st);
57 	return NULL;
58 }
59 
60 /* Assign pipeline for crtc */
61 static struct komeda_pipeline_state *
62 komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe,
63 				       struct drm_atomic_state *state,
64 				       struct drm_crtc *crtc)
65 {
66 	struct komeda_pipeline_state *st;
67 
68 	st = komeda_pipeline_get_state(pipe, state);
69 	if (IS_ERR(st))
70 		return st;
71 
72 	if (is_switching_user(crtc, st->crtc)) {
73 		DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n",
74 				 drm_crtc_index(crtc), pipe->id);
75 		return ERR_PTR(-EBUSY);
76 	}
77 
78 	/* pipeline only can be disabled when the it is free or unused */
79 	if (!crtc && st->active_comps) {
80 		DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id);
81 		return ERR_PTR(-EBUSY);
82 	}
83 
84 	st->crtc = crtc;
85 
86 	if (crtc) {
87 		struct komeda_crtc_state *kcrtc_st;
88 
89 		kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state,
90 								     crtc));
91 
92 		kcrtc_st->active_pipes |= BIT(pipe->id);
93 		kcrtc_st->affected_pipes |= BIT(pipe->id);
94 	}
95 	return st;
96 }
97 
98 static struct komeda_component_state *
99 komeda_component_get_state(struct komeda_component *c,
100 			   struct drm_atomic_state *state)
101 {
102 	struct drm_private_state *priv_st;
103 
104 	WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock));
105 
106 	priv_st = drm_atomic_get_private_obj_state(state, &c->obj);
107 	if (IS_ERR(priv_st))
108 		return ERR_CAST(priv_st);
109 
110 	return priv_to_comp_st(priv_st);
111 }
112 
113 static struct komeda_component_state *
114 komeda_component_get_old_state(struct komeda_component *c,
115 			       struct drm_atomic_state *state)
116 {
117 	struct drm_private_state *priv_st;
118 
119 	priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj);
120 	if (priv_st)
121 		return priv_to_comp_st(priv_st);
122 	return NULL;
123 }
124 
125 /**
126  * komeda_component_get_state_and_set_user()
127  *
128  * @c: component to get state and set user
129  * @state: global atomic state
130  * @user: direct user, the binding user
131  * @crtc: the CRTC user, the big boss :)
132  *
133  * This function accepts two users:
134  * -   The direct user: can be plane/crtc/wb_connector depends on component
135  * -   The big boss (CRTC)
136  * CRTC is the big boss (the final user), because all component resources
137  * eventually will be assigned to CRTC, like the layer will be binding to
138  * kms_plane, but kms plane will be binding to a CRTC eventually.
139  *
140  * The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't
141  * independent and can be assigned to CRTC freely, but belongs to a specific
142  * pipeline, only pipeline can be shared between crtc, and pipeline as a whole
143  * (include all the internal components) assigned to a specific CRTC.
144  *
145  * So when set a user to komeda_component, need first to check the status of
146  * component->pipeline to see if the pipeline is available on this specific
147  * CRTC. if the pipeline is busy (assigned to another CRTC), even the required
148  * component is free, the component still cannot be assigned to the direct user.
149  */
150 static struct komeda_component_state *
151 komeda_component_get_state_and_set_user(struct komeda_component *c,
152 					struct drm_atomic_state *state,
153 					void *user,
154 					struct drm_crtc *crtc)
155 {
156 	struct komeda_pipeline_state *pipe_st;
157 	struct komeda_component_state *st;
158 
159 	/* First check if the pipeline is available */
160 	pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline,
161 							 state, crtc);
162 	if (IS_ERR(pipe_st))
163 		return ERR_CAST(pipe_st);
164 
165 	st = komeda_component_get_state(c, state);
166 	if (IS_ERR(st))
167 		return st;
168 
169 	/* check if the component has been occupied */
170 	if (is_switching_user(user, st->binding_user)) {
171 		DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name);
172 		return ERR_PTR(-EBUSY);
173 	}
174 
175 	st->binding_user = user;
176 	/* mark the component as active if user is valid */
177 	if (st->binding_user)
178 		pipe_st->active_comps |= BIT(c->id);
179 
180 	return st;
181 }
182 
183 static void
184 komeda_component_add_input(struct komeda_component_state *state,
185 			   struct komeda_component_output *input,
186 			   int idx)
187 {
188 	struct komeda_component *c = state->component;
189 
190 	WARN_ON((idx < 0 || idx >= c->max_active_inputs));
191 
192 	/* since the inputs[i] is only valid when it is active. So if a input[i]
193 	 * is a newly enabled input which switches from disable to enable, then
194 	 * the old inputs[i] is undefined (NOT zeroed), we can not rely on
195 	 * memcmp, but directly mark it changed
196 	 */
197 	if (!has_bit(idx, state->affected_inputs) ||
198 	    memcmp(&state->inputs[idx], input, sizeof(*input))) {
199 		memcpy(&state->inputs[idx], input, sizeof(*input));
200 		state->changed_active_inputs |= BIT(idx);
201 	}
202 	state->active_inputs |= BIT(idx);
203 	state->affected_inputs |= BIT(idx);
204 }
205 
206 static int
207 komeda_component_check_input(struct komeda_component_state *state,
208 			     struct komeda_component_output *input,
209 			     int idx)
210 {
211 	struct komeda_component *c = state->component;
212 
213 	if ((idx < 0) || (idx >= c->max_active_inputs)) {
214 		DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n",
215 				 input->component->name, c->name, idx);
216 		return -EINVAL;
217 	}
218 
219 	if (has_bit(idx, state->active_inputs)) {
220 		DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n",
221 				 input->component->name, c->name, idx);
222 		return -EINVAL;
223 	}
224 
225 	return 0;
226 }
227 
228 static void
229 komeda_component_set_output(struct komeda_component_output *output,
230 			    struct komeda_component *comp,
231 			    u8 output_port)
232 {
233 	output->component = comp;
234 	output->output_port = output_port;
235 }
236 
237 static int
238 komeda_component_validate_private(struct komeda_component *c,
239 				  struct komeda_component_state *st)
240 {
241 	int err;
242 
243 	if (!c->funcs->validate)
244 		return 0;
245 
246 	err = c->funcs->validate(c, st);
247 	if (err)
248 		DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name);
249 
250 	return err;
251 }
252 
253 /* Get current available scaler from the component->supported_outputs */
254 static struct komeda_scaler *
255 komeda_component_get_avail_scaler(struct komeda_component *c,
256 				  struct drm_atomic_state *state)
257 {
258 	struct komeda_pipeline_state *pipe_st;
259 	u32 avail_scalers;
260 
261 	pipe_st = komeda_pipeline_get_state(c->pipeline, state);
262 	if (!pipe_st)
263 		return NULL;
264 
265 	avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^
266 			KOMEDA_PIPELINE_SCALERS;
267 
268 	c = komeda_component_pickup_output(c, avail_scalers);
269 
270 	return to_scaler(c);
271 }
272 
273 static void
274 komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot)
275 {
276 	if (drm_rotation_90_or_270(rot)) {
277 		swap(dflow->in_h, dflow->in_w);
278 		swap(dflow->total_in_h, dflow->total_in_w);
279 	}
280 }
281 
282 static int
283 komeda_layer_check_cfg(struct komeda_layer *layer,
284 		       struct komeda_fb *kfb,
285 		       struct komeda_data_flow_cfg *dflow)
286 {
287 	u32 src_x, src_y, src_w, src_h;
288 	u32 line_sz, max_line_sz;
289 
290 	if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot))
291 		return -EINVAL;
292 
293 	if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) {
294 		src_x = dflow->out_x;
295 		src_y = dflow->out_y;
296 		src_w = dflow->out_w;
297 		src_h = dflow->out_h;
298 	} else {
299 		src_x = dflow->in_x;
300 		src_y = dflow->in_y;
301 		src_w = dflow->in_w;
302 		src_h = dflow->in_h;
303 	}
304 
305 	if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h))
306 		return -EINVAL;
307 
308 	if (!in_range(&layer->hsize_in, src_w)) {
309 		DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w);
310 		return -EINVAL;
311 	}
312 
313 	if (!in_range(&layer->vsize_in, src_h)) {
314 		DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h);
315 		return -EINVAL;
316 	}
317 
318 	if (drm_rotation_90_or_270(dflow->rot))
319 		line_sz = dflow->in_h;
320 	else
321 		line_sz = dflow->in_w;
322 
323 	if (kfb->base.format->hsub > 1)
324 		max_line_sz = layer->yuv_line_sz;
325 	else
326 		max_line_sz = layer->line_sz;
327 
328 	if (line_sz > max_line_sz) {
329 		DRM_DEBUG_ATOMIC("Required line_sz: %d exceeds the max size %d\n",
330 				 line_sz, max_line_sz);
331 		return -EINVAL;
332 	}
333 
334 	return 0;
335 }
336 
337 static int
338 komeda_layer_validate(struct komeda_layer *layer,
339 		      struct komeda_plane_state *kplane_st,
340 		      struct komeda_data_flow_cfg *dflow)
341 {
342 	struct drm_plane_state *plane_st = &kplane_st->base;
343 	struct drm_framebuffer *fb = plane_st->fb;
344 	struct komeda_fb *kfb = to_kfb(fb);
345 	struct komeda_component_state *c_st;
346 	struct komeda_layer_state *st;
347 	int i, err;
348 
349 	err = komeda_layer_check_cfg(layer, kfb, dflow);
350 	if (err)
351 		return err;
352 
353 	c_st = komeda_component_get_state_and_set_user(&layer->base,
354 			plane_st->state, plane_st->plane, plane_st->crtc);
355 	if (IS_ERR(c_st))
356 		return PTR_ERR(c_st);
357 
358 	st = to_layer_st(c_st);
359 
360 	st->rot = dflow->rot;
361 
362 	if (fb->modifier) {
363 		st->hsize = kfb->aligned_w;
364 		st->vsize = kfb->aligned_h;
365 		st->afbc_crop_l = dflow->in_x;
366 		st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w;
367 		st->afbc_crop_t = dflow->in_y;
368 		st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h;
369 	} else {
370 		st->hsize = dflow->in_w;
371 		st->vsize = dflow->in_h;
372 		st->afbc_crop_l = 0;
373 		st->afbc_crop_r = 0;
374 		st->afbc_crop_t = 0;
375 		st->afbc_crop_b = 0;
376 	}
377 
378 	for (i = 0; i < fb->format->num_planes; i++)
379 		st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x,
380 						       dflow->in_y, i);
381 
382 	err = komeda_component_validate_private(&layer->base, c_st);
383 	if (err)
384 		return err;
385 
386 	/* update the data flow for the next stage */
387 	komeda_component_set_output(&dflow->input, &layer->base, 0);
388 
389 	/*
390 	 * The rotation has been handled by layer, so adjusted the data flow for
391 	 * the next stage.
392 	 */
393 	komeda_rotate_data_flow(dflow, st->rot);
394 
395 	return 0;
396 }
397 
398 static int
399 komeda_wb_layer_validate(struct komeda_layer *wb_layer,
400 			 struct drm_connector_state *conn_st,
401 			 struct komeda_data_flow_cfg *dflow)
402 {
403 	struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
404 	struct komeda_component_state *c_st;
405 	struct komeda_layer_state *st;
406 	int i, err;
407 
408 	err = komeda_layer_check_cfg(wb_layer, kfb, dflow);
409 	if (err)
410 		return err;
411 
412 	c_st = komeda_component_get_state_and_set_user(&wb_layer->base,
413 			conn_st->state, conn_st->connector, conn_st->crtc);
414 	if (IS_ERR(c_st))
415 		return PTR_ERR(c_st);
416 
417 	st = to_layer_st(c_st);
418 
419 	st->hsize = dflow->out_w;
420 	st->vsize = dflow->out_h;
421 
422 	for (i = 0; i < kfb->base.format->num_planes; i++)
423 		st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x,
424 						       dflow->out_y, i);
425 
426 	komeda_component_add_input(&st->base, &dflow->input, 0);
427 	komeda_component_set_output(&dflow->input, &wb_layer->base, 0);
428 
429 	return 0;
430 }
431 
432 static bool scaling_ratio_valid(u32 size_in, u32 size_out,
433 				u32 max_upscaling, u32 max_downscaling)
434 {
435 	if (size_out > size_in * max_upscaling)
436 		return false;
437 	else if (size_in > size_out * max_downscaling)
438 		return false;
439 	return true;
440 }
441 
442 static int
443 komeda_scaler_check_cfg(struct komeda_scaler *scaler,
444 			struct komeda_crtc_state *kcrtc_st,
445 			struct komeda_data_flow_cfg *dflow)
446 {
447 	u32 hsize_in, vsize_in, hsize_out, vsize_out;
448 	u32 max_upscaling;
449 
450 	hsize_in = dflow->in_w;
451 	vsize_in = dflow->in_h;
452 	hsize_out = dflow->out_w;
453 	vsize_out = dflow->out_h;
454 
455 	if (!in_range(&scaler->hsize, hsize_in) ||
456 	    !in_range(&scaler->hsize, hsize_out)) {
457 		DRM_DEBUG_ATOMIC("Invalid horizontal sizes");
458 		return -EINVAL;
459 	}
460 
461 	if (!in_range(&scaler->vsize, vsize_in) ||
462 	    !in_range(&scaler->vsize, vsize_out)) {
463 		DRM_DEBUG_ATOMIC("Invalid vertical sizes");
464 		return -EINVAL;
465 	}
466 
467 	/* If input comes from compiz that means the scaling is for writeback
468 	 * and scaler can not do upscaling for writeback
469 	 */
470 	if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS))
471 		max_upscaling = 1;
472 	else
473 		max_upscaling = scaler->max_upscaling;
474 
475 	if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling,
476 				 scaler->max_downscaling)) {
477 		DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio");
478 		return -EINVAL;
479 	}
480 
481 	if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling,
482 				 scaler->max_downscaling)) {
483 		DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio");
484 		return -EINVAL;
485 	}
486 
487 	if (hsize_in > hsize_out || vsize_in > vsize_out) {
488 		struct komeda_pipeline *pipe = scaler->base.pipeline;
489 		int err;
490 
491 		err = pipe->funcs->downscaling_clk_check(pipe,
492 					&kcrtc_st->base.adjusted_mode,
493 					komeda_crtc_get_aclk(kcrtc_st), dflow);
494 		if (err) {
495 			DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n");
496 			return err;
497 		}
498 	}
499 
500 	return 0;
501 }
502 
503 static int
504 komeda_scaler_validate(void *user,
505 		       struct komeda_crtc_state *kcrtc_st,
506 		       struct komeda_data_flow_cfg *dflow)
507 {
508 	struct drm_atomic_state *drm_st = kcrtc_st->base.state;
509 	struct komeda_component_state *c_st;
510 	struct komeda_scaler_state *st;
511 	struct komeda_scaler *scaler;
512 	int err = 0;
513 
514 	if (!(dflow->en_scaling || dflow->en_img_enhancement))
515 		return 0;
516 
517 	scaler = komeda_component_get_avail_scaler(dflow->input.component,
518 						   drm_st);
519 	if (!scaler) {
520 		DRM_DEBUG_ATOMIC("No scaler available");
521 		return -EINVAL;
522 	}
523 
524 	err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow);
525 	if (err)
526 		return err;
527 
528 	c_st = komeda_component_get_state_and_set_user(&scaler->base,
529 			drm_st, user, kcrtc_st->base.crtc);
530 	if (IS_ERR(c_st))
531 		return PTR_ERR(c_st);
532 
533 	st = to_scaler_st(c_st);
534 
535 	st->hsize_in = dflow->in_w;
536 	st->vsize_in = dflow->in_h;
537 	st->hsize_out = dflow->out_w;
538 	st->vsize_out = dflow->out_h;
539 	st->right_crop = dflow->right_crop;
540 	st->left_crop = dflow->left_crop;
541 	st->total_vsize_in = dflow->total_in_h;
542 	st->total_hsize_in = dflow->total_in_w;
543 	st->total_hsize_out = dflow->total_out_w;
544 
545 	/* Enable alpha processing if the next stage needs the pixel alpha */
546 	st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE;
547 	st->en_scaling = dflow->en_scaling;
548 	st->en_img_enhancement = dflow->en_img_enhancement;
549 	st->en_split = dflow->en_split;
550 	st->right_part = dflow->right_part;
551 
552 	komeda_component_add_input(&st->base, &dflow->input, 0);
553 	komeda_component_set_output(&dflow->input, &scaler->base, 0);
554 	return err;
555 }
556 
557 static void komeda_split_data_flow(struct komeda_scaler *scaler,
558 				   struct komeda_data_flow_cfg *dflow,
559 				   struct komeda_data_flow_cfg *l_dflow,
560 				   struct komeda_data_flow_cfg *r_dflow);
561 
562 static int
563 komeda_splitter_validate(struct komeda_splitter *splitter,
564 			 struct drm_connector_state *conn_st,
565 			 struct komeda_data_flow_cfg *dflow,
566 			 struct komeda_data_flow_cfg *l_output,
567 			 struct komeda_data_flow_cfg *r_output)
568 {
569 	struct komeda_component_state *c_st;
570 	struct komeda_splitter_state *st;
571 
572 	if (!splitter) {
573 		DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!in_range(&splitter->hsize, dflow->in_w)) {
578 		DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n",
579 				 dflow->in_w);
580 		return -EINVAL;
581 	}
582 
583 	if (!in_range(&splitter->vsize, dflow->in_h)) {
584 		DRM_DEBUG_ATOMIC("split in_h: %d exceeds the acceptable range.\n",
585 				 dflow->in_h);
586 		return -EINVAL;
587 	}
588 
589 	c_st = komeda_component_get_state_and_set_user(&splitter->base,
590 			conn_st->state, conn_st->connector, conn_st->crtc);
591 
592 	if (IS_ERR(c_st))
593 		return PTR_ERR(c_st);
594 
595 	komeda_split_data_flow(splitter->base.pipeline->scalers[0],
596 			       dflow, l_output, r_output);
597 
598 	st = to_splitter_st(c_st);
599 	st->hsize = dflow->in_w;
600 	st->vsize = dflow->in_h;
601 	st->overlap = dflow->overlap;
602 
603 	komeda_component_add_input(&st->base, &dflow->input, 0);
604 	komeda_component_set_output(&l_output->input, &splitter->base, 0);
605 	komeda_component_set_output(&r_output->input, &splitter->base, 1);
606 
607 	return 0;
608 }
609 
610 static int
611 komeda_merger_validate(struct komeda_merger *merger,
612 		       void *user,
613 		       struct komeda_crtc_state *kcrtc_st,
614 		       struct komeda_data_flow_cfg *left_input,
615 		       struct komeda_data_flow_cfg *right_input,
616 		       struct komeda_data_flow_cfg *output)
617 {
618 	struct komeda_component_state *c_st;
619 	struct komeda_merger_state *st;
620 	int err = 0;
621 
622 	if (!merger) {
623 		DRM_DEBUG_ATOMIC("No merger is available");
624 		return -EINVAL;
625 	}
626 
627 	if (!in_range(&merger->hsize_merged, output->out_w)) {
628 		DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n",
629 				 output->out_w);
630 		return -EINVAL;
631 	}
632 
633 	if (!in_range(&merger->vsize_merged, output->out_h)) {
634 		DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n",
635 				 output->out_h);
636 		return -EINVAL;
637 	}
638 
639 	c_st = komeda_component_get_state_and_set_user(&merger->base,
640 			kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc);
641 
642 	if (IS_ERR(c_st))
643 		return PTR_ERR(c_st);
644 
645 	st = to_merger_st(c_st);
646 	st->hsize_merged = output->out_w;
647 	st->vsize_merged = output->out_h;
648 
649 	komeda_component_add_input(c_st, &left_input->input, 0);
650 	komeda_component_add_input(c_st, &right_input->input, 1);
651 	komeda_component_set_output(&output->input, &merger->base, 0);
652 
653 	return err;
654 }
655 
656 void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
657 			       u16 *hsize, u16 *vsize)
658 {
659 	struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode;
660 
661 	if (hsize)
662 		*hsize = m->hdisplay;
663 	if (vsize)
664 		*vsize = m->vdisplay;
665 }
666 
667 static int
668 komeda_compiz_set_input(struct komeda_compiz *compiz,
669 			struct komeda_crtc_state *kcrtc_st,
670 			struct komeda_data_flow_cfg *dflow)
671 {
672 	struct drm_atomic_state *drm_st = kcrtc_st->base.state;
673 	struct komeda_component_state *c_st, *old_st;
674 	struct komeda_compiz_input_cfg *cin;
675 	u16 compiz_w, compiz_h;
676 	int idx = dflow->blending_zorder;
677 
678 	pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h);
679 	/* check display rect */
680 	if ((dflow->out_x + dflow->out_w > compiz_w) ||
681 	    (dflow->out_y + dflow->out_h > compiz_h) ||
682 	     dflow->out_w == 0 || dflow->out_h == 0) {
683 		DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n",
684 				 dflow->out_x, dflow->out_y,
685 				 dflow->out_w, dflow->out_h);
686 		return -EINVAL;
687 	}
688 
689 	c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st,
690 			kcrtc_st->base.crtc, kcrtc_st->base.crtc);
691 	if (IS_ERR(c_st))
692 		return PTR_ERR(c_st);
693 
694 	if (komeda_component_check_input(c_st, &dflow->input, idx))
695 		return -EINVAL;
696 
697 	cin = &(to_compiz_st(c_st)->cins[idx]);
698 
699 	cin->hsize   = dflow->out_w;
700 	cin->vsize   = dflow->out_h;
701 	cin->hoffset = dflow->out_x;
702 	cin->voffset = dflow->out_y;
703 	cin->pixel_blend_mode = dflow->pixel_blend_mode;
704 	cin->layer_alpha = dflow->layer_alpha;
705 
706 	old_st = komeda_component_get_old_state(&compiz->base, drm_st);
707 	WARN_ON(!old_st);
708 
709 	/* compare with old to check if this input has been changed */
710 	if (memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin)))
711 		c_st->changed_active_inputs |= BIT(idx);
712 
713 	komeda_component_add_input(c_st, &dflow->input, idx);
714 	komeda_component_set_output(&dflow->input, &compiz->base, 0);
715 
716 	return 0;
717 }
718 
719 static int
720 komeda_compiz_validate(struct komeda_compiz *compiz,
721 		       struct komeda_crtc_state *state,
722 		       struct komeda_data_flow_cfg *dflow)
723 {
724 	struct komeda_component_state *c_st;
725 	struct komeda_compiz_state *st;
726 
727 	c_st = komeda_component_get_state_and_set_user(&compiz->base,
728 			state->base.state, state->base.crtc, state->base.crtc);
729 	if (IS_ERR(c_st))
730 		return PTR_ERR(c_st);
731 
732 	st = to_compiz_st(c_st);
733 
734 	pipeline_composition_size(state, &st->hsize, &st->vsize);
735 
736 	komeda_component_set_output(&dflow->input, &compiz->base, 0);
737 
738 	/* compiz output dflow will be fed to the next pipeline stage, prepare
739 	 * the data flow configuration for the next stage
740 	 */
741 	if (dflow) {
742 		dflow->in_w = st->hsize;
743 		dflow->in_h = st->vsize;
744 		dflow->out_w = dflow->in_w;
745 		dflow->out_h = dflow->in_h;
746 		/* the output data of compiz doesn't have alpha, it only can be
747 		 * used as bottom layer when blend it with master layers
748 		 */
749 		dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
750 		dflow->layer_alpha = 0xFF;
751 		dflow->blending_zorder = 0;
752 	}
753 
754 	return 0;
755 }
756 
757 static int
758 komeda_improc_validate(struct komeda_improc *improc,
759 		       struct komeda_crtc_state *kcrtc_st,
760 		       struct komeda_data_flow_cfg *dflow)
761 {
762 	struct drm_crtc *crtc = kcrtc_st->base.crtc;
763 	struct drm_crtc_state *crtc_st = &kcrtc_st->base;
764 	struct komeda_component_state *c_st;
765 	struct komeda_improc_state *st;
766 
767 	c_st = komeda_component_get_state_and_set_user(&improc->base,
768 			kcrtc_st->base.state, crtc, crtc);
769 	if (IS_ERR(c_st))
770 		return PTR_ERR(c_st);
771 
772 	st = to_improc_st(c_st);
773 
774 	st->hsize = dflow->in_w;
775 	st->vsize = dflow->in_h;
776 
777 	if (drm_atomic_crtc_needs_modeset(crtc_st)) {
778 		u32 output_depths, output_formats;
779 		u32 avail_depths, avail_formats;
780 
781 		komeda_crtc_get_color_config(crtc_st, &output_depths,
782 					     &output_formats);
783 
784 		avail_depths = output_depths & improc->supported_color_depths;
785 		if (avail_depths == 0) {
786 			DRM_DEBUG_ATOMIC("No available color depths, conn depths: 0x%x & display: 0x%x\n",
787 					 output_depths,
788 					 improc->supported_color_depths);
789 			return -EINVAL;
790 		}
791 
792 		avail_formats = output_formats &
793 				improc->supported_color_formats;
794 		if (!avail_formats) {
795 			DRM_DEBUG_ATOMIC("No available color_formats, conn formats 0x%x & display: 0x%x\n",
796 					 output_formats,
797 					 improc->supported_color_formats);
798 			return -EINVAL;
799 		}
800 
801 		st->color_depth = __fls(avail_depths);
802 		st->color_format = BIT(__ffs(avail_formats));
803 	}
804 
805 	komeda_component_add_input(&st->base, &dflow->input, 0);
806 	komeda_component_set_output(&dflow->input, &improc->base, 0);
807 
808 	return 0;
809 }
810 
811 static int
812 komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr,
813 			     struct komeda_crtc_state *kcrtc_st,
814 			     struct komeda_data_flow_cfg *dflow)
815 {
816 	struct drm_crtc *crtc = kcrtc_st->base.crtc;
817 	struct komeda_timing_ctrlr_state *st;
818 	struct komeda_component_state *c_st;
819 
820 	c_st = komeda_component_get_state_and_set_user(&ctrlr->base,
821 			kcrtc_st->base.state, crtc, crtc);
822 	if (IS_ERR(c_st))
823 		return PTR_ERR(c_st);
824 
825 	st = to_ctrlr_st(c_st);
826 
827 	komeda_component_add_input(&st->base, &dflow->input, 0);
828 	komeda_component_set_output(&dflow->input, &ctrlr->base, 0);
829 
830 	return 0;
831 }
832 
833 void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
834 				   struct komeda_data_flow_cfg *dflow,
835 				   struct drm_framebuffer *fb)
836 {
837 	struct komeda_scaler *scaler = layer->base.pipeline->scalers[0];
838 	u32 w = dflow->in_w;
839 	u32 h = dflow->in_h;
840 
841 	dflow->total_in_w = dflow->in_w;
842 	dflow->total_in_h = dflow->in_h;
843 	dflow->total_out_w = dflow->out_w;
844 
845 	/* if format doesn't have alpha, fix blend mode to PIXEL_NONE */
846 	if (!fb->format->has_alpha)
847 		dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
848 
849 	if (drm_rotation_90_or_270(dflow->rot))
850 		swap(w, h);
851 
852 	dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h);
853 	dflow->is_yuv = fb->format->is_yuv;
854 
855 	/* try to enable image enhancer if data flow is a 2x+ upscaling */
856 	dflow->en_img_enhancement = dflow->out_w >= 2 * w ||
857 				    dflow->out_h >= 2 * h;
858 
859 	/* try to enable split if scaling exceed the scaler's acceptable
860 	 * input/output range.
861 	 */
862 	if (dflow->en_scaling && scaler)
863 		dflow->en_split = !in_range(&scaler->hsize, dflow->in_w) ||
864 				  !in_range(&scaler->hsize, dflow->out_w);
865 }
866 
867 static bool merger_is_available(struct komeda_pipeline *pipe,
868 				struct komeda_data_flow_cfg *dflow)
869 {
870 	u32 avail_inputs = pipe->merger ?
871 			   pipe->merger->base.supported_inputs : 0;
872 
873 	return has_bit(dflow->input.component->id, avail_inputs);
874 }
875 
876 int komeda_build_layer_data_flow(struct komeda_layer *layer,
877 				 struct komeda_plane_state *kplane_st,
878 				 struct komeda_crtc_state *kcrtc_st,
879 				 struct komeda_data_flow_cfg *dflow)
880 {
881 	struct drm_plane *plane = kplane_st->base.plane;
882 	struct komeda_pipeline *pipe = layer->base.pipeline;
883 	int err;
884 
885 	DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
886 			 layer->base.name, plane->base.id, plane->name,
887 			 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
888 			 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
889 
890 	err = komeda_layer_validate(layer, kplane_st, dflow);
891 	if (err)
892 		return err;
893 
894 	err = komeda_scaler_validate(plane, kcrtc_st, dflow);
895 	if (err)
896 		return err;
897 
898 	/* if split, check if can put the data flow into merger */
899 	if (dflow->en_split && merger_is_available(pipe, dflow))
900 		return 0;
901 
902 	err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
903 
904 	return err;
905 }
906 
907 /*
908  * Split is introduced for workaround scaler's input/output size limitation.
909  * The idea is simple, if one scaler can not fit the requirement, use two.
910  * So split splits the big source image to two half parts (left/right) and do
911  * the scaling by two scaler separately and independently.
912  * But split also imports an edge problem in the middle of the image when
913  * scaling, to avoid it, split isn't a simple half-and-half, but add an extra
914  * pixels (overlap) to both side, after split the left/right will be:
915  * - left: [0, src_length/2 + overlap]
916  * - right: [src_length/2 - overlap, src_length]
917  * The extra overlap do eliminate the edge problem, but which may also generates
918  * unnecessary pixels when scaling, we need to crop them before scaler output
919  * the result to the next stage. and for the how to crop, it depends on the
920  * unneeded pixels, another words the position where overlay has been added.
921  * - left: crop the right
922  * - right: crop the left
923  *
924  * The diagram for how to do the split
925  *
926  *  <---------------------left->out_w ---------------->
927  * |--------------------------------|---right_crop-----| <- left after split
928  *  \                                \                /
929  *   \                                \<--overlap--->/
930  *   |-----------------|-------------|(Middle)------|-----------------| <- src
931  *                     /<---overlap--->\                               \
932  *                    /                 \                               \
933  * right after split->|-----left_crop---|--------------------------------|
934  *                    ^<------------------- right->out_w --------------->^
935  *
936  * NOTE: To consistent with HW the output_w always contains the crop size.
937  */
938 
939 static void komeda_split_data_flow(struct komeda_scaler *scaler,
940 				   struct komeda_data_flow_cfg *dflow,
941 				   struct komeda_data_flow_cfg *l_dflow,
942 				   struct komeda_data_flow_cfg *r_dflow)
943 {
944 	bool r90 = drm_rotation_90_or_270(dflow->rot);
945 	bool flip_h = has_flip_h(dflow->rot);
946 	u32 l_out, r_out, overlap;
947 
948 	memcpy(l_dflow, dflow, sizeof(*dflow));
949 	memcpy(r_dflow, dflow, sizeof(*dflow));
950 
951 	l_dflow->right_part = false;
952 	r_dflow->right_part = true;
953 	r_dflow->blending_zorder = dflow->blending_zorder + 1;
954 
955 	overlap = 0;
956 	if (dflow->en_scaling && scaler)
957 		overlap += scaler->scaling_split_overlap;
958 
959 	/* original dflow may fed into splitter, and which doesn't need
960 	 * enhancement overlap
961 	 */
962 	dflow->overlap = overlap;
963 
964 	if (dflow->en_img_enhancement && scaler)
965 		overlap += scaler->enh_split_overlap;
966 
967 	l_dflow->overlap = overlap;
968 	r_dflow->overlap = overlap;
969 
970 	/* split the origin content */
971 	/* left/right here always means the left/right part of display image,
972 	 * not the source Image
973 	 */
974 	/* DRM rotation is anti-clockwise */
975 	if (r90) {
976 		if (dflow->en_scaling) {
977 			l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
978 			r_dflow->in_h = l_dflow->in_h;
979 		} else if (dflow->en_img_enhancement) {
980 			/* enhancer only */
981 			l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
982 			r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap;
983 		} else {
984 			/* split without scaler, no overlap */
985 			l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2);
986 			r_dflow->in_h = dflow->in_h - l_dflow->in_h;
987 		}
988 
989 		/* Consider YUV format, after split, the split source w/h
990 		 * may not aligned to 2. we have two choices for such case.
991 		 * 1. scaler is enabled (overlap != 0), we can do a alignment
992 		 *    both left/right and crop the extra data by scaler.
993 		 * 2. scaler is not enabled, only align the split left
994 		 *    src/disp, and the rest part assign to right
995 		 */
996 		if ((overlap != 0) && dflow->is_yuv) {
997 			l_dflow->in_h = ALIGN(l_dflow->in_h, 2);
998 			r_dflow->in_h = ALIGN(r_dflow->in_h, 2);
999 		}
1000 
1001 		if (flip_h)
1002 			l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h;
1003 		else
1004 			r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h;
1005 	} else {
1006 		if (dflow->en_scaling) {
1007 			l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
1008 			r_dflow->in_w = l_dflow->in_w;
1009 		} else if (dflow->en_img_enhancement) {
1010 			l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
1011 			r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap;
1012 		} else {
1013 			l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2);
1014 			r_dflow->in_w = dflow->in_w - l_dflow->in_w;
1015 		}
1016 
1017 		/* do YUV alignment when scaler enabled */
1018 		if ((overlap != 0) && dflow->is_yuv) {
1019 			l_dflow->in_w = ALIGN(l_dflow->in_w, 2);
1020 			r_dflow->in_w = ALIGN(r_dflow->in_w, 2);
1021 		}
1022 
1023 		/* on flip_h, the left display content from the right-source */
1024 		if (flip_h)
1025 			l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w;
1026 		else
1027 			r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w;
1028 	}
1029 
1030 	/* split the disp_rect */
1031 	if (dflow->en_scaling || dflow->en_img_enhancement)
1032 		l_dflow->out_w = ((dflow->out_w + 1) >> 1);
1033 	else
1034 		l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2);
1035 
1036 	r_dflow->out_w = dflow->out_w - l_dflow->out_w;
1037 
1038 	l_dflow->out_x = dflow->out_x;
1039 	r_dflow->out_x = l_dflow->out_w + l_dflow->out_x;
1040 
1041 	/* calculate the scaling crop */
1042 	/* left scaler output more data and do crop */
1043 	if (r90) {
1044 		l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h;
1045 		r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h;
1046 	} else {
1047 		l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w;
1048 		r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w;
1049 	}
1050 
1051 	l_dflow->left_crop  = 0;
1052 	l_dflow->right_crop = l_out - l_dflow->out_w;
1053 	r_dflow->left_crop  = r_out - r_dflow->out_w;
1054 	r_dflow->right_crop = 0;
1055 
1056 	/* out_w includes the crop length */
1057 	l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop;
1058 	r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop;
1059 }
1060 
1061 /* For layer split, a plane state will be split to two data flows and handled
1062  * by two separated komeda layer input pipelines. komeda supports two types of
1063  * layer split:
1064  * - none-scaling split:
1065  *             / layer-left -> \
1066  * plane_state                  compiz-> ...
1067  *             \ layer-right-> /
1068  *
1069  * - scaling split:
1070  *             / layer-left -> scaler->\
1071  * plane_state                          merger -> compiz-> ...
1072  *             \ layer-right-> scaler->/
1073  *
1074  * Since merger only supports scaler as input, so for none-scaling split, two
1075  * layer data flows will be output to compiz directly. for scaling_split, two
1076  * data flow will be merged by merger firstly, then merger outputs one merged
1077  * data flow to compiz.
1078  */
1079 int komeda_build_layer_split_data_flow(struct komeda_layer *left,
1080 				       struct komeda_plane_state *kplane_st,
1081 				       struct komeda_crtc_state *kcrtc_st,
1082 				       struct komeda_data_flow_cfg *dflow)
1083 {
1084 	struct drm_plane *plane = kplane_st->base.plane;
1085 	struct komeda_pipeline *pipe = left->base.pipeline;
1086 	struct komeda_layer *right = left->right;
1087 	struct komeda_data_flow_cfg l_dflow, r_dflow;
1088 	int err;
1089 
1090 	komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow);
1091 
1092 	DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: "
1093 			 "src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
1094 			 left->base.name, right->base.name,
1095 			 plane->base.id, plane->name,
1096 			 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
1097 			 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
1098 
1099 	err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow);
1100 	if (err)
1101 		return err;
1102 
1103 	err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow);
1104 	if (err)
1105 		return err;
1106 
1107 	/* The rotation has been handled by layer, so adjusted the data flow */
1108 	komeda_rotate_data_flow(dflow, dflow->rot);
1109 
1110 	/* left and right dflow has been merged to compiz already,
1111 	 * no need merger to merge them anymore.
1112 	 */
1113 	if (r_dflow.input.component == l_dflow.input.component)
1114 		return 0;
1115 
1116 	/* line merger path */
1117 	err = komeda_merger_validate(pipe->merger, plane, kcrtc_st,
1118 				     &l_dflow, &r_dflow, dflow);
1119 	if (err)
1120 		return err;
1121 
1122 	err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
1123 
1124 	return err;
1125 }
1126 
1127 /* writeback data path: compiz -> scaler -> wb_layer -> memory */
1128 int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
1129 			      struct drm_connector_state *conn_st,
1130 			      struct komeda_crtc_state *kcrtc_st,
1131 			      struct komeda_data_flow_cfg *dflow)
1132 {
1133 	struct drm_connector *conn = conn_st->connector;
1134 	int err;
1135 
1136 	err = komeda_scaler_validate(conn, kcrtc_st, dflow);
1137 	if (err)
1138 		return err;
1139 
1140 	return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
1141 }
1142 
1143 /* writeback scaling split data path:
1144  *                   /-> scaler ->\
1145  * compiz -> splitter              merger -> wb_layer -> memory
1146  *                   \-> scaler ->/
1147  */
1148 int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
1149 				    struct drm_connector_state *conn_st,
1150 				    struct komeda_crtc_state *kcrtc_st,
1151 				    struct komeda_data_flow_cfg *dflow)
1152 {
1153 	struct komeda_pipeline *pipe = wb_layer->base.pipeline;
1154 	struct drm_connector *conn = conn_st->connector;
1155 	struct komeda_data_flow_cfg l_dflow, r_dflow;
1156 	int err;
1157 
1158 	err = komeda_splitter_validate(pipe->splitter, conn_st,
1159 				       dflow, &l_dflow, &r_dflow);
1160 	if (err)
1161 		return err;
1162 	err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow);
1163 	if (err)
1164 		return err;
1165 
1166 	err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow);
1167 	if (err)
1168 		return err;
1169 
1170 	err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st,
1171 				     &l_dflow, &r_dflow, dflow);
1172 	if (err)
1173 		return err;
1174 
1175 	return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
1176 }
1177 
1178 /* build display output data flow, the data path is:
1179  * compiz -> improc -> timing_ctrlr
1180  */
1181 int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
1182 				   struct komeda_crtc_state *kcrtc_st)
1183 {
1184 	struct komeda_pipeline *master = kcrtc->master;
1185 	struct komeda_pipeline *slave  = kcrtc->slave;
1186 	struct komeda_data_flow_cfg m_dflow; /* master data flow */
1187 	struct komeda_data_flow_cfg s_dflow; /* slave data flow */
1188 	int err;
1189 
1190 	memset(&m_dflow, 0, sizeof(m_dflow));
1191 	memset(&s_dflow, 0, sizeof(s_dflow));
1192 
1193 	if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) {
1194 		err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow);
1195 		if (err)
1196 			return err;
1197 
1198 		/* merge the slave dflow into master pipeline */
1199 		err = komeda_compiz_set_input(master->compiz, kcrtc_st,
1200 					      &s_dflow);
1201 		if (err)
1202 			return err;
1203 	}
1204 
1205 	err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow);
1206 	if (err)
1207 		return err;
1208 
1209 	err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow);
1210 	if (err)
1211 		return err;
1212 
1213 	err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow);
1214 	if (err)
1215 		return err;
1216 
1217 	return 0;
1218 }
1219 
1220 static void
1221 komeda_pipeline_unbound_components(struct komeda_pipeline *pipe,
1222 				   struct komeda_pipeline_state *new)
1223 {
1224 	struct drm_atomic_state *drm_st = new->obj.state;
1225 	struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state);
1226 	struct komeda_component_state *c_st;
1227 	struct komeda_component *c;
1228 	u32 disabling_comps, id;
1229 
1230 	WARN_ON(!old);
1231 
1232 	disabling_comps = (~new->active_comps) & old->active_comps;
1233 
1234 	/* unbound all disabling component */
1235 	dp_for_each_set_bit(id, disabling_comps) {
1236 		c = komeda_pipeline_get_component(pipe, id);
1237 		c_st = komeda_component_get_state_and_set_user(c,
1238 				drm_st, NULL, new->crtc);
1239 		WARN_ON(IS_ERR(c_st));
1240 	}
1241 }
1242 
1243 /* release unclaimed pipeline resource */
1244 int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
1245 				       struct komeda_crtc_state *kcrtc_st)
1246 {
1247 	struct drm_atomic_state *drm_st = kcrtc_st->base.state;
1248 	struct komeda_pipeline_state *st;
1249 
1250 	/* ignore the pipeline which is not affected */
1251 	if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes))
1252 		return 0;
1253 
1254 	if (has_bit(pipe->id, kcrtc_st->active_pipes))
1255 		st = komeda_pipeline_get_new_state(pipe, drm_st);
1256 	else
1257 		st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL);
1258 
1259 	if (WARN_ON(IS_ERR_OR_NULL(st)))
1260 		return -EINVAL;
1261 
1262 	komeda_pipeline_unbound_components(pipe, st);
1263 
1264 	return 0;
1265 }
1266 
1267 /* Since standalong disabled components must be disabled separately and in the
1268  * last, So a complete disable operation may needs to call pipeline_disable
1269  * twice (two phase disabling).
1270  * Phase 1: disable the common components, flush it.
1271  * Phase 2: disable the standalone disabled components, flush it.
1272  *
1273  * RETURNS:
1274  * true: disable is not complete, needs a phase 2 disable.
1275  * false: disable is complete.
1276  */
1277 bool komeda_pipeline_disable(struct komeda_pipeline *pipe,
1278 			     struct drm_atomic_state *old_state)
1279 {
1280 	struct komeda_pipeline_state *old;
1281 	struct komeda_component *c;
1282 	struct komeda_component_state *c_st;
1283 	u32 id, disabling_comps = 0;
1284 
1285 	old = komeda_pipeline_get_old_state(pipe, old_state);
1286 
1287 	disabling_comps = old->active_comps &
1288 			  (~pipe->standalone_disabled_comps);
1289 	if (!disabling_comps)
1290 		disabling_comps = old->active_comps &
1291 				  pipe->standalone_disabled_comps;
1292 
1293 	DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, disabling_comps: 0x%x.\n",
1294 			 pipe->id, old->active_comps, disabling_comps);
1295 
1296 	dp_for_each_set_bit(id, disabling_comps) {
1297 		c = komeda_pipeline_get_component(pipe, id);
1298 		c_st = priv_to_comp_st(c->obj.state);
1299 
1300 		/*
1301 		 * If we disabled a component then all active_inputs should be
1302 		 * put in the list of changed_active_inputs, so they get
1303 		 * re-enabled.
1304 		 * This usually happens during a modeset when the pipeline is
1305 		 * first disabled and then the actual state gets committed
1306 		 * again.
1307 		 */
1308 		c_st->changed_active_inputs |= c_st->active_inputs;
1309 
1310 		c->funcs->disable(c);
1311 	}
1312 
1313 	/* Update the pipeline state, if there are components that are still
1314 	 * active, return true for calling the phase 2 disable.
1315 	 */
1316 	old->active_comps &= ~disabling_comps;
1317 
1318 	return old->active_comps ? true : false;
1319 }
1320 
1321 void komeda_pipeline_update(struct komeda_pipeline *pipe,
1322 			    struct drm_atomic_state *old_state)
1323 {
1324 	struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state);
1325 	struct komeda_pipeline_state *old;
1326 	struct komeda_component *c;
1327 	u32 id, changed_comps = 0;
1328 
1329 	old = komeda_pipeline_get_old_state(pipe, old_state);
1330 
1331 	changed_comps = new->active_comps | old->active_comps;
1332 
1333 	DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%x.\n",
1334 			 pipe->id, new->active_comps, changed_comps);
1335 
1336 	dp_for_each_set_bit(id, changed_comps) {
1337 		c = komeda_pipeline_get_component(pipe, id);
1338 
1339 		if (new->active_comps & BIT(c->id))
1340 			c->funcs->update(c, priv_to_comp_st(c->obj.state));
1341 		else
1342 			c->funcs->disable(c);
1343 	}
1344 }
1345